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ABSTRACT

Sketching represents humanity’s most intuitive form of visual expression – a uni-
versal language that transcends barriers. Although recent diffusion models inte-
grate sketches with text, they often regard the complete sketch merely as a static
visual constraint, neglecting the human preference information inherently con-
veyed during the dynamic sketching process. This oversight leads to images that,
despite technical adherence to sketches, fail to align with human aesthetic expec-
tations. Our framework, SketchEvo, harnesses the dynamic evolution of sketches
by capturing the progression from initial strokes to completed drawing. Current
preference alignment techniques struggle with sketch-guided generation because
the dual constraints of text and sketch create insufficiently different latent sam-
ples when using noise perturbations alone. SketchEvo addresses this through two
complementary innovations: first, by leveraging sketches at different completion
stages to create meaningfully divergent samples for effective aesthetic learning
during training; second, through a sequence-guided rollback mechanism that ap-
plies these learned preferences during inference by balancing textual semantics
with structural guidance. Extensive experiments demonstrate that these comple-
mentary approaches enable SketchEvo to deliver improved aesthetic quality while
maintaining sketch fidelity, successfully generalizing to incomplete and abstract
sketches throughout the drawing process.

1 INTRODUCTION

Sketching is one of humanity’s most intuitive forms of visual communication. The act of drawing
– translating mental concepts into physical strokes – naturally encodes rich information not just in
the final result, but in the sequential process itself. Recent advances in diffusion models (Ho et al.,
2020; Song et al., 2021a; Hu et al., 2024; Song et al., 2021b) have enabled remarkable progress in
controllable image generation, with approaches like ControlNet (Zhang et al., 2023), T2I-Adapter
(Mou et al., 2024), and VersaGen (Chen et al., 2025) successfully integrating sketch conditions with
textual prompts.

However, these methods (He et al., 2024; Liu et al., 2024; Li et al., 2024; Qin et al., 2023; Hu et al.,
2023) primarily focus on the final sketch as a static spatial constraint, overlooking the intermediate
information of the drawing process. When processing amateur sketches, existing approaches often
produce technically correct but aesthetically disappointing results – they satisfy structural constraints
(often poor as per amateur sketches) yet fail to capture human intent. This disconnect reveals a
deeper problem: existing models don’t understand how humans conceptualize and refine visual
ideas through the progressive accumulation of strokes.

Our investigation reveals that the core challenge lies in a fundamental misalignment between gen-
erated outputs and human aesthetic preferences. While recent preference alignment approaches like
DPOK (Fan et al., 2023), DPO (Rafailov et al., 2023), D3PO (Yang et al., 2024), SPO (Liang
et al., 2025), and LPO (Zhang et al., 2025) have improved image quality in other contexts, they
face a critical obstacle in sketch-guided generation. These methods optimize models by comparing
generated variations and adjusting to produce more preferred outputs, but in multimodal sketch-
and-text generation, the dual constraints create insufficiently different samples when using conven-
tional noise-based variations. These limited variations provide weak training signals that struggle
to capture meaningful aesthetic improvements while preserving sketch details. This creates a false
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Figure 1: Visualization of SketchEvo results. The model produces images aligned with human
preferences, trained only on the Sketchy dataset.

dichotomy where models must choose between faithfully reproducing potentially flawed amateur
sketches or generating visually pleasing but sketch-inconsistent images.

To address this challenge, we introduce SketchEvo, a framework that leverages the sketch sequences
– from initial strokes to completion – as a powerful source of diversity for preference-based opti-
mization. Our key insight is that intermediate sketches from different drawing stages represent vary-
ing levels of abstraction and detail, offering meaningful semantic and structural divergence while
maintaining connection to the user’s intent. By using these sketch variations instead of relying
solely on noise perturbations, SketchEvo creates meaningfully different sample pairs that provide
strong signals for human preference alignment even under tight multimodal constraints.

SketchEvo introduces two complementary innovations that work together across the model lifecycle:
First, a sequence-guided sampling strategy transforms sketching information into effective learning
signals during training by incorporating sketches at different completion stages as conditional inputs.
This expands candidate diversity and creates sample pairs with greater aesthetic divergence, provid-
ing more informative gradients for preference optimization. Second, building upon this improved
preference alignment, our sequence-guided rollback mechanism applies these learned preferences
during inference by leveraging initial sketch strokes to guide rollback. This quantifies information
gain from both textual and sketch conditions, ensuring the aesthetic improvements learned during
training are fully realized in the generated images while maintaining structural fidelity to the user’s
sketch intent.

