
SMPL: Simulated Industrial Manufacturing and
Process Control Learning Environments

Mohan Zhang1,2, Xiaozhou Wang1, Benjamin Decardi-Nelson3, Song Bo3,
An Zhang3, Jinfeng Liu3, Sile Tao1, Jiayi Cheng1, Xiaohong Liu5,

DengDeng Yu4, Matthew Poon1, Animesh Garg2
1Quartic.ai

mohan, xiaozhou, bill.tao, jerry, matthew@quartic.ai
2University of Toronto

zhangmo4, garg@cs.toronto.edu
3University of Alberta

decardin, sbo, azhang1, jinfeng@ualberta.ca
4University of Texas at Arlington

dengdeng.yu@uta.edu
5Shanghai Jiao Tong University
xiaohongliu@sjtu.edu.cn

Abstract

Traditional biological and pharmaceutical manufacturing plants are controlled by
human workers or pre-defined thresholds. Modernized factories have advanced
process control algorithms such as model predictive control (MPC). However, there
is little exploration of applying deep reinforcement learning to control manufactur-
ing plants. One of the reasons is the lack of high fidelity simulations and standard
APIs for benchmarking. To bridge this gap, we develop an easy-to-use library that
includes five high-fidelity simulation environments: BeerFMTEnv, ReactorEnv,
AtropineEnv, PenSimEnv and mAbEnv, which cover a wide range of manufacturing
processes. We build these environments on published dynamics models. Further-
more, we benchmark online and offline, model-based and model-free reinforcement
learning algorithms for comparisons of follow-up research. †

1 Introduction

With a large market value [1], the manufacturing industry is enthusiastic to the ways that is conductive
to the production efficiency. A number of studies have demonstrated that reinforcement learning may
be applied to manufacturing processes and has the potential to dramatically improve productivity
[2, 3].

Our goal is to bridge the gap between deep reinforcement learning research and industrial manu-
facturing by creating simulation environments that model real-world factories. In this paper, we
introduce five manufacturing simulation environments, including beer fermentation, atropine pro-
duction, penicillin manufacturing, monoclonal antibodies production, and a continuous stirred tank

†Official documentation:https://smpl-env.github.io/smpl-document/index.html
Official implementation: https://github.com/smpl-env/smpl
Code of experiments: https://github.com/smpl-env/smpl-experiments

Preprint. Under review.

https://smpl-env.github.io/smpl-document/index.html
https://github.com/smpl-env/smpl
https://github.com/smpl-env/smpl-experiments


simulation. These simulated environments allow us to test the latest advances in reinforcement
learning in controlled environments without safety concerns.

In reinforcement learning, the environment is commonly modeled as a Markov Decision Process
(MDP). In SMPL, the state space is defined by the collection of all reactions, material flows, their
concentrations and the state of where the reactions are taking place (e.g. the temperature of a reactor
tank). The initial state of a trajectory is randomly sampled within a reasonable range, which involves
stochasticity. For the observation space, there are several levels of observability: there are easily
observable states in a real factory that a sensor could essentially measure, for example temperature;
there are also some states that are expensive and slow to observe, like some concentrations; there
are also some hardly observable states, like the internal changes of some chemical reactions. In the
experiments of this paper, we observe everything except the internal changes, forming into the Partially
Observable Markov Decision Process (POMDP). To mimic how the actual process is controlled and
run, we include 2 categories of actions in the action space: 1) manipulable variables. They are the
setpoints in the typical control sense (e.g. the temperature of a cooling jacket outside a reactor). 2)
input materials. Input materials could be the raw materials that go into the process like sugar, or the
attributes of the materials like the concentration. Typically, they can be determined by the operator to
optimize the process. The environment transitions are modeled with differential equations with first
principal or empirical approximations. With the help of domain experts, we managed to access and
utilize the industrial data to validate our models and determine the corresponding parameters to align
with real-world factories. There are several reward functions designed for each of the environments.
In the experiments of this paper we only use the dense rewards that measure performance. More
specifically, we want a successful control algorithm to be first and foremost safe, then more stable,
efficient and productive. Since we have our baseline algorithms, we compare the results of the
reinforcement learning algorithms with our baselines. We define more efficient and more productive
to be higher in average rewards. We define more stable to be less standard deviation in rewards (which
only matters when the algorithms are efficient and productive enough, since a zero-yield function is
stable on itself). We would like to clarify that "stable" or "stability" as used throughout this article
does not refer to the notion of stable or stability in control theory. Note that in real-life circumstances,
efficiency means less product investment (e.g. less sugar and Biomass input as of BeerFMTEnv) and
productivity means production yield (e.g. more beer produced as of BeerFMTEnv). But in this paper,
our reward function takes both production investment and production yield into account, so we use
reward as our single measurement criteria here.

In summary, the main contributions of this paper include: (i) we build five novel manufacturing
simulation environments with high fidelity to facilitate researches in these areas; (ii) we tune advanced
control algorithms used in industry for the simulation environments, as comparable baselines; (iii)
we benchmark popular online and offline, model-based and model-free reinforcement learning
algorithms for future reference. In this work, we aim to build simulation environments, and encourage
the community to utilize them, in order to find deep reinforcement learning algorithms that solve the
real-life environments.

2 Related Work

Since the success of Deep Q-Learning (DQN) in Atari games [4], a variety of environments have been
developed, including games [5, 6, 7, 8, 9, 10], kinematics [11], autonomous driving [12], recommen-
dation systems [13], multi-agent collaborations [14, 15], networks [16], and offline reinforcement
learning data collections [17], which can be used to evaluate deep reinforcement learning algorithms.
However, there is a lack of established environments for process control in manufacturing. Consider-
ing the vast differences, it is difficult to determine whether a deep reinforcement learning algorithm,
which works well in popular benchmarks such as Atari games and dm_control, can be successfully
adapted for a production setting owing to the domain discrepancy.

