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ABSTRACT

The top-m arm selection problem has multiple applications, particularly in example
selection for enhancing in-context learning in Large Language Models (LLMs).
Existing approaches assume a linear relationship between features and rewards,
which limits their ability to capture the complex reward landscapes induced by
LLMs. Moreover, they typically perform static task-level selection, choosing
subsets once offline, which can fail to generalize to unseen queries. This motivates
the need for learning a surrogate that can be employed, for instance-level ranking
of exemplar subsets. To address these challenges, we formulate the top-m arm
selection as a learning-to-rank problem and propose GRASS (Gap-indexed bandits
with RAnking-based non-linear Surrogate for Selection). It is a novel gap-index
bandit framework with non-linear differential sorting based surrogate to model the
scores of the example subsets (arms) for the top-m arm (example subset) selection
problem. The nonlinear surrogate is learned offline using gap-index framework
with challenger arm sampling to clearly distinguish borderline arms in a fixed-
confidence setting and also provides top-m examples. Hence, it can be used in a
task-level or instance-level setting. GRASS is as sample-efficient as linear bandit
variants, while providing performance gains of 9.4-15.2% in smaller open-source
LLMs while converging faster (2.35 𝑥) than existing state-of-the-art approaches.

1 INTRODUCTION

Selecting representative instances from a large pool is a recurring need across applications such
as drug repurposing, domain adaptation, and few-shot learning. One principled way to study this
is as a subset selection problem: choosing a small set of examples that captures the task’s salient
structure according to a task-specific reward signal. A dominant class of methods formulates subset
selection as top-𝑚 arm identification in multi-armed bandits (MABs), where each candidate subset
is an arm and rewards come from the task itself Réda et al. (2021). The top-𝑚 arm identification
formulation provides a natural and statistically grounded way to address subset selection: each
𝑘-sized subset corresponds to an arm, and the goal is to identify the 𝑚 best arms that maximize
validation performance.

In this paper, we focus on in-context learning (ICL) with large language models (LLMs) as a concrete
and representative instance of subset selection. LLMs can solve new tasks when given a small
sequence of demonstrations (𝑣, 𝑤) or (𝑣, rationale, 𝑤) in context Brown et al. (2020). However,
naively choosing demonstrations (randomly or heuristically) performs poorly Purohit et al. (2024);
Li & Qiu (2023). Moreover, ICL performance depends on subset interactions—the joint effect of
examples shown together—making the problem inherently combinatorial. Casting ICL demonstration
choice as top-𝑚 arm identification provides a principled route to select representative subsets using
the task’s own reward, while keeping evaluation budget in check.

Principled example selection approaches can be categorized as either task-level (static) or instance-
level (dynamic). Static selection chooses a representative set of examples once per task and reuses it
at inference time Purohit et al. (2024; 2025a); Li & Qiu (2023). This approach is efficient, but can
fail when new queries require reasoning skills absent from the fixed set. Dynamic selection chooses
examples per test query, which improves flexibility but is computationally expensive, since evaluating
candidate subsets involves searching through an exponentially large space of combinations. Recent
work, such as CASE Purohit et al. (2025a), builds upon gap-index bandit frameworks like GIFA Réda
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et al. (2021), introducing challenger sampling mechanisms to handle the large search space. While
effective, these approaches have two major limitations. First, they rely on a linear surrogate F𝜃 to
map arm features to rewards. Linear surrogates cannot capture the complex, non-linear dependencies
between subsets and task performance in ICL. Importantly, simply substituting a non-linear surrogate
is insufficient: the gap-index framework itself must be adapted so that index computations remain
valid in the non-linear setting. Second, CASE is primarily designed for static selection and does not
generalize well to dynamic settings, where runtime selection is required.

Our contributions. To overcome these limitations, we propose GRASS (Gap-indexed bandits
with RAnking-based non-linear Surrogate for Selection), a new bandit framework for top-𝑚 subset
selection. Unlike prior work, GRASS makes the following advances:

• Non-linear surrogate within gap-index bandits. We extend the gap-index framework itself to
incorporate a non-linear surrogate, ensuring that gap-index computations remain valid beyond
linear parametrizations. We further provide theoretical guarantees, including bounds on pairwise
gap error and on sample complexity.

• Unified support for static and dynamic selection. Apart from identifying top-𝑚 example subsets
at convergence, the surrogate in GRASS is trained offline with gap-index arm comparisons,
enabling it to distinguish between borderline arms in a fixed-confidence setting. Once trained, it
can be used efficiently at inference time to rank example subsets, supporting both static (task-level)
selection and dynamic (instance-level) selection for unseen queries.

• Efficiency with sample complexity guarantees. Our approach retains the sample efficiency
of linear gap-index bandit variants, while substantially improving performance (9.4–15.2%) on
smaller open-source LLMs, while preserving sample efficiency. By replacing expensive human
annotations or ad-hoc relevance signals with LLM feedback during training, GRASS provides an
efficient mechanism to learn a ranking-based surrogate for subset selection.

2 RELATED WORK

Top-m arm identification in stochastic bandits and linearity assumption

The objective of top-𝑚 arm identification is to identify those arms with highest means preferably
in a sample efficient manner. While fixed-confidence (Kalyanakrishnan et al., 2012) and fixed-
budget settings (Bubeck et al., 2013) exist, our focus is the fixed-confidence setting, where the error
probability to estimate the top-𝑚 arms should be smaller than a predefined parameter 𝛿 ∈ (0, 1).
Adaptive sampling algorithms like UGapE (Gabillon et al., 2012) and LUCB (Kalyanakrishnan
et al., 2012), along with uniform sampling methods (Kaufmann & Kalyanakrishnan, 2013; Chen
et al., 2017), have been introduced for the fixed confidence setup, but they lack efficiency in terms
of sample complexity. While efficient adaptive sampling methods for linear bandits, such as Fiez
et al. (2019), RAGE Zhang et al. (2023), LTS Jedra & Proutiere (2020), PEPS Li et al. (2023),
LinGapE (Xu et al., 2017) and LinGame Degenne et al. (2020), have been proposed, they primarily
address best-arm identification (𝑚 = 1). GIFA (Réda et al., 2021) was the first unified framework for
efficient top-𝑚 arm identification, but requires significant number of gap-index computations and
comparisons, leading to high sample complexity. CASE Purohit et al. (2025a) proposes to solve
this by proposing principled sampling and creation of challenger shortlists but still assumes a linear
relationship between arm features and rewards. However, this does not reflect practical scenarios
where the relationship is non-linear. Our proposed work aims to bridge this gap by casting top-m
arm selection as a ranking task and employs a non-linear ranking based surrogate to model the arm
feature to reward relationship.

Exemplar Selection for ICL. The rise of LLMs has transformed them into general-purpose answer-
ing engines through emergent capabilities like ICL (Brown et al., 2020; Wei et al., 2022; 2023; Wang
et al., 2023; Kojima et al., 2023; Chen et al., 2022) where a few examples are provided to LLMs to
demonstrate the task. To eliminate manual selection, several automated methods have emerged, such
as reinforcement learning (Zhang et al., 2022; Lu et al., 2023), trained retrievers Xiong et al. (2024),
Determinantal Point Processes (Ye et al., 2023a) and constrained optimization (Tonglet et al., 2023).
Additionally, instance-level selection methods that are learning-free, such as similarity-based (Rubin
et al., 2022), complexity-based (Fu et al., 2023), and MMR (Ye et al., 2023b), have been explored.
However, instance-level methods increase inference-time computational costs. To address this, a
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pre-selected, representative set of exemplars is chosen for ICL, akin to coreset selection methods (Guo
et al., 2022), though the key difference is that ICL does not involve parameter updates. While CASE
Purohit et al. (2025a) and EXPLORA Purohit et al. (2024) aims to proposes bandit-based task-level
example selection algorithm they assume the arm feature to reward relationship is linear which is
not always practical with respect to LLM rewards. Our proposed approach focuses on non-linear
surrogate to model LLM based rewards and offers a general framework to integrate task-level and
instance-level/dynamic example selection.

Learning to Rank and Differentiable sorting approaches The existing works from online learning
to rank literature are somewhat related to the choice of our surrogate Zoghi et al. (2017); Grotov &
De Rijke (2016); Li et al. (2019), which learn the parameters of ranking models from user interaction
or click data. However, our approach differs fundamentally from this line of work. Unlike these
methods, we do not rely on direct user feedback or address challenges like prioritizing or de-biasing
rank-sensitive clicks. Moreover, our framework employs an efficient version of gap-index class of
algorithms to arrive at top-m arms coupled with efficient learning of a differentiable sorting surrogate
that can be employed for online ranking of sets. This allows it to scale efficiently to large search
space compared to learning-to-rank models.

Algorithm 1 GRASS: Challenger-Aware Surrogate Ranking

Input: Q (training exemplars); 𝑘 (prompt size); S (all 𝑘-subsets of Q); 𝑚 (TOP-m target); 𝑚′ (challenger size);
G (data generator); 𝑁 (query size); F𝜃 (LTR model)

Output: F𝜃 (trained surrogate) and estimated TOP-m set

1: INITIALIZE
2: 𝑈0 ← random 𝑚 arms from S ⊲ Current TOP-m
3: 𝐶0 ← the next best 𝑚′ arms where 𝑚′ < 𝑚 (is resampled every iteration) ⊲ Challengers
4: D ← 0 or random 𝑀 subsets from G(Q) to solve cold-start problem
5: 𝑡 ← 1
6: while ¬ (𝐵𝑡 (𝑐ℎ𝑡 , 𝑏𝑡 ) ≤ 𝜖) do
7: (A) IDENTIFY ARMS TO SWAP
8: 𝑚𝑡 ← arg min𝑎∈𝑈𝑡−1 𝜌̂𝑡 (𝑎) ⊲ Weakest in TOP-m
9: 𝑐𝑡 ← arg max𝑎∈𝐶𝑡−1 𝜌̂𝑡 (𝑎) ⊲ Strongest challenger

10: (B) BORDER UPDATE (SWAP IF NEEDED)
11: if 𝜌̂𝑡 (𝑚𝑡 ) ≥ 𝜌̂𝑡 (𝑐𝑡 ) then
12: Exchange 𝑚𝑡 and 𝑐𝑡 between𝑈𝑡−1 and 𝐶𝑡−1
13: end if
14: 𝑈𝑡 , 𝐶𝑡 ← updated sets