Our extensive experiments demonstrate substantial improvements across multiple human preference
metrics and conditional fidelity measures. Particularly noteworthy is SketchEvo’s strong generaliza-
tion ability in on-the-fly sketch-to-image tests, where it successfully produces high-quality images
from incomplete and abstract sketches at various stages of the drawing process, enabling truly inter-
active sketch-based creation.

2 RELATED WORK

2.1 CONTROLLABLE IMAGE GENERATION

The rapid advancement of diffusion models has reshaped text-to-image generation, with models such
as Stable Diffusion (Podell et al., 2024; Esser et al., 2024; Dhariwal & Nichol, 2021) and FLUX
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(Labs, 2024) achieving strong image quality and semantic alignment. Building on this, conditional
strategies have been explored (Ye et al., 2023; Ruiz et al., 2023; Wang et al., 2024a; Chen et al.,
2024; Wang et al., 2024b), among which sketches provide an intuitive structural prior. Existing
methods utilize hand-drawn sketches (Mou et al., 2024; Liu et al., 2024; Zhang et al., 2023; Chen
et al., 2025) to capture contours and layouts, while others enhance alignment through adaptive noise
sampling (Cheng et al., 2023) or sketch-image retrieval (Koley et al., 2024). However, most existing
approaches treat sketches merely as static inputs, overlooking the rich intermediate information and
implicit human preference signals embedded in the drawing process.

2.2 HUMAN PREFERENCE OPTIMIZATION

Various aesthetic metrics have been proposed, such as ImageReward (Xu et al., 2023), HPSv2
(Wu et al., 2023), PickScore (Kirstain et al., 2023), and VisionReward (Xu et al., 2024). Re-
cent approaches improve subjective alignment through rollback mechanisms (LiChen et al., 2025),
RLHF-inspired formulations (Ouyang et al., 2022; Zhang et al., 2024; Fan et al., 2023; Black et al.,
2024; Rafailov et al., 2023; Yang et al., 2024), and preference optimization with sample pairs (Liang
et al., 2025; Zhang et al., 2025; Yeh et al., 2024). However, their reliance on random Gaussian noise
perturbations limits the capture of structural and layout-level aesthetic intentions.

3 PROBLEM STATEMENT AND BACKGROUND

Problem formulation. This paper investigates the aesthetic degradation problem in sketch-
guided image generation, with inputs being textual descriptions and a entire drawing sequence
{s1, s2, . . . , sN} from the first stroke s1 to the completed sketch sN . The goal is to generate an
image I that combines high aesthetic quality and sketch fidelity.

Preference Optimization for Diffusion Models. Aligning diffusion models with human aesthetic
preference is very challenging. Given a text condition c, SPO (Liang et al., 2025) samples from
xt+1 to generate a denoised sample candidate pool {x1

t , x
2
t , . . . , x

K
t }, and introduces a Step-Aware

Preference Model (SPM) to predict preference scores for samples in the candidate pool, thereby
constructing refined preference pairs (xw

t , x
l
t). The optimization objective of SPO is:

LSPO = −Exw
t ,xl

t∼pθ(xt|xt+1,c,t+1) [log σ (β△r]) (1)

△r =
pθ(x

w
t | xw

t+1, c, t+ 1)

pref(xw
t | xw

t+1, c, t+ 1)

/ pθ(x
l
t | xl

t+1, c, t+ 1)

pref(xl
t | xl

t+1, c, t+ 1)
(2)

where the symbol σ denotes the sigmoid function, β is a regularization hyperparameter and pref
denotes the reference value from the fixed initial denoising model pθ.

Construction of Denoised Sample Candidate Pool. SPO constructs the denoised sample candidate
pool {x1

t , x
2
t , . . . , x

K
t } by adding random Gaussian noise z on the generated samples µθ(xt+1, c, t+

1), as formalized below: xk
t = µθ(xt+1, c, t + 1) + z , where z ∼ N (0, I), xk

t denotes the k-th
sample in the candidate pool. Sample diversity of candidate pool is solely governed by the noise z
sampled from a standard Gaussian distribution.

4 PROPOSED METHOD

4.1 SEQUENCE-GUIDED PREFERENCE OPTIMIZATION (SGPO)

Sequence-Guided Sampling Strategy.

