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ABSTRACT

Recent advances in the audio language modeling (ALM) domain tackle audio
understanding and text-to-audio generation as separate tasks. Very few studies
attempt to unify these tasks – an essential step toward advanced multimodal rea-
soning. This paper introduces Unified Audio Language Model (UALM), which
aims to unify audio understanding, text-to-audio generation, and multimodal rea-
soning in a single model. To achieve this goal, we first present UALM-Gen, a
text-to-audio language model that directly predicts audio tokens and is compara-
ble to state-of-the-art diffusion-based models. We then demonstrate, using proper
data blending, training recipes, and inference techniques, that our single UALM
model matches the quality of state-of-the-art specialized models in audio under-
standing, text-to-audio generation, and text reasoning. Furthermore, we present
UALM-R1, a multimodal reasoning model that utilizes both text and audio in the
intermediate thinking steps to facilitate complex generation tasks. To our knowl-
edge, this is the first demonstration in audio research of cross-modal generative
reasoning, with its effectiveness confirmed by subjective evaluations. Demo sam-
ples: https://anonymous.4open.science/r/UALM.

1 INTRODUCTION

Figure 1: Humans need understanding, gen-
eration, and reasoning to handle complex
tasks, like composing music.

Human auditory intelligence is characterized by two
fundamental capabilities: perception (understand-
ing) and production (generation). This duality is
not merely conceptual; neuro-scientific evidence re-
veals a profound synergy between these functions,
where impairment in one often corresponds to a
deficit in the other (Liberman et al., 1967; Hickok &
Poeppel, 2007; Rizzolatti & Craighero, 2004). Fur-
thermore, resolving complex acoustic challenges re-
quires a sophisticated reasoning process that is in-
herently multimodal (McGurk & MacDonald, 1976;
Leman, 2007; Denes & Pinson, 1993; Liberman &
Mattingly, 1985). This cognitive loop, which of-
ten transcends purely textual representation, is ex-
emplified by a music composer who iteratively cre-
ates a piece (generation), critically listens to it (un-
derstanding), and refines it (self-reflection) (Hallam
et al., 2016). This human paradigm of tightly inte-
grating understanding, generation, and reasoning motivates our work and suggests that unifying
these three pillars is a crucial step toward advanced and general audio intelligence.

However, realizing the vision of unified audio intelligence faces significant challenges rooted in
the prevailing research landscape. First, prior works predominantly tackled audio understanding
and text-to-audio generation as separate tasks. This gap is further entrenched by a divergence in
modeling paradigms: understanding tasks are mainly addressed with auto-regressive large language
models (Goel et al., 2025; Xu et al., 2025), while state-of-the-art generation models are mostly based
on diffusion models (Lee et al., 2024; Fei et al., 2024; Valle et al., 2025). Second, reasoning within
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the audio domain remains highly under-explored. Current reasoning studies are confined to the text-
only reasoning trajectory in service of audio understanding tasks (Xie et al., 2025; Diao et al., 2025;
Goel et al., 2025; Rouditchenko et al., 2025). However, it is as important to have the ability to reason
for guided generation or problem solving that requires a multimodal thinking process. In this work,
we aim to close this gap and present the Unified Audio Language Model (UALM) for supporting
audio understanding, text-to-audio generation, and multimodal reasoning concurrently in a unified
manner: UALM handles all tasks via a single language model and is capable of reasoning through an
interleaved and flexible understanding-generation synergy, a mechanism central to human creativity.

The first challenge is to achieve high-quality text-to-audio via a language model. Prior diffusion-
based text-to-audio models (Evans et al., 2024; Lee et al., 2024; Fei et al., 2024) outperform autore-
gressive models (Yang et al., 2023; Copet et al., 2024) in quality, potentially due to better inductive
bias (Vastola, 2025) and data efficiency (Prabhudesai et al., 2025). We discover several important
findings for successful text-to-audio generation via a decoder-only language model: (i) in terms of
data scaling, we need an order of magnitude more audio data than diffusion-based models; (ii) we
show that training and sampling with classifier-free guidance (Ho & Salimans, 2022) – a technique
widely used in diffusion models but rarely in multimodal language models – is critical to high-
quality generation in our model; (iii) we find a versatile codec (Ye et al., 2025) suitable for audio
token generation, and it is crucial to train and infer audio tokens with the delay pattern (Copet et al.,
2024) for efficiency; (iv) we find that applying a self-adaptation stage followed by direct preference
optimization (DPO) (Rafailov et al., 2023) can further improve our audio generation quality and
aesthetics. With these techniques, we introduce UALM-Gen for text-to-audio generation, and ex-
periments confirm that UALM-Gen achieves quality comparable to frontier diffusion-based models.

The second challenge is to unify all three tasks in a single language model. While there are
several unified generation and understanding models in the vision or speech domains (Wu et al.,
2024; Team, 2024; Tian et al., 2025a), in our preliminary experiments we find their recipes do not
directly apply to the broader audio domain, and it is hard to balance between different tasks. To
tackle these challenges, we (i) carefully design the data blending ratios and up-weight generation
data due to its slower convergence, and (ii) apply a modality alignment stage to warm up the MLP
adapter layers and all token embeddings before unfreezing the full language model backbone. With
these, we present a single UALM that is comparable to state-of-the-art specialized models in each
of the three domains: text problem solving, audio understanding, and text-to-audio generation.

The third challenge is to achieve generative multimodal reasoning beyond the text domain.
The formal definition, training data, and training recipes for reasoning in audio generation are not
well-defined yet. This work takes the first attempt toward this challenging task by investigating three
specific steps. (i) We first introduce rich captions – structured and comprehensive descriptions of
audio – as an intermediate blueprint for generation. (ii) We then enable the model to chat with
the user to consolidate all details for generation. (iii) We further guide the model to understand
and critique its self-generated content, and produce an improved follow-up generation. To achieve
these abilities, we present a principled data curation and training recipe, and introduce UALM-
R1. Experiments show reasoning in generation improves controllability towards nuanced prompts.
To our knowledge, UALM-R1 is one of the earliest works to achieve audio reasoning with the
multimodal thinking trajectory beyond the text-only domain.