15: (C) EXPAND CANDIDATE POOL
16: 𝑀𝑡 ← random 𝑚′ arms from (𝑈𝑡 ∪ 𝐶𝑡−1)𝑐
17: 𝐶𝑡 ← top𝑚′ (𝑀𝑡 ∪ 𝐶𝑡−1; 𝜌̂𝑡 )
18: (D) RECOMPUTE AMBIGUITY FRONTIER
19: 𝑏𝑡+1 ← arg max𝑏∈𝑈𝑡

max𝑐ℎ∈𝐶𝑡
𝐵𝑡 (𝑐ℎ, 𝑏)

20: 𝑐ℎ𝑡+1 ← arg max𝑠∈𝐶𝑡
𝐵𝑡 (𝑐ℎ, 𝑏𝑡+1)

21: (E) ACQUIRE FEEDBACK & RETRAIN
22: 𝑎𝑡+1 ← selection rule(𝑈𝑡 , 𝐶𝑡 )
23: 𝑟𝑡+1 ← 𝑅(𝜓(𝑎𝑡+1),V) ⊲ LLM/environment call
24: D ← D ∪ G(𝑟𝑡+1, 𝑎𝑡+1)
25: Retrain F𝜃 for one epoch on D
26: 𝑡 ← 𝑡 + 1
27: end while
28: Return F𝜃∗ and𝑈𝑡

3 METHODOLOGY

3.1 PROBLEM DEFINITION

In ICL, the model processes a sequence of input–output demonstrations followed by a new test
input, and is expected to generate the corresponding output. We introduce the problem of ICL
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as a subset-selection problem of choosing representative examples from a large dataset of existing
examples Purohit et al. (2024), demonstrations, or training instances Ho et al. (2020). We further show
that this subset-selection problem can be modeled formally as a top-𝑚 arm identification problem in
the multi-armed bandit framework. Note that our proposed framework is generic and applies broadly
to any subset selection problem – where one must select subsets from a large collection of candidates.
For concreteness, in this paper we focus on in-context learning (ICL) with large language models
(LLMs), where the construction of effective contexts is a central challenge.

3.1.1 SUBSET SELECTION FOR IN-CONTEXT LEARNING

In ICL, a large language model processes a sequence of demonstrations (i.e., input–output pairs)
followed by a test input, and is expected to generate the corresponding test output. We denote
each input by 𝑣 (e.g., a natural language question, a math problem, or a sentence to translate) and
each output by 𝑤 (e.g., an answer, solution, or translation). In some tasks, 𝑣 may also contain
additional reasoning such as rationales or chain-of-thought annotations; for example, solving math
word problems may require showing intermediate steps, while translation tasks typically do not.

Let Q = {(𝑣𝑖 , 𝑤𝑖)}𝑛𝑖=1 be a pool of 𝑛 candidate demonstrations, and let (𝑣𝑡𝑒𝑠𝑡 , 𝑤𝑡𝑒𝑠𝑡 ) denote a test
instance. To perform inference on 𝑣𝑡𝑒𝑠𝑡 , we select a subset 𝑆 ⊆ Q of 𝑘 demonstrations and concatenate
them with the test input to form the context

𝐸 =
[
(𝑣𝑖1 , 𝑤𝑖1 ), . . . , (𝑣𝑖𝑘 , 𝑤𝑖𝑘 ), 𝑣𝑡𝑒𝑠𝑡

]
, 𝑤̂𝑡𝑒𝑠𝑡 = P𝐿𝐿𝑀 (· | 𝐸) .

The quality of the chosen subset 𝑆 has a direct impact on LLM performance. However, a single
𝑘-subset is rarely sufficient: different subsets capture different reasoning skills or topical knowledge,
and multiple subsets may yield comparable outcomes. This motivates the identification of the top-𝑚
subsets of demonstrations that are most useful for ICL. Formally, let S(Q) denote the set of all
𝑘-sized subsets of Q, and let V = {(𝑣𝑣𝑎𝑙 ( 𝑗), 𝑤𝑣𝑎𝑙 ( 𝑗))}𝑛

′

𝑗=1 be a validation set. The objective is to
identify {𝑎1, . . . , 𝑎𝑚} ⊆ S(Q) that maximize expected performance onV.

The inference procedure with top-𝑚 subsets can then be written as:

𝐸 = 𝜙({𝑎1, . . . , 𝑎𝑚}, 𝑣𝑡𝑒𝑠𝑡 ) , 𝑤̂𝑡𝑒𝑠𝑡 = P𝐿𝐿𝑀 (· | 𝐸) , (1)

where 𝜙 constructs the context from selected subsets. For task-level selection, 𝜙 may pick the
subset with the lowest validation loss onV. Alternatively, 𝜙 can act as a similarity-based retriever,
choosing the most relevant subset from the offline top-𝑚 list at inference time, resulting in a hybrid
static–dynamic selection scheme Purohit et al. (2024).

Nevertheless, static subsets selected offline may fail to generalize to unseen queries, while fully
online selection is computationally prohibitive since running bandit algorithms to convergence per
test instance incurs high latency. This motivates the need for a principled formulation that is both
expressive, capturing complex dependencies in LLM rewards, and efficient, supporting practical
inference-time selection.

3.1.2 TOP-𝑚 ARM SELECTION

We formalize the subset selection problem as a top-𝑚 arm identification task in a multi-armed bandit
(MAB) setting. Each candidate subset 𝑎𝑖 ∈ S(Q) is treated as an arm, with reward defined by LLM
performance onV. Since |S(Q)| can be large, the search space S(Q)𝑚 of all possible 𝑚-subsets is
extremely challenging.

Let the true reward for an arm 𝑎 be 𝜌(𝑎; 𝜃∗) = F𝜃∗ (𝑥𝑎), where 𝑥𝑎 ∈ R𝑛 are arm features and 𝜃∗ are
the true parameters. Each evaluation of an arm yields a noisy observation:

𝜌̂(𝑎; 𝜃) = 𝜌(𝑎; 𝜃) + 𝜂, E[𝑒𝜆𝜂] ≤ exp
(
𝜆2𝜒2

2

)
,

where 𝜂 is sub-Gaussian with variance 𝜒2.

The top-𝑚 identification objective is to output Ŝ𝑚 such that

P
(
Ŝ𝑚 ≠ S★𝑚

)
≤ 𝛿, S★𝑚 = {1, 2, . . . , 𝑚},

while minimizing the number of samples.
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Gap-index methods and their limitations. Gap-index bandit algorithms such as GIFA Réda et al.
(2021) address top-𝑚 arm identification by iteratively estimating arm parameters and comparing
the most ambiguous arms using gap indices. CASE Purohit et al. (2025a) improves efficiency by
sampling a smaller challenger shortlist instead of performing all pairwise comparisons. However,
both GIFA and CASE rely on a linear surrogate F𝜃 , which is restrictive when modeling rewards
induced by LLMs. Linear surrogates cannot capture complex, non-linear dependencies between
subsets and task performance. Importantly, simply substituting a non-linear surrogate is insufficient:
the gap-index framework itself must be adapted so that index computations remain valid in the
non-linear setting. In GRASS, we provide this modification, extending gap-index bandits with a
non-linear differentiable sorting surrogate with theoretical bounds on pairwise gap error and sample
complexity. This enables expressive modeling of LLM subset rewards while retaining the statistical
efficiency of gap-index methods.

3.2 GRASS: A GAP-INDEX ALGORITHM WITH NON-LINEAR RANKING SURROGATE FOR
TOP-M ARM SELECTION

Based on above discussion of the problem setup we propose a gap-index based bandit algorithm
GRASS with a non-linear ranking surrogate. Since, the task can also be viewed as learning to rank
(LTR) the example subsets (arms), we adopt a differentiable sorting model Swezey et al. (2021) as
the non-linear surrogate. This surrogate learns to approximate the rewards of arms during the offline
run of the bandit algorithm and hence can be used during runtime to rank all example subsets for
dynamic selection.

At each step, an exemplar subset (arm) is regarded as a document whose current empirical mean is
estimated by F𝜃 . F𝜃 is a multi-layer connected network architecture with RELU activations.

𝜌̂(𝑎𝑖) = F𝜃 (𝑥𝑎) =
1
𝑛
′

𝑛
′∑︁

𝑖=1
(F𝜃 (𝑥𝑎, 𝑣𝑣𝑎𝑙 (𝑖))), 𝑥𝑎 =

[
H

(
𝑣𝑣𝑎𝑙 (𝑖)

)
,

1
𝑘

𝑘∑︁
𝑙=1
H

(
𝑣𝑖𝑙 ;𝑤𝑖𝑙

) ]
(2)

where 𝑣𝑣𝑎𝑙 (𝑖) fromV is treated as a query and the example subset (arm) is treated as the document.
We average the sentence embeddings of examples using an encoderH in the arm to provide a single
feature representation for the arm 𝑥𝑎 of dimension 𝑑. The representation combined with query
embedding is used as input to the ranking based surrogate F𝜃 to obtain empirical mean estimate.

Then the arm (example subset) being played provides the score based on LLM output on multiple
validation samples fromV as rewards.

R(𝜓(𝑎𝑖), 𝑣𝑣𝑎𝑙 (𝑖)) = 𝛾
(
P𝐿𝐿𝑀 (· | 𝜓(𝑎𝑖), 𝑣𝑣𝑎𝑙 (𝑖))

)
(3)

Here 𝛾 could indicate accuracy or other relevance measures like BertScore which compares the gener-
ated output from LLM 𝑤̂𝑣𝑎𝑙 with ground truth 𝑤𝑣𝑎𝑙 and outputs a relevance score. And 𝜓 denotes the
context / prompt generator function based on given subset of examples and the query to be answered.
Based on above definition of LLM performance, 𝜙 = 1

𝑛′
∑𝑛′

𝑗=1 R(𝜓(𝑎𝑖), 𝑣𝑣𝑎𝑙 ( 𝑗)) 𝜙 in Equation 1 could
choose a subset of examples that lead to lowest validation accuracy from top-𝑚 subsets. Hence re-
ward for an arm can be obtained as: 𝑟 (𝑎𝑖) = R(𝜓(𝑎𝑖),V) = [R(𝜓(𝑎𝑖), 𝑣𝑣𝑎𝑙 (𝑖))..R(𝜓(𝑎𝑖), 𝑣𝑣𝑎𝑙 (𝑛

′ ))]
which is then employed to update the surrogate as detailed below.

