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Abstract

Today’s methods for uncovering the causal relation-
ship(s) from observational data either constrain the
function class (linearity/additive noise) or the data.
We make assumptions on the data to develop a
framework for Causal Discovery (CD) that works
for general non-linear dependencies. Similar to pre-
vious work, we use nonlinear Independent Compo-
nent Analysis (ICA) to infer the underlying sources
from the observed variables. Instead of using con-
ditional independence tests to determine the causal
directions, we rely on the Jacobian of the inference
function; thus, generalizing LiNGAM’s approach
to the nonlinear case. We show that causal mod-
els resolve the permutation indeterminacy of ICA
and prove that under strong identifiability, the in-
ference function’s Jacobian captures the sparsity
structure of the causal graph. We demonstrate that
our method can infer the causal graph on multiple
synthetic data sets.

1 INTRODUCTION
Traditional statistical learning methods model correlations
in data. Though they have achieved super-human perfor-
mance in multiple fields [53, 12, 49], they have limited value
in understanding cause-effect relationships. A prevalent con-
sequence of this shortcoming is the observed tendency for
models to learn shortcuts [6] (e.g., classifying objects based
on their backgrounds). Conversely, causal models [40] con-
struct the world according to the Independent Causal Mech-
anisms (ICM) principle [42], where building blocks (mech-
anisms) neither influence nor inform each other. Modeling
temperature T and altitude A is a classic example [42]:
changing A affects T , but not vice versa. This independence
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translates to the Directed Acyclic Graph (DAG) A → T .

Causal Discovery (CD) describes the process of extract-
ing causal structure from data in the form of a DAG.
Having interventional data–such as in the form of Ran-
domized Controlled Trials (RCTs)–is desirable as it en-
ables answering questions of interventional nature, such
as ’What will happen if variable X is changed?’. How-
ever, RCTs can be costly, infeasible [4], or even unethical.
Thus, developing effective CD methods reliant on obser-
vational data alone is of significant interest. In general, in-
ferring the causal direction is provably impossible without
additional constraints or assumptions [61]; therefore, ex-
isting methods constrain either the model class (i.e., the
functions generating the observations) or the data distri-
bution. On the model side, these constraints include lin-
ear [48, 52, 46, 62] or specific nonlinear relationships (e.g.,
with additive noise) [13, 44, 59, 47, 28, 38]. On the data
side, assumptions include non-stationarity [35] or exchange-
ability [10].

CD aims to infer the ground-truth cause-effect relationships,
which connects it to the identifiability literature, where the
goal is to learn a model equivalent to the ground truth (up
to indeterminacies, such as permutations or element-wise
nonlinearities). An extensively studied method for learning
identifiable representations is Independent Component Anal-
ysis (ICA) [2, 18], which requires that the inferred compo-
nents (sources) are independent. Recent work has relied on
NonLinear Independent Component Analysis (NLICA) [63,
15, 15, 57, 23, 20, 37, 35, 24, 8, 16, 19, 11, 29] for identifi-
ability.

Our work builds on Monti et al. [35], which showed
that NLICA can be used for CD with general nonlinear
functions and observational data. Instead of using pairwise
independence tests, we draw inspiration from the Linear
Non-Gaussian Acyclic Model (LiNGAM) [48], which uses
a weight matrix to infer the DAG of a linear causal model.
We extend this approach to the nonlinear case by showing
that the Jacobian of the inference function (mapping
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Figure 1: The Jacobian of the inference network Jf−1 in-
forms about the DAG. We show that when observations X
are generated from noise variables N via a general nonlinear
Structural Equation Model (SEM) f , then the correspond-
ing DAG can be inferred from the Jacobian of a model that
identifies N under certain assumptions on N

from observations X to noise variables N ) captures the
sparsity structure of the DAG, when strong identifiability
is fulfilled [24, Def.1]. Relying on the Jacobian improves
scalability, since it removes the cost of d2 independence
tests for a DAG with d nodes. We train our model with
NLICA, and show that the DAG underlying the Data
Generating Process (DGP) provides an inductive bias to
account for the permutation indeterminacy of NLICA.

