

000 SKETCHEVO: LEVERAGING DRAWING DYNAMICS 001 002 FOR ENHANCED IMAGE SYNTHESIS 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

011 Sketching represents humanity’s most intuitive form of visual expression – a uni-
012 versal language that transcends barriers. Although recent diffusion models inte-
013 grate sketches with text, they often regard the complete sketch merely as a static
014 visual constraint, neglecting the human preference information inherently con-
015veyed during the dynamic sketching process. This oversight leads to images that,
016 despite technical adherence to sketches, fail to align with human aesthetic expec-
017 tations. Our framework, SketchEvo, harnesses the dynamic evolution of sketches
018 by capturing the progression from initial strokes to completed drawing. Current
019 preference alignment techniques struggle with sketch-guided generation because
020 the dual constraints of text and sketch create insufficiently different latent sam-
021 ples when using noise perturbations alone. SketchEvo addresses this through two
022 complementary innovations: first, by leveraging sketches at different completion
023 stages to create meaningfully divergent samples for effective aesthetic learning
024 during training; second, through a sequence-guided rollback mechanism that ap-
025 plies these learned preferences during inference by balancing textual semantics
026 with structural guidance. Extensive experiments demonstrate that these comple-
027 mentary approaches enable SketchEvo to deliver improved aesthetic quality while
028 maintaining sketch fidelity, successfully generalizing to incomplete and abstract
029 sketches throughout the drawing process.

030 1 INTRODUCTION 031

032 Sketching is one of humanity’s most intuitive forms of visual communication. The act of drawing
033 – translating mental concepts into physical strokes – naturally encodes rich information not just in
034 the final result, but in the sequential process itself. Recent advances in diffusion models (Ho et al.,
035 2020; Song et al., 2021a; Hu et al., 2024; Song et al., 2021b) have enabled remarkable progress in
036 controllable image generation, with approaches like ControlNet (Zhang et al., 2023), T2I-Adapter
037 (Mou et al., 2024), and VersaGen (Chen et al., 2025) successfully integrating sketch conditions with
038 textual prompts.

039 However, these methods (He et al., 2024; Liu et al., 2024; Li et al., 2024; Qin et al., 2023b; Hu et al.,
040 2023) primarily focus on the final sketch as a static spatial constraint, overlooking the intermediate
041 information of the drawing process. When processing amateur sketches, existing approaches often
042 produce technically correct but aesthetically disappointing results – they satisfy structural constraints
043 (often poor as per amateur sketches) yet fail to capture human intent. This disconnect reveals a
044 deeper problem: existing models don’t understand how humans conceptualize and refine visual
045 ideas through the progressive accumulation of strokes.

046 Our investigation reveals that the core challenge lies in a fundamental misalignment between gen-
047 erated outputs and human aesthetic preferences. While recent preference alignment approaches like
048 DPOK (Fan et al., 2023), DPO (Rafailov et al., 2023), D3PO (Yang et al., 2024), SPO (Liang
049 et al., 2025), and LPO (Zhang et al., 2025) have improved image quality in other contexts, they
050 face a critical obstacle in sketch-guided generation. These methods optimize models by comparing
051 generated variations and adjusting to produce more preferred outputs, but in multimodal sketch-
052 and-text generation, the dual constraints create insufficiently different samples when using conven-
053 tional noise-based variations. These limited variations provide weak training signals that struggle
to capture meaningful aesthetic improvements while preserving sketch details. This creates a false

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074

075 Figure 1: Visualization of SketchEvo results. The model produces images aligned with human
076 preferences, trained only on the Sketchy dataset.

077
078
079 dichotomy where models must choose between faithfully reproducing potentially flawed amateur
080 sketches or generating visually pleasing but sketch-inconsistent images.

081 To address this challenge, we introduce SketchEvo, a framework that leverages the sketch sequences
082 – from initial strokes to completion – as a powerful source of diversity for preference-based opti-
083 mization. Our key insight is that intermediate sketches from different drawing stages represent vary-
084 ing levels of abstraction and detail, offering meaningful semantic and structural divergence while
085 maintaining connection to the user’s intent. By using these sketch variations instead of relying
086 solely on noise perturbations, SketchEvo creates meaningfully different sample pairs that provide
087 strong signals for human preference alignment even under tight multimodal constraints.

088 SketchEvo introduces two complementary innovations that work together across the model lifecycle:
089 First, a sequence-guided sampling strategy transforms sketching information into effective learning
090 signals during training by incorporating sketches at different completion stages as conditional inputs.
091 This expands candidate diversity and creates sample pairs with greater aesthetic divergence, provid-
092 ing more informative gradients for preference optimization. Second, building upon this improved
093 preference alignment, our sequence-guided rollback mechanism applies these learned preferences
094 during inference by leveraging initial sketch strokes to guide rollback. This quantifies information
095 gain from both textual and sketch conditions, ensuring the aesthetic improvements learned during
096 training are fully realized in the generated images while maintaining structural fidelity to the user’s
097 sketch intent.

098 Our extensive experiments demonstrate substantial improvements across multiple human preference
099 metrics and conditional fidelity measures. Particularly noteworthy is SketchEvo’s strong generaliza-
100 tion ability in on-the-fly sketch-to-image tests, where it successfully produces high-quality images
101 from incomplete and abstract sketches at various stages of the drawing process, enabling truly inter-
102 active sketch-based creation.

103 2 RELATED WORK

104 2.1 CONTROLLABLE IMAGE GENERATION

105 The rapid development of diffusion models has significantly advanced text-to-image genera-
106 tion (Podell et al., 2024; Esser et al., 2024; Labs, 2024). Building on pretrained T2I models, various
107 conditional strategies (Ye et al., 2023; Ruiz et al., 2023; Chen et al., 2024; Wang et al., 2024) in-

108 corporate external structural cues, with sketches serving as an intuitive prior. Early approaches such
 109 as ControlNet (Zhang et al., 2023) and T2I-Adapter (Mou et al., 2024) introduce sketch features
 110 via auxiliary branches, and ControlNet++ (Li et al., 2024) further refines spatial consistency. Subse-
 111 quent extensions—including VersaGen (Chen et al., 2025), SmartControl (Liu et al., 2024), and Uni-
 112 Control (Qin et al., 2023a)—enhance robustness by expanding controllable modalities or improving
 113 feature injection. AnimateDiff (Guo et al., 2024) extends such conditioning into temporal domains,
 114 highlighting the utility of structured priors beyond single images. (Koley et al., 2024) improves ro-
 115 bustness when sketches are rough, imprecise, or drawn by amateurs, while KnobGen (Navard et al.,
 116 2024) tackles sparse and structurally incomplete sketches through a dual-path design that jointly
 117 models coarse and fine structural cues. However, most existing approaches treat sketches merely as
 118 static inputs, overlooking the rich intermediate information and implicit human preference signals
 119 embedded in the drawing process.

120 2.2 HUMAN PREFERENCE OPTIMIZATION

121 Various aesthetic metrics have been proposed, such as ImageReward (Xu et al., 2023), HPSv2
 122 (Wu et al., 2023), PickScore (Kirstain et al., 2023), and VisionReward (Xu et al., 2024). Re-
 123 cent approaches improve subjective alignment through rollback mechanisms (LiChen et al., 2025),
 124 RLHF-inspired formulations (Ouyang et al., 2022; Zhang et al., 2024; Fan et al., 2023; Black et al.,
 125 2024; Rafailov et al., 2023; Yang et al., 2024), and preference optimization with sample pairs (Liang
 126 et al., 2025; Zhang et al., 2025; Yeh et al., 2024). However, their reliance on random Gaussian noise
 127 perturbations limits the capture of structural and layout-level aesthetic intentions.