An overview of the gap-index based bandit algorithm with differentiable sorting surrogate is shown
in Algorithm 1. First a shortlist of good arms𝑈0 is initialized to random 𝑚 arms in Steps 1-3. The
dataset D which is used to fit the non-linear ranking surrogate is initialized to empty set or random
data to solve the cold start problem (Line 4). The the updated 𝑈𝑡 is computed by selecting the
worst-arm in𝑈𝑡 with lowest empirical mean in current step and swap it with the best challenger arm
𝑐ℎ𝑡 in the challenger shortlist 𝐶𝑡 (Lines 8-14). The empirical means for above steps are computed
using the formulation in Equation 2. In Lines 15-17, we uniformly sample 𝑚′ arms from (𝑈𝑡 ∪𝐶𝑡−1)𝑐,
to generate the set 𝑀𝑡 , and then select the top-𝑚′ arms from 𝑀𝑡 ∪ 𝐶𝑡−1 to generate the updated 𝐶𝑡 .
The most ambiguous arms 𝑏𝑡 (guess for m-best arm) and 𝑐ℎ𝑡 (a potentially misassessed arm m-best
arm) which determine the stopping criterion are computed with help of gap-indices as shown in Steps
18-20. The gap-index between any two arms 𝑖, 𝑗 is computed as: 𝐵𝑡 (𝑖, 𝑗) = 𝜌̂𝑡 (𝑖) − 𝜌̂𝑡 () +𝑊𝑡 (𝑖, 𝑗).

5
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Here in gap-index computation,𝑊𝑡 (𝑖, 𝑗) is computed as per Equation 6 ( the RHS of the inequality
from Theorem 1) accounting for the non-linear ranking based surrogate in GRASS. 𝐶𝑡 ∪𝑈𝑡 bounds
the amount of comparisons required for gap-index computations unlike GIFA. The intuition here is
that once the gap-index between most ambiguous arms approaches 𝜖 (Line 6), there is no confusion
between the empirically estimated top-𝑚 arms and it’s closest competitor in the challenger shortlist.
Then we employ a greedy selection rule Réda et al. (2021), where the arm that minimizes the variance
between 𝑏𝑡 and 𝑐ℎ𝑡 is selected. The error in the empirical mean estimates with respect to rewards
is computed by the version of loss L( ®̂𝜌, ®𝑟) = −�NDCG( ®̂𝜌, ®𝑟) employing a relaxed version of NDCG
metric Swezey et al. (2021). Then through a Stochastic Gradient Descent (SGD) step the surrogate
is updated to better estimate the empirical mean ((Lines 22-25)). Hence, apart from top-𝑚 subsets
(arms) selection, our approach also provides an efficient mechanism to learn a differentiable sorting
model based on LLM feedback than unlike traditional LTR settings.

3.3 SAMPLE COMPLEXITY BOUNDS FOR GRASS

Following Réda et al. (2021), we obtain a high probability (1 − 𝛿) upper bound on sample complexity
of GRASS which is non-trivial and different from linear MAB variants. To derive the same, we first
need to define a condition / event on gap indices.

Definition 1. (Good Gap indices) E ≜
⋂
𝑡>0

⋂
𝑖, 𝑗∈[𝐾 ]

(
𝜌𝑖 − 𝜌 𝑗 ∈ [−𝐵𝑡 ( 𝑗 , 𝑖), 𝐵𝑡 (𝑖, 𝑗)]

)
,

with P(E) ≥ 1 − 𝛿 which denotes that a good choice of gap indices 𝐵𝑡 (𝑖, 𝑗) satisfies event E with
probability greater than or equal to 1 − 𝛿. For the above event to hold, it is essential to prove the
following bound on pairwise-gap error
Theorem 1. In a fixed-confidence setting, 𝛿 ∈ (0, 1), with probability at least 1 − 𝛿, for all pairs
𝑖, 𝑗 ∈ A:

��( 𝜌̂𝑡 (𝑖) − 𝜌̂𝑡 ( 𝑗)) − (𝜌(𝑖) − 𝜌( 𝑗))�� ≤ 𝑐𝑡√︂ 2𝑉𝑖 𝑗,𝑡 log(2𝐾2/𝛿 )
𝑁

+ 𝜀stab
𝑡 + 𝑏𝑖 + 𝑏 𝑗 + 2𝑀 log(2𝐾2/𝛿 )

3𝑁 . (4)

where 𝑉𝑖 𝑗 ,𝑡 is the empirical variance of MC-dropout differences,
that is for 𝑁 stochastic predictions (MC dropout forward passes) using the validation setV 𝑑𝑖 𝑗 :=
1
𝑁

∑𝑁
𝑘=1

(
𝑦
(𝑘 )
𝑖
− 𝑦 (𝑘 )

𝑗

)
, 𝑉𝑖 𝑗 ,𝑡 := 1

𝑁

∑𝑁
𝑘=1

(
𝑦
(𝑘 )
𝑖
− 𝑦 (𝑘 )

𝑗
−𝑑𝑖 𝑗

)2
., 𝜀stab

𝑡 is the SGD stability error, and 𝑏𝑖 , 𝑏 𝑗
are surrogate approximation biases.

Theorem 1 Proof structure: Further details are presented in Appendix B.

Given event E holds, we derive the sample complexity as follows,
Theorem 2. For GRASS, on event E on which the algorithm is (𝜀, 𝑚, 𝛿)-PAC, stopping time 𝜏𝛿
satisfies 𝜏𝛿 ≤ inf{𝑢 ∈ 𝜌∗+ : 𝑢 > 1 +H𝜀 (𝜌) 𝑙𝑜𝑔 (2𝐾

2/𝛿 )
𝑁

+ O(𝐾)}, where, for algorithm with the largest

variance selection rule1 : H𝜀 (𝜌) ≜ 18𝑐2
𝑡

∑
𝑎∈[𝐾 ] 𝜎

2
𝑎,𝑡 ·max

{
𝜀−2,

( 𝜀+Δ(𝑎)
3

)−2
}
,.

Theorem 2 Proof: On event E, we first demonstrate that the Lemma 1 below holds. Then using
stopping criterion and Lemma 1 we derive the upper bound on sample complexity. The detailed proof
is available in Appendix E.2. The bound holds for arms in𝑈𝑇 ∪ 𝐶𝑇 . It implies that the top-m arms
from𝑈𝑇 ∪ 𝐶𝑇 are present in𝑈𝑇 with prob. 1 − 𝛿, if 𝑇 > 𝜏𝛿 , and 𝐾 is the size of𝑈𝑇 ∪ 𝐶𝑇 .
Lemma 1. On the event E, for all 𝑡 > 0,

𝐵𝑡 (𝑐ℎ𝑡 , 𝑏𝑡 ) (𝑡) ≤ min(−(Δ(𝑏𝑡 ) ∨ Δ(𝑐ℎ𝑡 )) + 2𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 ), 0) +𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 )

, where 𝑎 ∨ 𝑏 = 𝑚𝑎𝑥(𝑎, 𝑏).

In summary, Theorem 1 helps support Definition 1. Since event E follows from Theorem 1, Theorem
2 and Lemma 1 together provide an upper bound on the expected number of arm pulls required by
the algorithm, which translates to approximately the expected number of LLM calls needed when
applying GRASS for top-𝑚 arms (example subsets) selection.

1or pulling both arms in {𝑏𝑡 , 𝑐𝑡 } at time 𝑡
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4 EXPERIMENTS

We aim to answer the following research questions: RQ1: Does GRASS sufficiently capture the
non-linear structure of rewards ? RQ2: Does example selection using GRASS lead improved
downstream task performance? RQ3: Can GRASS lead to improved task performance without
sacrificing efficiency ?

4.1 EXPERIMENTAL SETUP

Datasets and Metrics: We evaluate on diverse well-known tasks and related datasets. For numerical
reasoning, we use GSM8K and AquaRAT. For demonstrating generalization abilities of our approach
we also evaluate on a translation task WMT 2019, that do not require chain of thought. Detailed
descriptions of the datasets are provided in Appendix F. We report performance using the official
metrics: Exact Match (EM) (AquaRAT,GSM8K) and BertScore Zhang* et al. (2020) (WMT19)
for the respective datasets. For reward (LLM feedback), we compute BertScore Zhang* et al.
(2020) between generated rationales with ground truth rationales along with generated answers
for GSM8K and AquaRAT. For WMT19 we compute BertScore between generated translations
LLMs and hyperparameters: We primarily evaluate on relatively stable open-source LLMs like
Llama3.2-3b. We also report performance on closed source models like gpt-4o-mini in Appendix D.
For all baselines and our approaches we set max tokens to predict to 1000 with temperature of 0.25.

Baselines: We primarily compare with bandit based static example selection algorithms like CASE
Purohit et al. (2025a), EXPLORA Purohit et al. (2024) and since our surrogate is based on LTR
philosophy we compare with LTR baselines. Static CASE Purohit et al. (2025a) experiments were
conducted using hyperparameters as in original work. The number of top arms to be identified was
set top 𝑚 = |𝑈𝑡 | = 10 and |𝐶𝑡 | = 5. The confidence parameter was fixed at 𝛿 = 0.05, controlling
the probability of incorrectly identifying the top-m arms. The stopping criterion which is the gap
between𝑈𝑡 and 𝑁𝑡 was also kept at 𝜀 = 0.1. The example subsets (S) are formed, by sampling with
replacement one example from each of the 5 clusters formed from training set. We use the same
hyperparameters in MAB setup for GRASS for fair comparison.

Dynamic CASE method is obtained by applying CASE Purohit et al. (2025a), for each test instance
instead of single offline run. Moreover, the hyperparameters utilized during experiments for CASE
algorithm are the same as Static CASE configuration.

Learning to Rank baselines - We compare to diverse LTR approaches including PiRank Swezey
et al. (2021) which is based on differentiable sorting. The model architecture consisted of a sequence
of fully connected hidden layers with sizes of (256,256,128,64) and ReLU activation function after
each layer, processing 768-dimensional feature vectors for each document. The same hyperparameter
values were also used for all LTR baselines and for non-linear surrogate in GRASS. Optimization
was performed using Adam with a learning rate of 1𝑒 − 4, paired with a StepLR scheduler with decay
rate 0.1 every 50 epochs, balancing stability and convergence speed for this architecture. The training
ran for 100 epochs with a batch size of 16. Parameter values for all LTR baselines are in Table 3.