In summary, this work presents the following contributions toward general audio intelligence. (i) We
present UALM-Gen, an LLM that predicts audio tokens and achieves state-of-the-art text-to-audio
generation quality (§2.2). (ii) We introduce UALM, a single LLM that unifies audio understanding,
text-to-audio generation, and text-only tasks. UALM achieves competitive results across all three
domains (§2.3) (iii) We demonstrate UALM-R1, a reasoning model focused on multimodal reason-
ing beyond the text domain. UALM-R1 unifies reasoning across understanding and generation tasks
and demonstrates better controllability (§2.4). (iv) We present practically effective data strategies,
training recipes, and inference techniques to enable unified audio language modeling with ablations.

2 UNIFIED AUDIO LANGUAGE MODEL (UALM)

2.1 ARCHITECTURE

The architecture of UALM is presented in Fig.2, which extends a pre-trained decoder-only text LLM
with audio inputs and outputs.

2
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Audio Tokens (delay pattern)

Enhancement VAE16kHz Mono 48kHz Stereo

    →

Always trainable

Pre-trained and frozen
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    →
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(24.3B)

33.1%
(29.0B)
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(39.4M)
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(59.0M)
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# Samples

Figure 2: UALM architecture overview and the multimodal pre-training data blending ratios.

Audio Input and Output: We adopt the well-established Encoder-Adapter-LLM architecture (Liu
et al., 2023b; Goel et al., 2025) for audio input, which connects the modules with continuous rep-
resentations and avoids the input information loss caused by discrete tokenization. We adopt the
acoustic encoder from Goel et al. (2025) for audio input, which operates at 25Hz frame rate and a
sliding window chunk size of 30 seconds. The adapter is a single-layer MLP.

Audio output is achieved by predicting discrete audio codec tokens, a common practice adopted by
previous works (Tian et al., 2025a; Copet et al., 2024; Yuan et al., 2025). We use X-codec (Ye et al.,
2025) which operates at 50Hz frame rate. Each frame is discretized via residual vector quantization
(RVQ) (Zeghidour et al., 2021) producing 8 tokens per frame. We employ the delay pattern (Copet
et al., 2024) for intra-frame auto-regression of RVQ, a technique proven effective in prior audio
generation research (Yang et al., 2023). See Appendix B.1 for details of RVQ and the delay pattern.

Both the acoustic encoder’s input and the audio codec decoder’s output operate at monophonic
16kHz waveform. We additionally introduce an enhancement VAE module to improve the output
waveform to 48kHz stereo with better perceptual quality (Appendix B.2).

Initialization: UALM is initialized from Qwen2.5-7B (Yang et al., 2024), a text LLM with reason-
ing capabilities. We extend its vocabulary to accommodate additional audio tokens from the audio
codec. The additional audio embeddings are randomly initialized together with the MLP adapter.

Implementation Details: In all training stages, we only compute the loss over the model out-
put tokens, which could be either in text or audio domains. We consider that one audio frame is
equivalently important to one text token1. Sequence packing (Krell et al., 2021) is crucial during
pre-training to accommodate interleaved samples of varying lengths and target modalities, thereby
avoiding skewed sample and/or length distributions within a mini-batch and stabilizing training.

2.2 UALM-GEN: LANGUAGE MODEL-BASED AUDIO GENERATION

Using an auto-regressive LM for audio understanding (Goel et al., 2025) and text reasoning (Liu
et al., 2024c; Bercovich et al., 2025) has been well explored in prior works. However, LM-based
text-to-audio generation, although proven feasible (Yang et al., 2023; Copet et al., 2024), is empir-
ically found to be inferior to the diffusion-based counterparts (Evans et al., 2024; Lee et al., 2024).
This section builds UALM-Gen, which demonstrates that the LM paradigm is simple, scalable, and
achieves frontier results for audio generation. We build UALM-Gen with 1.5B parameters, with its
weights initialized from Qwen2.5-1.5B.

Removal of External Text Encoder for Caption Embedding: For both LM and diffusion ap-
proaches, A prevalent practice in audio generation (Kreuk et al., 2022; Copet et al., 2024; Lee et al.,
2024; Hung et al., 2024) is to cross-attend the caption embedding from an external text encoder (e.g.,
T5 (Xue et al., 2022)), which is not compatible with our architecture in Section 2.1. For the first
time, we show that LM-based audio generation can process text prompts as standard BPE tokens by
initializing from a pre-trained text LLM.

1Since each audio frame contains 8 tokens, we scale the loss of each audio token by 1/8.
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Enrichment
(500k)

Dialogue
(250k)

UALM SFT-1 DPO-1 SFT-2 UALM-R1

Audio & Rich
Caption
(250k)

DPO Pairs
(60k)

Sampling & 
Selection

(CLAP & AES)

Sampling &
Critique 

Generation

Self-
Reflection

(60k)
DPO Pairs

(20k)

Sampling & 
Selection

(External Judge)

User Prompt 
Generation

Keywords: 
Brass band music, Percussion.

Layout: 
Brass band music comes first, 
followed by percussion.

Description: 
Brass band music: lively brass 
band playing an upbeat, rhythmic 
melody. The music will feature 
prominent trumpets and 
trombones.
Percussion: likely a drum kit, 
providing a steady, driving beat.

Figure 3: Rich caption example (left) and post-training workflow (right).

Data Scaling: Our investigation reveals that LM-based audio generation needs significantly more
data than diffusion-based methods. While previous diffusion models have achieved strong results
on relatively small data volumes (often <2M samples or <4k hours (Lee et al., 2024)), we found that
the LM-based approach cannot reach competitive quality at a similar data scale. We therefore scaled
our training data volume up to 30M samples (approx. 80k hours and 17B tokens), a crucial step that
enabled UALM-Gen to match the result of frontier diffusion-based counterparts.