Unlike traditional methods that solely rely on random noise perturbations to generate candidate
samples, we introduce sketch sequences {s1, s2, . . . , sN} from the drawing process to construct
a dynamically evolving candidate pool. Specifically, as shown in Fig. 2, at each sampling step,
K sketches are randomly selected from the sketch sequence as conditions to guide the model in
constructing a candidate pool {x1

t , x
2
t , . . . , x

K
t } through denoising xt+1. This process is formally

expressed as:
xk
t = µθ(xt+1, c, c

k
sn , t+ 1) + z (3)
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Figure 2: The framework of SketchEvo. During training, the SGPO module can obtain distinctive
positive-negative sample pairs, fine-tuning the LoRA model in the U-Net to align with human pref-
erences. During inference, a SGR mechanism is employed to strengthen conditional information.

where cksn denotes the sketch condition sn adopted for the k-th sample xk
t .

Within the dynamically evolving candidate pool, differences between samples are no longer entirely
dominated by random noise z. We leverage sketches at different completion stages as conditional in-
puts to guide the denoising process, thereby generating diversified denoised samples. Since sketches
at each intermediate stage undergo significant evolution in structural and detail levels (As shown in
Fig. 2, within the swan sketch drawing sequence, substantial discrepancies exist between s1, sn, sN ),
this approach enables the generation of diversified samples.

Positive-Negative Sample Pair Selection Strategy. At each diffusion timestep t, we utilize a
pretrained scoring model to evaluate the samples in the dynamic evolving candidate pool. The
highest- and lowest-scoring samples are selected and denoted as pθ(x

w
t | xw

t+1, c, csw , t + 1) and
pθ(x

l
t | xl

t+1, c, csl , t+ 1), respectively, forming a positive-negative sample pair. To better optimize
the model, only sample pairs surpassing a predefined threshold are utilized for model training.

The Impact of Candidate Pool Sample Diversity on Preference Optimization. According to
equation 1, given two samples xw

t and xl
t , the gradient of the reward function with respect to the

SGPO, Eq. 4 is reformulated as follows:

∇θLOurs = −βE
[
σ(−β△r)

(
∇θ log pθ(x

w
t |csw , xw

t+1, c, t+ 1)−∇θ log pθ(x
l
t|csl , xw

t+1, c, t+ 1)
)]

(4)

△r =
pθ(x

w
t | xw

t+1, c, csw , t+ 1)

pref(xw
t | xw

t+1, c, csw , t+ 1)

/ pθ(x
l
t | xl

t+1, c, csl , t+ 1)

pref(xl
t | xl

t+1, c, csl , t+ 1)
(5)

where csw , csl represent the sketches condition corresponding to the best latent and the worst latent,
respectively.

As derived from Eq. 4, the effectiveness of gradients depends on the discrepancy between xw
t and

xl
t. When sample diversity is insufficient, this discrepancy diminishes, causing ∆r → 1, which de-

generates gradients into an uninformative signal with poor directionality. It can be observed that our
proposed SGPO significantly outperforms SPO in candidate pool sample diversity. This disparity is
directly reflected in the differences between sample pairs — SGPO generates positive-negative sam-
ple pairs with more pronounced disparities. The higher sample diversity enables SGPO to provide
richer gradient information for the model during the optimization process.
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4.2 SEQUENCE-GUIDED ROLLBACK (SGR) MECHANISM DURING INFERENCE PHASE

To effectively transfer the improvements of SGPO from the training phase to the inference phase,
we introduce a sequence-guided rollback mechanism. Previous works have demonstrated that in-
corporating a rollback mechanism into the text-guided image generation process allows the latent
encoding to more effectively capture semantic information. The cumulative latent difference in roll-
back can be formulated as: where ht =

√
1/αt − 1 −

√
1/αt−1 − 1, uθ is the model-predicted

noise, τ1(t) denotes the semantic information gain term and τ2(t) denotes the error term, which can
be neglected under certain conditions.