5 RESULTS

5.1 EMPIRICAL VERIFICATION OF CONVERGENCE IN GRASS

To answer RQI, we record, compare and analyze the gap-index and simple regret across rounds.
Since the stopping criterion is directly dependent on gap-index, it should decrease across rounds
with minor fluctuations for convergence. The gap-index across rounds is compared across different
algorithms as shown in Figure 1a. We observe that for GRASS, gap-index decreases gradually and
approaches 0 demonstrating that our proposed non-linear ranking surrogate based MAB algorithm
converges demonstrating it’s correctness empirically. We also observe that it converges earlier than
CASE. While CASE initially shows a monotonically decreasing trend in the gap, it stagnates after
round 70 struggling to approach 𝜖 . We observe that this is primarily due to the model struggling to
distinguish between truly good arms and borderline challenger arms that appear to be good. We also
observe simple regret as shown in Figure 1b to analyze if the estimate of good arms improves over
time as the surrogate better learns to estimate the means (utility) of the arms. For GRASS, simple

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

20 40 60 80
0

0.5

1

Rounds

G
ap

In
de

x

GRASS

CASE

(a) Gap Index
Comparison

20 40 60 80
0

0.2

0.4

0.6

0.8

1

Rounds

G
ap

In
de

x

GRASS

CASE

(b) Simple Regret
Comparison

GSM Aqua WMT19
0

5

10

15

Ti
m

e
(i

n
ho

ur
s)

GRASS

CASE

(c) Subset Selection
runtime Comparison

GSM Aqua WMT19
0

5

10

15

20

Ti
m

e
(i

n
se

co
nd

s)

GRASS

CASE

(d) Avg. inference run-
time/query

Figure 1: Top-𝑚 arm identification by GRASS, CASE for AquaRAT. (a) Gap Index (𝐵𝑡 (𝑠𝑡 , 𝑏𝑡 ))
comparison and (b) Simple regret comparison and subset selection time (c), Average inference time
(d) per query across all datasets

regret is calculated as loss of the ranked subsets in 𝑈𝑡 with respect to their true ranking based on
LLM feedback based rewards. For CASE, it is calculated based on RMSE between optimal LLM
reward and predicted empirical means owing to it’s linear modeling of rewards. We observe that the
simple regret of the set 𝑈𝑡 - the current estimate of top-m arms decreases gradually. The gap and
simple regret for other datasets are reported in Appendix C

Method GSM8K AquaRat WTM19
Task level
Zero-shot-COT Kojima et al. (2023) 37.37 36.61 51.22
Few-Shot COT Wei et al. (2023) 63.22 40.94 61.64
LENS Li & Qiu (2023) 64.97 44.88 64.09
EXPLORA Purohit et al. (2024) 69.92 47.24 66.26
Static CASE Purohit et al. (2025b) 67.00 46.06 65.40
GRASS𝑠𝑡𝑎𝑡𝑖𝑐 (ours) 69.90 50.00 68.83
Instance Level
KNN Rubin et al. (2022) 61.07 41.31 68.36
MMR Ye et al. (2023b) 66.48 45.84 68.86
Instance Level (LTR - Learning To Rank)
PiRank Swezey et al. (2021) 69.30 37.00 71.30
NeuralNDCG 72.23 44.09 71.13
ListNet Pobrotyn et al. (2020) 70.30 43.30 71.26
LambdaRank 67.30 44.09 71.22
NDCGLoss 2++ Wang et al. (2018) 70.00 43.70 72.56
NeuralNDCG with Normalized Data 71.33 45.66 71.80
Instance level (Bandit Approaches)
𝐶𝐴𝑆𝐸𝑑𝑦𝑛𝑎𝑚𝑖𝑐 Purohit et al. (2025a) 70.00 47.51 71.70
Instance level (Bandit + LTR)
GRASS𝑑𝑦𝑛𝑎𝑚𝑖𝑐 (ours) 75.66(▲8.08%)† 54.72(▲15.17%)† 78.49(▲9.47%)†
GRASS𝑑𝑦𝑛𝑎𝑚𝑖𝑐 (-exploration) (ablation) 70.30 37.00 71.30

Table 1: Demonstration example selection results across 3 datasets using llama3.2:3b† indicates
statistical significance (t-test) over 𝐶𝐴𝑆𝐸𝑑𝑦𝑛𝑎𝑚𝑖𝑐 at 0.05 level.

5.2 PERFORMANCE COMPARISON FOR EXAMPLE SUBSETS SELECTION

To answer RQ2, we compare GRASS with static (task-level) and learning to rank based dynamic
example selection approaches as shown in Table 1. Since GRASS outputs top-𝑚 exemplar subsets as
part of subset selection, we compare GRASS𝑠𝑡𝑎𝑡𝑖𝑐 with other task-level selection based inference
approaches. We observe that GRASS𝑠𝑡𝑎𝑡𝑖𝑐 outperforms existing approaches including CASE across
datasets. We hypothesize that this is primarily due to the parameterized non-linear surrogate that
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models the arm feature-rewards relationship better than CASE and existing approaches. We also
employ the non-linear ranking surrogate trained during the selection to rank example subsets dynami-
cally for each test instance with results indicated by GRASS𝑑𝑦𝑛 in Table 1. Firstly we observe that
GRASS𝑑𝑦𝑛 outperforms static example selection approaches demonstrating need for instance-level
selection as static set of examples may not generalize to unseen queries. Also from the table, we
observe that GRASS𝑑𝑦𝑛 significantly outperforms existing approaches like KNN and MMR which
aim to retrieve examples based on similarity and diversity to the test example respectively. This is
primarily because, GRASS𝑑𝑦𝑛 models the problem as ranking subsets as a whole than individual
examples. It also takes into consideration the impact of a particular combination of examples on
downstream LLM performance through the training process in the bandit optimization step. Whereas
KNN and MMR retrieve examples independently without considering how they may interact together
and affect LLM performance. GRASS𝑑𝑦𝑛 also outperforms dynamic version of the CASE approach
which employs a bandit based selection algorithm per instance and scores subsets as a whole. For
instance, GRASS𝑑𝑦𝑛 achieves upto 15.17% over dynamic CASE on AquaRAT. We observe that the
improvements are primarily because of better modeling of reward structure which also leads to clear
separation between borderline and top-𝑚 arms compared to CASE which employs a linear surrogate.

Comparing to LTR approaches, from Table 1, we observe that GRASS𝑑𝑦𝑛 outperforms existing
LTR approaches trained with different objectives. The LTR approaches are also trained to rank
example subsets as a whole than individual examples for fair comparison and demonstrate gains over
static selection approaches. However, we observe that the mechanism to iteratively fit the non-linear
surrogate in our approach helps the model clearly distinguish between borderline arms and top-𝑚
arms through sampling of most ambiguous arms and reduction of gap between them. However, in
classical LTR training approaches, there is no principled mechanism to sample ambiguous borderline
arms and only adopt heuristic negative sampling without considering downstream task performance
unlike GRASS𝑑𝑦𝑛 leading to sub-par performance as also evident from the ablation in Table 1.

5.3 EFFICIENCY COMPARISON

To answer RQ3, we compare the subset selection time of CASE and GRASS (Figure 1c), inference
time across the three datasets. Regarding subset selection time, we observe that subset selection
runtime of GRASS is less than CASE (providing approximately 2x speedup on AquaRAT and 2.35
x speedup on GSM8K) for identifying top-𝑚 arms. We observe that this is primarily due to faster
convergence of GRASS as per the adopted stopping criterion compared to CASE. This is because
the non-linear ranking based surrogate in GRASS more accurately models the reward structure and
quickly learns to distinguish between top-𝑚 arms and borderline challenger arms. It accomplished
this by sampling better ambiguous arms through means estimated by the surrogate. This is also
evident from comparison of gap index across rounds between CASE and GRASS in Figure 1a.
For instance, in AquaRAT, GRASS converges in 79 rounds, whereas CASE requires 238 rounds.
Similarly, for GSM8k, GRASS converges in 130 rounds but CASE requires 510 rounds.

We also plot the average inference times per query of the respective methods on test set. Particularly,
we compare GRASS𝑑𝑦𝑛 with static CASE to measure the latency overhead at inference time added
by ranking using the non-linear surrogate in GRASS𝑑𝑦𝑛. We observe from Figure 1d, that the change
in latency is negligible with GRASS𝑑𝑦𝑛 only adding to few milliseconds over static CASE. This
demonstrates that GRASS𝑑𝑦𝑛 offers significant improvements over static selection methods with
negligible latency overheads.

6 CONCLUSION

In this work, we propose a sample-efficient gap-index based MAB framework (GRASS) that models
scores of example subsets using a non-linear surrogate to enhance ICL. The proposed approach
provides a general mechanism to learn ranking surrogates that can learn from LLM feedback and
can be employed for instance-level example subsets selection. Hence, the proposed framework
can be generally be employed for task-level and instance-level selection. Since GRASS models
the reward structure well it converges faster than existing MAB algorithms for subset selection in
ICL setting. It adds only negligible overhead during inference for instance-level setting but with
significant performance gains. The proposed algorithm can also be extended to other ranking tasks in
the future with appropriate loss function changes.
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7 REPRODUCIBILITY STATEMENT

We open source our code and related data at the anonymous github repository - https://
anonymous.4open.science/r/top-m-arm-selection-non-linear-C010. We
have tested our algorithms on CPU and GPU till convergence. All hyperparameter details are
presented in Section 4 and prompts are present in Appendix F.

8 LLM USAGE

We use LLMs to only correct grammatical issues.
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Clémence Réda, Emilie Kaufmann, and Andrée Delahaye-Duriez. Top-m identification for linear
bandits. In International Conference on Artificial Intelligence and Statistics, pp. 1108–1116.
PMLR, 2021.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant. Learning to retrieve prompts for in-context
learning. In Proceedings of the 2022 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 2655–2671, Seattle, United
States, July 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.
191.

Robin Marcel Edwin Swezey, Aditya Grover, Bruno Charron, and Stefano Ermon. Pirank: Scalable
learning to rank via differentiable sorting. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL https://
openreview.net/forum?id=dL8p6rLFTS3.

Jonathan Tonglet, Manon Reusens, Philipp Borchert, and Bart Baesens. Seer : A knapsack approach
to exemplar selection for in-context hybridqa, 2023.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large language
models. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 2609–2634, Toronto, Canada, July 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.acl-long.147.

Xuanhui Wang, Cheng Li, Nadav Golbandi, Michael Bendersky, and Marc Najork. The lambdaloss
framework for ranking metric optimization. In Proceedings of the 27th ACM International
Conference on Information and Knowledge Management, CIKM ’18, pp. 1313–1322, New York,
NY, USA, 2018. Association for Computing Machinery. ISBN 9781450360142. doi: 10.1145/
3269206.3271784. URL https://doi.org/10.1145/3269206.3271784.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol Vinyals,
Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.