Classifier-Free Guidance (CFG): CFG (Ho & Salimans, 2022) is a widely used inference-time
technique in generative models that enhances instruction following, which generates the sequence
y1:T based on an interpolation between the conditional and unconditional distribution:

πCFG
θ (yt|y1:t−1, x) = λ · πθ(yt|y1:t−1, x) + (1− λ) · πθ(yt|y1:t−1, ∅), (1)

where λ ≥ 1 is the CFG hyper-parameter and ∅ means null condition. Consistent with findings from
previous LM (Kreuk et al., 2022; Copet et al., 2024; Hussain et al., 2025) and diffusion models (Lee
et al., 2024; Hung et al., 2024), we show that CFG is also an important component for improving
the quality of LM-based audio generation.

Direct Preference Optimization (DPO): After the base model is trained with cross-entropy loss,
we further conduct DPO training. DPO (Rafailov et al., 2023) is an offline reinforcement learning
algorithm, first applied in text models (Rafailov et al., 2023) and later to audio generation in diffusion
(Hung et al., 2024) and LMs (Hussain et al., 2025; Tian et al., 2025b). It optimizes a model using a
preference pair of winning and losing samples (yw, yl) for a given prompt x:

LDPO(πθ) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
, (2)

where πθ is the trained model; πref is the reference model initialized from πθ and frozen. σ is sigmoid
function and β is a hyper-parameter.

To obtain such preference pairs, we generate 10 samples for each prompt and select the winning
and losing samples with a judge model. As the base model is trained on natural audio, we find it
necessary to first adapt the model to those self-generated samples using cross-entropy loss. It is also
found that the cross-entropy regularizer helps to reduce the divergence (i.e., πθ(yw|x)− πref(yw|x))
from the base model.

2.3 UALM: UNIFIED AUDIO UNDERSTANDING AND GENERATION PRE-TRAINING

Having established a strong foundation for single-task audio generation, we proceed to the continued
multimodal pre-training of UALM from the text LLM. This phase is to simultaneously cultivate ca-
pabilities in audio understanding, audio generation, and text-based reasoning within a single model.

Pre-training Data Mixture: To achieve this unification, we create a comprehensive data mixture
that fuses datasets from all three target domains. Audio understanding and generation data are
combined with text-only reasoning data, enabling the model to develop a shared representational
space. The blending ratios of our data mixture are in Fig.2.

Modality Alignment Stage: While our single-task generation model could be trained effectively
without a specific curriculum, we found that a dedicated modality alignment stage is critical for the
success of our unified pre-training, an observation consistent with prior work (Wu et al., 2025b).
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Generate a brass band music with percussion
[Rich Caption]

<Generated Audio>

I need a piece of music for a parade scene. It 
should be celebratory, capturing the 
excitement of a street performance.

Okey, to express that scene, I’ll 
include brass band music with 

trumpets and trombones. I’ll also add 
percussion.

[Rich Caption]
<Generated Audio>

Generate music that contains Brass band 
music followed by percussion.

Ok! What kind of brass band music 
do you want?

That should be lively, containing feature 
prominent trumpets and trombones.

Cool! Any requirement for the 
percussion?

It sounds like a drum kit, with a steady and 
driving beat. Now start the generation.

[Rich Caption]
<Generated Audio>

Generate music that contains Brass band 
music followed by percussion. I want to hear 
trumpets and trombones in brass band 
music.

(the plan) [Rich Caption]
<Generated Audio 1>

(the result) [Rich Caption] 
(critique) The brass band music and 

percussion is heard concurrently. To correct, 
I need to generate the brass band music first 

and then percussion.
<Generated Audio 2>

a. Enrichment b. Dialogue c. Self-Reflection

Figure 4: Demos: audio generation reasoning and joint understanding-generation reasoning.

In this initial phase, we freeze the Transformer body and acoustic encoder, updating only the MLP
adapter and audio embedding tables using a small number of steps but a large batch size. After this
stage, we unfreeze all parameters for all follow-up training stages, except the acoustic encoder.

2.4 UALM-R1: POST-TRAINING FOR MULTIMODAL REASONING

To unlock more advanced cognitive abilities, we advance the pre-trained UALM to its reasoning-
enhanced version, UALM-R1, through a dedicated post-training procedure. This stage introduces a
multimodal Chain-of-Thought (CoT) paradigm where the model generates intermediate multimodal
reasoning steps, in audio and/or text, to deconstruct a user’s request, formulate a detailed generation
plan, and even critique its own output before producing the final audio.

We note that the reasoning capabilities for audio understanding have already been established during
pre-training2. This text-based reasoning has already been addressed in prior works (Wu et al., 2025c)
and is not a contribution of this work. Thus, our primary focus in post-training shifts to pioneer
reasoning for audio generation. This is achieved through a two-stage interleaved SFT-DPO recipe,
which instills three novel reasoning patterns: enrichment, dialogue, and self-reflection.

2.4.1 MULTIMODAL REASONING FOR AUDIO GENERATION

Central to our approach is the concept of a rich caption—a structured and highly detailed textual
description that serves as an intermediate blueprint for audio generation. Unlike conventional short
prompts, a rich caption provides a comprehensive plan by specifying: Keywords: A list of the
core acoustic events. Layout: The temporal arrangement of these events. Description: A detailed
characterization of each event’s acoustic properties. An example of the rich caption is in Fig.3.

This detailed intermediate representation provides nuanced guidance that is critical for high-fidelity
and controllable audio synthesis. The following reasoning capabilities are designed to bridge the
gap from simple and diverse user queries to this rich, machine-usable format.

