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Abstract

Understanding user intentions is challenging001
for online platforms. Recent work on inten-002
tion knowledge graphs addresses this, but often003
lacks focus on connecting intentions, which004
is crucial for modeling user behavior and pre-005
dicting future actions. This paper introduces a006
framework to automatically generate an inten-007
tion knowledge graph, capturing connections008
between user intentions. Using the Amazon m2009
dataset, we construct an intention graph with010
351 million edges, demonstrating high plausi-011
bility and acceptance. Our model effectively012
predicts new session intentions and enhances013
product recommendations, outperforming pre-014
vious state-of-the-art methods and showcasing015
the approach’s practical utility.1016

1 Introduction017

Understanding user intentions is a fundamental018

challenge for online platforms seeking to optimize019

user experience. Recent advances in intention020

knowledge graphs have made significant strides021

in connecting user behaviors to their underlying022

intentions. These graphs link various behaviors,023

such as co-purchasing patterns (Yu et al., 2023)024

and search queries (Yu et al., 2024), to intentions025

expressed in natural language, proving valuable for026

applications ranging from product recommendation027

to search relevance optimization.028

However, a critical limitation of existing ap-029

proaches lies in their inability to model the rela-030

tionships between different intentions. Consider031

a user preparing for Halloween—they may have032

multiple interconnected intentions: dressing as a033

vampire, creating spooky decorations, and hosting034

a party. While their browsing history (Figure 1035

(A)) implicitly suggests these intentions, existing036

1We will release all data and code for this paper after this
paper is accepted.

knowledge graphs fail to capture how these inten- 037

tions relate to each other through temporal, causal, 038

and conceptual links. 039

This gap aligns with Bengio’s distinction be- 040

tween System I and System II reasoning, where the 041

latter emphasizes deliberate, logical, and sequen- 042

tial thinking. Research demonstrates that online 043

shopping behaviors frequently reflect System II 044

reasoning (Kleinberg et al., 2022), with users mak- 045

ing conscious decisions toward long-term goals 046

rather than engaging in unconscious browsing. By 047

explicitly modeling intention relationships, we can 048

better capture the deliberate nature of user behavior 049

and create more accurate predictive models. 050

Our research extends beyond merely understand- 051

ing users’ initial intentions to predicting subsequent 052

ones, for instance, inferring that someone who in- 053

tends to buy a desk may soon need an office chair. 054

This predictive capability has profound implica- 055

tions for user behavior modeling, session under- 056

standing, and recommendation systems. However, 057

constructing these intention-to-intention relation- 058

ships remains unexplored in current research. 059

We identify two key mechanisms for modeling 060

these relationships. First, commonsense knowl- 061

edge is essential for understanding how intentions 062

connect—planning a Halloween party naturally en- 063

tails both costume selection and decoration prepa- 064

ration. We propose leveraging inferential common- 065

sense relations to describe temporal sequences (be- 066

fore/after) and causal connections (because/as a 067

result) between intentions. After identifying inten- 068

tions from user sessions, we employ a classifier 069

to determine these inferential connections, build- 070

ing a more comprehensive model of user intention 071

dynamics. Figure 1 (B) illustrates this approach, 072

showing the plausible co-occurrence relationship 073

between costume and decoration intentions. 074

Second, we incorporate abstract conceptualiza- 075

tion to improve generalization beyond observed 076

intention pairs. Recent work demonstrates that 077
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ID Title Price Brand Color

B0B4NXMN7Q Vampire Teeth for Kids Adults Vampire Fangs Teeth Cosplay … 8.99 Morzejar White

B0BDLH97LW LAPMART Retractable Vampire Zombie Fangs… 10.99 LAPMART White

B07T17Y8FM SimpleLife Vampire Teeth Glow in the Dark Scary … 2.99 SimpleLife Green

B0BCK5V63V Halloween Accessories - Bloody Neck Choker, 2x Devil Hair Clips… 3.7 SMIFE White & Red

Dress up as a vampire 
or werewolf for 
Halloween or cosplay

Create a complete 
vampire costume with 
makeup and fangs

Create a spooky 
atmosphere for a 
Halloween party

Enjoy the festive 
spirit of Halloween

Excitement

Decorating

Spooky

Costume

Meanwhile Step 2:
Relation Classification

Step 3: 
ConceptualizationHalloween

(A)

(B) (C)

Other Sessions

Step 1: 
Intention Generation 

ID Titles

… Party Supplies …

.. … Other Sessions

Figure 1: The structure of our knowledge graph. Part (A) shows an example of user behaviors within a session. Our
knowledge graph emphasizes building relations between different intentions. In Part (B), we establish commonsense
relations, highlighting the temporality and causality of intentions. Part (C) focuses on using conceptualization to
connect various intentions.

conceptualization and instantiation enhance com-078

monsense reasoning (Wang et al., 2023b,a). We079

integrate this insight by using models to abstract080

intentions into broader concepts, establishing con-081

nections between semantically related intentions.082

For example, conceptualizing a "vampire cos-083

tume" intention involves higher-level concepts like084

"costumes" and "Halloween," linking it to other085

costume-related intentions (Figure 1 (C)).086

To address these challenges, we introduce the087

Intention Generation, Conceptualization, and088

Relation Classification (IGC-RC) framework089

for constructing a comprehensive commonsense090

knowledge graph of user intentions. Our approach091

follows three key steps: (1) Intention Genera-092

tion: We leverage large language models to gen-093

erate plausible intentions from user session data,094

capturing the underlying goals driving observable095

behaviors. (2) Conceptualization: We abstract096

these intentions into higher-level concepts, facil-097

itating connections between semantically related098

intentions. (3) Relation Classification: We gener-099

ate and verify commonsense statements describing100

relationships between intentions, creating a struc-101

tured graph of interconnected user goals.102

We apply the IGC-RC framework to the Ama-103

zon M2 session-based recommendation dataset,104

constructing a Relational Intention Graph (RIG)105

with 351 million edges. This graph captures rich106

intention-level relationships and demonstrates high107

plausibility in human evaluations. Our extensive 108

experiments show that RIG enables accurate predic- 109

tion of intentions in new user sessions and signifi- 110

cantly enhances the performance of session-based 111

recommendation models, outperforming previous 112

state-of-the-art approaches. 113

Our contributions include: 114

• We pioneer the modeling of connections 115

between users’ deliberate mental processes 116

through an intention knowledge graph that 117

captures temporal, causal, and conceptual re- 118

lationships between intentions. 119

• We develop the IGC-RC framework, a novel 120

methodology that integrates user behavior 121

data with large language models to automat- 122

ically construct rich, multi-faceted intention 123

knowledge graphs. 124

• We construct RIG, a large-scale, high-quality 125

intention knowledge graph from the Amazon 126

M2 dataset, demonstrating superior perfor- 127

mance in session understanding and recom- 128

mendation tasks. 129

By bridging the gap between discrete user behav- 130

iors and their interconnected intentions, our work 131

represents a significant advancement in user model- 132

ing for e-commerce and recommendation systems, 133

with broad implications for creating more respon- 134

sive and intuitive online platforms. 135
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KG # Nodes # Edges # Rels Sources Node Type Intention Relations User Behavior