128 3 PROBLEM STATEMENT AND BACKGROUND

129 **Problem formulation.** This paper investigates the aesthetic degradation problem in sketch-
 130 guided image generation, with inputs being textual descriptions and a entire drawing sequence
 131 $\{s_1, s_2, \dots, s_N\}$ from the first stroke s_1 to the completed sketch s_N . The goal is to generate an
 132 image I that combines high aesthetic quality and sketch fidelity. However, current human prefer-
 133 ence alignment methods Fan et al. (2023); Wallace et al. (2024); Yang et al. (2024); Liang et al.
 134 (2025); Rafailov et al. (2023) face optimization bottlenecks in multimodal generation tasks with
 135 dual constraints of text and sketch. The core issue lies in their reliance on single Gaussian noise
 136 perturbation, leading to insufficient diversity in generated sample pairs – only subtle differences can
 137 be produced under dual constraints, making effective optimization difficult.

138 **Preference Optimization for Diffusion Models.** Aligning diffusion models with human aesthetic
 139 preference is very challenging. Given a winning image x^w , a losing image x^l , and a text condition c ,
 140 methods such as DPORafailov et al. (2023) and D3POYang et al. (2024) generate intermediate latent
 141 image pairs (x_t^w, x_t^l) , thereby incentivizing the diffusion model p_θ to prioritize the generation of x_t^w
 142 over x_t^l . However, the preference ordering (x_t^w, x_t^l) during the denoising process does not always
 143 align with the initial preferences (x^w, x^l) . To address this issue, SPO Liang et al. (2025) tackles it by
 144 sampling from x_{t+1} to generate a denoised sample candidate pool $\{x_t^1, x_t^2, \dots, x_t^K\}$, and introduces
 145 a Step-Aware Preference Model (SPM) to predict preference scores for samples in the candidate
 146 pool, thereby constructing refined preference pairs (x_t^w, x_t^l) . The optimization objective of SPO is:

$$L_{\text{SPO}} = -\mathbb{E}_{x_t^w, x_t^l \sim p_\theta(x_t | x_{t+1}, c, t+1)} [\log \sigma(\beta \Delta r)] \quad (1)$$

$$\Delta r = \frac{p_\theta(x_t^w | x_{t+1}^w, c, t+1)}{p_{\text{ref}}(x_t^w | x_{t+1}^w, c, t+1)} / \frac{p_\theta(x_t^l | x_{t+1}^l, c, t+1)}{p_{\text{ref}}(x_t^l | x_{t+1}^l, c, t+1)} \quad (2)$$

153 where the symbol σ denotes the sigmoid function, β is a regularization hyperparameter and p_{ref}
 154 denotes the reference value from the fixed initial denoising model p_θ .

155 **Construction of Denoised Sample Candidate Pool.** SPO constructs the denoised sample candidate
 156 pool $\{x_t^1, x_t^2, \dots, x_t^K\}$ by adding random Gaussian noise z on the generated samples $\mu_\theta(x_{t+1}, c, t+1)$, as formalized below:

$$x_t^k = \mu_\theta(x_{t+1}, c, t+1) + z \quad (3)$$

159 where $z \sim \mathcal{N}(0, I)$, x_t^k denotes the k -th sample in the candidate pool. Sample diversity of candidate
 160 pool is solely governed by the noise z sampled from a standard Gaussian distribution.

162 **4 PROPOSED METHOD**

184 Figure 2: The framework of SketchEvo. During training, the SGPO module can obtain distinctive
 185 positive-negative sample pairs, fine-tuning the LoRA model in the U-Net to align with human preferences.
 186 During inference, a SGR mechanism is employed to strengthen conditional information.

187 **4.1 SEQUENCE-GUIDED PREFERENCE OPTIMIZATION (SGPO)**188 **Sequence-Guided Sampling Strategy.**

189 Unlike traditional methods that solely rely on random noise perturbations to generate candidate
 190 samples, we introduce sketch sequences $\{s_1, s_2, \dots, s_N\}$ from the drawing process to construct
 191 a dynamically evolving candidate pool. Specifically, as shown in Fig. 2, at each sampling step,
 192 K sketches are randomly selected from the sketch sequence as conditions to guide the model in
 193 constructing a candidate pool $\{x_t^1, x_t^2, \dots, x_t^K\}$ through denoising x_{t+1} . This process is formally
 194 expressed as:

$$x_t^k = \mu_\theta(x_{t+1}, c, c_{s_n}^k, t + 1) + z \quad (4)$$

195 where $c_{s_n}^k$ denotes the sketch condition s_n adopted for the k -th sample x_t^k .

196 Within the dynamically evolving candidate pool, differences between samples are no longer entirely
 197 dominated by random noise z . We leverage sketches at different completion stages as conditional
 198 inputs to guide the denoising process, thereby generating diversified denoised samples. Since sketches
 199 at each intermediate stage undergo significant evolution in structural and detail levels (As shown in
 200 Fig. 2, within the swan sketch drawing sequence, substantial discrepancies exist between s_1, s_n, s_N),
 201 this approach enables the generation of diversified samples.

202 **Positive-Negative Sample Pair Selection Strategy.** At each diffusion timestep t , we utilize a
 203 pretrained scoring model to evaluate the samples in the dynamic evolving candidate pool. The
 204 highest- and lowest-scoring samples are selected and denoted as $p_\theta(x_t^w | x_{t+1}^w, c, c_{s_w}, t + 1)$ and
 205 $p_\theta(x_t^l | x_{t+1}^l, c, c_{s_l}, t + 1)$, respectively, forming a positive-negative sample pair. To better optimize
 206 the model, only sample pairs surpassing a predefined threshold are utilized for model training.

207 **The Impact of Candidate Pool Sample Diversity on Preference Optimization.** According to
 208 equation 1, given two samples x_t^w and x_t^l , the gradient of the reward function with respect to the
 209 SGPO, Eq. 5 is reformulated as follows:

$$\nabla_\theta \mathcal{L}_{Ours} = -\beta \mathbb{E} [\sigma(-\beta \Delta r) (\nabla_\theta \log p_\theta(x_t^w | c_{s_w}, x_{t+1}^w, c, t + 1) - \nabla_\theta \log p_\theta(x_t^l | c_{s_l}, x_{t+1}^l, c, t + 1))] \quad (5)$$

$$\Delta r = \frac{p_\theta(x_t^w | x_{t+1}^w, c, c_{s_w}, t+1)}{p_{\text{ref}}(x_t^w | x_{t+1}^w, c, c_{s_w}, t+1)} \Big/ \frac{p_\theta(x_t^l | x_{t+1}^l, c, c_{s_l}, t+1)}{p_{\text{ref}}(x_t^l | x_{t+1}^l, c, c_{s_l}, t+1)} \quad (6)$$

where c_{s_w}, c_{s_l} represent the sketches condition corresponding to the best latent and the worst latent, respectively.

As derived from Eq. 5, the effectiveness of gradients depends on the discrepancy between x_t^w and x_t^l . When sample diversity is insufficient, this discrepancy diminishes, causing $\Delta r \rightarrow 1$, which degenerates gradients into an uninformative signal with poor directionality. It can be observed that our proposed SGPO significantly outperforms SPO in candidate pool sample diversity. This disparity is directly reflected in the differences between sample pairs — SGPO generates positive-negative sample pairs with more pronounced disparities. The higher sample diversity enables SGPO to provide richer gradient information for the model during the optimization process.

4.2 SEQUENCE-GUIDED ROLLBACK (SGR) MECHANISM DURING INFERENCE PHASE

To effectively transfer the improvements of SGPO from the training phase to the inference phase, we introduce a sequence-guided rollback mechanism. Previous works have demonstrated that incorporating a rollback mechanism into the text-guided image generation process allows the latent encoding to more effectively capture semantic information. The cumulative latent difference in rollback can be formulated as: where $h_t = \sqrt{1/\alpha_t - 1} - \sqrt{1/\alpha_{t-1} - 1}$, u_θ is the model-predicted noise, $\tau_1(t)$ denotes the semantic information gain term and $\tau_2(t)$ denotes the error term, which can be neglected under certain conditions.