Enrichment: User prompts are often abstract, short, and underspecified. The enrichment capability
allows UALM-R1 to autonomously translate a user prompt into a detailed rich caption. The model
faithfully incorporates all user-provided details while inferring and adding necessary specifics (e.g.,
environmental context, instrument textures) to create a complete acoustic scene. We further support
the abstract user prompt that describes a scenario, a feeling, or a genre, rather than the exact audio
events. For these imaginary prompts, the model would enrich with all suitable audio events and the
corresponding details automatically. Examples are in Fig.4.a.

Dialogue: As an interactive alternative to enrichment, the model can engage in a multi-turn dialogue
to collaboratively construct the rich caption. It actively queries the user for specific details, guiding
them to provide the information needed for a successful generation, thereby resolving ambiguity
before synthesis begins. Examples are in Fig.4.b.

Self-Reflection: This represents the most advanced form of reasoning, creating a full joint
understanding-generation synergy. The process unfolds as follows: Generate: Following enrich-
ment or dialogue paradigm, the model first generates a rich caption and subsequently an audio clip

2The AF3 (Goel et al., 2025) data mixture for audio understanding contains massive reasoning samples for
audio understanding. To preserve this capability during post-training, we uniformly sample the AF3 mixture to
account for 20% volume during each SFT stage.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 5: Statistics of UALM-Gen model. (a) The CLAP scores (CL) with various CFG λ; (b)
The CLAP scores (CL) with various training data volume down-weighting; (c) the DPO loss w/o
adaptation on synthetic data before DPO training; (d) the divergence πθ(yw|x) − πref(yw|x) from
the reference model w/o CE loss added in DPO training.

based on a user prompt. Understand: It then "listens" to its own output and generates another new
rich caption describing what it actually produced. Critique & Refine: The model compares the two
rich captions (the plan vs. the result), identifies discrepancies or flaws in a textual critique, and uses
this feedback to generate a second, improved audio clip. This generate-understand-critique-refine
cycle, also known as self-reflection Liu et al. (2024a), mimics human creative iteration and marks a
significant step towards higher-level intelligence in multimodal models. Examples are in Fig.4.c.

2.4.2 TWO-STAGE SFT-DPO TRAINING RECIPE

UALM-R1’s reasoning capabilities are instilled via two sequential rounds of interleaved SFT-DPO
curriculum.

Round 1: Building Foundational Generation Reasoning. This round focuses on teaching the
enrichment and dialogue capabilities. We begin with 250k internal rich caption-audio pairs. For
SFT, a text LLM is used to synthetically generate diverse user prompts and conversational dialogues
that correspond to these rich captions, resulting in a 750k-sample training set for the SFT-1 model.
We then apply DPO to a 250k subset of these samples to create the DPO-1 model: we only use
the keywords from the rich caption to compute CLAP scores for preference ranking due to context
length limitations of existing CLAP models. We obtain around 60k DPO pairs after threshold-based
filtering, as in §3.2.

Round 2: Enabling Self-Reflection. The second round introduces the self-reflection capability. We
create a new dataset from 60k samples from the first SFT round. For each sample, we use the DPO-1
model to generate the initial audio, then curate a rich caption for it. A text LLM then generates a
textual critique comparing the planned and actual rich captions, highlighting the most salient flaw
and suggesting a fix. This self-reflection data is combined with the first-round SFT data to train
the SFT-2 model. Finally, we perform a targeted DPO step on 20k samples (with and without
self-reflection). For preference selection, we choose the sample that better adheres to the detailed
instructions in the original rich caption. This final optimization step yields the UALM-R1 model.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Data: Starting from a text LLM, our continued pre-training data is a mixture designed to support
audio understanding, generation, and text-only reasoning. For all audio understanding tasks, our
dataset is identical to that used by AF3 Goel et al. (2025), which already contains reasoning con-
tent. We curate a large-scale audio generation dataset of 30M text-audio pairs with a length of 10s
each. Notably, the majority of the text captions are pseudo-labels generated by open-source audio
captioning models (Xu et al., 2025; Ghosh et al., 2025; Goel et al., 2025). The convergence of audio
generation is slow (§2.3) and its data is comparatively small in volume, so we empirically up-sample
it by 2x. To preserve and enhance the model’s native text reasoning capabilities, we integrated 21
million samples of math and code reasoning data from Liu et al. (2024c) and Bercovich et al. (2025).
An additional 3 million in-house text samples were included to bolster commonsense knowledge.
Other data usage in post-training is described in §3.2 and §2.4.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Audio Generation results of UALM-Gen (§2.2) and UALM (§2.3) compared to LM-based
and diffusion-based baselines. 5-scale subjective scores (OVL, REL) 95% CI ≈ 0.10. Bold indicates
best, underline second-best.

Model SongDescriber AudioCaps
FD↓ KL↓ IS↑ CL↑ AES↑ OVL↑ REL↑ FD↓ KL↓ IS↑ CL↑ AES↑ OVL↑ REL↑

Ground Truth 0 0 1.88 0.48 7.20 4.10 4.03 0 0 13.49 0.62 4.50 3.91 3.96
MusicGen-stereo-L (Copet et al., 2024) 228.94 0.84 1.69 0.36 6.64 3.91 3.97 — — — — — — —
AudioGen-M (Kreuk et al., 2022) — — — — — — — 149.70 1.35 12.26 0.57 4.21 3.83 3.89
MAGNeT-M (Ziv et al., 2024) 191.49 0.70 1.47 0.41 6.65 3.84 3.86 149.68 1.86 7.73 0.46 4.08 3.68 3.72
AudioLDM2-L (Liu et al., 2024b) 331.73 0.68 1.96 0.45 6.31 3.83 3.80 121.63 1.72 8.59 0.52 4.31 3.85 3.75
TangoFlux (Hung et al., 2024) 235.61 0.71 1.70 0.41 6.46 3.80 3.89 103.04 1.02 15.13 0.65 4.42 3.72 3.93
Stable Audio Open (Evans et al., 2024) 138.58 1.01 2.25 0.42 6.37 3.92 3.97 100.93 2.22 11.80 0.35 4.47 3.81 3.80
ETTA (Lee et al., 2024) 95.66 0.80 2.15 0.44 6.71 3.92 3.93 80.13 1.22 14.36 0.54 4.51 3.73 3.94
UALM-Gen (Ours) 74.43 0.63 1.87 0.54 7.36 4.07 3.96 75.14 1.19 14.52 0.65 5.08 3.79 3.92
UALM (Ours) 83.69 0.59 2.00 0.54 7.28 3.97 3.99 65.87 1.35 15.62 0.62 4.92 3.89 3.86