Jing Xiong, Zixuan Li, Chuanyang Zheng, Zhijiang Guo, Yichun Yin, Enze Xie, Zhicheng YANG,
Qingxing Cao, Haiming Wang, Xiongwei Han, Jing Tang, Chengming Li, and Xiaodan Liang.
DQ-lore: Dual queries with low rank approximation re-ranking for in-context learning. In The
Twelfth International Conference on Learning Representations, 2024.

Liyuan Xu, Junya Honda, and Masashi Sugiyama. Fully adaptive algorithm for pure exploration in
linear bandits, 2017.

Jiacheng Ye, Zhiyong Wu, Jiangtao Feng, Tao Yu, and Lingpeng Kong. Compositional exemplars for
in-context learning, 2023a.

Xi Ye, Srinivasan Iyer, Asli Celikyilmaz, Veselin Stoyanov, Greg Durrett, and Ramakanth Pasunuru.
Complementary explanations for effective in-context learning. In Findings of the Association for
Computational Linguistics: ACL 2023, pp. 4469–4484, Toronto, Canada, July 2023b. Association
for Computational Linguistics.

Ruiqi Zhang, Spencer Frei, and Peter L. Bartlett. Trained transformers learn linear models in-context,
2023.

Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q. Weinberger, and Yoav Artzi. Bertscore:
Evaluating text generation with bert. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=SkeHuCVFDr.

12

https://openreview.net/forum?id=dL8p6rLFTS3
https://openreview.net/forum?id=dL8p6rLFTS3
https://doi.org/10.1145/3269206.3271784
https://openreview.net/forum?id=SkeHuCVFDr


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yiming Zhang, Shi Feng, and Chenhao Tan. Active example selection for in-context learning. In
Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing, pp. 9134–9148, Abu Dhabi, United Arab
Emirates, December 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
emnlp-main.622.

Masrour Zoghi, Tomas Tunys, Mohammad Ghavamzadeh, Branislav Kveton, Csaba Szepesvari, and
Zheng Wen. Online learning to rank in stochastic click models. In International conference on
machine learning, pp. 4199–4208. PMLR, 2017.

A APPENDIX

B PROOF FOR THEOREM 1

Notation and setup. Let A be the arm set, |A| = 𝐾. At round 𝑡 the PiRank surrogate (with
dropout) outputs 𝑁 stochastic predictions (N MC-dropout forward passes) per arm 𝑎:

{𝑦 (𝑘 )𝑎 }𝑁𝑘=1, 𝜌̂𝑡 (𝑎) :=
1
𝑁

𝑁∑︁
𝑘=1

𝑦
(𝑘 )
𝑎 .

Define the sample mean difference and sample variance for pair (𝑖, 𝑗):

𝑑𝑖 𝑗 :=
1
𝑁

𝑁∑︁
𝑘=1

(
𝑦
(𝑘 )
𝑖
− 𝑦 (𝑘 )

𝑗

)
, 𝑉𝑖 𝑗 ,𝑡 :=

1
𝑁

𝑁∑︁
𝑘=1

(
𝑦
(𝑘 )
𝑖
− 𝑦 (𝑘 )

𝑗
− 𝑑𝑖 𝑗

)2
.

Let 𝑐𝑡 be an annealed multiplier (user-specified) and define

𝐵𝑡 (𝑐ℎ𝑡 , 𝑏𝑡 ) := 𝜌̂𝑡 (𝑠) − 𝜌̂𝑡 (𝑏) +𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 ).

In order to prove Lemma 1, we first need to demonstrate that event E hold with probability ≥ 1 − 𝛿
for GRASS. However, the estimated means 𝜌𝑡 and 𝑊𝑡 (𝑖, 𝑗) for any two arms 𝑖, 𝑗 is computed in
a different manner for GRASS than existing linear stochastic bandit frameworks like CASE and
GIFA. Hence, we establish that the confidence event E holds here by deriving an upper bound on
pairwise-gap error as explained below. This is one of our main contributions which further helps in
deriving a high complexity upper bound on sample compelxity.

To recap the event is defined as, E ≜
⋂
𝑡>0

⋂
𝑖, 𝑗∈[𝐾 ]

(
𝜌𝑖 − 𝜌 𝑗 ∈ [−𝐵𝑡 ( 𝑗 , 𝑖), 𝐵𝑡 (𝑖, 𝑗)]

)
, Expanding the

event E

𝜌𝑖 − 𝜌 𝑗 ≥ ( 𝜌̂𝑖 (𝑖) − 𝜌̂𝑖 ( 𝑗)) −𝑊𝑡 (𝑖, 𝐽)

and symmetrically,

𝜌𝑖 − 𝜌 𝑗 ≤ ( 𝜌̂𝑖 (𝑖) − 𝜌̂𝑖 ( 𝑗)) +𝑊𝑡 (𝑖, 𝑗)

Hence it follows,
( 𝜌̂𝑖 (𝑖) − 𝜌̂𝑖 ( 𝑗)) − (𝜌𝑖 − 𝜌 𝑗 ) ≤ 𝑊𝑡 (𝑖, 𝑗)

Let
E𝑖 𝑗 (𝑡) :=

(
𝜌̂𝑡 (𝑖) − 𝜌̂𝑡 ( 𝑗)

)
−

(
𝜌(𝑖) − 𝜌( 𝑗)

)
denote the pairwise-gap error. This error can be further decomposed as follows based on the source
of randomness / errors
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E𝑖 𝑗 (𝑡) =
[ (
𝜌̂𝑡 (𝑖) − 𝜌̂𝑡 ( 𝑗)

)
−

(
Edrop [𝑦𝑖] − Edrop [𝑦 𝑗 ]

) ]︸                                                    ︷︷                                                    ︸
(Term 1) MC Dropout noise

+
[ (
Edrop [𝑦𝑖] − Eweights,drop [𝑦𝑖]

)
−

(
Edrop [𝑦 𝑗 ] − Eweights,drop [𝑦 𝑗 ]

) ]︸                                                                                ︷︷                                                                                ︸
(Term 2) Weight randomness / SGD-induced drift

+
[ (
Eweights,drop [𝑦𝑖] − 𝜌(𝑖)

)
−

(
Eweights,drop [𝑦 𝑗 ] − 𝜌( 𝑗)

) ]︸                                                                   ︷︷                                                                   ︸
(Term 3) Model bias

.

Each of the above terms can be bounded individually to prove the following theorem. Restating
Theorem 1,

Theorem (MC-Dropout gap concentration). In a fixed-confidence setting, 𝛿 ∈ (0, 1), with
probability at least 1 − 𝛿, for all pairs 𝑖, 𝑗 ∈ A:��( 𝜌̂𝑡 (𝑖) − 𝜌̂𝑡 ( 𝑗)) − (𝜌(𝑖) − 𝜌( 𝑗))�� ≤ 𝑐𝑡√︂ 2𝑉𝑖 𝑗,𝑡 log(2𝐾2/𝛿 )

𝑁
+ 𝜀stab

𝑡 + 𝑏𝑖 + 𝑏 𝑗

+ 2𝑀 log(2𝐾2/𝛿 )
3𝑁 .

where 𝑉𝑖 𝑗 ,𝑡 is the empirical variance of MC-dropout differences, 𝜀stab
𝑡 is the SGD stability error, and

𝑏𝑖 , 𝑏 𝑗 are surrogate approximation biases.

Term 1 - Monte-Carlo Dropout Noise

For arms i,j we define Monte Carlo Dropout samples of their differences as:

𝑍𝑘 = (𝑦𝑖 (𝑘) − 𝑦 𝑗 (𝑘)) − (Edrop [𝑦𝑖] − Edrop [𝑦 𝑗 ])

Our goal is to bound the empirical mean 𝑍̂ = 1
𝑁

∑𝑁
𝑘=1 𝑍𝑘 which is equivalent to Term 1.

Assuming 𝑍𝑘’s are independent ( as dropout masks are independent) and bounded, we apply Bern-
stein’s inequality as it states that,

For {𝑍𝑘}𝑁𝑘=1 be independent, mean-zero random variables with |𝑍𝑘 | ≤ 𝑏 almost surely, and let

𝑍̂𝑁 :=
1
𝑁

𝑁∑︁
𝑘=1

𝑍𝑘 , 𝜎2 := Var(𝑍𝑘).

Then, for any 𝜖 > 0, the (scalar) Bernstein inequality states: if 𝑍1, . . . , 𝑍𝑁 are independent, mean-
zero, and satisfy |𝑍𝑘 | ≤ 𝑏, then for any 𝜖 > 0,

Pr
(��𝑍̄ �� ≥ 𝜖 ) ≤ 2 exp

(
− 𝑁𝜖2

2𝜎2 + 2
3𝑏𝜖

)
.

Here 𝑏 = 2𝑀 and 𝜎2 = Var(𝑦𝑖 − 𝑦 𝑗 ).
To get a confidence radius 𝜖 such that the event holds with probability at least 1 − 𝛿 we set

2 exp

(
− 𝑁𝜖2

2𝜎2 + 2
3𝑏𝜖

)
= 𝛿.

This yields the inequality:

2

(
− 𝑁𝜖2

2𝜎2 + 2
3𝑏𝜖

)
≥ 𝑙𝑜𝑔𝛿.
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hence, (
𝑁𝜖2

2𝜎2 + 2
3𝑏𝜖

)
≥ 𝑙𝑜𝑔(2/𝛿).

Following Maurer & Pontil (2009); Lattimore & Szepesvári (2020) we aim to solve the inequality:(
𝑁𝜖2

2𝜎2 + 2
3𝑏𝜖

)
≥ 𝑙𝑜𝑔(2/𝛿).

This can be expressed as a quadratic in 𝜖 ,

𝑁𝜖2 − 2
3
𝑏𝜖 (𝑙𝑜𝑔( 2

𝛿
)) − 2𝜎2𝑙𝑜𝑔( 2

𝛿
) ≥ 0

Solving the quadratic equation we get,

𝜖 ≥
2
3𝑏 log(2/𝛿) +

√︂(
2
3𝑏 log(2/𝛿)

)2
+ 8𝑁𝜎2 log(2/𝛿)

2𝑁
. (5)

To obtain an upper bound for square root term we use the inequality,
√
𝑎2 + 𝑥 ≤ 𝑎 +

√
𝑥, where 𝑎 =

(
2
3𝑏 log(2/𝛿)

)
and 𝑥 = 8𝑁𝜎2 log(2/𝛿)

hence, √︄(
2
3
𝑏 log(2/𝛿)

)2
+ 8𝑁𝜎2 log(2/𝛿) ≤

(
2
3
𝑏 log(2/𝛿)

)
+

√︁
8𝑁𝜎2 log(2/𝛿)

Using above in Equation 5

𝜖 ≤
2
3𝑏 log(2/𝛿) +

(
2
3𝑏 log(2/𝛿)

)
+

√︁
8𝑁𝜎2 log(2/𝛿)

2𝑁

𝜖 ≤
4
3𝑏 log(2/𝛿) +

√︁
8𝑁𝜎2 log(2/𝛿)

2𝑁

𝜖 ≤
√︂

2𝜎2 log(2/𝛿)
𝑁

+ 𝑏 log(2/𝛿)
3𝑁

.