Our contributions can be summarized as follows:

1. We show that causal models allow us to account for
the permutation indeterminacy of ICA;

2. We prove that we can infer the DAG from the Jacobian
of the inference function and also improve scalability
by removing the need for independence tests.

3. We propose a multivariable CD method for general
nonlinear functions from observational data;

4. We experimentally show that our proposed method can
infer the DAG across multiple synthetic data sets.

2 BACKGROUND
Here, we describe causal models and connect their estima-
tion to ICA. We defer technical details to Appx. A.

Structural Equation Models (SEMs). Given d-
dimensional observed X=(X1, . . . , Xd) and noise (indepen-
dent) variables N=(N1, . . . , Nd), their causal relationship
is given by d deterministic functional assignments [42],

Xi = f i (Pai, N i) ∀i, (1)

where Pai ⊂ X are the parents of Xi and f i are the
components of the vector-valued function f . We describe
the computation of X for a given N with an iterative
process (denoting the iteration step with a superscript),

which is a useful concept for justifying our proposal (§ 3).
Initially, N is drawn from its density. To calculate X for
N , the functional assignment f needs to be applied d times.
Namely, according to (1), each Xi requires that its parents
Pai are calculated. After sampling N , only the (empty)
parent sets of root nodes are calculated. Thus, the first
application of f yields the Xi values for such nodes. In the
second iteration, the children of root nodes can be calculated
(since we have all parents from the first iteration), and so on.
This yields an iterative algorithmic formulation of the SEM,
describing the computational graph given by the DAG as:

X = Xd = f (d)
(
X0,N

)
, (2)

where X0 is the initial value (w.l.o.g., we assume X0 = 0,
since calculating the functional assignments will overwrite
every Xi). As in most previous works [55, Table 1], we
assume no confounders (all variables are observed) and
faithfulness (loosely speaking, the coefficients/functions
will not cancel an edge, cf. Assum. A.1).

Causal Discovery (CD). In CD, the data is assumed to
be generated by a causal process, and the aim is to infer
the corresponding DAG, which enables reasoning about in-
terventions (without the DAG, the joint distribution p(N)
only admits observational queries) [42, 41]. Algorithmic ap-
proaches include combinatoric search [48, 13, 14, 21, 34, 43,
50, 55], continuous optimization [62, 30, 56, 39, 55], and
neural networks [59, 38, 25, 58, 7, 22, 55, 27, 36]—we fo-
cus on the latter. Zhang et al. [61] proved that identifying the
causal direction in a general SEM is impossible without con-
straints on the function class and/or data distribution. Func-
tional constraints can include linear [48, 62], additive nonlin-
ear (Xi = f i(Pai)+N i) [13, 38, 28, 44], or affine nonlin-
ear (Xi = f i(Pai)+hi(N i)) [25, 47] models. Regarding
the data distribution, some models require access to interven-
tions [1, 45, 31]; others assume that N is Gaussian [22, 28]
or non-Gaussian [48]; or require non-stationarity [35], ex-
changeability [10], or discreteness [45] of N . Our work was
inspired by [35], which provides a bivariate CD method for
general nonlinear functions and non-stationary data. The
authors leverage recent results in NLICA (cf. next section
for details) to identify the causal direction. Although they
demonstrate applicability to multivariable problems, the use
of pairwise independence tests constrains scalability. In this
work, we extend these results with a more scalable, end-to-
end solution. For this purpose, we draw inspiration from
LiNGAM [48]. Assuming that the inference model learns to
map observations to latents (i.e., it “inverts" the SEM), we
illustrate how the weight matrix is used to extract the DAG
for a linear SEM in the following example.