Optimization and Inference: The model was pre-trained on a compute cluster of 16 nodes, each
equipped with 8 NVIDIA A100 80GB GPUs. We utilized a per-GPU batch size of 5,000 tokens and
trained the model for a total of 660,000 steps. We always use greedy search for text generation. For
audio generation, we use top-k sampling. Our detailed configurations are in Appendix C.1.

Objective Evaluation: For audio generation, we evaluate our model on the AudioCaps (Kim et al.,
2019) and SongDescriber (Manco et al., 2023) test sets. We follow standard evaluation protocols
(Evans et al., 2024; Lee et al., 2024) : (1) Frechet distance (FD) using OpenL3 (Cramer et al., 2019);
(2) Kullback–Leibler divergence (KL) using PaSST (Koutini et al., 2022); (3) Inception Score (IS)
using PANNs (Kong et al., 2020); (4) CLAP scores (CL) using LAION-CLAP (Wu et al., 2023);
(5) AudioBox-Aesthetic score (AES) (Tjandra et al., 2025) using an average of (CE, CU, PC, PQ).
For audio understanding, we perform evaluations on MMAU(Sakshi et al., 2024) and MMAR (Ma
et al., 2025). For text-only evaluations, we always use the "reasoning mode" and test its zero-shot
accuracy on MMLU (Hendrycks et al., 2020), GSM8K (Cobbe et al., 2021), and HumanEval (Chen
et al., 2021), which corresponds to common sense, math, and code capability, respectively.

Subjective Evaluation: For audio generation, we additionally conduct subjective human evalua-
tions of 5-scale mean opinion scores using mechanical turk, following established practices (Kreuk
et al., 2022; Copet et al., 2024; Liu et al., 2023a; Lee et al., 2024): (1) OVL: an overall quality of
sample without seeing captions; (2) REL: a relevance of the sample to the provided caption.

3.2 LANGUAGE MODEL-BASED TEXT-TO-AUDIO GENERATION RESULTS

With the base UALM-Gen model trained with cross-entropy loss, we first show that CFG is neces-
sary for model inference. As suggested in Fig.5.a, audio generation without CFG encounters severe
degradation. As defined in §2.2, we find the weight λ = 3.0 for CFG is optimal. For top-k sampling,
we constantly use k = 20 without temperature rescaling.

Secondly, in Fig.5.b, we show the impact of data scaling where we reduce the data volume down
to 1/32 of its full size (30M). The result indicates that data scaling is necessary for the success of
the LM-based approach. Note that overfitting is clearly observed with 1/32 data down-sampling,
where the data volume is comparable to prior state-of-the-art diffusion model ETTA (Lee et al.,
2024) (1.0M vs. 1.3M). Our finding aligns with Prabhudesai et al. (2025), comparing scaling laws
for auto-regressive models trained with cross-entropy and diffusion-based models.

Thirdly, we conduct DPO on the UALM-Gen base model. We sample 250k prompts uniformly from
the pre-training data and generate 10 audio clips for each prompt. We then select the preference
pairs using CL and (CE, CU, PC, PQ) metrics3, which ultimately yields 50k pairs. As the base
UALM-Gen is trained on real audio, it is found necessary to first adapt it to synthetic audio by
fine-tuning on the winning examples (typically 1k steps). Without adaptation, the DPO loss would
spike in the early training phase before convergence as in Fig.5.c. DPO training causes divergence
from the base model, which could be alleviated by enforcing the cross-entropy loss over the winning
samples, together with the DPO loss, as in Fig.5.d.

3For CL, we enforce the winning-losing gap of 0.15; for (CE, CU, PC, PQ), we enforce that gap to be all
positive. We only select one pair for each prompt.
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Table 2: Audio understanding results of UALM (§2.3) versus open-sourced understanding models.

Model MMAU-v05.15.25 MMAR
Sound↑ Music↑ Speech↑ Mean↑ Mean↑

GAMA-IT (Ghosh et al., 2024) 32.7 22.4 11.6 22.2 17.4
SALMONN (Tang et al., 2024) 42.1 37.8 28.8 36.2 33.2
Qwen2-Audio-Instruct (Chu et al., 2024) 61.2 55.7 55.4 57.4 30.0
DeSTA2.5-Audio (Lu et al., 2025) 66.8 57.1 71.9 65.2 —
Audio Reasoner (Xie et al., 2025) 67.3 61.5 62.5 63.8 36.8
Step-Audio-2 (Wu et al., 2025a) 80.6 68.2 72.8 73.9 —
Qwen2.5-Omni (Xu et al., 2025) 76.8 67.3 68.9 71.0 56.7
Audio Flamingo 3 (Goel et al., 2025) 76.7 73.3 64.9 72.3 58.5
UALM (Ours) 77.9 77.6 66.7 74.1 55.2

Table 3: Text capability of prior unified multimodal language models (in the vision domain) and our
UALM. Our model is initialized from Qwen2.5-7B.

Model MMLU↑ GSM8K↑ HumanEval↑ Mean↑
OpusLM Tian et al. (2025a) 52.5 - - -
Liquid-7B (Wu et al., 2024) 56.0 - - -
Chameleon-7B (Team, 2024) 52.1 - - -
Qwen2.5-7B-Instuct (Yang et al., 2024) 74.5 91.6 84.8 83.6
UALM (Ours) 71.6 92.1 81.1 81.6

Ultimately, Tab. 1 shows that UALM-Gen outperforms previous LM-based approaches (Kreuk et al.,
2022; Copet et al., 2024) and achieves competitive results to leading diffusion models, including
TangoFlux (Hung et al., 2024), Stable Audio Open (Evans et al., 2024), and ETTA (Lee et al.,
2024). Techniques introduced in §2.2 are further ablated in Tab.8.