ConceptNet 8M 21M 36 Croudsource concept ✓ ✗

ATOMIC 300K 870K 9 Croudsource situation, event ✓ ✗

AliCoCo 163K 813K 91 Extraction concept ✗ search logs
AliCG 5M 13.5M 1 Extraction concept, entity ✗ search logs
FolkScope 1.2M 12M 19 LLM Generation product, intention ✗ co-buy
COSMO 6.3M 29M 15 LLM Generation product, query, intention ✗ co-buy search-buy
RIG (Ours) 4.2M 351M 6 LLM Generation product, session, intention, concept ✓ session item history

Table 1: This table shows the details and differences between different commonsense knowledge graphs. Our graph
contains six distinct types of edges, including three types of intention-to-intention relationships: asynchronous
(before/after), synchronous (at the same time), and causality (because/as a result) among intentions, and item-to-
session, session-to-intention, and intention-to-concept connections, summing up to six edge types.

# Sessions # Concepts # Intentions # Ses.-Int. # Int.-Con. # Int.-Int. # Nodes # Edges

1,176,296 110,741 2,956,195 5,115,587 5,115,212 341,649,216 4,243,232 351,880,015

Table 2: The overall statistics of our constructed knowledge graph RIG, including sessions, intentions, and concepts.
Our knowledge graph includes 351 million edges.

2 Related Work136

E-commerce platforms increasingly rely on knowl-137

edge graphs (KGs) for personalized experiences.138

Notable examples include Amazon Product Graph139

(Zalmout et al., 2021), which aligns with Freebase140

(Bollacker et al., 2008), and Alibaba’s ecosystems:141

AliCG (Zhang et al., 2021), AliCoCo (Luo et al.,142

2020), and AliMeKG (Li et al., 2020). While these143

KGs effectively represent item properties, they typ-144

ically miss user intentions.145

Recent work by FolkScope (Yu et al., 2023) and146

COSMO (Yu et al., 2024) incorporates user in-147

tentions through large language models, but lacks148

inter-intention relationships crucial for modeling149

goal-oriented behavior. Commonsense knowl-150

edge graphs like ConceptNet (Speer et al., 2017),151

ATOMIC (Sap et al., 2019; Hwang et al., 2021),152

Discos (Fang et al., 2021), and WebChild (Tandon153

et al., 2017) structure general knowledge but don’t154

address e-commerce-specific intentions.155

Session-based recommendation has evolved156

from sequence modeling approaches using RNNs157

and CNNs (Hidasi et al., 2015; Li et al., 2017; Liu158

et al., 2018; Tang and Wang, 2018) to Graph Neural159

Networks (Li et al., 2021a; Guo et al., 2022; Huang160

et al., 2022). Wu et al. (2019a) pioneered GNNs for161

modeling session transitions, with subsequent im-162

provements incorporating contextual information163

(Pan et al., 2020; Xia et al., 2021). However, these164

methods often simplify user intentions, whereas165

our approach models them explicitly within their166

relational context.167

3 IGC-RC Framework168

We introduce the Intention Generation, Concep-169

tualization, and Relation Classification (IGC-RC)170

framework for constructing comprehensive inten- 171

tion knowledge graphs from user behavior data. 172

Our approach integrates large language models 173

with structured knowledge representation tech- 174

niques to build a rich understanding of user in- 175

tentions and their relationships. 176

3.1 Intention Generation 177

We leverage the Amazon M2 dataset (Jin et al., 178

2023), specifically its English subset containing 1.2 179

million sessions. For each session, we extract prod- 180

uct attributes including titles, descriptions, speci- 181

fications, and technical details to create a compre- 182

hensive representation of user browsing history. 183

Using GPT-3.5, we generate 4.3 million diverse 184

user intentions from these session histories. Our ap- 185

proach improves upon previous work by employing 186

a more capable language model and removing re- 187

strictive relation constraints, resulting in more nat- 188

ural and contextually appropriate intentions. The 189

prompting strategy (detailed in Appendix Figure 190

3) focuses on extracting concise verb phrases that 191

capture user goals underlying their browsing be- 192

havior. Quantitative analysis in Appendix Figure 193

11 confirms significantly higher n-gram diversity 194

compared to Folkscope because of using a better 195

generation model and removal of conceptnet rela- 196

tion constraints. 197

3.2 Intention Relation Classification 198

Creating meaningful connections between inten- 199

tions requires understanding their complex logical, 200

temporal, and causal relationships. We develop 201

a three-step approach to establish these connec- 202

tions: (1) Template-based assertion generation: 203

We transform intention pairs into natural language 204
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Intention Concepts

Purchase a construction dump truck toy for a 2-year-old boy or girl. playtime, construction, gift
Enjoy multiplayer gameplay with friends and family socializing, competition, and fun.
Personalize their drawstring bags. personalization, gift, accessorizing
Perform sanding and grinding tasks on large surfaces using an orbital sander. smoothing, surface prep, precision
Improve their precision cutting skills precision, sharpness, craftsmanship

Table 3: This table maps user intentions to relevant concepts. Each intention is analyzed to highlight the core
concepts, showcasing how these insights can inform personalized recommendation systems.

Precedence Succession Simultaneous Cause Result Overall
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Vera 0.73 0.52 0.61 0.78 0.66 0.72 0.75 0.83 0.79 0.75 0.73 0.74 0.76 0.92 0.83 0.75 0.73 0.74
+ Fine-tuning 0.86 0.97 0.91 0.88 0.92 0.90 0.87 0.93 0.90 0.84 0.91 0.88 0.81 0.99 0.89 0.85 0.94 0.89

Table 4: The performance of the VERA classifier on the annotated relation classification task.

assertions using templates that express five relation-205

ship types: precedence, succession, simultaneity,206

cause, and result (examples in Table 12). (2) Plausi-207

bility estimation: We employ the Vera model (Liu208

et al., 2023a), fine-tuned on expert-annotated data,209

to assess the plausibility of these assertions. The210

annotation process followed the Penn Discourse211

Treebank 2.0 guidelines (Prasad et al., 2008), with212

two experts independently evaluating each sam-213

ple (85% initial agreement). (3) Threshold-based214

edge selection: We retain only high-confidence215

relationships (Vera score > 0.9) to ensure graph216

quality. The fine-tuned model achieves 0.89 F1217

score overall (Table 4), with particularly strong218

performance on temporal relationships.219

This approach enables us to model diverse in-220

tention relationships including temporal sequence221

(before/after), co-occurrence (simultaneously), and222

causality (because/results in).223

3.3 Intention Conceptualization224

To improve generalization and abstraction, we225

develop techniques to map specific intentions to226

broader concepts. Building on theoretical foun-227

dations from knowledge representation (Gruber,228

1993; Himanen et al., 2019) and recent advances in229

conceptualization (Wang et al., 2023b, 2024), we230

create a novel approach specifically for intentions.231

We employ Meta-Llama-3-8B-Instruct with care-232

fully designed prompts (Appendix Figure 4) to gen-233

erate concise, non-redundant concept sets for each234

intention. The prompt emphasizes three key qual-235

ities: (1) representativeness: concepts must accu-236

rately capture the intention’s essence; (2) unambi-237

guity: concepts should have clear, focused mean-238

ings; and (3) complementarity: concepts should239

cover different semantic aspects of the intention.240

Table 3 demonstrates the effectiveness of this ap-241

Knowledge Graph Plausibility Typicality

FolkScope (Before Filter) 0.6116 0.4491

RIG (Ours) 0.9552 0.6674
+ ConceptNet Rels 0.9542 0.6430

Table 5: The intention generation quality comparison
with FolkScope. The comparison is only used to show
the quality of intention generation, rather than the over-
all quality of two knowledge graphs.