Example 1 (Motivating example for linear SEMs). Assume
a linear causal model with three variables, the DAG
X1→X2→X3, and functional relationships: X1 = N1;
X2 = aX1 +N2;X3 = bX2 +N3 : a, b ∈ R \ {0}. The
DGP generates samples according to the DAG and has the



matrix form on the left—we focus on the elements below
the main diagonal as for recovering the DAG, only the
paths (i.e., series of directed edges) between Xi and Xj

are required and the main diagonal expresses the N i −Xi

edges. Inverting the DGP with an inference model (i.e.,
expressing N i as a function of Xj) yields the matrix on the
right with elements below the main diagonal capturing the
DAG’s Xi −Xj edges (as shown by color coding):X1

X2

X3

=
 1 0 0
a 1 0
ab b 1

N1

N2

N3

;
N1

N2

N3

=
 1 0 0
−a 1 0
0 −b 1

X1

X2

X3


This is the motivation for LiNGAM to infer the DAG
from a weight matrix [48]—we use the same insight in the
nonlinear case (cf. § 3) on the Jacobian of the inference
model. As the Jacobian is a local property, we will reason
about the absolute value of the maximum Jacobian, where
the maximum is taken over the input space.

DAG equivalence. To justify using the Jacobian of the
inference network f−1, akin to LiNGAM’s use of a weight
matrix, we first connect the DAG and Jf−1 via fundamental
concepts from graph theory. The adjacency matrix A of a
graph with d nodes is a binary d × d matrix where each
matrix element indicates the presence, or absence, of an
edge between a pair of nodes Xi, Xj (Defn. A.4). The
connectivity matrix of a graph with d nodes is a binary d×d
matrix where each matrix element indicates the presence, or
absence, of a path (i.e., series of directed edges) between
two nodes Xi, Xj (Defn. A.5). For DAGs, both A and C
are strictly lower-triangular—this is why we considered
only the elements below the main diagonal in Ex. 1.

The inference network f̂
−1

generally differs from the true
inverse of f up to indeterminacies (e.g., scaling, permuta-
tion, sign flips, element-wise transformations) [18, 23, 63].
Furthermore, the main diagonal of Jf−1 has non-zero el-
ements (Ex. 1). Thus, we describe the relationship between
J
f̂

−1 and (Id −A) for a DAG via structural equivalence,
and investigate its symmetries (◦ denotes composition):

Definition 1 (∼DAG). Two matrices S,R are structurally
equivalent if (S)ij = 0 ⇐⇒ (R)ij = 0 : ∀i, j; with the
properties:

(i) D-invariance: a non-singular diagonal matrix D pre-
serves the sparsity structure; thus, (D ◦ S) ∼DAG S

(ii) h0-invariance: for zero-preserving transformations
h0 : (h0(S))ij=0 ⇐⇒ (S)ij = 0 then h(S)∼DAGS

(iii) π-equivariance: a permutation π affects the po-
sitions of zeros; thus, both operands need to be
permuted with the same π to maintain ∼DAG, i.e.,
S ∼DAG R ⇐⇒ (π ◦ S) ∼DAG (π ◦R),

(iv) Transitivity: S∼DAGP∧P∼DAGR =⇒ S∼DAGR
(v) Commutativity: S ∼DAG R ⇐⇒ R ∼DAG S.

S∼DAGR thus implies the matrices have the same sparsity
structure. Thereby, if S and R are adjacency matrices, they
describe the same DAG.

Identifiability and ICA. Independent Component Anal-
ysis (ICA) [2, 18] models the observed variables X as
a mixture of independent variables N via a determinis-
tic function f , and focuses on defining models that are
identifiable—i.e., N can be recovered up to indetermina-
cies (e.g., scaling, permutation, sign flips, element-wise
transformations). Since this is provably impossible in the
nonlinear case without further assumptions [3, 17, 32],
recent work has focused on incorporating auxiliary vari-
ables [20, 8, 23, 5], exploiting temporal structure in the
data [16, 15, 11, 37, 35, 19, 26, 63], or restricting the model
class [48, 13, 60, 9] . Several works have related (nonlin-
ear) ICA to SEM estimation [9, 35, 48, 54] by inverting the
DGP—i.e., estimating f−1 with an inference model.