3.3 MULTIMODAL PRE-TRAINING RESULTS

Figure 6: Audio understanding (a) and audio gen-
eration (b) capabilities along training steps

We demonstrate that the pre-trained base model
UALM matches the quality of frontier special-
ists in text-to-audio generation, audio under-
standing, and text-based reasoning. The Au-
dio generation capability is reported in Tab.1.
Like UALM-Gen, the UALM outperforms or
matches the quality of prior diffusion models.
The audio understanding capability is reported
in Tab.2. The results show that the accuracy
of our model can match prior state-of-the-art
open-source models like Audio Flamingo 3 and
Qwen2.5-Omni. Finally, as presented in Tab 3,
our UALM only encounters marginal degrada-
tion on MMLU, GSM8K, and HumanEval, compared with Qwen2.5-7B-Instruct, which proves our
model maintains strong common sense and text reasoning ability. Compared with the prior unified
model in vision Team (2024); Wu et al. (2024) and pure speech (Tian et al., 2025a), our text-only
metrics show a clear advantage. A noticeable observation during this training is that audio under-
standing converges much faster than audio generation, which is evident in Fig.6.

3.4 MULTIMODAL POST-TRAINING ANALYSIS

As the generative reasoning for audio models is still nascent, our evaluation mostly relies on qual-
itative analysis and subjective evaluation. We show that, with reasoning enabled, the UALM-R1 is
superior than the base UALM.

Qualitative Analysis: Experimentally, our qualitative analysis shows that UALM-R1 excels in three
key areas, compared with the base UALM. First, it demonstrates superior detail controllability,
faithfully rendering nuanced acoustic details from text prompts that previous models find challeng-
ing. The model can discern concepts like number (a dog barks vs. dogs bark), spatial properties
(in the far distance), temporal sequencing (event A follows event B), and audio texture (distorted
audio)—a capability we attribute to our use of rich captions. Second, the model exhibits a sophis-
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Table 4: 5-scale subjective score of UALM-R1 on reasoning-oriented generation with 95% CI.

Model Enrichment Dialogue Self-reflection
UALM 3.77 ± 0.11 3.92 ± 0.11 3.82 ± 0.11
UALM-R1 4.01 ± 0.10 4.02 ± 0.10 4.04 ± 0.09

ticated understanding of human intention. It successfully supports human-centric interactions like
imaginary content enrichment and dialogue and subsequently generates appropriate intermediate
rich captions. This is attributed to the base UALM’s strong text capability, which connects its broad
textual knowledge to the audio generation domain. Third, UALM-R1 creates a synergy between
understanding and generation. The model can analyze and criticize its own generated audio and
leverage that critique for iterative refinement, an outcome of fine-tuning the base UALM for strong
audio understanding. These observations are already beyond the existing evaluation protocols for
audio generation. We thus demonstrate these experimental observations in our demo webpage.

Subjective Evaluation: Table 4 shows a 5-scale subjective evaluation for scenarios discussed in
Section 2.4 (detail in Appendix C.3). The results demonstrate that generation-oriented reasoning
from audio understanding and text capabilities is highly effective in advancing audio production.

4 RELATED WORK

Language Model-Based Audio Generation: Modern text-to-audio generation models can be
broadly classified as diffusion models (Ziv et al., 2024; Liu et al., 2024b; Hung et al., 2024; Lee
et al., 2024), auto-regressive language model (LM) approaches (Yang et al., 2023; Copet et al.,
2024), and their hybrids Lam et al. (2024). Recently, diffusion-based models are shown to have
better generation quality Hung et al. (2024); Lee et al. (2024). However, we demonstrate that with
proper data scaling and a carefully designed training recipe (see §2.2), an LLM-based architecture
can outperform diffusion models on this task. Furthermore, while conventional text-to-audio mod-
els (including both diffusion and LM approaches) often take contextual or contrastive embeddings
(Chung et al., 2024; Wu et al., 2023) of the caption as cross-attention inputs, we show that a built-in
BPE text tokenizer in a decoder-only LLM can achieve similar or better results.

Unified Audio Understanding and Generation: There are many audio foundation models spe-
cialized in understanding Kong et al. (2024); Goel et al. (2025); Chu et al. (2023); Xu et al. (2025)
or generation Yang et al. (2023); Liu et al. (2024b); Lee et al. (2024); Hung et al. (2024). To our
knowledge, UALM is the first audio language model that successfully unifies these distinct capa-
bilities within a single framework. Works with similar motivation have been explored in the vision
and pure speech fields, but they often suffer from severe degradation on text-only tasks (Wu et al.,
2024; Team, 2024; Tian et al., 2025a; Hori et al., 2019; Tjandra et al., 2017). In contrast, UALM
maintains high text reasoning capabilities, showing minimal degradation on text-only benchmarks
during multimodal pre-training.

Reasoning in Audio: reasoning in existing audio language models is mostly for understanding
and therefore confined to text-centric analysis of audio inputs, where the model connects acoustic
cues to its pre-existing world knowledge Xie et al. (2025); Diao et al. (2025); Goel et al. (2025);
Rouditchenko et al. (2025); Deshmukh et al. (2025); Wu et al. (2025c). Reasoning in the generative
domain is significantly under-explored. MusiCoT (Lam et al., 2025) is the most relevant recent work,
which implements a chain-of-thought (CoT) process for music generation by predicting intermediate
CLAP latents. By contrast, UALM-R1 carves out a new frontier by universally applying reasoning
to understanding and generation – either separately or jointly. We demonstrate that reinforcement
learning explored in prior understanding works Diao et al. (2025); Rouditchenko et al. (2025) are
also effective for reasoning beyond the text domain.