Atari games have discrete image observations and discrete actions, whereas SMPL has continuous
observations and actions. Also in Atari games, the visual observations would not have a drastic change
in one step. In chemical manufacturing, however, the pH (state) may not respond to a continuous
flow of acid (action) after several minutes or even hours, but can also vary greatly with only a slight
change in the concentration of such an input like in titration. As opposed to games where one can
pause and resume, a factory cannot not wait for the computation to finish before taking the action.
The runtime of control algorithms should also be taken into consideration. As compared to other

2



Advanced Process Control (APC) algorithms, inference of deep reinforcement learning algorithms is
faster.

As compared to dm_control (or other MuJoCo [18] based physics simulation environments) which is
also continuous in states and actions, our environments are still different. Firstly, each of the states in
dm_control has specific and accurate low-level physical semantics, like angle, coordinate, or velocity
of a joint. It only records the transition of parts as a kinematical abstraction. Whereas in SMPL,
the states are flow rates, the volume of liquid, the concentration of the solution, etc. Since "more is
different" [19], SMPL models things at a much larger scale, even though still built with differential
equations. In SMPL, those differential equations are modeling physical, chemical and biological
processes in manufacturing simulations, and many of them are empirical or phenomenological
approximations, so distortions could be a big problem outside their range. To avoid distribution shift
between simulations and actual factory transition dynamics, we need to restrict the action and state
spaces to a relatively small range. Again, similar to the image represented Atari game states, the
position and velocity of a dm_control object would not change suddenly. SMPL, on the other hand,
can sometimes change drastically.

To summarize, SMPL is challenging for learning algorithms that work well on Atari games or
dm_control simulations. Firstly, SMPL has qualitatively different dynamics. The rate of state change
with respect to actions can vary widely. A small change in actions may result in a huge change in
states, and the effect of a large change in actions may be delayed for hours. Secondly, as compared
to games or robot walking, the punishment of failure is harsh in SMPL, due to security concerns
similar to autonomous driving. Thirdly, we observed that the reinforcement learning algorithms
tend to exploit the simulators. But due to the complexity of chemical and biomedical reactions, our
simulations can easily break or occasionally reach an undefined state when the agent is exploring
outside the reliable region. Therefore, compared to the results of reinforcement learning experiments,
a fairly simple hand-tuned Proportional–Integral–Derivative (PID) controller can provide tolerable
performance. With SMPL, we hope to enable deep reinforcement learning researchers to address this
interesting gap.

There have also been efforts in applying reinforcement learning in manufacturing problems [20,
21, 22]. However, to the best of our knowledge, there has not been any other work that provides
open-source standardized biochemical process control environments for reinforcement learning and
advanced control. More typically, to utilize simulated environments for process control, researchers
need to spend sufficient time to understand the underlying mathematical equations, prepare and further
develop the environments. SMPL pitched those pain points for reinforcement learning researchers to
develop their solutions for manufacturing environments.

3 Environments

The SMPL supplements several process control environments to the OpenAI Gym family [5], which
alleviates the pain of performing Deep Reinforcement Learning algorithms on them. Furthermore, we
provided D4RL-like [17] wrappers for accompanied datasets, making offline reinforcement learning
in those environments even smoother. Details of each of the environments can be found in Table 1.

The transitions of the environments are based on Ordinary Differential Equations (ODEs) described
in Appendices A. The ODEs themselves model chemical, biological and mechanical transitions and
reactions after taking an action from our action space, returning the state and evaluated reward. Origi-
nally from a control-theory perspective, we have adapted the transition dynamic to be time-invariant.
In real life, the transition contains uncertainty due to the chemical, biological and mechanical process
or the sensors’ error, but as described in Section 3.6, the noises are hard to model and cannot be
simplified as Gaussian noises. The action space and state space are all continuous, with their safety
constraints respectively.

3.1 ReactorEnv

This Continuous Stirred Tank Reactor (CSTR) process model is a representation of the most common
container for a continuous reaction to take place. Even though we have already configured it for a
particular reaction, it could easily be re-configured for other tasks (for example, change the cooling
jacket to a heating jacket if the reaction is endothermic).

3



Reaction
mixture

Flow out

Flow in

Figure 1: Process flow diagram of the continuous manufacturing process

A schematic diagram of a CSTR is presented in Figure 1. In this article, we consider the case where
a single first-order irreversible exothermic reaction of the form A → B takes place in the reactor.
Because it is a continuous process, the reactants and the products are continuously fed and withdrawn
from the reactor, respectively. Because the reaction is exothermic, thermal energy is removed from
the reactor through a cooling jacket. The following assumptions are also taken in deriving the model:

• The reaction mixture is well mixed. This implies that there are no spatial variations in the
reaction mixture.

• Heat losses to the surroundings are negligible or nonexistent.

The reaction details and the configurations can be found in Appendix A.1.

3.2 AtropineEnv

Atropine is a common tropane alkaloid and anticholinergic medication used to treat certain types of
nerve agents and pesticide poisonings as well as some types of slow heart rate and to decrease saliva
production during surgery. Figure 2 shows the process flow diagram for the atropine production
process as presented in the work by Nikolakopoulou, von Andrian and Braatz [23]. This environment
simulates a continuous-flow manufacturing process of atropine production . The simulation consists
of three tubular reactors (R1, R2, R3) in series and a liquid-liquid separator. Each reactor has a mixer
proceeding it where the streams (Si) containing the reactants are thoroughly mixed before being fed
into the tubular reactor downstream of it. The end goal is to produce as much atropine as possible
while keeping the reactor safe. Details can be found in Appendix A.2.