When directly transferring existing rollback mechanism to sketch-to-image generation tasks, their performance improvement faces significant bottlenecks. The fundamental reason lies in the fact that methods design optimization objectives solely for uni-modal textual conditions, failing to model the structural priors inherent in sketch conditions. To address this issue, we propose the SGR mechanism, which is implemented by integrating the sketch-drawing sequence and text conditions to jointly guide the rollback process, as formulated below:

$$\begin{aligned} \epsilon_\theta^t(x_t) &= (1 + \gamma_1)u_\theta(x_t, c, c_{s_N}, t) - \gamma_1 u_\theta(x_t, \emptyset, c_{s_N}, t) \\ \epsilon_\theta^t(\tilde{x}_t) &= (1 + \gamma_2)u_\theta(\tilde{x}_t, c, c_{s_n}, t) - \gamma_2 u_\theta(\tilde{x}_t, \emptyset, c_{s_n}, t) \end{aligned} \quad (7)$$

In our method, the information gain encompasses not only semantic information from text conditions c , but also structural and detailed information introduced by the sketch sequences s_n , as well as human preference information learned by the model parameters θ . During the inference phase, when the sketch sequence s_n is predetermined, our rollback mechanism is simplified to follow the generation manner of text-to-image. Consequently, we adopt the configuration of γ_1 and γ_2 to maximize semantic information enhancement. With γ_1 and γ_2 fixed, the information gain is determined by the following formula (detailed proofs are provided in Appendix D):

$$\delta_{Z-Sampling} \propto \sum_{t=1}^T (\tau_1(t))^2 \propto \sum_{t=1}^T (u_\theta(x_t, c, c_{s_n}, t))^2 \quad (8)$$

The discrepancy in structural and detailed information gain is determined by the noise generated through the control of textual conditions c and sketch conditions c_{s_n} in the generative model. By increasing the divergence between c and c_{s_n} , the cumulative information gain can be augmented.

The SGR mechanism quantifies the information gain from text and sketch conditions, ensuring that aesthetic enhancements learned during training are fully manifested in the generated images while preserving structural fidelity to the user’s original sketch intent.

5 EXPERIMENT

5.1 EXPERIMENTAL SETUPS

Our method is fine-tuned based on the ControlNetXL (Podell et al., 2024) to achieve alignment with human preferences. All experiments are conducted on NVIDIA A100 GPUs for both training only with Sketchy (Sangkloy et al., 2016) dataset. Detailed information about data processing, hyperparameters employed in the experiments are provided in the Appendix A and B.

270 Table 1: Quantitative results. We evaluate our method and competitors on the sketchy dataset in
 271 terms of human preference alignment and conditional fidelity.

273 Method	Human Preference Alignment			Conditional Fidelity	
	274 Image Reward \uparrow	275 HPS v2 \uparrow	276 Pick score \uparrow	277 LPIPS-sketch \downarrow	278 CLIP-Score \uparrow
ControlNet (Zhang et al., 2023)	0.004	24.08	20.03	0.11	23.70
T2i-Adapter (Mou et al., 2024)	-0.001	23.60	20.58	0.20	15.86
VersaGen (Chen et al., 2025)	0.08	24.68	20.79	0.14	23.77
ControlNet++ (Li et al., 2024)	-0.011	24.19	20.56	0.13	23.83
AnimateDiff (Guo et al., 2024)	0.23	23.68	20.42	0.14	23.56
UniControl (Qin et al., 2023a)	0.024	23.08	20.39	0.13	23.75
ControlNet-DPO (Rafailov et al., 2023)	0.47	25.02	20.86	0.16	23.35
ControlNet-SPO (Liang et al., 2025)	0.61	27.69	22.04	0.17	23.65
SGPO	1.03	28.87	21.94	0.20	23.86
Ours	1.18	30.08	22.41	0.15	24.15

283 5.2 COMPARISON WITH THE STATE-OF-THE-ART METHODS

285 To verify the effectiveness of our method, we compared it with state-of-the-art multi-condition con-
 286 trolled image generation models ControlNet (Zhang et al., 2023), T2i-Adapter (Mou et al., 2024),
 287 VersaGen (Chen et al., 2025), ControlNet++ (Li et al., 2024), AnimateDiff (Guo et al., 2024),
 288 Unicontrol Qin et al. (2023a) and preference aligning methods DPO (Rafailov et al., 2023) and
 289 SPO Liang et al. (2025) under their original settings. Since the original DPO and SPO are based
 290 on SDXL (Podell et al., 2024) fine-tuning and only accept text conditions, we replaced the SDXL
 291 model in ControlNet with their fine-tuned SDXL models. SGPO refers to our proposed method
 292 without employing the rollback mechanism.

293 For Human Preference Alignment, as shown in Tab. 1, We found that, compared with multi-
 294 condition controlled image generation models, methods after preference alignment achieved aes-
 295 esthetic score improvements, with ours outperforming ControlNet-DPO and ControlNet-SPO. From a
 296 detailed view, human preference is reflected in three aspects: i) **Position**: As shown in the first row
 297 of Fig. 3, The cat and chair generated by our model exhibit a more natural positional relationship,
 298 demonstrating superior spatial layout preference capability. ii) **Composition**: As presented in the
 299 second row of Fig. 3, the cake generated by our model exhibit proportionally more realistic scaling
 300 relative to the candles, demonstrating superior compositional preference capability. iii) **Color**: As
 301 illustrated in the third row of Fig. 3, our model accurately identifies the color boundaries between
 302 foreground and background, altering only the helicopter’s main body to a camouflage pattern while
 303 preserving the background’s original appearance, demonstrating precise control over color prefer-
 304 ences.

305 Table 2: Quantization results demonstrating the model’s generalization capability when trained only
 306 on the Sketchy dataset and evaluated on unseen data.

308 Dataset	309 Method	Image			310 LPIPS -Sketch \downarrow	311 CLIP Score \uparrow
		312 Reward \uparrow	313 HPS v2 \uparrow	314 PickScore \uparrow		
310 QuickDraw	ControlNet	-0.56	15.24	17.17	0.47	23.07
	ControlNet-SPO	0.40	27.05	21.38	0.67	24.01
	Ours	0.86	30.22	21.67	0.68	24.28
312 AnimeDiffusion	ControlNet	-0.11	18.34	19.62	0.10	23.17
	ControlNet-SPO	0.27	23.28	19.67	0.15	23.99
	Ours	1.32	31.57	23.68	0.10	24.96
314 FSCOCO	ControlNet	-0.03	23.13	18.99	0.41	24.05
	ControlNet-SPO	0.52	27.51	19.09	0.50	24.39
	Ours	0.96	30.31	21.78	0.45	24.77

318 As shown in Tab. 1, our method achieves the highest semantic fidelity, though not the highest
 319 sketch similarity, as ControlNet and T2I-Adapter strictly follow sketches. Compared to preference-
 320 alignment methods like DPO and SPO, our sequence-guided approach better integrates text and
 321 sketch information, preserving fine-grained structures while generating natural images. As illus-
 322 trated in Fig. 3 (rows 4-6), it simultaneously: (i) accurately realizes quantitative semantics (e.g., two
 323 bananas); (ii) suppresses redundant strokes (e.g., camel head) via enhanced semantic supervision;
 (iii) enhances visual expressiveness while maintaining precise text-image consistency.

Figure 3: Visualized comparison of ControlNet, T2I-Adapter, VersaGen, AnimateDiff, ControlNet++, UniControl, ControlNet-DPO, ControlNet-SPO, SGPO and Ours on Sketchy dataset.

Figure 4: Generalization results are visualized, consistently generating high-quality images regardless of sketch expertise. Images from more professional sketches show even better alignment with inputs.

5.3 GENERALIZATION ABILITY OF THE MODEL

To further evaluate the generalization ability of our model, we conduct inference on the QuickDraw (qui, 2016), AnimeDiffusion (Cao et al., 2024), and FSCOCO (Chowdhury et al., 2022) datasets. As shown in Tab. 2 and Fig. 4, our model consistently achieves competitive performance across diverse datasets, demonstrating robust generalization beyond the training domain. More results demonstrations are presented in E.