5 CONCLUSION

We introduce the Unified Audio Language Model (UALM), a single model that unifies audio under-
standing, text-to-audio generation, and text problem solving. We further present UALM-R1, which
pioneers the understanding-generation synergy through novel multimodal reasoning capabilities –
such as iterative refinement of its own outputs – a well-known behavior of high-level intelligence.
This work marks a significant step towards more controllable, intelligent, and holistic audio AI.
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REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. Our model architecture is detailed in
§2.1 and Fig. 2. We thoroughly document our data and training procedures, from the pre-training
data mixture and recipes (§2.3, §3.1) to the post-training curriculum for UALM-R1 (§2.4). For full
transparency, all training and inference hyper-parameters are provided in Appendix C.1, and our
evaluation setup is explained in §3.1. Upon publication, we plan to release our model weights and
associated code to facilitate verification and further research.

ETHICS STATEMENT

This research adheres to the ICLR Code of Ethics. Our model was trained on large-scale datasets,
including standard benchmarks and audio with synthetically generated captions. We acknowledge
that generative audio models carry a risk of misuse for creating misleading content. While this work
is intended for creative and assistive applications, we encourage responsible use. The training data
may reflect societal biases, which the model could perpetuate. We transparently note the use of
LLMs for data curation and writing assistance in Appendix A.
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A THE USE OF LLMS

We use LLMs to assist the writing of the paper in terms of: (1) grammar check, and (2) occasionally
choosing the best word in writing. We also use LLMs to search relevant papers to make sure we cite
all related work properly. We use LLMs as part of text data curation in our research, in a similar
way as many other LLM-related research papers.

B TECHNICAL DETAILS

B.1 RESIDUAL VECTOR QUANTIZATION AND DELAY PATTERN

For an audio frame x ∈ RD, RVQ discretizes x into multiple discrete tokens by selecting one
codebook per stage to successively quantize the residual. Concretely:

x̂ =

nq∑
n=1

cn,in , in = argmin
k

∥rn−1 − cn,k∥, r0 = x, rn = rn−1 − cn,in .

Here nq is the number of RVQ stages, cn,k ∈ RD is the k-th codebook at stage n, in is the selected
index, rn the post-stage residual, and x̂ the reconstructed frame. For each cn,k, we assign a unique
discrete index An,k ∈ N to represent it.

Flattening all nq tokens per frame into a single sequence yields prohibitively long token streams
(T × nq steps for T frames). To reduce effective audio sequence length, MusicGen (Copet et al.,
2024) introduced the delay pattern: a single autoregressive Transformer predicts all nq codebooks
in parallel at each step, with one LM head per codebook. As shown in Figure 7, the n-th codebook
at frame t – An,t – is predicted at sequence step s = t + (n − 1), i.e. with a fixed temporal
offset. Equivalently, at sequence step s, the LM predicts nq tokens {A1,s, A2,s−1, · · · , Anq,s+nq−1}
in parallel. The delay pattern allows the LM to capture dependencies across RVQ tokens while
maintaining the required autoregressive sampling steps (T + nq − 1) close to the number of audio
frames (T ).

In detail, the X-Codec (Ye et al., 2025) uses nq = 8 and 50Hz frame rate (T = 50 × seconds).
Therefore, for a 10-second audio, there are 4000 tokens to be predicted in 507 sequence steps.

Figure 7: Illustration of delay pattern of RVQ audio tokens A. An,k is the k-th audio token at n-th
RVQ layer, 1 ≤ n ≤ nq , 1 ≤ k ≤ T . At step s, the LM predicts {A1,s, A2,s−1, · · · , Anq,s+nq−1}
in parallel.

B.2 ENHANCEMENT VAE

UALM operates in 16kHz monophonic audio waveform, following previous works in continuous
encoder (Goel et al., 2025) and discrete codec (Ye et al., 2025). To improve perceptual quality of
generated audio, we attach an enhancement module based on VAE (Kingma & Welling, 2014). It
receives 16kHz mono waveform generated by the audio codec decoder and upsamples into 48kHz
stereo waveform. Note that the input waveform to the enhancement VAE is a lossy version of the
target with codec distortions; the enhancement VAE implicitly learns the joint process of blind audio
restoration, super-sampling, and spatialization.
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The encoder consists of an STFT layer (hop_length=8) that converts the waveform to spectro-
gram, followed by 3 ConvNeXt (Liu et al., 2022)-based downsampling blocks (stride=[4, 4,
5]) with 153M parameters (starting with 512 channels, multiplied by 2x per block) similar to Vocos
(Siuzdak, 2023). Thus, the encoder downsamples the input by 640x producing latents at 25Hz frame
rate. The latent dimension is set to 512. The decoder consists of 5 convolutional upsampling blocks
(stride=[8, 6, 5, 4, 2]) with 489M parameters (starting with 2560 channels) based on
Stable Audio Open (Evans et al., 2024), upsampling the latent by 1920x to generate 48kHz stereo
waveform. All layers use SnakeBeta activation functions (Lee et al., 2023).

The enhancement VAE is trained with a combination of reconstruction, adversarial, and regulariza-
tion losses. Let xin denote the distorted waveform, and xgt the corresponding clean ground-truth
waveform. The encoder E maps xin to a latent distribution qE(z|xin), and the decoder D recon-
structs x̂ = D(z) from a latent sample z ∼ qE . The enhancement VAE is trained with the following
objective:

LVAE = LstereoMRSTFT + Llogmel + Ladv + Lfeat + ζ · LKL, (3)

where each loss term is defined as follows:

• Stereo sum and difference MR-STFT loss (Steinmetz & Reiss, 2020; Steinmetz et al., 2021)

LMRSTFT(x, x̂) =

m∑
i=1

(
∥STFTi(x)− STFTi(x̂)∥F

∥STFTi(x)∥F
+

1

T

∥∥∥ log STFTi(x)
STFTi(x̂)

∥∥∥
1

)
, (4)

LstereoMRSTFT(xgt, x̂) = LMRSTFT(xsum, x̂sum) + LMRSTFT(xdiff, x̂diff), (5)
with xsum = xgt,L + xgt,R and xdiff = xgt,L − xgt,R.