S 1

S 2

S 7: Product

S 8: Waste

S 3

S 4

S 5

S 6

R 1 R 2 R 3
Separator

Figure 2: Process flow diagram of the continuous manufacturing process. Details can be found in
Table 4

3.3 mAbEnv

This environment simulates a manufacturing process of monoclonal antibodies (mAbs), which are
widely used for the treatment of autoimmune diseases, cancer, etc. According to a recent publication,
mAbs also show promising results in the treatment of COVID-19 [24]. Integrated continuous
manufacturing of mAbs represents the state-of-the-art in mAb manufacturing and has attracted a lot
of attention, because of the steady-state operations, high volumetric productivity, reduced equipment
size and capital cost, etc. However, there is no existing mathematical model of the integrated
manufacturing process and there is no optimal control algorithm for the entire integrated process.

4



This project fills the knowledge gaps by first developing a mathematical model of the integrated
continuous manufacturing process of mAbs.

The manufacturing process contains an upstream and a downstream process, and the end goal is to
recover as much mAb as possible. Details can be found in Appendix A.3.

3.4 PenSimEnv

Penicillin is the first-discovered group of antibiotics in human history. In this environment, we
simulate the industrial-scale penicillium chrysogenum fermentation. The aim is to optimize the
penicillin production per episode (or batch yield) while avoiding extreme inputs, outputs, or changes
that can potentially break the reactor. Figure 3 shows the fermentation process. The simulation
environment is based on this industrial-scale fed-batch fermentation simulation [25]. Details can be
found in Appendix A.4.

Figure 3: A penicillin manufacturing process, from [25]

3.5 BeerFMTEnv

Although there are many different ways of beer production, typically, beer is produced in a fermenta-
tion unit where favorable conditions are created for the fermentation of the raw material. Optimal
control of the beer fermentation process is a time-optimal control problem, which implies that the
goal is to minimize the time required to completely ferment the raw materials. This environment
provides a typical and simple enough simulation of the industry-level beer fermentation process. The
manipulated variable for this environment is the reaction temperature. As mentioned earlier, the goal
of this process is to reach the desired fermentation level within the shortest time possible.

Since we just have a canonical industrial production formula that can only solve from a fixed initial
state, we would only perform online reinforcement learning experiments. Details can be found in
Appendix A.5.

5



3.6 Limitations

Finally, while enabling machine learning practitioners and control engineers to explore more optimal
control strategies and obtain actionable insights for real-world processes, the environments come with
some limitations. Firstly, process variability and batch inconsistency is one of the major challenges in
manufacturing, which cannot be simply described as gaussian noise. Adding more realistic noise and
variability would make the simulations much closer to actual processes. Secondly, full accessibility
to states may be difficult. For example, spectrophotometers are usually used for measuring chemical
substances like concentrations, which could be costly. Last but not the least, state constraints are
not fully considered. For example, due to safety and economic concerns, the next actions may not
deviate too much from current actions. Although with the limitations described above, we believe
that releasing the environments is still beneficial to researchers interested in applying reinforcement
learning to control manufacturing processes.

4 Baseline Algorithms

In this section, we compare the performance of our deep reinforcement learning algorithms with a
range of different baseline algorithms for each environment. Those baseline algorithms were tuned
by experts on the environment. “We tuned the PID, MPC and EMPC by varying either the weights
or the horizon, or both until we obtained closed-loop trajectories with little to no overshoot and
fast response times. For offline reinforcement learning algorithms, we use the dataset generated by
baseline algorithms as the training dataset.

Bayesian Optimization (BO) [26]

Bayesian optimization is a sample-efficient optimization method that focuses on solving the black-box
optimization problem. In PenSimEnv, we maximize the penicillin yield by collecting 10 random
trajectories as our start and then run 1000 Bayesian optimization searches. We use these 1000
trajectories as our offline reinforcement learning training dataset.

Proportional–Integral–Derivative (PID) Control PID control is a classical feedback-based control
loop that is widely used in industrial control systems. The controller itself is modulated, which
computes and tries to minimize the difference between the current state and a set-point (target).

Advanced Process Control (APC) APC is a collection of control algorithms that is used in conjunc-
tion with PID to further improve the performance of industrial processes. Compared to reinforcement
learning algorithms, APCs typically make use of a process model to predict the future evolution of
process under the the selected control actions. In this article, we focus on two well known APC
algorithms, namely setpoint tracking model predictive control (MPC) and economic model predictive
control (EMPC).

MPC also known as receding horizon control is an advanced process control algorithm that is able to
handle systems with many states and constraints [27]. For this reason, it has had tremendous success
in the chemical process industry. MPC requires a mathematical description of the process – either
from first principle or empirical – to make predictions about the future evolution of the plant. In
MPC, the economic performance objective of the process is translated to minimizing a quadratic
cost function which measures the deviation of the system state and input from a desired setpoint.
The setpoint is determined and updated by solving a steady-state economic optimization problem
in a higher decision making layer known as real-time optimization (RTO). Thus, the economic
performance of MPC is as good as the setpoint being tracked and the frequency of the setpoint update.

EMPC is a variant of MPC that has gained tremendous attention in the process control community
[28]. Compared to MPC, EMPC uses a more general cost function which generally reflects some
economic indicator such as waste minimization or yield maximization. From a theoretical point
of view, the performance of EMPC is no worse than that of MPC [29]. This is because EMPC
simply directly optimizes the process economics compared to MPC which requires that the economic
objective be translated to a setpoint tracking objective.

There are still many challenges faced by MPC and its variants.