proach, showing how diverse intentions are mapped 242

to concise concept sets that capture their essential 243

characteristics. These concepts serve as connec- 244

tive tissue in our knowledge graph, enabling us to 245

link semantically related intentions that might oth- 246

erwise appear unrelated based on surface features. 247

By integrating these three components, inten- 248

tion generation, relation classification, and con- 249

ceptualization, our IGC-RC framework creates a 250

rich, structured representation of user intentions 251

and their relationships. 252

4 Intrinsic Evaluation 253

In this section, we evaluate the quality of the gen- 254

erated knowledge graph using both crowdsourced 255

human annotations and automatic evaluations. 256

4.1 Human Evaluation 257

Intention Generation Annotators evaluate two 258

aspects of the generated intentions: plausibility and 259

typicality. Plausibility refers to the likelihood that 260

an assertion is valid based on its properties, us- 261

ages, and functions. Typicality measures how well 262

an assertion reflects specific features influencing 263

user behavior, such as informativeness and causal- 264

ity. For example, "they are used for Halloween 265

parties" is more informative than "they are used 266

for the same purpose." We collected annotations 267
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Knowledge Graph Acceptance Size

Atomic2020 86.8 0.6M
Atomic10x 78.5 6.5M
Atomic NOVA - 2.1M
RIG (ours) 81.2 341.6M
- Asynchronous Relation 80.6 100.2M
- Synchronous Relation 82.8 112.6M
- Causality Relation 80.4 128.7M

Table 6: This table presents a comparative analysis of
our proposed knowledge graph with existing common-
sense knowledge graphs in terms of relation plausibility
acceptance and scale of relation edges. As evaluated
by human annotators, the acceptance rate represents
the percentage of plausible relations in each knowledge
graph. The size of each knowledge graph is measured
in millions (M) of relation edges.

for 3,000 session-intention pairs, each evaluated268

by three annotators. The inter-annotator agreement269

scores were 0.91 for plausibility and 0.74 for typi-270

cality. We use the same annotation guidelines and271

criteria from the FolkScope paper, and this can272

ensure the same standard of annotations on plausi-273

bility and typicality. As shown in Table 5, our RIG274

surpasses FolkScope (Yu et al., 2023) in plausibil-275

ity and typically. Moreover, as shown in Table 12,276

the model successfully captures particular, long-tail277

intentions such as "Relieve discomfort and soothe278

itching caused by hemorrhoids" and "Purchase un-279

scented baby wipes for sensitive skin." These exam-280

ples illustrate the model’s ability to understand and281

articulate context-specific user needs. Meanwhile,282

adding ConceptNet relations as constraints is not283

useful for plausibility also negatively impacts the284

intention typicality.285

Intention Relation Classification Annotators286

rate the plausibility of predicted intention relations287

on a four-point scale: Plausible, Somewhat plau-288

sible, Not plausible, and Not applicable. The first289

two are deemed acceptable. For intention rela-290

tion classification, three annotators independently291

evaluated 1,000 intention-intention discourse pairs,292

achieving an overall inter-annotator agreement of293

0.69. As shown in Table 6, our graph achieves294

an acceptance rate of 81.2% with a significantly295

larger scale than previous graphs. Atomic2020 has296

a higher acceptance rate due to manual creation297

and annotation.298

Intention Conceptualization In this task, anno-299

tators evaluate the correctness of conceptualized300

intentions derived from user sessions. We sample301

1,000 intention-concept pairs and use Amazon Me-302

MRR Hit@1 Hit@3 Hit@10 Inf. Time

Llama3-8B 0.4680 0.4062 0.4480 0.5879 4,102.92ms
Mistral-7B 0.5544 0.4954 0.5425 0.6763 3,625.63ms
Flan-T5 0.1575 0.0528 0.1295 0.3642 2,021.36ms

RIG (ours) 0.5377 0.4483 0.5470 0.7260 3.01ms

Table 7: The performance on intention prediction.

chanical Turk for annotation. The conceptualiza- 303

tion performance is 86.60%, with an inter-annotator 304

agreement of 77.19%. 305

4.2 Automatic Evaluation 306

In this section, we systematically evaluate three 307

key aspects: (1) Intention Prediction; (2) Conceptu- 308

alization of New Intentions; and (3) Item Recovery. 309

These experiments are termed “automatic evalua- 310

tion” as they can uniformly be regarded as inductive 311

knowledge graph completion tasks. 312

Intention Prediction This study evaluates the 313

task of linking unseen sessions to an existing in- 314

tention graph. The dataset, comprising all session- 315

intention edges, was split into training, validation, 316

and test sets (8:1:1) based on sessions, with each 317

session linked to 2-4 positive intentions. For eval- 318

uation, we applied random negative sampling to 319

generate 30 candidate intentions per session, rank- 320

ing the positive intentions among them. We com- 321

pared large language models (Mistral-7B-Instruct- 322

v0.1, Meta-Llama-3-8B-Instruct, and flan-t5-large) 323

to our RIG model. Baselines use perplexity scores 324

derived via proper prompting to rank intentions, 325

while RIG employs an embedding-based approach. 326

Specifically, we generate embeddings for sessions 327

and intentions using a sentence model and use SAS- 328

Rec as a session encoder to compute session repre- 329

sentations. As shown in Table 7, our RIG model 330

achieves competitive accuracy (e.g., best Hit@10) 331

while significantly outperforming LLMs in infer- 332

ence speed (3.01ms vs. 2,021–4,102ms), demon- 333

strating its practicality for real-world applications 334

requiring fast decision-making. 335

Conceptualization Prediction To evaluate the 336

performance of conceptualization prediction, we 337

constructed a dataset of intention-concept pairs de- 338

rived from our intention knowledge graph. This 339

dataset was split into training, validation, and 340

test sets using an 8:1:1 ratio. The test set con- 341

sisted of 147,801 intention-concept pairs, which 342

were used to perform ranking tasks with vari- 343

ous methods. For the baseline models, we em- 344

ployed large language models (LLMs) to perform 345
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MRR Hit@1 Hit@3 Hit@10 Inf. Time