When directly transferring existing rollback mechanism to sketch-to-image generation tasks, their
performance improvement faces significant bottlenecks. The fundamental reason lies in the fact that
methods design optimization objectives solely for uni-modal textual conditions, failing to model the
structural priors inherent in sketch conditions. To address this issue, we propose the SGR mech-
anism, which is implemented by integrating the sketch-drawing sequence and text conditions to
jointly guide the rollback process, as formulated below:

ϵtθ(xt) = (1 + γ1)uθ(xt, c, csN , t)− γ1uθ(xt, ∅, csN , t)

ϵtθ(x̃t) = (1 + γ2)uθ(x̃t, c, csn , t)− γ2uθ(x̃t, ∅, csn , t) (6)

In our method, the information gain encompasses not only semantic information from text condi-
tions c, but also structural and detailed information introduced by the sketch sequences sn, as well
as human preference information learned by the model parameters θ. During the inference phase,
when the sketch sequence sn is predetermined, our rollback mechanism is simplified to follow the
generation manner of text-to-image. Consequently, we adopt the configuration of γ1 and γ2 to max-
imize semantic information enhancement. With γ1 and γ2 fixed, the information gain is determined
by the following formula (detailed proofs are provided in Appendix D):

δZ−Sampling ∝
T∑

t=1

(τ1(t))
2 ∝

T∑
t=1

(uθ(xt, c, csn , t))
2 (7)

The discrepancy in structural and detailed information gain is determined by the noise generated
through the control of textual conditions c and sketch conditions csn in the generative model. By
increasing the divergence between c and csn , the cumulative information gain can be augmented.

The SGR mechanism quantifies the information gain from text and sketch conditions, ensuring that
aesthetic enhancements learned during training are fully manifested in the generated images while
preserving structural fidelity to the user’s original sketch intent.

5 EXPERIMENT

5.1 EXPERIMENTAL SETUPS

Our method is fine-tuned based on the ControlNetXL (Podell et al., 2024) to achieve alignment
with human preferences. All experiments are conducted on NVIDIA A100 GPUs for both training
only with Sketchy (Sangkloy et al., 2016) dataset . Detailed information about data processing,
hyperparameters employed in the experiments are provided in the Appendix A and B.

5.2 COMPARISON WITH THE STATE-OF-THE-ART METHODS

To verify the effectiveness of our method, we compared it with state-of-the-art multi-condition con-
trolled image generation models ControlNet (Zhang et al., 2023), T2i-Adapter (Mou et al., 2024),
VersaGen (Chen et al., 2025) and preference aligning methods DPO (Rafailov et al., 2023) and
SPO Liang et al. (2025) under their original settings. Since the original DPO and SPO are based
on SDXL (Podell et al., 2024) fine-tuning and only accept text conditions, we replaced the SDXL
model in ControlNet with their fine-tuned SDXL models. SGPO refers to our proposed method
without employing the rollback mechanism.
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ControlNet-SPOControlNet ControlNet-DPO Ours

Twin banana

Fancy dessert topped 
with red candle.

Green camouflage 
military helicopter.

Sketch

Camel

Bread

T2i-Adapter VersaGen

A cat sitting on 
a chair in a room.

SGPO

Figure 3: Visualized comparison of ControlNet, T2I-Adapter, VersaGen, ControlNet-DPO,
ControlNet-SPO, SGPO and Ours on Sketchy dataset.

Table 1: Quantitative results. We evaluate our method and competitors on the sketchy dataset in
terms of human preference alignment and conditional fidelity.

Method Human Preference Alignment Conditional Fidelity
Image Reward ↑ HPS v2 ↑ Pick score ↑ LPIPS-sketch ↓ CLIP-Score ↑

ControlNet 0.004 24.08 20.03 0.11 23.70
T2i-Adapter -0.001 23.60 20.58 0.20 15.86
VersaGen 0.08 24.68 20.79 0.14 23.77
ControlNet-DPO 0.47 25.02 20.86 0.16 23.35
ControlNet-SPO 0.61 27.69 22.04 0.17 23.65
SGPO 1.03 28.87 21.94 0.20 23.86
Ours 1.18 30.08 22.41 0.15 24.15

For Human Preference Alignment, as shown in Tab. 1, We found that, compared with multi-
condition controlled image generation models, methods after preference alignment achieved aes-
thetic score improvements, with ours outperforming ControlNet-DPO and ControlNet-SPO. From a
detailed view, human preference is reflected in three aspects: i) Position: As shown in the first row
of Fig. 3, The cat and chair generated by our model exhibit a more natural positional relationship,
demonstrating superior spatial layout preference capability. ii) Composition: As presented in the
second row of Fig. 3, the cake generated by our model exhibit proportionally more realistic scaling
relative to the candles, demonstrating superior compositional preference capability. iii) Color: As
illustrated in the third row of Fig. 3, our model accurately identifies the color boundaries between
foreground and background, altering only the helicopter’s main body to a camouflage pattern while
preserving the background’s original appearance, demonstrating precise control over color prefer-
ences.