For single-object sketch datasets, the model adaptively balances aesthetic quality and sketch similarity according to the level of sketch abstraction, without requiring manual weight adjustment. As shown in Tab. 2, whether tested on the abstract QuickDraw dataset or the professional AnimeDiffusion dataset, our model consistently produces results with the highest aesthetic scores while maintaining strong sketch fidelity. For example, on the QuickDraw dataset, ControlNet generates flipped hot tub images that defy real-world structure, while ControlNet-SPO yields higher aesthetic scores

378 but poor sketch alignment. In contrast, our model automatically integrates both sketch consistency
 379 and aesthetic quality, generating superior images without manual tuning.
 380

381 For complex scene sketch datasets, our model consistently achieves higher aesthetic scores and
 382 sketch similarity. As shown in Tab. 2, on FSCOCO, our method outperforms ControlNet-SPO in
 383 both metrics. Due to the presence of multiple elements in scene sketches, overall similarity scores
 384 are lower, even ControlNet achieves only 0.41, underscoring the difficulty of strict alignment in
 385 complex scenarios.
 386

387 Moreover, higher sketch professionalism leads to greater image-sketch similarity. As illustrated in
 388 Fig. 1 and Fig. 4, the similarity between images and sketches progressively improves from the less
 389 professional QuickDraw, through sketch and FSCOCO, to the highly professional Animeduffusion
 390 dataset. Notably, this enhancement in similarity is achieved without compromising aesthetic quality,
 391 demonstrating strong preservation of sketch details.
 392

393 5.4 ABLATION STUDY AND ANALYSIS

394 **Can Sequence-Guided Sampling Strategy enhance the sample diversity of the candidate pool?**

395 Indeed, our method employs a higher positive-negative sample filtering threshold compared to the
 396 ControlNet-SPO (0.8 v.s. 0.4). To visually validate the enhanced diversity of the candidate pool,
 397 Fig. 5(b) specifically compares the maximum aesthetic score differences in the candidate pools be-
 398 tween the two methods across different denoising stages. Experimental results demonstrate that our
 399 method achieves significantly higher maximum aesthetic score differences than ControlNet-SPO
 400 at all denoising stages, directly confirming that the sequence-guided sampling strategy effectively
 401 enhances diversity characteristics in candidate samples.
 402

403 Figure 5: The ablation study results, (a) presents the performance comparison of rollback me-
 404 chanisms guided by sketches of varying abstraction levels under different evaluation metrics. (b) shows
 405 the statistical analysis of score differences between positive and negative samples in the candidate
 406 pool.
 407

408 **The Impact of Different Abstraction Levels of Sketch in SGR Mechanism.**

409 In Fig. 5(a), we compare the performance of rollback mechanisms guided by sketches at different
 410 abstraction levels through multi-dimensional evaluation. For visualization convenience, the values
 411 of HPS v2 (Wu et al., 2023), PickScore (Kirstain et al., 2023), and CLIP-Score (Hessel et al.,
 412 2021) are scaled down by a factor of 30. Six comparative schemes are designed: SGPO denotes
 413 our method without the rollback mechanism; s_1 represents the rollback strategy guided by the first
 414 sketch stroke; $s_{0.2N}, s_{0.4N}, s_{0.6N}, s_{0.8N}$ correspond to rollback strategies guided by sketches at
 415 20%-80% completion stages; s_{N-1} denotes the strategy guided by the second-to-last sketch stroke.
 416 Experimental results reveal significant performance differences across schemes: the s_{N-1} -guided
 417 strategy performs worst, while the s_1 -guided mechanism surpasses others in comprehensive eval-
 418 uation. This phenomenon aligns with the theoretical derivation in Eq. 8 – as the discrepancy between
 419 the text condition c and sketch condition c_{s_n} increases, the cumulative information gain can be aug-
 420 mented, thereby effectively amplifying both the semantic-structural information of conditions and
 421 the preference information of the model. Visual demonstrations are presented in Fig. 6.
 422

423 As shown in the Fig. 6, a closer examination reveals that the level of sketch abstraction used for
 424 rollback guidance has an impact on the control over image details. When guided by the more abstract
 425 sketch s_1 , the generated results maintain stable quality while better preserving the structural features
 426 of the sketch. However, as the number of strokes increases, this consistency gradually declines.
 427

Figure 6: Visualization results to the impact of different abstraction levels of sketch in SGR mechanism.

5.5 ON-THE-FLY SKETCH-TO-IMAGE GENERATION TEST

During the dynamic process of sketch drawing, an advanced sketch-to-image generation model must demonstrate the capability to produce high-quality images from sketches at any drawing stage. To evaluate this, we propose the On-the-fly Sketch-to-Image Generation Test. Leveraging MasaCtrl’s (Cao et al., 2023) foreground editing strategy, we effectively stabilize the generated background to eliminate its interference. As shown in Fig. 7, our method generalizes well: even with highly abstract sketches or only a few strokes, the generated images align with human preferences and accurately reflect input conditions. As sketches gain detail, the outputs evolve accordingly, demonstrating the model’s practical value in interactive creation.

Figure 7: Our method generates natural, conditionally accurate images from sketches of varying abstraction, with results increasingly matching user expectations as drawing progresses.

5.6 VALIDATING THE MODEL’S TRANSFERABILITY TO EDGE-MAP CONDITIONING

To validate the transferability of our model, we applied our model to edge maps. Specifically, we first convert the corresponding images in the COCO (Lin et al., 2014) dataset into edge maps, then transform them into SVGs to obtain separable contour segments. From these segments, we extract a pseudo “initial sketch” s_1 for the SGR mechanism. This process does not rely on real stroke order, nor does it require users to provide the drawing process.

As shown in Tab. 3 and Fig. 8, the experimental results show that, the performance in the pseudo-sequence mode remains largely comparable. The generated outputs remain stable in terms of structural consistency and aesthetics. These findings demonstrate that our pre-trained model: (1) can operate effectively even with only the final sketch; (2) maintains stable inference performance without stroke sequence information.

486
487
488
489 Table 3: Performance comparison demonstrating the model’s robustness and adaptability when
490 trained on sketches and applied to edge-map inputs.
491
492

Method	ImageReward	HPS v2	PickScore	LPIPS-Sketch	CLIP-Score
ControlNet	0.023	24.85	20.02	0.43	26.01
ControlNet-SPO	0.77	28.05	22.16	0.48	26.23
Ours	0.96	30.53	22.71	0.46	26.63

493
494
495 In summary, our method demonstrates excellent adaptability and robustness in practical scenarios,
496 maintaining high-quality generation performance even without real drawing sequences.
497

513 Figure 8: Left: images generated under edge-map guidance. Right: corresponding example images
514 used in the human study.
515
516

517 Table 4: Performance comparison of methods across aesthetic, structural, textual alignment, and
518 realism metrics.
519

Method	Aesthetics	Structure Match	Text Alignment	Realism / Naturalness	overall
ControlNet	3.60	4.68	4.71	4.08	0.8%
ControlNet-SPO	4.38	4.28	4.79	4.22	16.53%
ours	4.88	4.56	4.95	4.76	82.67%

523 5.7 HUMAN STUDY

524 We conducted human study to evaluate objective quality against real user preferences, comparing
525 Ours with ControlNet and ControlNet-SPO. Twenty five ”sketch + text” pairs were used, with each
526 model generating corresponding images presented anonymously in random order. Participants rated
527 Aesthetics, Structure Match, Text Alignment, and Realism on a 5-point Likert scale, and provided
528 an overall preference (A/B choice). Fig. 8 shows example images from the study. Tab. 4 indicate
529 that our method is consistently preferred across metrics, confirming its superior objective quality
530 and alignment with user preferences.
531