Llama3-8B 0.3224 0.3023 0.3192 0.3449 2,069.96ms
Mistral-7B 0.1110 0.0894 0.1001 0.1359 3,005.63ms
Flan-T5 0.0294 0.0058 0.0175 0.0564 1,790.91ms

RIG (ours) 0.4259 0.2476 0.5170 0.7906 181.82ms

Table 8: The ranking performance and inference time
on the task of conceptualization prediction.

ranking in a generative manner. Specifically, we346

experimented with Mistral-7B-Instruct-v0.3,347

Meta-Llama-3-8B-Instruct, and flan-t5-xl.348

For each intention, a candidate pool containing349

both true and false concepts was constructed, and350

the concepts were ranked based on their genera-351

tion order by the LLMs. Similar to the intention352

prediction task, we applied negative sampling for353

each intention to rank positive concepts among a354

pool of 500 candidates. Our proposed method re-355

lied on an embedding-based approach, leveraging356

a fine-tuned embedding model to generate embed-357

dings for intentions and concepts. This fine-tuning358

ensured that intention embeddings were closer to359

their corresponding positive concept embeddings.360

As shown in Table 8, the results demonstrate that361

our conceptualization prediction method, based on362

the intention knowledge graph, achieves superior363

performance compared to LLMs regarding both364

ranking accuracy and inference time.365

Product Recovery We constructed a session-366

intention pair dataset in previous sessions, includ-367

ing product IDs, descriptions, and user intentions.368

Here, we construct a new benchmarking dataset369

of the product-intention pairs from all session-370

intention pairs by assuming the items within the371

session share the same intentions as the sessions.372

These product-intention pairs were randomly split373

into training, validation, and test sets with an 8:1:1374

ratio. This dataset served as the basis for evaluating375

the ability of different methods to recover relevant376

intentions for given products. To ensure a fair com-377

parison, we focused on 1,203 overlapping prod-378

ucts between the test set of the product-intention379

pairs in RIG and Folkscope. For these overlapped380

products, we compared the intentions generated381

by Folkscope and RIG. Rankings and evaluations382

were conducted on this same set of overlapping383

products, enabling a direct and balanced compari-384

son of intention quality between the two systems.385

This methodology ensured the evaluation results386

reflected each method’s capability to generate rele-387

vant and accurate intentions. Table 9 provides the388

detailed evaluation results. We used pre-computed389

# Intentions (Ovlp.) # Products (Ovlp.)

FolkScope 1,846,715 67,789 211,372 1,203
RIG 295,620 4,829 453,124 1,203

MRR Hit@1 Hit@3 Hit@10

FolkScope(overlap) 0.2808 0.0977 0.2816 0.9096
RIG (overlap) 0.3161 0.1257 0.3453 0.9263

FolkScope (full) 0.2779 0.0947 0.2782 0.9071
RIG (full) 0.3025 0.1188 0.3147 0.9072

Table 9: The performance on product recovery. Ovlp.
stands for overlap.

intention and product embeddings as input to a 390

Multi-Layer Perceptron (MLP) scoring model to 391

train our model. The MLP was trained using Noise 392

Contrastive Estimation (NCE) loss to distinguish 393

between relevant and irrelevant intentions. We as- 394

sessed the model’s performance on the test set dur- 395

ing the evaluation phase by analyzing one positive 396

sample against ten negative samples. Cosine simi- 397

larity scores were computed for ranking intentions, 398

enabling precise comparisons across methods. Fi- 399

nally, we compared our method with Folkscope 400

under identical experimental settings. The results, 401

presented in Table 9, demonstrate that our knowl- 402

edge graph significantly outperforms Folkscope in 403

recovering relevant products from intentions, high- 404

lighting the superior efficacy of our approach. 405

5 Extrinsic Evaluation 406

To demonstrate the practical utility of our relational 407

intention knowledge graph, we evaluate its effec- 408

tiveness in enhancing session-based recommenda- 409

tion, a key application domain for e-commerce plat- 410

forms. Using the Amazon M2 dataset, we show 411

how the rich semantic relationships captured in our 412

knowledge graph can improve recommendation 413

quality compared to state-of-the-art methods. 414

Data Preparation We use the complete English 415

subset of the Amazon M2 dataset integrated with 416

our constructed knowledge graph. Following stan- 417

dard practice, we partition all sessions into training, 418

validation, and test sets at an 8:1:1 ratio. To pre- 419

serve the integrity of the dataset, we use the origi- 420

nal preprocessing without filtering, thus avoiding 421

potential session loss or artificial item connections. 422

The integration of a large-scale commonsense 423

knowledge graph (containing over 351 million 424

edges) with conventional recommendation systems 425

presents significant challenges. To address this, 426

we develop a meta-path approach to extract ac- 427

tionable item relationships from our knowledge 428

graph. First, we identify session pairs connected 429
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Datasets Metric FPMC GRU4Rec BERT4Rec SASRec SASRecF CORE SR-GNN GCE-GNN DIF-SR FEARec DGNN ISRec Satori KA-MemNN RIGRec

M2 (UK)

Recall@5 0.2523 0.2792 0.1899 0.3075 0.2957 0.2990 0.2928 0.3130 0.3128 0.3088 0.3021 0.3073 0.2973 0.2932 0.3342∗

Recall@10 0.3121 0.3469 0.2641 0.3964 0.3713 0.3949 0.3678 0.4001 0.3990 0.3941 0.3882 0.3981 0.3821 0.3781 0.4229∗

Recall@20 0.3696 0.4108 0.3349 0.4723 0.4406 0.4768 0.4381 0.4726 0.4739 0.4691 0.4563 0.4754 0.4436 0.4419 0.5003∗

Recall@50 0.4389 0.4865 0.4197 0.5621 0.5245 0.5697 0.5171 0.5542 0.5598 0.5552 0.5584 0.5676 0.5348 0.5295 0.5863∗

Recall@100 0.4841 0.5346 0.4744 0.6159 0.5771 0.6223 0.5662 0.6032 0.6171 0.6100 0.6072 0.6201 0.5931 0.5847 0.6398∗

NDCG@5 0.1933 0.2118 0.1260 0.2121 0.2208 0.1673 0.2195 0.2214 0.2171 0.2138 0.2201 0.2207 0.2189 0.2163 0.2214

NDCG@10 0.2126 0.2327 0.1501 0.2406 0.2432 0.1985 0.2418 0.2441 0.2451 0.2415 0.2431 0.2438 0.2425 0.2386 0.2503∗

NDCG@20 0.2272 0.2499 0.1682 0.2598 0.2634 0.2193 0.2616 0.2626 0.2641 0.2605 0.2637 0.2633 0.2623 0.2591 0.2703∗

NDCG@50 0.2411 0.2648 0.1848 0.2679 0.2801 0.2379 0.2784 0.2807 0.2812 0.2777 0.2797 0.2795 0.2793 0.2737 0.2877∗

NDCG@100 0.2484 0.2718 0.1937 0.2862 0.2887 0.2472 0.2865 0.2871 0.2891 0.2866 0.2867 0.2881 0.2864 0.2843 0.2957∗

Table 10: Performance comparison with baselines. The best and second-best results are shown in bold and underlined
fonts. "∗" represents the significant improvement over the best baseline with p-value < 0.05.