As shown in Tab. 1, our method achieves the highest semantic fidelity, though not the highest
sketch similarity, as ControlNet and T2I-Adapter strictly follow sketches. Compared to preference-
alignment methods like DPO and SPO, our sequence-guided approach better integrates text and
sketch information, preserving fine-grained structures while generating natural images. As illus-
trated in Fig. 3 (rows 4-6), it simultaneously: (i) accurately realizes quantitative semantics (e.g., two

6
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Ours Sketch

Control

Net
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Control

Net
ControlNet
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Dragon.

Back Bag.

Ambulance.

Hand drawn anime style portrait.

Hand drawn anime style portrait.

Hand drawn anime style portrait.

A plate full of donuts.
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Bird sitting on a stick.
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Hand drawn anime style portrait.

Cake.

Hot tub.

A fire hydrant on side of a road.
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Figure 4: Generalization results are visualized, consistently generating high-quality images regard-
less of sketch expertise. Images from more professional sketches show even better alignment with
inputs.

bananas); (ii) suppresses redundant strokes (e.g., camel head) via enhanced semantic supervision;
(iii) enhances visual expressiveness while maintaining precise text-image consistency.

Table 2: Quantization results demonstrating the model’s generalization capability when trained only
on the Sketchy dataset and evaluated on unseen data.

Dataset Method
Image

Reward ↑ HPS v2 ↑ PickScore ↑
LPIPS

-Sketch ↓
CLIP

Score ↑

QuickDraw
ControlNet -0.56 15.24 17.17 0.47 23.07

ControlNet-SPO 0.40 27.05 21.38 0.67 24.01
Ours 0.86 30.22 21.67 0.68 24.28

AnimeDiffusion
ControlNet -0.11 18.34 19.62 0.10 23.17

ControlNet-SPO 0.27 23.28 19.67 0.15 23.99
Ours 1.32 31.57 23.68 0.10 24.96

FSCOCO
ControlNet -0.03 23.13 18.99 0.41 24.05

ControlNet-SPO 0.52 27.51 19.09 0.50 24.39
Ours 0.96 30.31 21.78 0.45 24.77

5.3 GENERALIZATION ABILITY OF THE MODEL

To further evaluate the generalization ability of our model, we conduct inference on the Quick-
Draw (qui, 2016), AnimeDiffusion (Cao et al., 2024), and FSCOCO (Chowdhury et al., 2022)
datasets. As shown in Tab. 2 and Fig. 4, our model consistently achieves competitive performance
across diverse datasets, demonstrating robust generalization beyond the training domain. More re-
sults demonstrations are presented in E.

For single-object sketch datasets, the model adaptively balances aesthetic quality and sketch simi-
larity according to the level of sketch abstraction, without requiring manual weight adjustment. As
shown in Tab. 2, whether tested on the abstract QuickDraw dataset or the professional AnimeDiffu-
sion dataset, our model consistently produces results with the highest aesthetic scores while main-
taining strong sketch fidelity. For example, on the QuickDraw dataset, ControlNet generates flipped
hot tub images that defy real-world structure, while ControlNet-SPO yields higher aesthetic scores
but poor sketch alignment. In contrast, our model automatically integrates both sketch consistency
and aesthetic quality, generating superior images without manual tuning.

7
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For complex scene sketch datasets, our model consistently achieves higher aesthetic scores and
sketch similarity. As shown in Tab. 2, on FSCOCO, our method outperforms ControlNet-SPO in
both metrics. Due to the presence of multiple elements in scene sketches, overall similarity scores
are lower, even ControlNet achieves only 0.41, underscoring the difficulty of strict alignment in
complex scenarios.

Moreover, higher sketch professionalism leads to greater image-sketch similarity.As illustrated in
Fig. 1 and Fig. 4, the similarity between images and sketches progressively improves from the less
professional QuickDraw, through sketch and FSCOCO, to the highly professional Animeduffusion
dataset. Notably, this enhancement in similarity is achieved without compromising aesthetic quality,
demonstrating strong preservation of sketch details.