For example, when the dimension of the system model is too high, or when there are integer control
inputs, it might be difficult to solve the MPC optimization problem in real time and within a reasonable

6



Env

Config
Baseline Traj # µr σr a_dim o_dim max_s e_r

ReactorEnv MPC 125,000 -3.7528 60.4470 2 3 100 -1000

AtropineEnv MPC 10,000 -20.6094 339.5105 4 39 60 -100000

PenSimEnv BO 1000 3.3071 1.4673 6 9 1150 -100

mAbEnv MPC 1000 1322.5012 174.7515 9 1970 200 -100

BeerFMTEnv N/A N/A N/A N/A 1 8 200 -200

Table 1: Env and Dataset Details. For each environment, from left to right: "Baseline" is the name of
the baseline algorithm that the dataset is generated with; "Traj #" is the number of trajectories; "µr"
is the mean of the rewards of the dataset; "σr is the standard deviation of the rewards of the dataset;
"a_dim" (represents "action_dim") is the dimension of action space in the environment; "o_dim"
(represents "observation_dim") is the dimension of observation space in the environment; "max_s"
(represents "max_steps") is the maximum number of steps possible in the environment; "e_r" is
called "error_reward", which is given to a failed trajectory in the environment. Note that error_reward
always satisfies error_reward ≤ rmin ×max_steps, where rmin is the least possible reward for a
step in the environment.

time. EMPC faces a significantly higher computational challenges than MPC. This is because a
more general dynamic economic optimization need to be solved in real time. Moreover, handling
uncertainties in MPC or EMPC is a very challenging task [30]. DRL on the other hand, works well
under uncertainty with fast inference time.

5 Experiments

In this section, we demonstrate the results of our experiments. In the experiments, each offline
reinforcement learning algorithm is trained for 500 epochs, and each online reinforcement learning
algorithm is trained for 2 million environment steps. These experiments can be treated as a bench-
marking baseline for future research in achieving higher stability, efficiency and productivity. For
the environments, we mimic the design of the OpenAI Gym so that we can easily train and test a
variety of reinforcement learning algorithms on them. The associated code can be accessed with the
provided code.

5.1 Offline Reinforcement Learning

The simulations are meant to mimic and abstract existing factories, and the traditional manufacturing
plants are controlled by human workers or threshold functions. Luckily, most of the states and actions
are recorded by sensors and workers. A natural thought would be to use those historical data to
learn better control algorithms, and a successful control algorithm should be more stable, efficient
and productive. Offline reinforcement learning is a possible approach since it can purely learn from
historical data. As in real life, it is infeasible to train RL agents on actual manufacturing production
lines due to safety and economic concerns. With offline reinforcement learning, a control policy can
be developed by learning from offline data collected from manual control or APC.

Table 2 shows the experiment results. Each of the four simulation environments has an expert
control algorithm which is manually tuned by experts. This expert control algorithm can provide
successful controls in non-extreme cases, with potentially low efficiency due to online optimization
and computation complexity.

We set a maximum time limit for each of the environments. If a trajectory generated by an algorithm
in an environment ends before the maximum time limit due to an error reported by the environment,
or if an action/observation goes beyond the allowed limit, then this trajectory is marked as failed;
otherwise, this trajectory is marked as succeeded. A failed trajectory receives a negatively large
reward as the punishment (the name of which is error_reward). Since the initial states are not fixed, a
successful algorithm needs to adapt to a wide range of situations.

Specifically as Table 1 shows, ReactorEnv, AtropineEnv and mAbEnv all have MPC as their baseline
algorithm. PenSimEnv uses a version of Gaussian Process based Bayesian Optimization (GPEI)

7



Table 2: Offline and Online Experiment Results Part 1

Algo

Env
ReactorEnv AtropineEnv PenSimEnv mAbEnv

OfflineRL µr σr µr σr µr σr µr σr

MPC -0.1912 15.9328 -20.6094 339.5105 N/A N/A 1322.5012 174.7515

GPEI N/A N/A N/A N/A 3.3071 1.4673 N/A N/A

EMPC N/A N/A N/A N/A N/A N/A 1314.1145 221.4624

PID -1.0823 35.0924 N/A N/A N/A N/A N/A N/A

PLAS [31] -0.1909 27.9975 -4.8416 6.7930 2.0421 4.7936 1324.1982 124.7369

PLASWithPert [31] -0.1638 13.2464 -17.5712 6.1863 3.0056 4.7353 1357.0842 122.1667

TD3 [32] -0.6428 25.4631 -51.3783 4.1409 -1.2575 11.1618 708.1167 571.8498

AWAC [33] -0.0965 13.9237 -8.4070 10.8725 2.3288 4.6710 1374.2244 61.2931
BEAR [34] -13.4975 111.0537 -28.2412 11.6400 2.2086 4.4271 1268.8020 297.5198

BCQ [35] -2.0008 43.3134 -18.2633 4.6889 2.1341 4.6710 1247.0172 313.2412

SAC [36] -0.7120 18.5272 -181.0055 5.4775 2.5961 4.8317 1197.1507 503.1202

DDPG [37] -1.3219 62.6639 -203.0525 5.7211 -1.9732 13.9105 711.1741 574.0687

CQL [38] -2.5266 79.5985 -13.9241 8.9072 2.5543 4.5791 1254.5728 233.4812

COMBO [39] -7.9475 84.2047 -30.1022 11.2495 3.1368 4.5718 1165.3812 440.0366

MOPO [40] -8.8802 94.0311 -90.8561 52.7119 1.4345 5.0138 -100.0000 0.0000

BC [41] -3.5765 59.8082 -5.4473 44.1707 0.7440 4.5213 1322.8184 111.1911

OnlineRL
PPO [42] -31.9667 180.9413 -67.4412 2595.8698 2.5231 4.6745 -92.7862 137.6964