532 6 CONCLUSION

533 In this paper, we propose a novel framework named SketchEvo, which leverages drawing dynamics
534 to enhance image generation. Specifically, during the training phase, we introduce a sequence-
535 guided optimization strategy to enhance the diversity of candidate samples, thereby improving the
536 alignment of generated results with human preference. In the inference phase, a sequence-guided
537 rollback mechanism is adopted: the initial sketch strokes are used to guide rollback, ensuring that
538 the generation process aligns with human preferences while meeting user conditions. Experimental
539 results show that our method effectively breaks through the trade-off bottleneck between creativity
and structural fidelity in traditional models.
540

540
541 ETHICS STATEMENT542
543 This research strictly adheres to the ICLR Code of Ethics. All used datasets are publicly available
544 and comply with the relevant licenses and privacy policies. The study does not involve human
545 subjects or sensitive information, and contains no discrimination, bias, or harmful impact. There are
546 no conflicts of interest.547
548 REPRODUCIBILITY STATEMENT549
550 We place great importance on the reproducibility of this research. Detailed descriptions of the model
551 architecture and key experimental settings are provided in both the main text and the appendix.
552 Anonymized and downloadable source code has been submitted as supplementary material, and
553 can be accessed at: <https://anonymous.4open.science/r/SketchEvo6-B34C123/>. The preprocessing
554 steps for the datasets used in the experiments, as well as the complete experimental procedures, are
555 thoroughly presented in the supplementary materials. Theoretical assumptions and detailed proofs
556 of the main conclusions are included in the appendix.557
558 REFERENCES559 Quick, draw! <https://quickdraw.withgoogle.com/>, 2016.560 Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion
561 models with reinforcement learning. In *ICLR*, 2024.562 Mingdeng Cao, Xintao Wang, Zhongang Qi, Ying Shan, Xiaohu Qie, and Yinqiang Zheng. Masactril:
563 Tuning-free mutual self-attention control for consistent image synthesis and editing. In *ICCV*,
564 2023.565 Yu Cao, Xiangqiao Meng, PY Mok, Tong-Yee Lee, Xuetong Liu, and Ping Li. Animediffusion:
566 Anime diffusion colorization. *IEEE Transactions on Visualization and Computer Graphics*, 30
567 (10):6956–6969, 2024.568 Minghao Chen, Iro Laina, and Andrea Vedaldi. Training-free layout control with cross-attention
569 guidance. In *WACV*, 2024.570 Zhipeng Chen, Lan Yang, Yonggang Qi, Honggang Zhang, Kaiyue Pang, Ke Li, and Yi-Zhe Song.
571 Versagen: Unleashing versatile visual control for text-to-image synthesis. In *AAAI*, 2025.572 Pinaki Nath Chowdhury, Aneeshan Sain, Ayan Kumar Bhunia, Tao Xiang, Yulia Gryaditskaya, and
573 Yi-Zhe Song. Fs-coco: Towards understanding of freehand sketches of common objects in con-
574 text. In *European conference on computer vision*, pp. 253–270. Springer, 2022.575 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
576 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
577 high-resolution image synthesis. In *ICML*, 2024.578 Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
579 Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Reinforcement learning for fine-
580 tuning text-to-image diffusion models. In *NeurIPS*, 2023.581 Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang, Yaohui Wang, Yu Qiao, Maneesh
582 Agrawala, Dahua Lin, and Bo Dai. Animatediff: Animate your personalized text-to-image dif-
583 fusion models without specific tuning. In *The Twelfth International Conference on Learning
584 Representations*, 2024.585 Qingdong He, Jinlong Peng, Pengcheng Xu, Boyuan Jiang, Xiaobin Hu, Donghao Luo, Yong Liu,
586 Yabiao Wang, Chengjie Wang, Xiangtai Li, and Jiangning Zhang. Dynamiccontrol: Adaptive
587 condition selection for improved text-to-image generation. *CoRR*, 2024.588 Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. CLIPScore: A
589 reference-free evaluation metric for image captioning. In *EMNLP*, 2021.

594 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In *NeurIPS Workshop*, 2021.
 595

596 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *NeurIPS*,
 597 2020.

598 Jijin Hu, Ke Li, Yonggang Qi, and Yi-Zhe Song. Scale-adaptive diffusion model for complex sketch
 599 synthesis. In *ICLR*, 2024.

600

601 Minghui Hu, Jianbin Zheng, Daqing Liu, Chuanxia Zheng, Chaoyue Wang, Dacheng Tao, and Tat-
 602 Jen Cham. Cocktail: Mixing multi-modality control for text-conditional image generation. In
 603 *NeurIPS*, 2023.

604

605 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
 606 Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *ICCV*,
 607 2023.

608

609 Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Pick-
 610 a-pic: An open dataset of user preferences for text-to-image generation. *Advances in Neural
 611 Information Processing Systems*, pp. 36652–36663, 2023.

612

613 Subhadeep Koley, Ayan Kumar Bhunia, Deeptanshu Sekhri, Aneeshan Sain, Pinaki Nath Chowdhury,
 614 Tao Xiang, and Yi-Zhe Song. It's all about your sketch: Democratising sketch control in
 615 diffusion models. In *CVPR*, pp. 7204–7214, 2024.

616

617 Black Forest Labs. Flux: Official inference repository for flux.1 models. <https://github.com/black-forest-labs/flux.git>, 2024. Accessed: 2024-11-12.

618

619 Ming Li, Taojinnan Yang, Huafeng Kuang, Jie Wu, Zhaoning Wang, Xuefeng Xiao, and Chen
 620 Chen. Controlnet++: Improving conditional controls with efficient consistency feedback: Project
 621 page: liming-ai.github.io/controlnet_plus_plus. In *ECCV*, 2024.

622

623 Zhanhao Liang, Yuhui Yuan, Shuyang Gu, Bohan Chen, Tiansheng Hang, Mingxi Cheng, Ji Li, and
 624 Liang Zheng. Aesthetic post-training diffusion models from generic preferences with step-by-step
 625 preference optimization. 2025. URL <https://arxiv.org/abs/2406.04314>.

626

627 Bai LiChen, Shitong Shao, zikai zhou, Zipeng Qi, zhiqiang xu, Haoyi Xiong, and Zeke Xie. Zigzag
 628 diffusion sampling: Diffusion models can self-improve via self-reflection, 2025.

629

630 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 631 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *European
 632 conference on computer vision*, pp. 740–755. Springer, 2014.

633

634 Xiaoyu Liu, Yuxiang Wei, Ming Liu, Xianhui Lin, Peiran Ren, Xuansong Xie, and Wangmeng Zuo.
 635 Smartcontrol: Enhancing controlnet for handling rough visual conditions. In *ECCV*, 2024.

636

637 Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Null-text inversion for
 638 editing real images using guided diffusion models. In *CVPR*, 2023.

639

640 Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, and Ying Shan.
 641 T2i-adapter: Learning adapters to dig out more controllable ability for text-to-image diffusion
 642 models. In *AAAI*, 2024.

643

644 Pouyan Navard, Amin Karimi Monsefi, Mengxi Zhou, Wei-Lun Chao, Alper Yilmaz, and Rajiv
 645 Ramnath. Knobgen: Controlling the sophistication of artwork in sketch-based diffusion models.
arXiv preprint arXiv:2410.01595, 2024.

646

647 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 648 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 649 low instructions with human feedback. *Advances in neural information processing systems*, pp.
 650 27730–27744, 2022.

651

652 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 653 Penna, and Robin Rombach. SDXL: Improving latent diffusion models for high-resolution image
 654 synthesis. 2024.

648 Can Qin, Shu Zhang, Ning Yu, Yihao Feng, Xinyi Yang, Yingbo Zhou, Huan Wang, Juan Carlos
 649 Niebles, Caiming Xiong, Silvio Savarese, Stefano Ermon, Yun Fu, and Ran Xu. Unicontrol: A
 650 unified diffusion model for controllable visual generation in the wild. *CoRR*, abs/2305.11147,
 651 2023a.