5.4 ABLATION STUDY AND ANALYSIS

Can Sequence-Guided Sampling Strategy enhance the sample diversity of the candidate pool?
Indeed, our method employs a higher positive-negative sample filtering threshold compared to the
ControlNet-SPO (0.8 v.s. 0.4). To visually validate the enhanced diversity of the candidate pool,
Fig. 5(b) specifically compares the maximum aesthetic score differences in the candidate pools be-
tween the two methods across different denoising stages. Experimental results demonstrate that our
method achieves significantly higher maximum aesthetic score differences than ControlNet-SPO
at all denoising stages, directly confirming that the sequence-guided sampling strategy effectively
enhances diversity characteristics in candidate samples.

𝑆1 𝑆0.2𝑁 𝑆0.4𝑁 𝑆0.6𝑁 𝑆0.8𝑁 𝑆𝑁−1𝑆𝐺𝑃𝑂

(a)

𝑇𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠

(b)

M
𝑎
𝑥
𝑎
𝑒𝑠
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𝑒𝑡
𝑖𝑐
𝑠𝑐
𝑜
𝑟𝑒

𝑑
𝑖𝑓
𝑓

Figure 5: The ablation study results, (a) presents the performance comparison of rollback mecha-
nisms guided by sketches of varying abstraction levels under different evaluation metrics. (b) shows
the statistical analysis of score differences between positive and negative samples in the candidate
pool.

The Impact of Different Abstraction Levels of Sketch in SGR Mechanism.

In Fig. 5(a), we compare the performance of rollback mechanisms guided by sketches at different
abstraction levels through multi-dimensional evaluation. For visualization convenience, the values
of HPS v2 (Wu et al., 2023), PickScore (Kirstain et al., 2023), and CLIP-Score (Hessel et al.,
2021) are scaled down by a factor of 30. Six comparative schemes are designed: SGPO denotes
our method without the rollback mechanism; s1 represents the rollback strategy guided by the first
sketch stroke; s0.2N , s0.4N , s0.6N , s0.8N correspond to rollback strategies guided by sketches at
20%-80% completion stages; sN−1 denotes the strategy guided by the second-to-last sketch stroke.
Experimental results reveal significant performance differences across schemes: the sN−1-guided
strategy performs worst, while the s1-guided mechanism surpasses others in comprehensive evalua-
tion. This phenomenon aligns with the theoretical derivation in Eq. 7 – as the discrepancy between
the text condition c and sketch condition csn increases, the cumulative information gain can be aug-
mented, thereby effectively amplifying both the semantic-structural information of conditions and
the preference information of the model.Visual demonstrations are presented in Fig. 6.

As shown in the Fig. 6, a closer examination reveals that the level of sketch abstraction used for
rollback guidance has an impact on the control over image details. When guided by the more abstract
sketch s1, the generated results maintain stable quality while better preserving the structural features
of the sketch. However, as the number of strokes increases, this consistency gradually declines.

8
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Skyscraper.

Cat looking at Xmas tree ornaments.

Lonely bench in the autumn leaves.

Mushroom growing in bushes.

𝑠1𝑆𝐺𝑃𝑂 𝑠0.2 𝑠0.4 𝑠0.6 𝑠0.8 𝑠𝑁−1𝑠𝑁

Figure 6: Visualization esults to the impact of different abstraction levels of sketch in SGR mecha-
nism.

5.5 ON-THE-FLY SKETCH-TO-IMAGE GENERATION TEST

During the dynamic process of sketch drawing, an advanced sketch-to-image generation model must
demonstrate the capability to produce high-quality images from sketches at any drawing stage. To
evaluate this, we propose the On-the-fly Sketch-to-Image Generation Test . Leveraging MasaCtrl’s
(Cao et al., 2023) foreground editing strategy, we effectively stabilize the generated background to
eliminate its interference. As shown in Fig. 7, our method generalizes well: even with highly abstract
sketches or only a few strokes, the generated images align with human preferences and accurately
reflect input conditions. As sketches gain detail, the outputs evolve accordingly, demonstrating the
model’s practical value in interactive creation.

Figure 7: Our method generates natural, conditionally accurate images from sketches of varying
abstraction, with results increasingly matching user expectations as drawing progresses.