3 PROPOSED METHODS
We propose an extension of LiNGAM [48] to general
nonlinear relationships. We require strong identifiability [24,
Def.1] of the inference function f−1 for extracting the
DAG via the Jacobian Jf−1 from observational data. First,
we observe that by assuming a DAG for the DGP, the
permutation indeterminacy of ICA can be accounted for
(cf. Appx. A.1 for the origin of the two permutations) —we
then exploit this in Prop. 1 to prove that strongly identified
models fulfil Jf−1 ∼DAG (Id −A).

Lemma 1 (DAG DGPs with unique π provide additional in-
formation for resolving the permutation ambiguity of ICA).
When f describes a DAG, then the permutation indeter-
minacy of ICA πICA can be resolved uniquely, even with
unknown but unique causal ordering π.

Proof. The unknown causal ordering π of N i implies the
right-multiplication of Jf−1 with π−1, whereas the permu-
tation indeterminacy of ICA implies the left-multiplication
with πICA, yielding the following estimated Jacobian:

J
f̂

−1 = πICA ◦ Jf−1 ◦ π−1, (3)

where πICA and π−1 are not necessarily the same. As
SEMs have a lower-triangular Jacobian and we assume
that π is unique, this inductive bias on Jf−1 provides an
unsupervised means to resolve πICA and π−1 and recover
Jf−1 from the estimated J

f̂
−1 .

Relying on Lemma 1 and the properties of ∼DAG, we
prove that Jf−1 can be used to extract the DAG for general
nonlinear functions (akin to the linear case shown in Ex. 1):

Proposition 1 (J
f̂

−1∼DAG(Id −A)). The inference net-
work Jacobian J

f̂
−1 is structurally equivalent to (Id −A)



if f−1 is strongly identified [24, Def.1] up to scalings, sign
flips, permutations, and zero-preserving transformations.

Proof. The proof consists of two steps: 1) leveraging
the iterative formulation of the SEM (2), proving that
Jf−1∼DAG(Id −A) and 2) relying on the properties of
∼DAG and Lemma 1, showing Jf−1 ∼DAG J

f̂
−1 .

We start by formulating Jf (recall that X = Xd) based on
the iterative SEM expression (2):

Jf = ∂Xd

∂N = A∂Xd−1

∂N +B (4)

A : =
∂f(Xd−1,N)

∂Xd−1 ; B :=
∂f(Xd−1,N)

∂N , (5)

where A describes the Xi − Xj edges in the DAG (i.e.,
A ∼DAG A), B is diagonal (as the Xd−1 values are fixed)
and both A,B are independent from t (superscript).

Realizing that (4) gives us a recursive formula, and recalling
that X0 = 0 , we can unroll (4) iteratively for t = d −
1, d− 2, . . . , 0:

Jf = A∂Xd−1

∂N +B = A
[
A∂Xd−2

∂N +B
]
+B (6)

= A

A
. . .

A ∂X0

∂N︸︷︷︸
=0

+B

+B

+B (7)

=

d−1∑
i=0

AiB = (Id −A)
−1

B, (8)

where the last equality expresses the sum of the geometric
series with elements Ai (the sum is finite as A is strictly
lower triangular). By invoking the inverse function theorem,
we can express Jf−1 :

Jf−1 = J−1
f = B−1 (Id −A) . (9)

Jf−1 ∼DAG (Id−A) follows as A∼DAGA and B is diag-
onal (the invariance of ∼DAG follows from Prop. 1(i)). For
proving that J

f̂
−1 ∼DAG (Id−A), we need Jf−1 ∼DAG

J
f̂

−1 (Prop. 1(iv)), which requires us to account for all in-
determinacies of strong identifiability: i) Prop. 1(i) accounts
for scalings and sign flips; ii) Prop. 1(ii) for zero-preserving
transformations; and iii) Prop. 1(iii) for permutations,
which can be extracted as shown in Lemma 1.