652 Can Qin, Shu Zhang, Ning Yu, Yihao Feng, Xinyi Yang, Yingbo Zhou, Huan Wang, Juan Carlos
 653 Niebles, Caiming Xiong, Silvio Savarese, Stefano Ermon, Yun Fu, and Ran Xu. Unicontrol: A
 654 unified diffusion model for controllable visual generation in the wild. In *Thirty-seventh Confer-
 655 ence on Neural Information Processing Systems*, 2023b.

656

657 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 658 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances
 659 in Neural Information Processing Systems*, pp. 53728–53741, 2023.

660

661 Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
 662 Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In *CVPR*,
 663 2023.

664 Patsorn Sangkloy, Nathan Burnell, Cusuh Ham, and James Hays. The sketchy database: learning to
 665 retrieve badly drawn bunnies. *ACM Transactions on Graphics (TOG)*, pp. 1–12, 2016.

666

667 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *ICLR*,
 668 2021a.

669

670 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 671 Poole. Score-based generative modeling through stochastic differential equations. In *ICLR*,
 672 2021b.

673 Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam,
 674 Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using
 675 direct preference optimization. In *CVPR*, 2024.

676

677 Xudong Wang, Trevor Darrell, Sai Saketh Rambhatla, Rohit Girdhar, and Ishan Misra. Instancedif-
 678 fusion: Instance-level control for image generation. In *CVPR*, 2024.

679

680 Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
 681 Human preference score v2: A solid benchmark for evaluating human preferences of text-to-
 682 image synthesis, 2023.

683

684 Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
 685 Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation.
Advances in Neural Information Processing Systems, pp. 15903–15935, 2023.

686

687 Jiazheng Xu, Yu Huang, Jiale Cheng, Yuanming Yang, Jiajun Xu, Yuan Wang, Wenbo Duan, Shen
 688 Yang, Qunlin Jin, Shurun Li, et al. Visionreward: Fine-grained multi-dimensional human prefer-
 689 ence learning for image and video generation. *arXiv preprint arXiv:2412.21059*, 2024.

690

691 Kai Yang, Jian Tao, Jiafei Lyu, Chunjiang Ge, Jiaxin Chen, Weihan Shen, Xiaolong Zhu, and Xiu
 692 Li. Using human feedback to fine-tune diffusion models without any reward model. In *CVPR*,
 693 2024.

694

695 Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt
 696 adapter for text-to-image diffusion models. *arXiv preprint arXiv:2308.06721*, 2023.

697

698 Po-Hung Yeh, Kuang-Huei Lee, and Jun-Cheng Chen. Training-free diffusion model alignment with
 699 sampling demons. *arXiv preprint arXiv:2410.05760*, 2024.

700

701 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
 702 diffusion models. In *ICCV*, 2023.

703

704 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 705 effectiveness of deep features as a perceptual metric. In *CVPR*, 2018.

702 Tao Zhang, Cheng Da, Kun Ding, Kun Jin, Yan Li, Tingting Gao, Di Zhang, Shiming Xiang, and
703 Chunhong Pan. Diffusion model as a noise-aware latent reward model for step-level preference
704 optimization. *arXiv preprint arXiv:2502.01051*, 2025.

705

706 Yinan Zhang, Eric Tzeng, Yilun Du, and Dmitry Kislyuk. Large-scale reinforcement learning for
707 diffusion models. In *ECCV*, 2024.

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 Technical Appendices and Supplementary Material

760 A EXPERIMENTAL DETAILS

762 In this section, we provide additional details on the dataset, experimental setup, and evaluation
 763 metrics.

765 Datasets.

766 Sketchy (Sangkloy et al., 2016) dataset. The Sketchy dataset comprises 125 object categories, with
 767 each category containing 100 real images and corresponding 7-10 hand-drawn sketches along with
 768 their drawing sequences, totaling 12,500 real images and 75471 associated sketches. To ensure ex-
 769 perimental rigor, we employ a stratified sampling strategy to partition the data into non-overlapping
 770 random splits at an 8:2 ratio.

771 FSCOCO (Chowdhury et al., 2022) dataset contains 10,000 scene sketches drawn by 100 non-
 772 professionals, each with stroke-level temporal data and text descriptions. Collected under a memory-
 773 based drawing setup, it captures both complex structures and human subjective preferences, making
 774 it well-suited for evaluating models in multi-object scene generation.

775 QuickDraw (qui, 2016) is a large-scale sketch dataset from Google’s “Quick, Draw!” game, contain-
 776 ing 50 million sketches across 345 categories drawn by millions of non-expert users. Constrained to
 777 20 seconds, the sketches are highly abstract, often with distortions or missing parts, creating a clear
 778 gap from real images. In this work, we use a 2.5K subset to evaluate our model’s ability to generate
 779 images under such abstract conditions, focusing on its alignment with human preferences and its
 780 capacity to interpret and repair incomplete structures.

781 AnimeDiffusion (Cao et al., 2024) dataset is a benchmark specifically designed for anime face line-
 782 art colorization, created through face cropping, alignment, and denoising. It consists of 31,696
 783 training samples and 579 test samples, with a resolution of 256x256. Each colored face image is
 784 paired with a corresponding line drawing generated using the XDoG algorithm, featuring diverse line
 785 styles and a high level of professionalism, making it well-suited for evaluating model performance
 786 under professional sketch conditions.

787 Settings.

789 During training, we employ the Adam optimizer with a learning rate of 1×10^{-5} , a batch size of
 790 4, and perform 4 training epochs. The diffusion model is configured with a total of 20 timesteps,
 791 and the candidate pool size K is set to 5. The initial sketch s_1 and the final complete sketch s_N are
 792 always selected, while 3 additional sketches are chosen from the remaining sequence as conditions
 793 to guide the denoising process for generating candidate pool samples. A threshold of 0.8 is applied
 794 for filtering positive-negative sample pairs, with timesteps 10 to 20 designated as the late denoising
 795 phase.

796 Metrics.

797 PickScore (Kirstain et al., 2023) developed Pick-a-Pic, a large open dataset consisting of textto-
 798 image prompts and real user preferences for generated images. They then utilized this dataset to
 799 train a CLIP-based scoring function, PickScore, for the task of predicting human preferences.

800 ImageReward (Xu et al., 2023) developed ImageReward, the first general-purpose text-to-image
 801 human preference reward model, which is trained based on systematic annotation pipeline, including
 802 rating and ranking and has collected 137,000 expert comparisons to date.

804 HPS v2 (Wu et al., 2023) first introduced the Human Preference Dataset v2 (HPD v2), a largescale
 805 dataset comprising 798,090 human preference choices on 433,760 pairs of images. By finetuning
 806 CLIP using HPD v2, they developed the Human Preference Score v2 (HPS v2), a scoring model that
 807 more accurately predicts human preferences for generated images.

808 Sketch-LPIPS (Zhang et al., 2018) is used to evaluate the perceptual similarity between a generated
 809 image and a sketch. It extracts the target region from the generated image using SAM (Kirillov
 et al., 2023), computes its Canny edge map, and compares it with the original sketch. Then, features

810 are extracted using a deep network (e.g., VGG) to calculate the LPIPS score, where a lower score
 811 indicates higher similarity.
 812

813 CLIP-Score (Hessel et al., 2021) is a metric used to measure the semantic consistency between an
 814 image and its text description. It uses the CLIP model to extract features from both the image and the
 815 text, then computes the cosine similarity between them. A higher score indicates better alignment
 816 between the image and the text.

817 B ABLATION

833 Figure 9: Ablation study results: (a) illustrates the effect of candidate pool size on generation quality
 834 under the SGPO mechanism, while (b) shows the impact of different scoring models on the experi-
 835 mental outcomes.

836 Ablations on how SPO performance change w.r.t. sample diversity.

837 As we can see Fig. 9 (a) , when k increases from 5 to 7, the marginal performance gain is substan-
 838 tially lower than that observed between $k = 3$ and $k = 5$, revealing an inherent optimization bot-
 839 leck. The underlying mechanism is attributed to the progressive homogenization of sketch states: as
 840 more intermediate sketches are sampled, the state differential between s_n and s_{n-i} decays, driving
 841 performance improvements toward an asymptotic plateau. Increasing k also incurs a significantly
 842 higher computational cost for candidate pool construction, reducing training efficiency. In summary,
 843 considering both sampling efficiency and generation quality, we adopt $k = 5$ as the default setting.