6 CONCLUSION

In this paper, we propose a novel framework named SketchEvo, which leverages drawing dynamics
to enhance image generation. Specifically, during the training phase, we introduce a sequence-
guided optimization strategy to enhance the diversity of candidate samples, thereby improving the
alignment of generated results with human preference. In the inference phase, a sequence-guided
rollback mechanism is adopted: the initial sketch strokes are used to guide rollback, ensuring that
the generation process aligns with human preferences while meeting user conditions. Experimental
results show that our method effectively breaks through the trade-off bottleneck between creativity
and structural fidelity in traditional models.
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Technical Appendices and Supplementary Material

A EXPERIMENTAL DETAILS

In this section, we provide additional details on the dataset, experimental setup, and evaluation
metrics.

Datasets.

Sketchy (Sangkloy et al., 2016) dataset. The Sketchy dataset comprises 125 object categories, with
each category containing 100 real images and corresponding 7-10 hand-drawn sketches along with
their drawing sequences, totaling 12,500 real images and 75471 associated sketches. To ensure ex-
perimental rigor, we employ a stratified sampling strategy to partition the data into non-overlapping
random splits at an 8:2 ratio.

FSCOCO (Chowdhury et al., 2022) dataset contains 10,000 scene sketches drawn by 100 non-
professionals, each with stroke-level temporal data and text descriptions. Collected under a memory-
based drawing setup, it captures both complex structures and human subjective preferences, making
it well-suited for evaluating models in multi-object scene generation.

QuickDraw (qui, 2016) is a large-scale sketch dataset from Google’s “Quick, Draw!” game, contain-
ing 50 million sketches across 345 categories drawn by millions of non-expert users. Constrained to
20 seconds, the sketches are highly abstract, often with distortions or missing parts, creating a clear
gap from real images. In this work, we use a 2.5K subset to evaluate our model’s ability to generate
images under such abstract conditions, focusing on its alignment with human preferences and its
capacity to interpret and repair incomplete structures.

AnimeDiffusion (Cao et al., 2024) dataset is a benchmark specifically designed for anime face line-
art colorization, created through face cropping, alignment, and denoising. It consists of 31,696
training samples and 579 test samples, with a resolution of 256×256. Each colored face image is
paired with a corresponding line drawing generated using the XDoG algorithm, featuring diverse line
styles and a high level of professionalism, making it well-suited for evaluating model performance
under professional sketch conditions.

Settings.

During training, we employ the Adam optimizer with a learning rate of 1 × 10−5, a batch size of
4, and perform 4 training epochs. The diffusion model is configured with a total of 20 timesteps,
and the candidate pool size K is set to 5. The initial sketch s1 and the final complete sketch sN are
always selected, while 3 additional sketches are chosen from the remaining sequence as conditions
to guide the denoising process for generating candidate pool samples. A threshold of 0.8 is applied
for filtering positive-negative sample pairs, with timesteps 10 to 20 designated as the late denoising
phase.

Metrics.

PickScore (Kirstain et al., 2023) developed Pick-a-Pic, a large open dataset consisting of textto-
image prompts and real user preferences for generated images. They then utilized this dataset to
train a CLIP-based scoring function, PickScore, for the task of predicting human preferences.

ImageReward (Xu et al., 2023) developed ImageReward, the first general-purpose text-to-image
human preference reward model, which is trained based on systematic annotation pipeline, including
rating and ranking and has collected 137,000 expert comparisons to date.

HPS v2 (Wu et al., 2023) first introduced the Human Preference Dataset v2 (HPD v2), a largescale
dataset comprising 798,090 human preference choices on 433,760 pairs of images. By finetuning
CLIP using HPD v2, they developed the Human Preference Score v2 (HPS v2), a scoring model that
more accurately predicts human preferences for generated images.

Sketch-LPIPS (Zhang et al., 2018) is used to evaluate the perceptual similarity between a generated
image and a sketch. It extracts the target region from the generated image using SAM (Kirillov
et al., 2023), computes its Canny edge map, and compares it with the original sketch. Then, features
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are extracted using a deep network (e.g., VGG) to calculate the LPIPS score, where a lower score
indicates higher similarity.

CLIP-Score (Hessel et al., 2021) is a metric used to measure the semantic consistency between an
image and its text description. It uses the CLIP model to extract features from both the image and the
text, then computes the cosine similarity between them. A higher score indicates better alignment
between the image and the text.

B ABLATION

(a) (b)

Figure 8: Ablation study results: (a) illustrates the effect of candidate pool size on generation quality
under the SGPO mechanism, while (b) shows the impact of different scoring models on the experi-
mental outcomes.
Ablations on how SPO performance change w.r.t. sample diversity.