Thus, with probability at least 1 − 𝛿,��𝑍̄ �� ≤ √︂
2𝜎2 log(2/𝛿)

𝑁
+ 2𝑀 log(2/𝛿)

3𝑁
.

Replacing 𝜎2 by the empirical variance:

Define the sample variance estimator

𝑉𝑖 𝑗 ,𝑡 :=
1
𝑁

𝑁∑︁
𝑘=1

[ (
𝑦
(𝑘 )
𝑖
− 𝑦 (𝑘 )

𝑗

)
− 𝑑𝑖 𝑗

]2
, 𝑑𝑖 𝑗 :=

1
𝑁

𝑁∑︁
𝑘=1

(
𝑦
(𝑘 )
𝑖
− 𝑦 (𝑘 )

𝑗

)
.

Then by concentration of empirical variance (again via Bernstein or Bennett bounds), 𝑉𝑖 𝑗 ,𝑡 is close to
𝜎2 with high probability, so we may plug 𝑉𝑖 𝑗 ,𝑡 into the bound:��𝑍̄ �� ≤ √︄

2𝑉𝑖 𝑗 ,𝑡 log(2/𝛿)
𝑁

+ 2𝑀 log(2/𝛿)
3𝑁

.
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Union bound over all pairs. We require the inequality to hold for all pairs (𝑖, 𝑗) ∈ A simultaneously.
Since there are at most 𝐾2 ordered pairs, set

𝛿 =
𝛿

𝐾2 .

By a union bound, with probability at least 1 − 𝛿,

∀𝑖, 𝑗 ∈ A :
[ (
𝜌̂𝑡 (𝑖) − 𝜌̂𝑡 ( 𝑗)

)
−

(
Edrop [𝑦𝑖] − Edrop [𝑦 𝑗 ]

)
| ≤ 𝑊𝑡 (𝑖, 𝑗).

This defines the desired pairwise confidence width𝑊𝑡 (𝑖, 𝑗) under Monte Carlo dropout.

Term 2 — Weights Randomness / SGD Stability

We need to bound ����Edrop [𝑦𝑎] − Eweights, drop [𝑦𝑎]
����,

that is, the gap between the conditional dropout mean (given current weights trained on the dataset)
and the expectation over randomness in the training set and weights.

To do this it is first essential that the predictions of the differentiable sorting surrogate does not deviate
a lot in each round of arm sampling. This translates to proving that for one-epoch SGD the uniform
stability criterion holds.

This criterion guarantees that a randomized algorithm is uniformly stable, if for all data sets differing
in only one element, the learned models produce nearly the same predictions. This is applicable
to our setup, as in each round after sampling reward from a arm, this new sample (arm+reward) is
added to the training set to update the non-linear surrogate with SGD simulating a single epoch of
NN training.

For one-epoch SGD, Hardt et al. (2016) show uniform stability bounds of the form

sup
𝑧

��ℓ(SGD(𝑆), 𝑧) − ℓ(SGD(𝑆 (𝑖) ), 𝑧)
�� ≤ 𝜀stab

𝑡 ,

, where 𝑆 and 𝑆 (𝑖) differ in atmost one data sample and ℓ(SGD(𝑆 (𝑖) ), 𝑧) denotes the loss of the
randomized algorithm (Diffsort neural network). which can be translated to a bound on predictions.
Under our assumptions (bounded gradients 𝐺 and Lipschitz loss 𝐿), one-epoch SGD has stability
that decays with the dataset size and step size; we encapsulate this as 𝜀stab

𝑡 .

Concretely, there exist constants (depending on 𝐺, 𝐿, 𝜂𝑡 ) such that

∀𝑎 :
��Edropout [𝑦𝑎 | weights] − Eweights, dropout [𝑦𝑎]

�� ≤ 𝜀stab
𝑡 .

Hence for the pair (𝑖, 𝑗), the contribution is at most 2𝜀stab
𝑡 ; we absorb a factor of 2 into the constant

and state the theorem with one 𝜀stab
𝑡 representing the pairwise bound (or keep +𝜀stab

𝑡 per side — we
used one in the statement for brevity).

Intuition: Because we train only one epoch per new sample, the model is only mildly unstable:
removing or adding one sample cannot arbitrarily change predictions. That bounded change becomes
a bias term in the final gap bound.

Term 3 - Model Bias :

The per arm bias can be defined as:

𝑏𝑎 :=
��Eweights,drop [𝑦𝑎] − 𝜌(𝑎)

��.
By the triangle inequality,

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

50 100
0

0.5

1

1.5

Rounds

G
ap

In
de

x
GRASS

CASE

(a) Gap Index
Comparison (GSM8K)

10 20 30
0

1

2

Rounds

G
ap

In
de

x

GRASS

CASE

(b) Gap Index
Comparison (WMT19)

50 100
0

0.2

0.4

0.6

0.8

1

Rounds

G
ap

In
de

x

GRASS

CASE

(c) Simple Regret
Comparison (GSM8K)

10 20 30
0

0.2

0.4

0.6

0.8

1

Rounds

G
ap

In
de

x

GRASS

CASE

(d) Simple Regret
Comparison (WMT19)

Figure 2: Top-𝑚 arm identification by GRASS, CASE for GSM8k, WMT19. (a,b) Gap Index
(𝐵𝑡 (𝑠𝑡 , 𝑏𝑡 )) comparison and (c,d) Simple regret comparison

��Eweights,drop [𝑦𝑖] − 𝜌(𝑖)
�� − ��Eweights,drop [𝑦 𝑗 ] − 𝜌( 𝑗)

��
≤

��Eweights,drop [𝑦𝑖] − 𝜌(𝑖)
�� + ��Eweights,drop [𝑦 𝑗 ] − 𝜌( 𝑗)

�� = 𝑏𝑖 + 𝑏 𝑗
Hence, ��Eweights,drop [𝑦𝑖] − 𝜌(𝑖)

�� − ��Eweights,drop [𝑦 𝑗 ] − 𝜌( 𝑗)
�� ≤ 𝑏𝑖 + 𝑏 𝑗

This implies that the model-bias contribution to the pairwise error is at most the sum of the two
per-arm biases. If the surrogate is well-specified 𝑏𝑎 = 0.

Where empirically, 𝑏𝑎 can be computed as the deviation in empirical mean of the arm over the rounds
with respect to a moving average of estimated empirical means over past rounds.

Combining bounds for Term 1 ,2 and 3 yields the expression for𝑊𝑡 in Theorem 1. The event E holds
for this𝑊𝑡 which is one of our main theoretical contributions. Then the proof for Lemma 1 follows
from Réda et al. (2021); Purohit et al. (2025a) which yields a high probability upper bound on sample
complexity as stated in Theorem 2. We include proof of Lemma 1 in Appendix E.1 for completion.
We then derive the high probability upper bound on sample complexity In Appendix E.2.

C GAP AND SIMPLE REGRET ANALYSIS FOR GSM8K AND WMT19

Similar to the gap index and simple regret analysis on AquaRAT in Section 5.1, we also plot the
gap indices and simple regret across rounds for GSM8K and WMT 2019 as shown in Figure 2. We
observe a similar trend where gap index between ambiguous arms approaches 𝜖 , the stopping criterion
and the regret also minimizes across rounds demonstrating the empirical convergence of GRASS.

D RESULTS ON ALTERNATIVE LLMS

We also evaluate static and dynamic versions of our proposed approach GRASS using alternative
LLMs like gpt-4o-mini. We choose this LLM as it has shown relatively stable performance across
benchmarks. We extract the most competitive baselines and method from Table 1 and evaluate them
using gpt-4o-mini. All our experiments are carried out ina transfer setting where exemplars selected
using Llama3.2:3b in the optimization loop are employed directly for inference on test set using
gpt-4o-mini. The results using gpt-4o-mini are as shown in Table 2
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Method GSM8K AquaRat WMT
Task level
EXPLORA Purohit et al. (2024) 93.63 69.29 84.55
LENS (Li & Qiu, 2023) 76.19 64.56 83.57
Static CASE 91.13 73.23 83.49
GRASS𝑠𝑡𝑎𝑡𝑖𝑐 94.84 77.16 86.25
Instance level
𝐶𝐴𝑆𝐸𝑑𝑦𝑛𝑎𝑚𝑖𝑐 Purohit et al. (2025a) 92.19 76.77 86.36
GRASS𝑑𝑦𝑛 94.66 81.88 † 92.41†

Table 2: Results across datasets (we use 5-shot for all methods). Percentage improvements are
reported over EXPLORA (Purohit et al., 2024). † indicates statistical significance (t-test) over
𝐶𝐴𝑆𝐸𝑑𝑦𝑛𝑎𝑚𝑖𝑐 at 0.05 level

E SAMPLE COMPLEXITY UPPER BOUND

E.1 PROOF OF LEMMA 1

Proof. We primarily follow the proof structure of GIFA framework (Réda et al., 2021) and Purohit
et al. (2025a).