844 The impact of scoring model.

845 To evaluate the sensitivity of our method to the choice of scoring model, we conducted an additional
 846 experiment using PickScore as the scoring model. The results of this experiment are presented in the
 847 Fig. 9 (b) . Our method shows strong robustness to the choice of scoring model, as evidenced by the
 848 small performance differences across most metrics (HPS v2, PickScore, LPIPS, and CLIP-Score)
 849 when evaluated with different scoring models.

851 C PSEUDOCODE FOR THE INFERENCE STAGE IN THE SGR MECHANISM

854 Algorithm 1 Inference Stage of SGR Mechanism

855 **Require:** Text prompt c , Complete sketch c_{s_N} , Guidance sketch c_{s_n} , Inference steps T

856 **Ensure:** Clean image x_0

857 1: $x_T \sim \mathcal{N}(0, I)$
 858 2: **for** $t = T$ **down to** 1 **do**
 859 3: $x_{t-1} \leftarrow \Phi^t(x_t \mid c, c_{s_N}, t)$
 860 4: $\tilde{x}_t \leftarrow \Psi^t(x_{t-1} \mid c, c_{s_n}, t)$
 861 5: $x_{t-1} \leftarrow \Phi^t(\tilde{x}_t \mid c, c_{s_N}, t)$
 862 6: **end for**
 863 7: **return** x_0

864 **D PROOFS**
 865

866 In this section, we provide a mathematical derivation to validate Eq.8.
 867

868 **Diffusion Model.** We define T as the total number of denoising steps, c as the conditional prompt,
 869 c_{s_n} as the n -th sketch sequence. The denoising process can be defined as $\Phi : \mathcal{N} \times \mathcal{C} \rightarrow \mathcal{D}$, where
 870 \mathcal{N} is the Gaussian distribution and \mathcal{D} is the target data distribution. Given a starting point $x_T \in \mathcal{N}$,
 871 we can generate $x_0 = \Phi(x_T | c, c_{s_n}, \gamma_1) \in \mathcal{D}$, where γ_1 is the condition guidance scale during
 872 denoising. The mapping corresponds Φ to the probability $P(x_0 | c, c_{s_n}, \gamma_1, x_{1:T})$. For simplicity, we
 873 only consider the initial input x_T in Φ . Similarly, we can reverse the process using an inversion
 874 function $\Psi : \mathcal{D} \times \mathcal{C} \rightarrow \mathcal{N}$. Under a inversion guidance scale γ_2 , we obtain inverted data $\tilde{x}_T =$
 875 $\Psi(\tilde{x}_0 | c, c_{s_n}, \gamma_2) \in \mathcal{N}$ from $\tilde{x}_0 \in \mathcal{D}$. Following DDPM (Ho et al., 2020), we treat diffusion model
 876 as a Monte Carlo process and decompose Φ into T times single-step denoising mappings as
 877

$$\Phi(x_T | c, c_{s_n}, \gamma_1) = \Phi^T(x_T | c, c_{s_n}, \gamma_1) \circ \cdots \circ \Phi^2(x_2 | c, c_{s_n}, \gamma_1) \circ \Phi^1(x_1 | c, c_{s_n}, \gamma_1). \quad (9)$$

878 And we define Φ^T as

$$x_{t-1} = \Phi^t(x_t | c, c_{s_n}, \gamma_1) = \sqrt{\alpha_{t-1}} \frac{x_t - \sqrt{1 - \alpha_t} \epsilon_\theta^t(x_t)}{\sqrt{\alpha_t}} + \sqrt{1 - \alpha_{t-1}} \epsilon_\theta^t(x_t), \quad (10)$$

879 where $a_t := \prod_{i=1}^t (1 - \beta_i)$ and β_t are the pre-defined parameters for scheduling the scales of adding
 880 noises in DDIM (Song et al., 2021a) scheduler. We denote $\epsilon_\theta^t(x_t)$ as the predicted score by the
 881 denoising network θ at timestep t .

882 Similarly, we obtain \tilde{x}_{t-1} as

$$\tilde{x}_t = \Psi^t(\tilde{x}_{t-1} | c, c_{s_n}, \gamma_2) = \sqrt{\frac{\alpha_t}{\alpha_{t-1}}} \tilde{x}_{t-1} + \sqrt{\alpha_t} \left(\sqrt{\frac{1}{\alpha_t} - 1} - \sqrt{\frac{1}{\alpha_{t-1}} - 1} \right) \epsilon_\theta^t(\tilde{x}_{t-1}). \quad (11)$$

883 In Eq. 11, we approximate the score predicted at timestep t with timestep $t-1$ along the inversion
 884 path, *i.e* set $\epsilon_\theta^t(\tilde{x}_{t-1}) \approx \epsilon_\theta^t(\tilde{x}_t)$. When the approximation error is negligible, Φ and Ψ can be proven
 885 to be inverse functions (Mokady et al., 2023), meaning that $\Psi = \Phi^{-1}$. Therefore, we can represent
 886 \tilde{x}_t as

$$\tilde{x}_0 = \Psi^{-1}(\tilde{x}_T | c, c_{s_n}, \gamma_2) = \Phi(\tilde{x}_T | c, c_{s_n}, \gamma_2). \quad (12)$$

887 **Classifier free guidance.** In the classifier-free guidance approach (Ho & Salimans, 2021), the score
 888 prediction model u_θ is trained rained both conditionally and unconditionally. At inference time, the
 889 denoising score is obtained by blending the conditional and unconditional outputs of u_θ , allowing
 890 flexible control over the strength of guidance through a tunable scale. Specifically, for denoising
 891 and inversion process, we use guidance scales γ_1 and γ_2 , with the corresponding scores as Eq. 7,
 892 where u_θ is the noise predictor, and \emptyset is the null prompt, representing the denoising result under
 893 unconditional settings.

894 **Derivation.** Given inference timestep of T , we can obtain the inverted latent \tilde{x}_T as

$$\tilde{x}_T = \sqrt{\frac{\alpha_T}{\alpha_{T-1}}} \tilde{x}_{T-1} + \sqrt{\alpha_T} \left(\sqrt{\frac{1}{\alpha_T} - 1} - \sqrt{\frac{1}{\alpha_{T-1}} - 1} \right) \epsilon_\theta^T(\tilde{x}_{T-1}). \quad (13)$$

895 For the sake of convenience, we set

$$m_T = \sqrt{\frac{\alpha_T}{\alpha_{T-1}}}, \quad n_T = \sqrt{\alpha_T} \left(\sqrt{\frac{1}{\alpha_T} - 1} - \sqrt{\frac{1}{\alpha_{T-1}} - 1} \right). \quad (14)$$

896 Through iterative and combinatorial processes, \tilde{x}_T could be expressed as

$$\begin{aligned} \tilde{x}_T &= m_T \tilde{x}_{T-1} + n_T \epsilon_\theta^T(\tilde{x}_{T-1}) \\ &= m_T m_{T-1} \tilde{x}_{T-2} + m_T n_{T-1} \epsilon_\theta^{T-1}(\tilde{x}_{T-2}) + n_T \epsilon_\theta^T(\tilde{x}_{T-1}) \\ &= m_T m_{T-1} m_{T-2} \tilde{x}_{T-3} + m_T m_{T-1} n_{T-2} \epsilon_\theta^{T-2}(\tilde{x}_{T-3}) + m_T n_{T-1} \epsilon_\theta^{T-1}(\tilde{x}_{T-2}) + n_T \epsilon_\theta^T(\tilde{x}_{T-1}) \\ &= \prod_{i=0}^T m_i \tilde{x}_0 + \sum_{t=1}^T n_t \prod_{k=t+1}^T m_k \epsilon_\theta^t(\tilde{x}_{t-1}). \end{aligned} \quad (18)$$