Prop. 1 implies that we can extract the DAG when f−1 can
be strongly identified [24, Def.1]—i.e., we can reason about
interventions (cf. § 2). We note that if B = Id, then (9)
describes Additive Noise Models (ANMs) [13], whereas
when additionally A is constant, we recover LiNGAM [48].

Description of the algorithm for CD and determining π.
We propose a two-step approach for extracting the DAG
from observational data (Alg. 1) for general nonlinear f :

Algorithm 1 Algorithm for multivariable CD and determin-
ing the causal order π

Input: dataset D, network parameters θ, Sinkhorn net-
works SICA,Sπ

Initialize θ
while LCL not converged do

sample batch from D
calculate LCL

update θ
end while
extract J

f̂
−1

while Lπ not converged do
K =

∣∣∣SICAJf̂
−1S

∣∣∣
Lπ =

∑
i,j

[
αd (K)

−1
ii + αu (K)i<j − αl (K)i≥j

]
update SICA,Sπ

end while

1. we estimate f−1 with an inference model that ensures
(strong) identifiability,

2. we account for the ordering to resolve the permutation
indeterminacy.

Regarding the second step, the training objective for learning
the permutations in (3) is inspired by LiNGAM [48] and
leverages the observation that in SEMs, the ground-truth
Jacobian Jf−1 is lower-triangular:

Lπ =
∑
i,j

[
αd (K)

−1
ii + αu (K)i<j − αl (K)i≥j

]
(10)

K : =
∣∣∣SICAJf̂

−1Sπ

∣∣∣ , (11)

where SICA,Sπ are doubly-stochastic matrices, (K)i≥j are
the lower-, (K)i<j the strictly upper-triangular elements
of K, and α{d,l,u} > 0. Lπ encourages K to be lower-
triangular by simultaneously: maximizing i) the sum of the
main diagonal; ii) the lower-triangular part; while also iii)
minimizing the stricly-upper triangular part of K.

4 EXPERIMENTS
Experimental setup. To (strongly) identify the SEM
(quantified by Mean Correlation Coefficient (MCC) [15]),

we use contrastive NLICA [63] to estimate f̂
−1

, and sat-
isfy the assumptions on the DGP underlying the proof of
identifiability [63, Thm. 6]) accordingly: the latent space
is a hyperrectangle in Rd, the marginal p(N) is uniform,
the conditional p(Ñ |N) is Laplace, X is generated by a
smooth and bijective mapping; and the contrastive loss uses
the same metric as the conditional, which is L1 for our case
(Assum. B.1). Our architecture for the inference model is
the same MultiLayer Perceptron (MLP), as in [63] (Tab. 3).
To account for the permutation indeterminacies, we use two
Sinkhorn networks [33], which are differentiable models for
learning doubly-stochastic matrices. We observed that set-