through intention-level relationships (either concep-430

tual or temporal). To ensure relationship quality,431

we retain only session pairs that either (1) share432

at least six distinct meta-paths through common-433

sense relation nodes or (2) demonstrate complete434

reachability from one session’s concept nodes to435

the other’s. From these high-quality session pairs,436

we construct a weighted item graph G = (V,E),437

where nodes represent products and edges represent438

their co-occurrence relationships within semanti-439

cally connected sessions. Edge weights correspond440

to co-occurrence frequency, providing a measure441

of relationship strength. This approach effectively442

distills our comprehensive knowledge graph into443

a focused item relationship network tailored for444

recommendation tasks.445

RIGRec: Intention-Enhanced Recommendation446

Model We develop RIGRec, a novel recommen-447

dation model that leverages the rich semantic re-448

lationships captured in our intention knowledge449

graph. The model employs graph convolution to450

derive informative item representations:El+1 =451

AEl, where A represents the adjacency matrix of452

graph G, and E ∈ RN×d stores the d-dimensional453

embeddings for all N items. We implement454

lightweight convolution operations and sum pool-455

ing to enhance computational efficiency. After L456

convolution layers, the resulting representations457

EL capture both item characteristics and their458

intention-based relationships. For session mod-459

eling, we adopt SASRec’s self-attention architec-460

ture, which effectively aggregates item representa-461

tions within a session to model user preferences.462

This creates an end-to-end recommendation system463

that seamlessly integrates intention-level reasoning464

with sequential pattern recognition, enabling more465

contextually appropriate recommendations.466

Baselines and Evaluation Metrics We compare467

our model with following ten representative and468

state-of-the-art methods, covering (1) the classical 469

method FPMC (Rendle et al., 2010), (2) the RNN- 470

based method GRU4Rec (Hidasi et al., 2016), (3) 471

the predominant attention-based methods includ- 472

ing BERT4Rec (Sun et al., 2019), SASRec (Kang 473

and McAuley, 2018), CORE (Hou et al., 2022) 474

and FEARec (Du et al., 2023), (4) graph-based 475

methods including SR-GNN (Wu et al., 2019b) 476

and GCE-GNN (Wang et al., 2020), (5) side infor- 477

mation fusion methods including SASRecF (Kang 478

and McAuley, 2018) and DIF-SR (Xie et al., 2022). 479

We exclude some state-of-the-art methods like FA- 480

PAT (Liu et al., 2023b) due to the need for massive 481

support resources or exponential computation com- 482

plexity. Additionally, we compare our approach 483

with state-of-the-art intention-aware recommenda- 484

tion models: DGNN (Li et al., 2023), ISRec (Li 485

et al., 2021b), Satori (Chen et al., 2022), and KA- 486

MemNN (Zhu et al., 2021). 487

We employ two standard metrics in the field of 488

recommender systems, including Recall at a cutoff 489

top k (Recall@k) and Normalized Discounted Cu- 490

mulative Gain at a cutoff top k (NDCG@k). We 491

rank the ground-truth item alongside all candidates 492

to ensure an unbiased evaluation rather than adopt- 493

ing the negative sampling strategy. We report the 494

averaged metrics over 5 runs with the commonly 495

utilized k ∈ {5, 10, 20, 50, 100}. To ensure un- 496

biased evaluation, we rank the ground-truth item 497

alongside all candidate items rather than using neg- 498

ative sampling. Results represent averages across 499

five independent runs, with statistical significance 500

determined through unpaired t-tests (p < 0.05). The 501

implementation details are in the Appendix A.5. 502

Performance Comparison As shown in Table 503

10, RIGRec consistently outperforms all base- 504

line methods across nearly all evaluation metrics, 505

with statistically significant improvements over the 506

strongest competitors. These results demonstrate 507

the substantial benefits of incorporating intention- 508
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Figure 2: Ablation results of different variants. This demonstrates that our intention knowledge graph significantly
enhances recommendation performance compared to SASRec. Both intention conceptualization and concept
relations effectively improve results, with each type of relation contributing uniquely to different metrics. This
highlights the importance of incorporating diverse nodes and relations in the knowledge graph.

level relationships.509

The performance gap between RIGRec and SAS-510

Rec—which serves as RIGRec’s backbone archi-511

tecture—is particularly notable. This difference512

directly quantifies the value added by our inten-513

tion knowledge graph, confirming that modeling514

user intentions and their relationships provides crit-515

ical information beyond what can be captured by516

sequential patterns alone.517

Graph-based methods like SR-GNN and GCE-518

GNN, while theoretically capable of modeling com-519

plex item relationships, show inferior performance520

compared to our approach. This stems from their521

focus on direct item transitions without considera-522

tion of the underlying user intentions driving these523

transitions. By explicitly modeling intention-level524

relationships, RIGRec captures deeper semantic525

connections between items, resulting in more con-526

textually appropriate recommendations.527

The mixed performance of side information fu-528

sion methods (DIF-SR and SASRecF) highlights529

the challenges of effectively integrating auxiliary530

information into recommendation systems. While531

DIF-SR achieves competitive results through care-532

ful information fusion, SASRecF shows perfor-533

mance degradation compared to the base SASRec534

model in terms of Recall@k. This aligns with535

findings that inappropriate information integration536

strategies can degrade model effectiveness. Our ap-537

proach, by contrast, leverages large language mod-538

els to extract high-quality intention information,539

filtering out noise and irrelevant features that might540

otherwise compromise recommendation quality.541

Ablation Study To isolate the contributions of542

different components in our knowledge graph,543

we conduct ablation studies comparing RIGRec544

against three variants: (1) w/o all: Removes the en-545

tire item graph derived from our knowledge graph 546

(equivalent to standard SASRec). (2) w/o concept: 547

Removes edges derived from concept-mediated 548

paths. (3) w/o commonsense relation: Removes 549

edges derived from commonsense relation paths. 550

The ablation study reveals three insights: (1) The 551

intention knowledge graph substantially improves 552

recommendation quality beyond what sequential 553

patterns alone can achieve; (2) Both conceptualiza- 554

tion and commonsense relations provide comple- 555

mentary signals that enhance performance; and (3) 556

These relation types contribute differently to evalu- 557

ation metrics—conceptualization improves recall 558

by identifying broadly relevant items, while com- 559

monsense relations enhance NDCG by capturing 560

fine-grained semantic connections for better rank- 561

ing. These findings confirm that modeling diverse 562

intention relationships leads to more contextually 563

appropriate recommendations by providing a more 564

comprehensive understanding of user behavior. 565

6 Conclusion 566

We introduce IGC-RC, a framework for automati- 567

cally constructing knowledge graphs that model re- 568

lationships between user intentions in e-commerce 569

contexts. Our Relational Intention Graph (RIG) 570

captures temporal, causal, and conceptual connec- 571

tions between user goals, demonstrating excep- 572

tional quality in both intrinsic evaluations and rec- 573

ommendation tasks. By bridging the gap between 574

observable behaviors and underlying intentions, 575

RIG enables more accurate prediction of user needs 576

and significantly enhances recommendation perfor- 577

mance. This advancement represents an important 578

step toward more human-like understanding in in- 579

telligent e-commerce systems. 580
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Limitations581