• Multi-scale log-mel L1 loss (Kumar et al., 2023)

Llogmel(xgt, x̂) =

J∑
j=1

∥∥log10(melj(xgt)
)
− log10

(
melj(x̂)

)∥∥
1
, (6)

where melj denotes a mel spectrogram at resolution j.
• Least-squares adversarial loss (Mao et al., 2017) with stereo BigVGAN-v2 discriminator

(Lee et al., 2023)

Ladv(xgt, x̂) =
1
K

K∑
k=1

[
(Dk(xgt)− 1)2 + (Dk(x̂))

2
]
, (7)

where Dk is the k-th discriminator head.
• Feature matching L1 loss (Larsen et al., 2016)

Lfeat(xgt, x̂) =
1

KL

K∑
k=1

L∑
l=1

∥Dl
k(xgt)−Dl

k(x̂)∥1
mean(∥Dl

k(xgt)∥1)
, (8)

where Dl
k(·) is the l-th feature map of discriminator Dk.

• KL divergence regularization

LKL = KL(qE(z|xin) ∥N (0, I)) . (9)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C EXPERIMENTAL DETAILS

C.1 TRAINING AND INFERENCE HYPER-PARAMETERS

Table 5: Pre-Training configurations

Modality Alignment Pre-Training

Batch Size (Token per GPU) 25k 5k
Peak Learning Rate 5e-4 1e-4
Learning Schedule Constant Cosine Decay
Warmup Steps 0 25k
#Steps 1.8k 660k
#GPUs 128 128

Table 6: Post-Training configurations

SFT1 DPO1 SFT2 DPO2

Batch Size (Token per GPU) 5k 3k 5k 3k
Peak Learning Rate 2e-6 2e-7 2e-7 2e-7
Learning Schedule Constant Constant Constant Constant
Warmup Steps 0 0 0 0
#Steps 15k 2k 15k 2k
#GPUs 32 8 32 8
#Samples 750k 60k 850k 20k
DPO β - 0.1 - 0.1
DPO Cross-Entropy Weight - 1.0 - 1.0

Table 7: Inference Configuration

Modality Method Candidate k CFG λ Temperature

Text Greedy Search - - -
Audio Top-k Sampling 20 3.0 1.0
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C.2 AUDIO GENERATION: ABLATION STUDY

Table 8: Ablation study of UALM-Gen and UALM showing the effect of CFG, DPO, and Enhance-
ment VAE.

SongDescriber AudioCaps
Model FD ↓ KL ↓ IS ↑ CL ↑ AES ↑ FD ↓ KL ↓ IS ↑ CL ↑ AES ↑
UALM-Gen-Base (w/o CFG) 232.21 1.06 2.11 0.39 6.51 186.68 3.00 5.46 0.25 4.30
UALM-Gen-Base 217.90 0.84 2.13 0.45 6.70 186.01 1.23 10.86 0.51 4.47

+ DPO 224.72 0.68 1.85 0.51 7.36 214.89 1.16 13.43 0.57 4.99
+ Enhancement VAE (UALM-Gen) 74.43 0.63 1.87 0.54 7.36 75.14 1.19 14.52 0.65 5.08

UALM-Base 212.78 0.73 2.05 0.47 6.82 181.01 1.59 10.48 0.45 4.40
+ DPO 207.82 0.67 1.96 0.52 7.28 196.56 1.25 14.36 0.53 4.87

+ Enhancement VAE (UALM) 83.69 0.59 2.00 0.54 7.28 65.87 1.35 15.62 0.62 4.92

Table 8 shows an ablation study of UALM-Gen and UALM. We note the ablation model without
DPO and the enhancement VAE module using a ‘-Base’ suffix. First, activating CFG significantly
improves prompt adherence measured by CL, along with improving all other objective metrics. Ap-
plying DPO provides further improvements, especially CL and AES. Finally, applying enhancement
VAE gives significant improvements in FD along with overall improvements of other metrics.
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C.3 DETAILS ON SUBJECTIVE EVALUATION OF REASONING-BASED GENERATION

We conducted a 5-scale mean opinion score analysis using Mechanical Turk for three
reasoning-oriented generation scenarios described in Section 2.4. We uniformly curate 20 test
prompts/dialogues for each of the below categories, with instructions for evaluators as follows:

Enrichment tests the model’s ability to interpret creative user requests, where evaluators rated how
well generated audio fulfilled imaginative descriptions (e.g., "I need an audio track for a club scene
- something energetic and modern").

Dialogue evaluates the model’s capacity to handle multi-turn conversations, where users iteratively
refine their audio requirements with an assistant. Evaluators judge whether the final audio matched
the user’s accumulated specifications based on the dialogue.

Self-Reflection checks event correctness, focusing on semantic accuracy, requiring evaluators to
assess whether all specified audio events were present and correctly ordered in the generated output.
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D LIMITATION

Quality Assessment of Synthetic Audio Captions: Our SFT and DPO data curation is based on
synthetic captions. However, even with our best efforts in data curation, there exists certain amount
of hallucination and misalignment between the audio and captions through manual inspections. It re-
mains an open challenge to design quantitative methods at scale to assess the quality of the synthetic
audio captions (especially the rich caption) to build a robust data curation pipeline.

Quality Assessment of Audio Quality: While there are many existing audio quality evaluation
metrics (Lerch et al., 2025), there is still a gap from human perception. The lack of accurate and
layered evaluation of acoustic quality, generation diversity, musical aesthetics and correctness, and
faithfulness limits better RL of multimodal reasoning.
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