917 (15)

918 Similarly, we can perform iterative derivations to obtain the equivalent form of x_T as
919

$$920 \quad x_T = \prod_{i=0}^T m_i x_0 + \sum_{t=1}^T n_t \prod_{k=t+1}^T m_k \epsilon_\theta^t(x_t). \quad (16)$$

923 Then in Z-sampling, we focus solely on local cycle of $x_t \rightarrow x_{t-1} \rightarrow \tilde{x}_t$. Substituting Eq. 9 into
924 Eq. 10 yield \tilde{x}_t as

$$\begin{aligned} 925 \quad \tilde{x}_t &= x_t - \sqrt{1 - \alpha_t} \epsilon_\theta^t(x_t) + \sqrt{\frac{(1 - \alpha_{t-1})\alpha_t}{\alpha_{t-1}}} \epsilon_\theta^t(x_t) \\ 926 \quad &+ \sqrt{\alpha_t} \left(\sqrt{\frac{1}{\alpha_t} - 1} - \sqrt{\frac{1}{\alpha_{t-1}} - 1} \right) \epsilon_\theta^t(\tilde{x}_{t-1}) \\ 927 \quad &= x_t + \sqrt{1 - \alpha_t} (\epsilon_\theta^t(\tilde{x}_{t-1}) - \epsilon_\theta^t(x_t)) + \sqrt{\frac{(1 - \alpha_{t-1})\alpha_t}{\alpha_{t-1}}} (\epsilon_\theta^t(x_t) - \epsilon_\theta^t(\tilde{x}_{t-1})) \quad (17) \\ 928 \quad &= x_t + \left(\sqrt{1 - \alpha_t} - \sqrt{\frac{(1 - \alpha_{t-1})\alpha_t}{\alpha_{t-1}}} \right) (\epsilon_\theta^t(x_t) - \epsilon_\theta^t(\tilde{x}_{t-1})) \\ 929 \quad &= x_t + \sqrt{\alpha_t} \left(\sqrt{\frac{1}{\alpha_t} - 1} - \sqrt{\frac{1}{\alpha_{t-1}} - 1} \right) (\epsilon_\theta^t(x_t) - \epsilon_\theta^t(\tilde{x}_{t-1})). \\ 930 \quad & \\ 931 \quad & \\ 932 \quad & \\ 933 \quad & \\ 934 \quad & \\ 935 \quad & \\ 936 \quad & \\ 937 \quad & \\ 938 \quad & \\ 939 \quad & \end{aligned}$$

940 We define the latent difference of Z-Sampling is accumulated as
941

$$\begin{aligned} 942 \quad \delta_{Z\text{-Sampling}} &= \sum_{t=1}^T (x_t - \tilde{x}_t)^2 \\ 943 \quad &= \sum_{t=1}^T \alpha_t h_t^2 (\epsilon_\theta^t(x_t) - \epsilon_\theta^t(\tilde{x}_{t-1}))^2 \\ 944 \quad &= \sum_{t=1}^T \alpha_t h_t^2 \left(\underbrace{\epsilon_\theta^t(x_t) - \epsilon_\theta^t(\tilde{x}_t)}_{\tau_1: \text{semantic information gain term}} + \underbrace{\epsilon_\theta^t(\tilde{x}_t) - \epsilon_\theta^t(\tilde{x}_{t-1})}_{\tau_2: \text{approximation error term}} \right)^2. \quad (18) \\ 945 \quad & \\ 946 \quad & \\ 947 \quad & \\ 948 \quad & \\ 949 \quad & \\ 950 \quad & \\ 951 \quad & \\ 952 \quad & \\ 953 \quad & \\ 954 \quad & \\ 955 \quad & \end{aligned}$$

956 Excluding the approximation error introduced by inversion algorithm, we can rewrite Eq. 18 as
957

$$958 \quad \delta_{Z\text{-Sampling}} = \sum_{t=1}^T \alpha_t h_t^2 (\epsilon_\theta^t(x_t) - \epsilon_\theta^t(\tilde{x}_t))^2. \quad (19)$$

959 Thus, we have demonstrated that $\delta_{Z\text{-Sampling}} \propto \sum_{t=1}^T (\tau_1(t))^2$. Although the step-by-step approach
960 results in x_t and \tilde{x}_t being the same at each timestep t , from Eq. 7, we note that $\epsilon_\theta^t(x_t)$ and
961 $\epsilon_\theta^t(\tilde{x}_t)$ are obtained under guidance scales γ_1 and γ_2 respectively. Thus the effect of Z-sampling is
962 further equivalent as

$$\begin{aligned} 963 \quad \delta_{Z\text{-Sampling}} &= \sum_{t=1}^T \alpha_t h_t^2 ((1 + \gamma_1) u_\theta(x_t, c, c_{s_N}, t) - \gamma_1 u_\theta(x_t, \emptyset, c_{s_N}, t) \\ 964 \quad &- (1 + \gamma_2) u_\theta(\tilde{x}_t, c, c_{s_N}, t) + \gamma_2 u_\theta(\tilde{x}_t, \emptyset, c_{s_N}, t))^2 \quad (20) \\ 965 \quad & \\ 966 \quad & \\ 967 \quad & \\ 968 \quad & \\ 969 \quad & \\ 970 \quad & \\ 971 \quad & \end{aligned}$$

972 In our experiments, we adopted the parameter settings from ZigZag, setting $\gamma_2 = 0$, which simplifies
973 the above equation as follows:

$$974 \quad \delta_{Z\text{-Sampling}} = \sum_{t=1}^T \alpha_t h_t^2 ((1 + \gamma_1) u_\theta(x_t, c, c_{s_N}, t) - \gamma_1 u_\theta(x_t, \emptyset, c_{s_N}, t) - u_\theta(\tilde{x}_t, c, c_{s_N}, t))^2 \quad (21)$$

975 At a given time step t , since s_N remains constant, thus, $\delta_{Z\text{-Sampling}} \propto \sum_{t=1}^T (u_\theta(x_t, c, c_{s_N}, t))^2$.
976 At this point, the proof of Eq. 8 has been completed.

972 E MORE SAMPLE IMAGES GENERATED BY SKETCHEVO
973
974990 Figure 10: More visualization results for the Sketchy datasets.
991
9921008 Figure 11: More visualization results for the QuickDraw datasets.
1009
10101024 Figure 12: More visualization results for the AnimeDiffusion datasets.
1025

Figure 13: More visualization results for the FSCOCO datasets.

Figure 14: More visualization results off-prompt on the QuickDraw dataset.

F VISUALIZATION RESULTS OF OFF-PROMPT ON THE QUICKDRAW DATASET

We conduct inference using only the QuickDraw sketches as input. The conclusions are as follows:

Clear-contour sketches yield consistent structure-driven results. For sketches with clear and characteristic contours (e.g., lighthouse, cello), the model can still produce semantically aligned images that fit natural scenes even without textual input, suggesting that well-defined structural cues alone can anchor the intended concept.

Semantic ambiguity in minimalist sketches. For highly abstract or extremely sparse sketches, removing text introduces substantial semantic uncertainty. For instance, when the sketch is merely a circle, sampling with different random seeds produces diverse and often mutually inconsistent outputs. This demonstrates that textual input is essential for stabilizing and disambiguating the semantics of minimalist drawings.

1080
1081 **Complementary control beyond structure.** In addition to semantics, text typically governs
1082 appearance-related attributes such as color, number, material, background composition, lighting,
1083 and stylistic preferences—factors not specified by the sketch.

1084 Taken together, these observations highlight the complementary roles of the two modalities: the
1085 sketch primarily constrains the structural outline, while the text refines high-level semantics and
1086 controls appearance attributes, jointly shaping the final generation.

1087
1088 **G THE USE OF LARGE LANGUAGE MODELS (LLMs)**

1089
1090 In this work, we employed a large language model to assist in polishing the writing and improving
1091 the clarity and readability of the text.

1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133