ting the lowest d (d− 1) /2 elements to zero and converting
the resulting K matrix to binary often helped the conver-
gence of the Sinkhorn networks. Moreover, instead using
max to aggregate the different Jacobians over the batch, we
found using the mean operator more stable in practice.
We experiment with three DGPs: i) linear and ii) nonlinear
SEMs (in the simple form of X = f(WN), as well as iii)
MLPs with triangular weight matrices (as used in [35]). In
all cases, the nonlinear activations are leaky ReLUs (with a
slope of 0.25 for the SEMs and 0.1 for the triangular MLPs).
Additionally, we ensure that the ordering of N i is unique
(all cases), and that the DGP weights are ≫ 0 (for the SEM
DGPs) as otherwise we would be unable to distinguish weak
connections from small elements in the Jacobian. That is,
the estimate of a weak connection could be the same order
of magnitude as the estimate of a zero element due to finite
numerical precision—we do not enforce this property for
the triangular MLPs to compare to the results of [35], where
such modification was not present. For the SEM DGPs, we
sample 6 different orderings and 5 seeds for each problem
dimensionality {3; 5; 8}. For the triangular MLP, we use
d = 6 to compare to [35, Fig. 2] and vary the number of lay-
ers in the mixing. We measure learning the correct ordering
by the ordering accuracy (Accπ)—i.e., ratio when Sπ in-
verts π. We also report the accuracy (Acc) and the Structural
Hamming Distance (SHD) (we use 1e−3 as the threshold
in all scenarios) for inferring the edges of the DAG, as is
standard practice in the literature[28, 35, 45, 55]. We use
the linear and nonlinear SEM DGPs to showcase that our
method can infer the DAG while also learning the correct
ordering. Then, we compare to the methods reported in [35],
which unlike our proposal, assume that π is the identity.

Results. Tab. 1 demonstrates that our method works al-
most perfectly in the linear case, whereas its performance
is slightly worse in the nonlinear case in terms of accuracy,
SHD and MCC. This means that most edges are inferred
correctly and identifiability is achieved. Nonetheless, ac-
counting for both the ICA permutation indeterminacy and
π degrades with increasing d. Nonetheless, erroneous solu-
tions resulting from optimization issues (the most frequent
problem according to our observations) can be simply fil-
tered out: in this case the doubly stochastic matrices usually
do not converge to a permutation matrix. Inspecting their
elements or automatically rejecting such solutions based
on their entropy is straightforward (permutation matrices
have minimal entropy among doubly stochastic matrices, so
higher entropy means to a suboptimal solution).

Tab. 2 summarizes our results with the triangular MLP of
[35]. Despite having small weights in the ground truth Jaco-
bian Jf−1 , our method was able to infer most edges in the
DAG. Importantly, the resulting accuracies are larger than
for NonSENS [35]. Moreover, our method has the advantage
of simultaneously inferring all edges based on the structure
of J

f̂
−1—thus, it does not require d2 pairwise independence

Table 1: Results for linear and nonlinear SEMs. Mean Cor-
relation Coefficient (MCC) measures identifiability, Acc
stands for accuracy (the subscript π denotes the accuracy
of accounting for the causal ordering π), and SHD is the
Structural Hamming Distance

DGP d MCC Accπ Acc SHD

LIN. SEM

3 1. 1. 1. 0.
5 1. 0.966 1. 0.0013
8 1. 1. 1. 0.

NL. SEM

3 1. 1. 1. 0.
5 0.971± 0.07 0.828 0.974 0.0262
8 0.987± 0.03 0.793 0.968 0.0318

test for a DAG with d nodes.

Table 2: Results for the triangular MLP from [35] with
d = 6. # Layers denotes the number of layers in the mixing

# LAYERS MCC Acc SHD

1 1. 1. 0.
2 0.999 1. 0.0056
3 0.932± 0.09 0.9 0.1
4 0.833± 0.01 0.817 0.1833
5 0.848± 0.02 0.839 0.1611

5 DISCUSSION

We introduced a two-step process to leverage strong identifi-
ability for inferring the DAG of multivariable causal models
with general nonlinear functions. Our method uses the Jaco-
bian of the inference function (mapping from observables
to independent variables) and can be thought as a general-
ization of LiNGAM to the nonlinear case. We prove that
this Jacobian captures the sparsity structure of the DAG,
and show that by working with causal models, we can re-
solve the permutation indeterminacy of ICA under certain
assumptions. Since we do not use conditional independence
tests, but learn the causal ordering with Sinkhorn networks,
our method provides an end-to-end solution for CD and
avoids the cost of exponentially many independence tests.
We experimentally demonstrate that our proposal can infer
the DAG in multiple synthetic data sets.