The intention generation process relies on GPT-582

3.5, which may introduce additional computational583

overhead. Future work could explore more effi-584

cient language models to streamline this compo-585

nent. Our framework is evaluated using the Ama-586

zon M2 dataset, which is specific to e-commerce.587

The applicability of the proposed method to other588

domains remains to be tested. The current im-589

plementation focuses on the English subset of the590

dataset. Extending the framework to support multi-591

ple languages could enhance its versatility. While592

we incorporate commonsense relations such as tem-593

porality and causality, the scope of relation types594

is limited. Incorporating a broader range of re-595

lational categories may improve the knowledge596

graph’s comprehensiveness. We would like to597

provide more validation if more suitable datasets598

are available. However, most public datasets are599

desensitized and anonymized, making generating600

intention based on the anonymized ID features hard.601

Besides, our utilized M2 dataset is a mixed-type602

dataset, which already contains multi-typed items603

(sports, beauty, baby, etc.). The item and session604

sizes also exceed general research works.605

Ethics Statement606

This study ensures the responsible use of data and607

technology by utilizing the anonymized Amazon608

M2 dataset, which safeguards user privacy and609

complies with data protection regulations. We have610

implemented measures to prevent the inclusion611

of any personally identifiable information (PII).612

Additionally, we acknowledge potential biases in613

the dataset and have taken steps to mitigate them614

through standard preprocessing techniques. Our615

use of large language models focuses on enhanc-616

ing user experience without manipulating behavior,617

and we advocate for transparency in deploying in-618

tention knowledge graphs within e-commerce plat-619

forms.620
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A Further Details on Experiments897

A.1 Human Annotation898

We collected annotations for 3,000 session-899

intention pairs, each evaluated by three annotators.900

The inter-annotator agreement scores were 0.91 for901

plausibility and 0.74 for typicality. Three anno-902

tators independently evaluated each of the 1,000903

intention-intention discourse pairs for intention904

relation classification, achieving an overall inter-905

annotator agreement of 0.69. All raw annotation906

data will be made publicly available to support907

future research in this area. We use exactly the908

same annotation guidelines and criteria from the909

FolkScope paper, which can ensure the same stan-910

dard of annotations on plausibility and typicality.911

A.2 Concept Prediction912

We conducted experiments to compare different913

methods for predicting conceptualized intentions,914

where the goal is to predict corresponding concepts915

for a given purpose.916

The first method employed a generative ap-917

proach using LLMs, specifically Mistral-7B-918

Instruct-v0.3, Meta-Llama-3-8B-Instruct, and flan-919

t5-xl. This approach generated concepts in the920

same way as our RIG construction process. Dur-921

ing testing, we created a candidate pool containing922

both true and false concepts for each intention. The923

LLMs generated ten concepts per intention, and924

matching concepts were ranked first while main-925

taining their generation order. We used negative926

sampling to create a candidate pool of 500 con-927

cepts. Importantly, we did not fine-tune the LLMs928

to maintain consistency with the approach used in929

RIG’s construction.930

Our proposed approach’s second method utilized931

an embedding-based model (bge-base-en-v1.5) to932

transform intentions and concepts into embeddings933

and compute their cosine similarities. We fine-934

tuned the embedding model using contrastive learn-935

ing, incorporating cross-entropy loss to improve936

matching performance. During testing, we created937

a candidate pool of 500 concepts and ranked them938

based on their cosine similarities with the given939

intention.940

We constructed a dataset of intention-concept941

pairs from RIG for our experimental setup. We942

split it into training, validation, and testing sets943

with an 8:1:1 ratio, resulting in 147,801 intention-944

concept pairs in the test set. We conducted our945

experiments using an Nvidia RTX A6000 GPU.946

The models were evaluated using standard metrics, 947

including MRR, Hit@1, Hit@3, Hit@10, and in- 948

ference speed. The results demonstrated that our 949

embedding-based method achieved superior predic- 950

tion accuracy and computational efficiency perfor- 951

mance compared to the LLM approach. 952

A.3 Intention Prediction 953

The input of this task is a session, and the output of 954

this task is the ranking of the ground-truth intention 955

over a pool of negative intentions. The goal of this 956

task is to rank the correct intention higher than the 957

incorrect intentions. Because the input of this task 958

is a session, so we use the SASRec as the backbone 959

model. We used the all-MiniLM-L6-v2 model to 960

generate embeddings for session items and inten- 961

tions. These item embeddings initialized the item 962

embedding matrix in SASRec. During training, 963

the parameters of session encoders and item em- 964

beddings are tuned. TripletMarginLoss minimized 965

the distance between session and positive inten- 966

tion embeddings while maximizing the distance to 967

negative intentions. Random sampling of positive 968

and negative samples, followed by backpropaga- 969

tion and early stopping, was used to optimize the 970

model. 971

A.4 Product Recovery Benchmark 972

We use the same evaluation method to ensure the 973

fairness of the evaluation. Table 9 shows the evalu- 974

ation based on 1,203 overlapping products between 975

the two graphs. For these identical products, we 976

compared the intentions generated by Folkscope 977

and RIG, respectively. The rankings and evalua- 978

tions were conducted using this same set of over- 979

lapping products, allowing for a direct comparison 980

of intention quality between the two systems. This 981

methodology ensures a fair and balanced assess- 982

ment of each method’s ability to generate relevant 983

intentions. 984

Using the same sentence embedding model 985

(BGE), we acquired pre-computed intention and 986

product embeddings. Then, we used the intention 987

embeddings as input and the product embeddings 988

as output to train a Multi-Layer Perceptron (MLP) 989

scoring model using Noise Contrastive Estimation 990

(NCE) loss. In the evaluation phase, for each in- 991

tention, we analyzed one positive sample against 992

10 negative samples by calculating the cosine simi- 993

larity scores of their embeddings to the target em- 994

bedding and subsequent rankings, where the rank 995

was determined by the count of negative samples 996
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scoring higher than the positive sample plus one.997