Preliminaries Recap: Let S★𝑚 be the true set of top-𝑚 arms and (𝑆∗𝑚)𝑐 denote the true set remaining
worst arms. The gap-index between any two arms 𝑖, 𝑗 is computed as: 𝐵𝑡 (𝑖, 𝑗) = 𝜌̂𝑡 (𝑖) − 𝜌̂𝑡 ( 𝑗) +
𝑊𝑡 (𝑖, 𝑗).
, where

𝑊𝑡 = 𝑐𝑡

√︂
2𝑉𝑖 𝑗,𝑡 log(2𝐾2/𝛿 )

𝑁
+ 𝜀stab

𝑡 + 𝑏𝑖 + 𝑏 𝑗 + 2𝑀 log(2𝐾2/𝛿 )
3𝑁 . (6)

as derived in the proof for Theorem 1 To prove Lemma 1, we introduce the following property,

Property 1: For 𝑏𝑡 ∈ 𝑈𝑡 and 𝑐ℎ𝑡 ∈ 𝐶𝑡 it holds that 𝜌̂𝑡 (𝑏𝑡 ) ≥ 𝜌̂𝑡 (𝑐ℎ𝑡 ). Hence, it follows that
𝐵𝑡 (𝑐ℎ𝑡 , 𝑏𝑡 ) = Δ̂𝑡 (𝑐ℎ𝑡 , 𝑏𝑡 ) +𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 ) ≤ 𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 ) as Δ̂𝑡 (𝑐ℎ𝑡 , 𝑏𝑡 ) < 0 From property 1, we can
establish that 𝐵𝑡 (𝑐ℎ𝑡 , 𝑏𝑡 ) ≤ 𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 ). Hence, to show that

𝐵𝑡 (𝑐ℎ𝑡 , 𝑏𝑡 ) ≤ −(Δ(𝑏𝑡 ) ∨ Δ(𝑐ℎ𝑡 )) + 3𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 )

we consider the following scenarios:

(i) 𝑏𝑡 ∈ S★𝑚 and 𝑐ℎ𝑡 ∉ S★𝑚: In that case,

Δ(𝑏𝑡 ) = 𝜌(𝑏𝑡 ) − 𝜌(𝑚 + 1);Δ(𝑐ℎ𝑡 ) = 𝜌(𝑚) − 𝜌(𝑐ℎ𝑡 )

is the true gap of the arms.

As event E holds from Theorem 1 and Appendix B,

𝐵𝑡 (𝑐ℎ𝑡 , 𝑏𝑡 ) = −𝐵𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 ) + 2𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 ) ≤ Δ(𝑐ℎ𝑡 , 𝑏𝑡 ) + 2𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 )

As 𝑐ℎ𝑡 ∉ S★𝑚,
𝜌(𝑐ℎ𝑡 ) ≤ 𝜌(𝑚 + 1)

Δ(𝑐ℎ𝑡 , 𝑏𝑡 ) ≤ 𝜌(𝑚 + 1) − 𝜌(𝑏𝑡 ) = −Δ(𝑏𝑡 )

But as 𝑏𝑡 ∈ S★𝑚, it also holds that 𝜌(𝑏𝑡 ) ≥ 𝜌(𝑚), and Δ(𝑐ℎ𝑡 , 𝑏𝑡 ) ≤ 𝜌(𝑐ℎ𝑡 ) − 𝜌(𝑚) = −Δ(𝑐ℎ𝑡 ).
Hence,

𝐵𝑡 (𝑐ℎ𝑡 , 𝑏𝑡 ) ≤ −(Δ(𝑏𝑡 ) ∨ Δ(𝑐ℎ𝑡 )) + 2𝑊𝑡 (𝑏𝑡 , 𝑐𝑡 )
≤ −(Δ(𝑏𝑡 ) ∨ Δ(𝑐ℎ𝑡 )) + 3𝑊𝑡 (𝑏𝑡 , 𝑐𝑡 ).
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(ii) 𝑏𝑡 ∉ S★𝑚 and 𝑐ℎ𝑡 ∈ S★𝑚 :

Δ(𝑐ℎ𝑡 ) = 𝜌(𝑐ℎ𝑡 ) − 𝜌(𝑚 + 1);Δ(𝑏𝑡 ) = 𝜌(𝑚) − 𝜌(𝑏𝑡 )

By Property 1,

𝐵𝑡 (𝑐ℎ𝑡 , 𝑏𝑡 ) ≤ 𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 )
≤ Δ̂𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 ) +𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 ) = 𝐵𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 )

as 𝜌̂𝑡 (𝑏𝑡 ) ≥ 𝜌̂𝑡 (𝑐ℎ𝑡 ). Further, as E holds,

𝐵𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 ) = −𝐵𝑡 (𝑐ℎ𝑡 , 𝑏𝑡 ) + 2𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 )
≤ Δ(𝑏𝑡 , 𝑐ℎ𝑡 ) + 2𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 )

As 𝑏𝑡 ∉ S★𝑚, 𝜌(𝑏𝑡 ) ≤ 𝜌(𝑚 + 1) and hence Δ(𝑏𝑡 , 𝑐ℎ𝑡 ) ≤ 𝜌(𝑚 + 1) − 𝜌(𝑐ℎ𝑡 ) = −Δ(𝑐ℎ𝑡 ) As 𝑐ℎ𝑡 ∈ S★𝑚,
𝜌(𝑐ℎ𝑡 ) ≥ 𝜌(𝑚) and hence Δ(𝑏𝑡 , 𝑐ℎ𝑡 ) ≤ 𝜌(𝑏𝑡 ) − 𝜌(𝑚) = −Δ(𝑏𝑡 ). Hence,

𝐵𝑡 (𝑐ℎ𝑡 , 𝑏𝑡 ) ≤ −(Δ(𝑏𝑡 ) ∨ Δ(𝑐ℎ𝑡 )) + 2𝑊𝑡 (𝑏𝑡 , 𝑐𝑡 )
≤ −(Δ(𝑏𝑡 ) ∨ Δ(𝑐ℎ𝑡 )) + 3𝑊𝑡 (𝑏𝑡 , 𝑐𝑡 ).

(iii) 𝑏𝑡 ∉ S★𝑚 and 𝑐ℎ𝑡 ∉ S★𝑚: We state that there exists a 𝑏 ∈ S★𝑚 that belongs to 𝐶𝑡 . At any time t,

𝑀𝑡 ← 𝑟𝑎𝑛𝑑𝑜𝑚 𝑚′𝑎𝑟𝑚𝑠 𝑓 𝑟𝑜𝑚(𝑈𝑡 ∪ 𝑁𝑡−1)𝑐

𝐶𝑡 ← top𝑚′ (𝑀𝑡 ∪ 𝑁𝑡−1; 𝜌̂ (𝑡−1) )
Due to the above sampling approach adopted for 𝐶𝑡 which captures the next m’ arms with the highest
means, we posit that 𝐶𝑡 captures at least one arm in S★𝑚. Assuming the event E holds and 𝑏 ∈ S★𝑚,

𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 ) ≥ 𝐵𝑡 (𝑐ℎ𝑡 , 𝑏𝑡 ) ≥ 𝐵𝑡 (𝑏, 𝑏𝑡 )

𝑐ℎ𝑡 by the definition is one of the most ambiguous arms posing largest threat to 𝑏𝑡 as it has the largest
gap with respect to 𝑏𝑡 𝐵𝑡 (𝑐ℎ𝑡 , 𝑏𝑡 ) ≥ 𝐵𝑡 (𝑏, 𝑏𝑡 ). Hence, 𝐵𝑡 (𝑐ℎ𝑡 , 𝑏𝑡 ) ≥ 𝐵𝑡 (𝑏, 𝑏𝑡 ). From this and event
E it follows

𝐵𝑡 (𝑐ℎ𝑡 , 𝑏𝑡 ) ≥ 𝐵𝑡 (𝑏, 𝑏𝑡 ) ≥ 𝜌(𝑏) − 𝜌(𝑏𝑡 ) ≥ 𝜌(𝑚) − 𝜌(𝑏𝑡 )
. Hence𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 ) ≥ 𝐵𝑡 (𝑐ℎ𝑡 , 𝑏𝑡 ) ≥ Δ(𝑏𝑡 ). Using event E,

𝐵𝑡 (𝑐ℎ𝑡 , 𝑏𝑡 ) ≤ Δ(𝑐ℎ𝑡 , 𝑏𝑡 ) + 2𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 ) = (𝜌(𝑐ℎ𝑡 ) − 𝜌(𝑚))+
(𝜌(𝑚) − 𝜌(𝑏𝑡 )) + 2𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 )

From above Eq and since 𝐵𝑡 (𝑐ℎ𝑡 , 𝑏𝑡 ) ≥ Δ(𝑏𝑡 ),

𝐵𝑡 (𝑐ℎ𝑡 , 𝑏𝑡 ) ≤ −Δ(𝑐ℎ𝑡 ) + Δ(𝑏𝑡 ) + 2𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 )
≤ −Δ(𝑐ℎ𝑡 ) + 3𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 )

Also from Property 1 and𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 ) ≥ Δ(𝑏𝑡 ), it holds that

𝐵𝑡 (𝑐ℎ𝑡 , 𝑏𝑡 ) ≤ 𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 ) = −𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 ) + 2𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 )
≤ −Δ(𝑏𝑡 ) + 2𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 ) ≤ −Δ(𝑏𝑡 ) + 3𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 )

Hence 𝐵𝑡 (𝑐ℎ𝑡 , 𝑏𝑡 ) ≤ −(Δ(𝑏𝑡 ) ∨ Δ(𝑐ℎ𝑡 )) + 3𝑊𝑡 (𝑏𝑡 , 𝑐𝑡 ).
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(iv) 𝑏𝑡 ∈ S★𝑚 and 𝑐ℎ𝑡 ∈ S★𝑚: Then there exists a 𝑠 ∉ 𝑆∗𝑚 and 𝑠 ∈ 𝑈𝑡 In that case,

Δ(𝑏𝑡 ) = 𝜌(𝑏𝑡 ) − 𝜌(𝑚 + 1);Δ(𝑐ℎ𝑡 ) = 𝜌(𝑐ℎ𝑡 ) − 𝜌(𝑚 + 1)

Also by definition of 𝑏𝑡 and 𝑐ℎ𝑡 , it holds that 𝐵𝑡 (𝑐ℎ𝑡 , 𝑏𝑡 ) = max𝑖∈𝑈𝑡
max 𝑗∈𝐶𝑡

[𝐵𝑡 ( 𝑗 , 𝑖)] Since there
exists 𝑠 ∈ 𝑈𝑡 and 𝑐ℎ𝑡 ∈ 𝐶𝑡 ,

𝐵𝑡 (𝑐ℎ𝑡 , 𝑏𝑡 ) = max
𝑖∈𝑈𝑡

max
𝑗∈𝐶𝑡

[𝐵𝑡 ( 𝑗 , 𝑖)] ≥ max
𝑗∈𝐶𝑡

𝐵𝑡 ( 𝑗 , 𝑠)

≥ 𝐵𝑡 (𝑐ℎ𝑡 , 𝑠) ≥ 𝜌(𝑐ℎ𝑡 ) − 𝜌(𝑠) ≥ 𝜌(𝑐ℎ𝑡 ) − 𝜌(𝑚 + 1)

As 𝜌(𝑐ℎ𝑡 ) − 𝜌(𝑚 + 1) = Δ(𝑐ℎ𝑡 ), 𝐵𝑡 (𝑐ℎ𝑡 , 𝑏𝑡 ) ≥ Δ(𝑐ℎ𝑡 ) By property 1, 𝐵𝑡 (𝑐ℎ𝑡 , 𝑏𝑡 ) ≤ 𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 ).
Hence,