Limitations. Our theory requires the guarantees of strong
identifiability but not the use of a specific (NLICA) algo-
rithm. Though our experiments demonstrate that fulfilling
strong identifiability is sufficient for CD, we do not vary the
NLICA algorithm. Our method’s applicability is limited for
inferring weak edges, similar to [48, 52, 46, 28].
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A SEMS
Definition A.1 (SEM). A SEM describes causal relation-
ships via a set of structural assignments [42]:

Xi := f i (Pai, N i) , ∀i ∈ I = {, . . . , d} , (12)

where Xi are the endogenous, N i the exogenous/noise vari-
ables, Pai ⊆ X \{Xi} denotes the parent set of Xi, I the
set of indices, and f i the mappings.

Definition A.2 (Reduced form of SEM). The reduced form
of the SEM expresses all Xi as a function of only the N i

variables, i.e.:

Xi := f i

(
N i

)
, ∀i ∈ I = {0, . . . , d− 1} , (13)
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with the same notation as in Defn. A.1, slightly abusing f i

and denoting a subset of N by N i ⊆ N .

Definition A.3 (Causal ordering). The causal ordering π
is a bijective automorphism on the index set I. Namely,
π : I → I so that ∀Xi ̸= Xj , it holds that if π (i) <
π (j) =⇒ Xj ̸∈ Pai.

The definition means that only a node with a smaller index
in π can be a parent of a node with a larger index. Note
that though Xi can be a parent of Xj , it is not necessary,
but Xj cannot be a parent of Xi. Multiple orderings may
exist, e.g. if there are multiple Xi so that they only have a
single parent. π helps to have a unique description of the
edges in the graph. Namely, if the edges are organized in the
adjacency matrix A accoridng to π, then A will be strictly
lower triangular.

Definition A.4 (Adjacency matrix). The adjacency matrix
A is a binary d × d matrix, where Aij = 1 ⇐⇒ Xj ∈
Pai. The rows of A are ordered by π; thus, A is strictly

lower-triangular.

A only describes the edges of the DAG, which gives the
direct cause-effect relationships. Nodes can be influence
each other via paths (i.e., a set of directed edges that can be
traversed between the two nodes), which can be described
by the connectivity matrix C

Definition A.5 (Connectivity matrix). The connectivity ma-
trix C is a binary d × d matrix, where C = 1 ⇐⇒ ∃p :
Xj → · · · → Xi. C =

∑d
k=1 Ak. The rows of C are

ordered by π; thus, C is strictly lower-triangular.

Assumption A.1 (SEM assumptions). We assume that the
causal DGP fulfils:

(i) (1) describes a DAG
(ii) N i are jointly independent

(iii) There are no hidden confounders (faithful-
ness/stability), i.e., all

(iv) π is unique
(v) Each f i is a homomorphism (but they can be general

nonlinear functions)

Requiring a unique π is a simplifying assumptions that to
avoid ambiguities when presenting results, so it is without
loss of generality

Definition A.6 (DGP with known π). The DGP is described
by the SEM, when π is known. I.e., the flow of information
is: N SEM−−−→ X .

Definition A.7 (DGP with unknown π). The DGP with
unknown π is given by the SEM, and by a permutation
matrix π (with a slight abuse of notation) applied to X . I.e.,
the flow of information is: N SEM−−−→ X

π−→ X̂ .

Lemma A.1 ( Jf ∼DAG (Id + C)). Given Assum. A.1, the
partial derivatives of f i w.r.t. N j provide information about
C, as

(Jf )kl = max
Nk

∣∣∣∣ ∂f l

∂Nk

∣∣∣∣ = 0 ⇐⇒ ̸ ∃Xk → · · · → X l

We emphasize that the derivatives are also non-zero in
the case of indirect paths, i.e., when ∃Xi ∈ p : i ̸=
k, l. Furthermore, the strictly lower triangular part of Jf

has the describes the same DAG as C–or equivalently,
Jf ∼DAG (Id+C).