A3C [43] -1000.0000 0.0000 -50.2008 2239.2415 -0.8551 9.3091 -88.8452 272.8659

ARS [44] -1000.0000 0.0000 -83333.3879 37267.6776

IMPALA [45] -1000.0000 0.0000 -100000.0000 0.0000 -2.0575 14.1869 -94.3842 184.2320

PG [46] -140.8971 311.5265 -102.5358 3194.3687 2.1039 4.3759 -86.1046 241.7652

SAC -113.3525 293.3941 -16.4201 1280.6835 -2.3044 15.0070 -90.1491 233.4410

DDPG -97.6231 279.8284 -141.0357 302.8068 -0.8373 9.1140 -95.1542 288.9491

OnlineRL

BeerFMTEnv
µr σr

PPO 1.0688 20.7031

A3C 0.8706 20.3378

ARS -200.0000 0.0000

IMPALA -1.0371 14.5516

PG -1.9900 14.0014
SAC -1.9753 14.0415

DDPG -2.1842 15.3056

developed in-house. We generate datasets with these algorithms, to train our reinforcement learning
algorithms offline. Furthermore, ReactorEnv has a PID controller and mAbEnv has an EMPC
controller for comparison. We did not perform offline reinforcement learning on the BeerFMTEnv
since it only has a static rule as the baseline. The amount of data sampled differently because of the
cost of sampling. The environments are all drastically different from each other and cover different
types of manufacturing processes.

D4RL [17] is one of the most widely used benchmarks in the offline reinforcement learning commu-
nity. Thus, we make the generation of the dataset in both D4RL and Torch format with any control
algorithm possible in our library, and only a few lines of code would be sufficient.

Thanks to D3RLPY [47], we can perform batched parallel training with a little engineering. The
results are shown in Table 2:

On ReactorEnv, only Advantage Weighted Actor-Critic (AWAC) is able to outperform the MPC
baseline. In terms of average rewards, Policy in the Latent Action Space (PLAS) and PLAS with
perturbation slightly go beyond our baseline.

8



On AtropineEnv, PLAS has the maximum average rewards, while Twin Delayed Deep Deterministic
Policy Gradients (TD3) has the smallest standard deviation of rewards. Moreover, AWAC, Batch-
Constrained Q-learning (BCQ), Conservative Q-Learning (CQL) and Behavior Cloning (BC) are able
to provide performances beyond our Model Predictive Control (MPC) baseline. Among them, we
could say that PLAS, BC and AWAC solved the AtropineEnv better than the MPC baseline for they
have a 50% more average and a 50% less standard deviation of rewards.

On PenSimEnv, it is also PLAS that has the highest average rewards, while Bootstrapping Error
Accumulation Reduction (BEAR) has the lowest standard deviation of rewards. However, none of
the offline reinforcement learning algorithms can produce average rewards higher than the Gaussian
Process based Bayesian Optimization (GPEI) baseline.

On mAbEnv, AWAC wins the highest maximum average and the smallest standard deviation of
rewards. PLAS with perturbation, PLAS and BC all have slightly better performances compared to
our baseline MPC in terms of average and standard deviation.

PLAS [31] seems to achieve a better performance than the baseline in many environments. Moreover,
on mAbEnv, PLAS with perturbation is better, because we only have 1000 MPC trajectories. For
AtropineEnv, PLAS without perturbation has higher performance, since AtropineEnv has 10,000
trajectories. On ReactorEnv, PLAS with our without perturbation has a very similar performance, and
there are 125,000 trajectories. From these experiments, we observe that the perturbation layer, which
aims to sample generalized action out of the training dataset, could harm the performance when the
training dataset is too small, but can improve the performance when the dataset is large enough.

AWAC, with its ability to utilize sub-optimal data-points based on traditional advantage actor-critic
algorithms [43], is able to thrive in both data-abundant (ReactorEnv) and data-scarce (mAbEnv)
scenarios. The fact that it outperforms all other offline reinforcement learning algorithms makes its
data-utilization trick worthwhile for further exploration.

Deep Deterministic Policy Gradients (DDPG) has poor performance in most environments, as
compared to other q-learning variants, even when provided dense rewards [48]. Some researches
shows that without careful tuning of the hyperparameters, DDPG and Soft Actor-Critic (SAC) tend to
largely overestimate the q-value during the training, and the exploding imitation value estimation
leads to an inescapable extrapolation error [35]. However, when exploration is allowed, DDPG could
have a slightly better performance. Compared to DDPG and SAC, which were not designed for
offline reinforcement learning, BCQ claims to be able to improve on restricting the action spaces, but
it still suffers from the q-value overestimation in PenSimEnv and mAbEnv.

There are some algorithms (like A3C, ARS, IMPALA in ReactorEnv and IMPALA in AtropineEnv)
that always tend to break the simulation by either going out of the limit or reaching an unacceptable
state. With careful tuning, their performance could be improved.

5.2 Online Reinforcement Learning

In real-life use cases, we cannot directly apply q-learning or policy gradient on the producing plant for
a hundred thousand episodes to train a good RL agent. However, we have the simulations anyways,
we would like to perform online reinforcement learning experiments on those simulations, and the
results can serve as baselines.

We utilize the Ray [49] library, with its RLlib [50] and Tune [51] components to parallelize the
training. With a little tuning and a limited budget of training time, the performance of online
reinforcement learning algorithms is all lower than the offline reinforcement learning algorithms.
We believe that the exploration in SMPL is hard in general, and the guidance provided by expert
algorithms can provide successful controls in most cases (with potentially low efficiency).

Note that compared to the offline reinforcement learning experiments, SAC shows worse results.
DDPG, on the other hand, is able to show a slightly better result in PenSimEnv. The hypothesis
could be that, due to the very slight change in rewards (the dataset of PenSimEnv has a very small
standard deviation of rewards, only 1.4673), the over-estimation problem of DDPG might be fixed by
exhaustive exploration.

9



6 Conclusions and Future Work

In our work, we introduced five simulation environments that covered a wide range of manufacturing
processes. Corresponding with the environments, we provided expert-tuned control algorithms that
are employed in factories. Based on the built environments and baselines, we tried offline and online,
model-based and model-free reinforcement learning algorithms.

From the experiment results, we suggest utilizing offline reinforcement learning algorithms and
learning from the baseline-generated samples as a starting point.