Δ(𝑐ℎ𝑡 ) ≤ 𝐵𝑡 (𝑐ℎ𝑡 , 𝑏𝑡 ) ≤ 𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 )

On event E it follows that 𝐵𝑡 (𝑐ℎ𝑡 , 𝑏𝑡 ) ≤ 𝜌(𝑐ℎ𝑡 )−𝜌(𝑏𝑡 ) +2𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 ) as (𝐵(𝑐ℎ𝑡 , 𝑏𝑡 ) ≤ 𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 ).
Then 𝜌(𝑐ℎ𝑡 ) − 𝜌(𝑏𝑡 ) can be expressed as 𝜌(𝑐ℎ𝑡 ) − 𝜌(𝑚 + 1) + 𝜌(𝑚 + 1) − 𝜌(𝑏𝑡 ). hence,

𝐵𝑡 (𝑐ℎ𝑡 , 𝑏𝑡 ) ≤ 𝜌(𝑐ℎ𝑡 ) − 𝜌(𝑚 + 1) + 𝜌(𝑚 + 1) − 𝜌(𝑏𝑡 )
+2𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 ) ≤ Δ(𝑐ℎ𝑡 ) − Δ(𝑏𝑡 ) + 2𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 )

We already know that 𝐵𝑡 (𝑐ℎ𝑡 , 𝑏𝑡 ) ≥ Δ(𝑐ℎ𝑡 ) resulting in,

(𝑎) 𝐵𝑡 (𝑐ℎ𝑡 , 𝑏𝑡 ) ≤ −Δ(𝑏𝑡 ) + 3𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 )

Now to prove 𝐵𝑡 (𝑐ℎ𝑡 , 𝑏𝑡 ) ≤ −Δ(𝑐ℎ𝑡 ) + 3𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 ), we rely on property 1,

𝐵(𝑐ℎ𝑡 , 𝑏𝑡 ) ≤ 𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 ) ≤ −𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 ) + 2𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 )

As𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 ) ≥ Δ(𝑐ℎ𝑡 ), −𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 ) ≤ −Δ(𝑐ℎ𝑡 ). Hence,

(𝑏) 𝐵(𝑐ℎ𝑡 , 𝑏𝑡 ) ≤ 𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 ) ≤ −𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 ) + 2𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 )
≤ −Δ(𝑐ℎ𝑡 ) +𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 ) ≤ −Δ(𝑐ℎ𝑡 ) + 3𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 )

From (a) and (b)

𝐵𝑡 (𝑐ℎ𝑡 , 𝑏𝑡 ) ≤ −(Δ(𝑏𝑡 ) ∨ Δ(𝑐ℎ𝑡 )) + 3𝑊𝑡 (𝑏𝑡 , 𝑐𝑡 ) (7)

□

E.2 PROOF BLUEPRINT FOR THEOREM 2

Proof. We now convert equation 7 into sampling bounds by using the stopping rule and the explicit
form of𝑊𝑡 . The intuition is similar to Lemma 8 in GIFA Réda et al. (2021), where once the stopping
rule 𝐵𝑡 (𝑐ℎ𝑡 , 𝑏𝑡 ) ≤ 𝜀 triggers, arms with non-zero gap must have been sampled enough times so that
the width is small relative to the gap. We invert this relation to obtain a per-arm bound.

Stopping rule. Assume the algorithm stops when

𝐵𝑡 (𝑐ℎ𝑡 , 𝑏𝑡 ) ≤ 𝜀.

On the event E, by Lemma 1 at time t < stopping time we have

𝜀 ≤ 𝐵𝑡 (𝑐ℎ𝑡 , 𝑏𝑡 ) ≤ −(Δ(𝑏𝑡 ) ∨ Δ(𝑐ℎ𝑡 )) + 3𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 ).

Rearrange to get
3𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 ) ≥ 𝜀 + (Δ(𝑏𝑡 ) ∨ Δ(𝑐ℎ𝑡 )).
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𝑊𝑡 (𝑏𝑡 , 𝑐ℎ𝑡 ) ≥
𝜖 + Δ𝑎

3

Hence, for any arm 𝑎 that remains active (i.e. is sampled further until elimination), when it is
sampled at time 𝑡 its associated width at that time must satisfy the above inequality (with 𝑎 playing
the role of 𝑏𝑡 or 𝑐ℎ𝑡 in the identity). Substituting leading term of 𝑊𝑡 (𝑖, 𝑗) (first term in Equation

6): 𝑐𝑡

√︃
2𝑉𝑏𝑡 ,𝑐ℎ𝑡 ,𝑡 𝑙𝑜𝑔 (2𝐾2/𝛿 )

𝑁
(we ignore stability and bias terms for clarity and also because they are

negligible)

𝑐𝑡

√︄
2𝑉𝑏𝑡 ,𝑐ℎ𝑡 ,𝑡 𝑙𝑜𝑔(2𝐾2/𝛿)

𝑁
≥ 𝜖 + Δ𝑎

3

Since the predictive variance decreases with the number of arm samples 𝑛𝑡 (𝑎)

𝑉𝑏𝑡 ,𝑐ℎ𝑡 ,𝑡 ≤
𝜎2
𝑎,𝑡

𝑛𝑡 (𝑎)

Where 𝜎2
𝑎,𝑡 is the effective variance of arm 𝑎

Substituting this in the inequality from earlier we get,

𝑐𝑡𝜎𝑎,𝑡

√︄
2 𝑙𝑜𝑔(2𝐾2/𝛿)
𝑁.𝑛𝑡 (𝑎)

≥ 𝜖 + Δ𝑎
3

Taking square on both sides

𝑐2
𝑡𝜎

2
𝑎,𝑡

2 𝑙𝑜𝑔(2𝐾2/𝛿)
𝑁.𝑛𝑡 (𝑎)

≥ (𝜖 + Δ𝑎)
2

9

𝑛𝑡 (𝑎) ≤ 18𝑐2
𝑡𝜎

2
𝑎,𝑡

𝑙𝑜𝑔(2𝐾2/𝛿)
𝑁 (𝜖 + Δ𝑎)2

To account for case when Δ𝑎 is tiny we replace (𝜖 + Δ𝑎)−2 yielding

𝑛𝑡 (𝑎) ≤ 18𝑐2
𝑡𝜎

2
𝑎,𝑡

𝑙𝑜𝑔(2𝐾2/𝛿)
𝑁

.max
{
𝜀−2,

( 𝜀+Δ𝑎

3
)−2

}
Per-arm and total bounds. Formally, on event E, for every arm 𝑎,

N𝑇 (𝑎) ≤ 18𝑐2
𝑡𝜎

2
𝑎,𝑡

𝑙𝑜𝑔(2𝐾2/𝛿)
𝑁

·max
{
𝜀−2,

( 𝜀+Δ(𝑎)
3

)−2
}
. (8)

Summing over arms yields the total-sample upper bound

𝑇 ≤ 18𝑐2
𝑡

𝑙𝑜𝑔(2𝐾2/𝛿)
𝑁

∑︁
𝑎∈A

𝜎2
𝑎,𝑡 ·max

{
𝜀−2,

( 𝜀+Δ(𝑎)
3

)−2
}
. (9)

□

The above equation leads to the upper bound on sample complexity as stated in Theorem 2.

□
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F DATASET DESCRIPTION

: AquaRAT: It comprises 100,000 algebraic word problems in the train set with dev and test set each
comprising 254 problems. The problems are provided along with answers and rationales providing
the step-by-step solution to the problem.

GSM8K: This dataset consists of linguistically diverse math problems that require multi-step reason-
ing. The dataset consists of 8.5K problems and we evaluate on the test set of 1319 questions.

WMT 19: We focus on en-zh (english-chinese) translation split. Test sets are a few thousand sentences
(for example, 3,981 in WMT18 for zh-en direction for test). Train set has 173k english-chinese
sentence pairs.

G LTR HYPERPARAMETERS

The hyperparameters for learning to rank baselines are detailed in Table 3.

Table 3: Details of hyperparameters used in different LTR model configurations. Categorized by loss
function and framework.

Framework Loss function Hyperparameters Network architecture
PiRank PiRank surrogate loss Presented in Section 4 (256, 256,128,64)

Other LTR baselines Neural NDCG

N = 2,
𝑑 𝑓 𝑓 = 384,

h = 1,
dropout = 0.1

(768,96)

ListNet

N = 4,
𝑑 𝑓 𝑓 = 512,

h = 2,
dropout = 0.3

(768,128)

LambdaRank

N = 2,
𝑑 𝑓 𝑓 = 384,

h = 1,
dropout = 0.1

(768,96)

Neural NDCG

N = 4,
𝑑 𝑓 𝑓 = 512,

h = 4,
dropout = 0.3

(768,96)

Neural NDCG With
Normalized data

N = 2,
𝑑 𝑓 𝑓 = 384,

h = 1,
dropout = 0.1

(768,96)

NDCGLoss 2++ - (256, 512, 1024, 512, 256)

H DATASET PROMPTS

The prompts are given in Figures 3, 4. The prompts for WMT19 are in the anonymous github repo.
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AQUA Prompt

Instruction:You are a helpful, respectful, and honest assistant helping
to solve math word problems or tasks requiring reasoning or math.
Follow given examples and solve the problems in step by step
manner.

Exemplars :
[Question]: The average age of three boys is 45 years and their ages are in proportion 3:5:7. What is
the age in years of the youngest boy?
[Options]: A) 9, B) 10, C) 11, D) 12, E) 13
[Explanation]: 3𝑥 + 5𝑥 + 7𝑥 = 45,
𝑥 = 3,
3𝑥 = 9
[Answer]: The option is A
. . .
. . .

Test Input : Question: Options:
Explanation: [INS] Answer: [INS]

Figure 3: Prompt for Aqua

GSM8K Prompt

Instruction:You are a helpful, respectful and honest assistant helping
to solve math word problems or tasks requiring reasoning or math.
Follow given examples and solve the problems in step by step
manner.

Exemplars :
[Question]: Samir just turned half the age Hania was 10 years ago. If in five years Hania will be 45
years old, what will Samir’s age be five years from now?
[Explanation]: If in five years, Hania will be 45 years old, currently she is 45 − 5 = 40 years old.
Samir just turned half the age Hania was 10 years ago, which means she is 30/2 = 15 years
old. In five years, Samir will be 15 + 5 = 20 years old.
[Answer]: 20 years old
. . .
. . .

Test Input : Question:
Explanation: [INS] Answer: [INS]

Figure 4: Prompt for GSM8K
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