A.1 WHY ARE THERE TWO PERMUTATION
INDETERMINACIES IN Lemma 1?

In this section, we elaborate on the need to account for two
permutations in Lemma 1: besides the well-understood in-
determinacy coming from NLICA [17], the unknown causal
order of N i also implies a permutation (Defn. A.7). Namely,
a SEM with unknown causal ordering can be described as i)
applying the SEM equations, ii) followed by a permutation
matrix π. This implies a right-multiplication of Jf−1 with
π−1 to extract the original causal ordering.

Accounting for the causal ordering is, to the best of our
knowledge, only found in [48]. Binary CD methods such
as [35] alleviate this step as they work on an edge-by-edge
basis. Other non-ICA-base methods can also avoid this step
since the DAG is invariant to changes in the causal order-
ing –meaning that reordering Xi in the observation vector
X (cf. Defn. A.7) does not affect the edges of the graph.
However, to resolve the permutation indeterminacy of ICA,
we need to account for the causal ordering, since only then
can the Jacobian be lower-triangular. Although extracting
a lower-triangular Jacobian is easier to interpret and po-
tentially better suited, e.g., as a building block of causal
representation learning (since the causal ordering of N i

is always the same), our method extracts the DAG even
without resolving these indeterminacies.

B EXPERIMENTAL DETAILS
Assumption B.1 (NLICA assumptions). We assume the
setting of [63], specifically that of Thm. 6, under which, an
encoder which minimizes a contrastive loss was proven to es-
timate the noise variables (often referred to as "sources" in
the ICA literature) up to a composition of input independent
permutations, sign flips, and rescaling. For completeness,
we restate the assumptions below:

(i) the space of sources/latent/noise variables, is a convex
body in Rd, i.e. a hyperrectangle/cube.

(ii) p(N), the marginal distribution, is uniform
(iii) p(Ñ |N), the conditional distribution, is a rotationally

asymmetric generalized normal distribution [51], i.e.
a Laplace distribution.

(iv) the observations are generated by a smooth, bijective
(i.e., invertible) mapping



(v) the contrastive objective uses the same metric as
p(Ñ |N), i.e. L1 for Laplace (cf. [63, Def. 1]).

Table 3: Hyperparameters for our experiments (§ 4)

PARAMETER VALUES

f̂
−1

6-LAYER MLP
ACTIVATION LEAKY RELU
BATCH SIZE 6144
LEARNING RATE 1e−4

Rd [0; 1]d

Cp 1
mp 0
Cparam 0.05
mparam 1
p 1
τ 1
α 0.5

C NOTATION

ACRONYMS
ANM Additive Noise Model

CD Causal Discovery
CL Contrastive Learning

DAG Directed Acyclic Graph
DGP Data Generating Process

ICA Independent Component Analysis
ICM Independent Causal Mechanisms

LiNGAM Linear Non-Gaussian Acyclic Model

MCC Mean Correlation Coefficient
MLP MultiLayer Perceptron

NLICA NonLinear Independent Component Analysis

SEM Structural Equation Model
SHD Structural Hamming Distance

NOMENCLATURE
α scalar field
D diagonal matrix
Id d-dimensional identity matrix
J Jacobi matrix
LCL contrastive loss function
Lπ regularizer for learning π
S Sinkhorn network
L loss function
∼DAG structural equivalence
d problem dimensionality

Causality

N noise (independent) variable component
X observation component
N noise (independent) variable vector
Pa parent set of X
X observation vector
A adjacency matrix of a SEMs
C connectivity matrix of a SEMs
f structural assignment in SEMs
I index set
π causal ordering
f a component of f
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