Only on AtropineEnv, a few reinforcement learning algorithms show a significant improvement as
compared to baselines, while on other environments the reinforcement learning approaches are only
marginally better, if at all. Therefore, targeted research, specifically designed or carefully tuned
algorithms might be a prerequisite to succeed on our environments, for 1. our environments are
challenging and complex (especially mAbEnv, PenSimEnv and ReactorEnv) 2. there are significant
differences between our environments and the environments where the reinforcement learning
algorithms are originally designed or often experimented.

We will continue to work on the existing environments to find a more stable, efficient and productive
algorithm. Experiments already show us that directly applying existing algorithms might not be a
solution, so further research on how to sample safe actions from empirical results given only historical
data might be a good starting point. The overall good performance of PLAS hints that digging into
shaping the latent action space might be a good idea.

Another one of our goals is to find an algorithm that can perform well in all the environments with
little modification, which can be useful if a plant decides to change a reactor tank, or we want to adopt
a trained algorithm for a new plant. We would like to develop existing meta-learning algorithms like
[52, 53].

In addition to the existing configurations, we would also like to add more tunable parameters to
the environments that can represent different types of manufacturing processes. More simulation
environments, on top of the existing five, would be added to the family once finished.

We would actively develop and maintain this library, to better serve the reinforcement learning
community.

References

[1] D. S. Thomas et al., “Annual report on us manufacturing industry statistics: 2020,” 2020.
[2] S. Mahadevan and G. Theocharous, “Optimizing production manufacturing using reinforcement

learning.,” in FLAIRS conference, vol. 372, p. 377, 1998.
[3] L. Overbeck, A. Hugues, M. C. May, A. Kuhnle, and G. Lanza, “Reinforcement learning

based production control of semi-automated manufacturing systems,” Procedia CIRP, vol. 103,
pp. 170–175, 2021. 9th CIRP Global Web Conference – Sustainable, resilient, and agile
manufacturing and service operations : Lessons from COVID-19.

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level control through deep
reinforcement learning,” nature, vol. 518, no. 7540, pp. 529–533, 2015.

[5] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba,
“Openai gym,” arXiv preprint arXiv:1606.0154, 2016.

[6] OpenAI, :, C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dębiak, C. Dennison, D. Farhi,
Q. Fischer, S. Hashme, C. Hesse, R. Józefowicz, S. Gray, C. Olsson, J. Pachocki, M. Petrov,
H. P. d. O. Pinto, J. Raiman, T. Salimans, J. Schlatter, J. Schneider, S. Sidor, I. Sutskever, J. Tang,
F. Wolski, and S. Zhang, “Dota 2 with large scale deep reinforcement learning,” arXiv preprint
arXiv:1912.06680, 2019.

[7] M. Wydmuch, M. Kempka, and W. Jaśkowski, “Vizdoom competitions: Playing doom from
pixels,” IEEE Transactions on Games, 2018.

[8] D. Hafner, “Benchmarking the spectrum of agent capabilities,” arXiv preprint arXiv:2109.06780,
2021.

10



[9] M. Lanctot, E. Lockhart, J.-B. Lespiau, V. Zambaldi, S. Upadhyay, J. Pérolat, S. Srinivasan,
F. Timbers, K. Tuyls, S. Omidshafiei, D. Hennes, D. Morrill, P. Muller, T. Ewalds, R. Faulkner,
J. Kramár, B. D. Vylder, B. Saeta, J. Bradbury, D. Ding, S. Borgeaud, M. Lai, J. Schrittwieser,
T. Anthony, E. Hughes, I. Danihelka, and J. Ryan-Davis, “OpenSpiel: A framework for
reinforcement learning in games,” CoRR, vol. abs/1908.09453, 2019.

[10] M.-A. Côté, A. Kádár, X. Yuan, B. Kybartas, T. Barnes, E. Fine, J. Moore, R. Y. Tao,
M. Hausknecht, L. E. Asri, M. Adada, W. Tay, and A. Trischler, “Textworld: A learning
environment for text-based games,” CoRR, vol. abs/1806.11532, 2018.

[11] S. Tunyasuvunakool, A. Muldal, Y. Doron, S. Liu, S. Bohez, J. Merel, T. Erez, T. Lillicrap,
N. Heess, and Y. Tassa, “dm_control: Software and tasks for continuous control,” Software
Impacts, vol. 6, p. 100022, nov 2020.

[12] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity visual and physical simulation
for autonomous vehicles,” in Field and Service Robotics, 2017.

[13] D. Rohde, S. Bonner, T. Dunlop, F. Vasile, and A. Karatzoglou, “Recogym: A reinforcement
learning environment for the problem of product recommendation in online advertising,” arXiv
preprint arXiv:1808.00720, 2018.

[14] M. Samvelyan, T. Rashid, C. S. de Witt, G. Farquhar, N. Nardelli, T. G. J. Rudner, C.-M. Hung,
P. H. S. Torr, J. Foerster, and S. Whiteson, “The StarCraft Multi-Agent Challenge,” CoRR,
vol. abs/1902.04043, 2019.

[15] K. Kurach, A. Raichuk, P. Stańczyk, M. Zając, O. Bachem, L. Espeholt, C. Riquelme, D. Vin-
cent, M. Michalski, O. Bousquet, et al., “Google research football: A novel reinforcement
learning environment,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
pp. 4501–4510, 2020.

[16] P. Gawłowicz and A. Zubow, “ns-3 meets OpenAI Gym: The Playground for Machine Learn-
ing in Networking Research,” in ACM International Conference on Modeling, Analysis and
Simulation of Wireless and Mobile Systems (MSWiM), November 2019.

[17] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine, “D4rl: Datasets for deep data-driven
reinforcement learning,” arXiv preprint arXiv:2004.07219, 2020.

[18] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based control,” in
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033,
IEEE, 2012.