We have identified and addressed key limitations998

in prior work on intention generation using large999

language models. (Zhou et al., 2024) highlighted1000

two significant issues with FolkScope’s intentions:1001

property-ambiguity and category-rigidity. These1002

issues primarily stem from two factors. First, us-1003

ing a relatively weak language model (OPT-30B)1004

for intention generation limited its ability to pro-1005

duce high-quality outputs. Second, the reliance on1006

ConceptNet relations for prompt construction intro-1007

duced constraints, as some relations (e.g., "made1008

of") were not well-suited for generating diverse and1009

meaningful user intentions.1010

Our work tackles these limitations through two1011

key improvements. First, we employ a more capa-1012

ble language model, Llama3-8B-instruction, to en-1013

hance the quality of intention generation. Second,1014

we remove the reliance on ConceptNet relations1015

in prompts. Instead, we leverage the advanced ca-1016

pabilities of modern language models to capture1017

open-ended intentions, enabling the generation of1018

more natural and diverse user intentions without1019

being restricted by predefined relation types.1020

We have achieved improved intention quality by1021

addressing these issues from the outset. To validate1022

these improvements, we followed the evaluation1023

methodology outlined in (Zhou et al., 2024), using1024

product recovery benchmarks. As shown in Table1025

9, our approach demonstrates superior performance1026

compared to the baseline model.1027

A.5 Implementation Details of Session1028

Recommendation1029

For a fair comparison, the dimension of item em-1030

bedding is set to 64 for all methods. Grid search1031

strategy is applied to determine the optimal con-1032

figuration of standard parameters, involving the1033

learning rate in {1e−2, 1e−3, 1e−4}, the dropout1034

rate in {0, 0.1, 0.2, 0.3, 0.4}, the loss function in1035

{BPR loss, Binary Cross Entropy loss, Cross En-1036

tropy loss} and the coefficient of L2 regularization1037

in {0, 1e−2, 1e−3, 1e−4}.1038

B Large Language Model Generation1039

Prompts1040

The following Figure 3 and Figure 4 denote the1041

prompts that we used to generate the intentions and1042

concepts.1043

N-gram FolkScope RIG w/ConceptNet Rel

2-gram 0.0307 0.5274 0.3759
3-gram 0.0480 0.7931 0.5806
4-gram 0.0648 0.9100 0.6997
5-gram 0.0837 0.9623 0.7751
6-gram 0.1046 0.9833 0.8264

Table 11: N-gram diversity scores of intentions ex-
tracted from FolkScope and RIG. The results validate
that RIG generates more diverse intentions by removing
ConceptNet relation constraints.

Session Intention Generation

Below is a user’s chronological record list: [SES-
SION]
Explain the basic intentions of this user exactly. Out-
put several different intentions one by one to answer
the following question: Users buy these items be-
cause they want to:
intention 1: {a simple verb phrase within 10 words}
intention 2: {a simple verb phrase within 10 words}
...

Figure 3: This figure shows the prompts we use to
make LLM understand and generate intentions from
user sessions.

C Annotation Questions 1044

Here, we give three examples of annotation ques- 1045

tions from our questionnaire for the Amazon Me- 1046

chanical Turk. They are for the intentions quality 1047

annotation, intention relation classification annota- 1048

tion, and intention conceptualization classification. 1049

1050

D Evaluating Diversity of Intention 1051

As shown in Figure 11, we further compare the 1052

diversity of the generated intentions by using the 1053

n-gram diversity. It is defined as the ratio of the 1054

unique n-gram counts to all n-gram counts: 1055

Diversity(D,n) =
# unique n-grams in D⊕

# n-grams in D⊕

(1) 1056

Where D⊕ denotes the dataset D concatenated into 1057

a single string. We use six as the maximum n-gram 1058

length. This method captures repeated sequences 1059

in addition to single-token diversity. 1060

We measured the diversity of the corpus formed 1061

by the intentions extracted from ForkScope and 1062

RIG. For the intention generation with concept- 1063

net relation, we randomly sample 100 intentions 1064
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Abstract Intention Generator

I will give you an INTENTION. You need to give
several phrases containing 1-3 words for the AB-
STRACT INTENTION of this INTENTION. You
must return your answer in the following format:
phrases1,phrases2,phrases3,...., which means you
can’t return anything other than answers. These ab-
stract intention words should fulfill the following
requirements:
1. The ABSTRACT INTENTION phrases can well
represent the INTENTION.
2. The ABSTRACT INTENTION phrases don’t have
a lot of less relevant word meanings. For example,
“spring” is not a good abstract intention word because
it can represent both a coiled metal device and the
season of the year.
3. The ABSTRACT INTENTION phrases of the
same INTENTION cannot be semantically similar to
each other. For example, health and wellness are two
close synonyms, so they can’t be together.
INTENTION: Moisturize dry skin while enjoying a
special effect bath.
Your answer: hydration, skincare
INTENTION: Create a festive atmosphere for a
Christmas party.
Your answer: party planning, celebration, decora-
tions, holiday spirit
INTENTION: [INTENTION].
Your answer:

Figure 4: This figure shows our prompts to make LLM
conceptualize the user intentions.

derived from each of 17 conceptnet relations, to-1065

taling 1700 intentions. For RIG and Folkscope,1066

we sample 1700 intentions from each of them to1067

compute the n-gram diversity. The results demon-1068

strate that RIG’s N-gram diversity of intentions is1069

significantly higher than ForkScope’s. These find-1070

ings validate our claim that removing ConceptNet1071

relation constraints and using a better generation1072

model generates more diverse intentions.1073

E Analysis of Different Backbones for1074

RIGRec1075

The choice of backbone architecture is an important1076

consideration when implementing our approach.1077

In our main experiments, we primarily utilized1078

SASRec as the backbone for RIGRec due to its1079

simplicity, robustness, and widespread adoption1080

as a baseline in session-based recommendation re-1081

search. This choice provides clear interpretabil-1082

ity of the improvements brought by our intention1083

knowledge graph.1084

However, to demonstrate the generalizability1085

of our approach, we conducted additional experi-1086

ments using GRU4Rec as an alternative backbone.1087

Table 13 presents the performance comparison 1088

between the original backbones (GRU4Rec and 1089

SASRec) and their RIG-enhanced versions (RIG- 1090

GRU4Rec and RIGRec). 1091

The results demonstrate that our approach con- 1092

sistently improves performance regardless of the 1093

backbone architecture. When applied to GRU4Rec, 1094

our intention knowledge graph enhances perfor- 1095

mance across all metrics, with particularly notable 1096

improvements in Recall@20 (13.6% improvement) 1097

and Recall@50 (14.3% improvement). This con- 1098

firms that the benefits of our relational intention 1099

knowledge graph are not limited to a specific rec- 1100

ommendation architecture. 1101

Nevertheless, the RIGRec model (based on SAS- 1102

Rec) still achieves the best overall performance. 1103

This can be attributed to SASRec’s inherent advan- 1104

tages in capturing long-range dependencies through 1105

its self-attention mechanism, which may better 1106

complement the high-level intention information 1107

provided by our knowledge graph. The results sug- 1108

gest that while our approach generalizes well to dif- 1109

ferent backbones, the choice of backbone can still 1110

influence the absolute performance levels achieved. 1111

F Case Studies 1112

To illustrate the practical effectiveness of our RIG 1113

approach, we present three representative case stud- 1114

ies in Table 14. These examples highlight how our 1115

model leverages intention relationships to gener- 1116

ate more contextually relevant recommendations 1117

compared to baseline methods. 1118

F.1 Gaming Setup Completion 1119

In the first case, the user has purchased basic gam- 1120

ing peripherals (mouse, keyboard, and headset). 1121

The baseline model recommends similar gaming 1122

peripherals and accessories without considering 1123

the user’s broader intention. In contrast, our RI- 1124

GRec model identifies the user’s goal of setting 1125

up a complete gaming system and recommends 1126

complementary products that enhance the overall 1127

gaming environment, such as a desk with cable 1128

management and RGB lighting solutions. This 1129

demonstrates how our model captures the concep- 1130

tual relationships between products through the 1131

user’s intentions. 1132

F.2 Baby Care Essentials 1133

The second case shows a user purchasing basic 1134

newborn care items. While the baseline recom- 1135

mends additional hygiene products that are similar 1136
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to those already in the cart, our model recognizes1137