[19] P. W. Anderson, “More is different,” Science, vol. 177, no. 4047, pp. 393–396, 1972.

[20] Z. He, K.-P. Tran, S. Thomassey, X. Zeng, J. Xu, and C. Yi, “A deep reinforcement learning
based multi-criteria decision support system for optimizing textile chemical process,” Computers
in Industry, vol. 125, p. 103373, 2021.

[21] L. Wang and Y. Wang, “Application of machine learning for process control in semiconductor
manufacturing,” in Proceedings of the 2020 International Conference on Internet Computing
for Science and Engineering, ICICSE ’20, (New York, NY, USA), p. 109–111, Association for
Computing Machinery, 2020.

[22] S. Govindaiah and M. D. Petty, “Applying reinforcement learning to plan manufacturing material
handling,” Discover Artificial Intelligence, vol. 1, no. 1, pp. 1–33, 2021.

[23] A. Nikolakopoulou, M. von Andrian, and R. D. Braatz, “Fast model predictive control of startup
of a compact modular reconfigurable system for continuous-flow pharmaceutical manufacturing,”
in 2020 American Control Conference (ACC), pp. 2778–2783, IEEE, 2020.

[24] C. Wang, W. Li, D. Drabek, N. M. Okba, R. van Haperen, A. D. Osterhaus, F. J. van Kuppeveld,
B. L. Haagmans, F. Grosveld, and B.-J. Bosch, “A human monoclonal antibody blocking
sars-cov-2 infection,” Nature communications, vol. 11, no. 1, pp. 1–6, 2020.

[25] S. Goldrick, A. Ştefan, D. Lovett, G. Montague, and B. Lennox, “The development of an
industrial-scale fed-batch fermentation simulation,” Journal of biotechnology, vol. 193, pp. 70–
82, 2015.

[26] J. Močkus, “On bayesian methods for seeking the extremum,” in Optimization techniques IFIP
technical conference, pp. 400–404, Springer, 1975.

11



[27] S. J. Qin and T. A. Badgwell, “A survey of industrial model predictive control technology,”
Control engineering practice, vol. 11, no. 7, pp. 733–764, 2003.

[28] J. B. Rawlings, D. Angeli, and C. N. Bates, “Fundamentals of economic model predictive
control,” in 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), pp. 3851–3861,
2012.

[29] D. Angeli, R. Amrit, and J. B. Rawlings, “On average performance and stability of economic
model predictive control,” IEEE transactions on automatic control, vol. 57, no. 7, pp. 1615–
1626, 2011.

[30] D. Mayne, “Robust and stochastic model predictive control: Are we going in the right direction?,”
Annual Reviews in Control, vol. 41, pp. 184–192, 2016.

[31] W. Zhou, S. Bajracharya, and D. Held, “Plas: Latent action space for offline reinforcement
learning,” arXiv preprint arXiv:2011.07213, 2020.

[32] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approximation error in actor-critic
methods,” in International conference on machine learning, pp. 1587–1596, PMLR, 2018.

[33] A. Nair, A. Gupta, M. Dalal, and S. Levine, “Awac: Accelerating online reinforcement learning
with offline datasets,” arXiv preprint arXiv:2006.09359, 2020.

[34] A. Kumar, J. Fu, M. Soh, G. Tucker, and S. Levine, “Stabilizing off-policy q-learning via
bootstrapping error reduction,” Advances in Neural Information Processing Systems, vol. 32,
2019.

[35] S. Fujimoto, D. Meger, and D. Precup, “Off-policy deep reinforcement learning without explo-
ration,” in International conference on machine learning, pp. 2052–2062, PMLR, 2019.

[36] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu,
A. Gupta, P. Abbeel, et al., “Soft actor-critic algorithms and applications,” arXiv preprint
arXiv:1812.05905, 2018.

[37] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra,
“Continuous control with deep reinforcement learning,” arXiv preprint arXiv:1509.02971, 2015.

[38] A. Kumar, A. Zhou, G. Tucker, and S. Levine, “Conservative q-learning for offline reinforcement
learning,” Advances in Neural Information Processing Systems, vol. 33, pp. 1179–1191, 2020.

[39] T. Yu, A. Kumar, R. Rafailov, A. Rajeswaran, S. Levine, and C. Finn, “Combo: Conservative
offline model-based policy optimization,” Advances in neural information processing systems,
vol. 34, pp. 28954–28967, 2021.

[40] T. Yu, G. Thomas, L. Yu, S. Ermon, J. Y. Zou, S. Levine, C. Finn, and T. Ma, “Mopo: Model-
based offline policy optimization,” Advances in Neural Information Processing Systems, vol. 33,
pp. 14129–14142, 2020.

[41] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural network,” Advances in
neural information processing systems, vol. 1, 1988.

[42] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization
algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[43] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu,
“Asynchronous methods for deep reinforcement learning,” in International conference on ma-
chine learning, pp. 1928–1937, PMLR, 2016.

[44] H. Mania, A. Guy, and B. Recht, “Simple random search provides a competitive approach to
reinforcement learning,” arXiv preprint arXiv:1803.07055, 2018.

[45] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron, V. Firoiu, T. Harley,
I. Dunning, et al., “Impala: Scalable distributed deep-rl with importance weighted actor-learner
architectures,” in International conference on machine learning, pp. 1407–1416, PMLR, 2018.

[46] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient methods for rein-
forcement learning with function approximation,” in Proceedings of the 12th International
Conference on Neural Information Processing Systems, NIPS’99, (Cambridge, MA, USA),
p. 1057–1063, MIT Press, 1999.

[47] M. I. Takuma Seno, “d3rlpy: An offline deep reinforcement library,” in NeurIPS 2021 Offline
Reinforcement Learning Workshop, December 2021.

12



[48] G. Matheron, O. Sigaud, and N. Perrin, “The problem with {ddpg}: understanding failures in
deterministic environments with sparse rewards,” arXiv preprint arXiv:1911.11679, 2020.

[49] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, M. Elibol, Z. Yang, W. Paul,
M. I. Jordan, et al., “Ray: A distributed framework for emerging {AI} applications,” in 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 18), pp. 561–577,
2018.

[50] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg, J. Gonzalez, M. Jordan,
and I. Stoica, “Rllib: Abstractions for distributed reinforcement learning,” in International
Conference on Machine Learning, pp. 3053–3062, PMLR, 2018.

[51] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, and I. Stoica, “Tune: A research
platform for distributed model selection and training,” arXiv preprint arXiv:1807.05118, 2018.

[52] T. Nam, S.-H. Sun, K. Pertsch, S. J. Hwang, and J. J. Lim, “Skill-based meta-reinforcement
learning,” arXiv preprint arXiv:2204.11828, 2022.

[53] F.-M. Luo, S. Jiang, Y. Yu, Z. Zhang, and Y.-F. Zhang, “Adapt to environment sudden changes
by learning a context sensitive policy,” in Proceedings of the AAAI Conference on Artificial
Intelligence, Virtual Event, 2022.

[54] W. E. Schiesser, The numerical method of lines: integration of partial differential equations.
Elsevier, 2012.

[55] C. Kontoravdi, S. P. Asprey, E. N. Pistikopoulos, and A. Mantalaris, “Application of global
sensitivity analysis to determine goals for design of experiments: An example study on antibody-
producing cell cultures,” Biotechnology Progress, vol. 21, p. 1128–1135, Sep 2008.

[56] C. Kontoravdi, E. N. Pistikopoulos, and A. Mantalaris, “Systematic development of predictive
mathematical models for animal cell cultures,” Computers & Chemical Engineering, vol. 34,
p. 1192–1198, Aug 2010.

[57] J. Gomis-Fons, H. Schwarz, L. Zhang, N. Andersson, B. Nilsson, A. Castan, A. Solbrand,
J. Stevenson, and V. Chotteau, “Model-based design and control of a small-scale integrated
continuous end-to-end mab platform,” Biotechnology progress, vol. 36, no. 4, p. e2995, 2020.

[58] M. M. Papathanasiou, A. L. Quiroga-Campano, F. Steinebach, M. Elviro, A. Mantalaris, and
E. N. Pistikopoulos, “Advanced model-based control strategies for the intensification of upstream
and downstream processing in mab production,” Biotechnology Progress, vol. 33, p. 966–988,
Apr 2017.

[59] T. K. Villiger, E. Scibona, M. Stettler, H. Broly, M. Morbidelli, and M. Soos, “Controlling the
time evolution of mab n-linked glycosylation - part ii: Model-based predictions,” Biotechnology
Progress, vol. 32, p. 1135–1148, Jul 2016.

[60] I. Jimenez del Val, Y. Fan, and D. Weilguny, “Dynamics of immature mab glycoform secretion
during cho cell culture: An integrated modelling framework,” Biotechnology Journal, vol. 11,
p. 610–623, Feb 2016.

[61] M. Clincke, C. Mölleryd, P. K. Samani, E. Lindskog, E. Fäldt, K. Walsh, and V. Chotteau,
“Very high density of chinese hamster ovary cells in perfusion by alternating tangential flow or
tangential flow filtration in wave bioreactor™—part ii: Applications for antibody production
and cryopreservation,” Biotechnology Progress, vol. 29, p. 768–777, May 2013.

[62] N. F. Dizaji, Minor Whey Protein Purification Using Ion-Exchange Column Chromatography.
PhD thesis, The University of Western Ontario, 2016.

[63] E. X. Perez-Almodovar and G. Carta, “Igg adsorption on a new protein a adsorbent based
on macroporous hydrophilic polymers. i. adsorption equilibrium and kinetics,” Journal of
Chromatography A, vol. 1216, no. 47, pp. 8339–8347, 2009.

[64] J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “Casadi: a software framework
for nonlinear optimization and optimal control,” Mathematical Programming Computation,
vol. 11, no. 1, pp. 1–36, 2019.

[65] A. Society, “Antibody therapeutics approved or in regulatory review in the eu or us,” 2020.

[66] H. Kaplon, M. Muralidharan, Z. Schneider, and J. M. Reichert, “Antibodies to watch in 2020,”
in MAbs, vol. 12, p. 1703531, Taylor & Francis, 2020.

13



[67] N. S. and E. R. C. of C. Government of Canada, “Nserc strategic network for the production of
single-type glycoform monoclonal antibodies,” Natural Sciences and Engineering Research
Council of Canada (NSERC), Jun. 28, 2016.

[68] M. S. Croughan, K. B. Konstantinov, and C. Cooney, “The future of industrial bioprocessing:
batch or continuous?,” Biotechnology and bioengineering, vol. 112, no. 4, pp. 648–651, 2015.

[69] A. D. Rodman and D. I. Gerogiorgis, “Dynamic simulation and visualisation of fermentation:
effect of process conditions on beer quality,” IFAC-PapersOnLine, vol. 49, no. 7, pp. 615–620,
2016.

[70] B. de Andrés-Toro, J. Giron-Sierra, C. Fernandez-Conde, J. Peinado, and F. Garcia-Ochoa, “A
kinetic model for beer production: simulation under industrial operational conditions,” IFAC
Proceedings Volumes, vol. 30, no. 5, pp. 203–208, 1997.

14


	Introduction
	Related Work
	Environments
	ReactorEnv
	AtropineEnv
	mAbEnv
	PenSimEnv
	BeerFMTEnv
	Limitations

	Baseline Algorithms
	Experiments
	Offline Reinforcement Learning
	Online Reinforcement Learning

	Conclusions and Future Work
	References
	Compute