the broader intention of preparing for a newborn’s1138

feeding needs. By identifying the connection be-1139

tween diaper changing and feeding essentials as1140

part of comprehensive baby care, RIGRec suggests1141

complementary products like anti-colic bottles and1142

a bottle warmer that the baseline misses entirely.1143

F.3 Halloween Preparation1144

In the third case, the user is collecting Halloween1145

decorations. The baseline model focuses on recom-1146

mending additional decorative items and costumes.1147

Our model, however, identifies the potential inten-1148

tion of hosting a Halloween party and recommends1149

party-specific items like themed serving trays and1150

snack bowls. This demonstrates how RIGRec’s1151

understanding of intention relationships (decorat-1152

ing for Halloween → hosting a Halloween party)1153

enables it to anticipate future user needs that aren’t1154

explicitly indicated in the current session.1155

F.4 Analysis of Intention Relations1156

Table 15 shows examples of how our model cap-1157

tures key intention relationships that help gener-1158

ate better recommendations. These intention pairs1159

demonstrate the temporal and causal connections1160

our knowledge graph identifies.1161

These cases illustrate how our intention knowl-1162

edge graph helps bridge the gap between observed1163

behaviors and underlying user goals, resulting in1164

recommendations that better address the user’s1165

complete needs rather than simply suggesting sim-1166

ilar products. The ability to identify conceptual1167

relationships between different intentions enables1168

our model to make more contextually appropriate1169

and diverse recommendations.1170
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Figure 5: This figure shows an example annotation question for the quality of session intention generation.

Figure 6: This figure shows an example annotation question for the quality of session intention conceptualization.

Intention 1 Intention 2 Assertion

Relieve discomfort and
soothe itching caused by
haemorrhoids.

Purchase unscented baby
wipes for sensitive skin.

People relieve discomfort and soothe itching caused by
haemorrhoids, and simultaneously, they purchase unscented
baby wipes for sensitive skin.

Make coffee at home. Enjoy a variety of coffee
flavors at home.

People make coffee at home usually after they enjoy a
variety of coffee flavors at home.

Dress up as Lara Croft for
a costume party or event.

Have fun with Halloween-
themed party games.

People dress up as Lara Croft for a costume party or event,
and simultaneously, they have fun with Halloween-themed
party games.

Find a cream that provides
fast and numbing relief
from haemorrhoid symp-
toms.

Use advanced moisture ab-
sorption technology.

People find a cream that provides fast and numbing relief
from haemorrhoid symptoms because they use advanced
moisture absorption technology.

Maintain personal hygiene
and cleanliness.

Purchase a razor handle
and blade refills for men’s
shaving.

People maintain personal hygiene and cleanliness, as a
result, they purchase a razor handle and blade refills for
men’s shaving.

Table 12: This table presents two candidate intentions and related assertions. The assertions provide an interpretive
summary of the relationship between the paired intentions. The templates mapping from triples to assertions are
marked in green.

Model R@5 R@10 R@20 R@50 R@100 N@5 N@10 N@20 N@50 N@100

GRU4Rec 0.2792 0.3469 0.4108 0.4865 0.5346 0.2118 0.2327 0.2499 0.2648 0.2718
RIG-GRU4Rec 0.2923 0.3852 0.4665 0.5562 0.6028 0.2126 0.2367 0.2474 0.2693 0.2746

SASRec 0.3075 0.3964 0.4723 0.5621 0.6159 0.2121 0.2406 0.2598 0.2679 0.2862
RIGRec 0.3342 0.4229 0.5003 0.5863 0.6398 0.2214 0.2503 0.2703 0.2877 0.2957

Table 13: Performance comparison of different backbone architectures with and without our knowledge graph.
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Session History Generated Intentions Baseline Recommendations (SAS-
Rec)

Our Model Recommendations (RI-
GRec)

Wireless Gaming Mouse; RGB
Gaming Keyboard; Gaming Head-
set with Microphone

Set up a complete gaming pe-
ripherals system; Enhance gam-
ing experience with RGB acces-
sories; Improve communication
during multiplayer games

Ergonomic Gaming Chair; Gaming
Mouse Pad; USB Hub; Mechani-
cal Gaming Keyboard; RGB Gaming
Mouse

Gaming Mouse Pad with RGB; Gam-
ing Desk with Cable Management;
Dual Monitor Stand; RGB LED Strip
for Desk; Gaming Controller

Baby Diapers Size 1 (240 Count);
Baby Wipes Unscented; Diaper
Rash Cream; Baby Bottle Sterilizer

Prepare essential baby care items
for a newborn; Maintain baby hy-
giene; Prevent and treat diaper
rash; Ensure safe feeding equip-
ment

Baby Powder; Baby Wipes Sensitive;
Baby Lotion; Baby Shampoo; Diaper
Bag

Baby Bottles Anti-Colic; Bottle Dry-
ing Rack; Changing Pad; Baby Bottle
Brush Set; Bottle Warmer

Pumpkin Carving Kit; Halloween
String Lights; Artificial Spider Web;
Halloween Doorbell with Spooky
Sounds

Decorate home for Halloween;
Create a spooky atmosphere; Pre-
pare for trick-or-treaters; Host a
Halloween party

Halloween Window Decorations; Hal-
loween Candy Bowl; Halloween Mask;
Halloween Costume; Fog Machine

Halloween Door Wreath; Motion-
Activated Halloween Props; Outdoor
Halloween Projector Lights; Hal-
loween Themed Serving Tray; Hal-
loween Party Snack Bowls

Table 14: Case Study: Example Sessions and Recommendations

Initial Intention Related Intention Relation Type

Set up a gaming peripherals system Create an immersive gaming environment Causality
Decorate home for Halloween Host a Halloween party Temporal (Before→After)
Ensure safe feeding equipment Prepare bottles for infant feeding Synchronous
Upgrade PC components Enhance gaming performance Causality
Purchase cooking utensils Prepare homemade meals Temporal (Before→After)

Table 15: Examples of Captured Intention Relations in RIG

Figure 7: This figure shows an example annotation question for the quality of session intention relation classification.
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