As we can see Fig. 8 (a) , when k increases from 5 to 7, the marginal performance gain is substan-
tially lower than that observed between k = 3 and k = 5, revealing an inherent optimization bottle-
neck. The underlying mechanism is attributed to the progressive homogenization of sketch states: as
more intermediate sketches are sampled, the state differential between sn and sn−i decays, driving
performance improvements toward an asymptotic plateau. Increasing k also incurs a significantly
higher computational cost for candidate pool construction, reducing training efficiency.In summary,
considering both sampling efficiency and generation quality, we adopt k = 5 as the default setting.

The impact of scoring model.

To evaluate the sensitivity of our method to the choice of scoring model, we conducted an additional
experiment using PickScore as the scoring model. The results of this experiment are presented in the
Fig. 8 (b) . Our method shows strong robustness to the choice of scoring model, as evidenced by the
small performance differences across most metrics (HPS v2, PickScore, LPIPS, and CLIP-Score)
when evaluated with different scoring models.

C PSEUDOCODE FOR THE INFERENCE STAGE IN THE SGR MECHANISM

Algorithm 1 Inference Stage of SGR Mechanism

Require: Text prompt c, Complete sketch csN , Guidance sketch csn , Inference steps T
Ensure: Clean image x0

1: xT ∼ N (0, I)
2: for t = T down to 1 do
3: xt−1 ← Φt(xt | c, csN , t)
4: x̃t ← Ψt(xt−1 | c, csn , t)
5: xt−1 ← Φt(x̃t | c, csN , t)
6: end for
7: return x0
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D PROOFS

In this section, we provide a mathematical derivation to validate Eq.7.

Diffusion Model. We define T as the total number of denoising steps, c as the conditonal prompt,
csn as the n-th sketch sequence. The denoising process can be defined as Φ : N × C → D, where
N is the Gaussion distribution and D is the target data distribution. Given a starting point xT ∈ N ,
we can generate x0 = Φ(xT |c, csn , γ1) ∈ D, where γ1 is the condition guidance scale during
denoing. The mapping corresponds Φ to the probability P (x0|c, csn , γ1, x1:T ). For simplicity, we
only consider the initial input xT in Φ. Similarly, we can reverse the process using an inversion
function Ψ : D × C → N . Under a inversion guidance scale γ2, we obtain inverted data x̃T =
Ψ(x̃0|c, csn , γ2) ∈ N from x̃0 ∈ D. Following DDPM (Ho et al., 2020), we treat diffusion model
as a Monte Carlo process and decompose Φ into T times single-step denoising mappings as

Φ(xT |c, csn , γ1) = ΦT (xT |c, csn , γ1) ◦ · · · ◦ Φ2(x2|c, csn , γ1) ◦ Φ1(x1|c, csn , γ1). (8)

And we define ΦT as

xt−1 = Φt(xt|c, csn , γ1) =
√
αt−1

xt −
√
1− αtϵ

t
θ(xt)√

αt
+
√
1− αt−1ϵ

t
θ(xt), (9)

where at :=
∏t

i=1(1−βi) and βt are the pre-defined parameters for scheduling the scales of adding
noises in DDIM (Song et al., 2021a) scheduler. We denote ϵtθ(xt) as the predicted score by the
denoising network θ at timestep t.

Similarly, we obtain x̃t−1 as

x̃t = Ψt(x̃t−1|c, csn , γ2) =
√

αt

αt−1
x̃t−1 +

√
αt

(√
1

αt
− 1−

√
1

αt−1
− 1

)
ϵtθ(x̃t−1). (10)

In Eq. 10, we approximate the score predicted at timestep t with timestep t− 1 along the inversion
path, .i.e set ϵtθ(x̃t−1) ≈ ϵtθ(x̃t). When the approximation error is negligible, Φ and Ψ can be proven
to be inverse functions (Mokady et al., 2023), meaning that Ψ = Φ−1. Therefore, we can represent
x̃t as

x̃0 = Ψ−1(x̃T |c, csn , γ2) = Φ(x̃T |c, csn , γ2). (11)

Classifier free guidance. In the classifier-free guidance approach (Ho & Salimans, 2021), the score
prediction model uθ is trained rained both conditionally and unconditionally. At inference time, the
denoising score is obtained by blending the conditional and unconditional outputs of uθ ,allowing
flexible control over the strength of guidance through a tunable scale. Specifically, for denoising
and inversion process, we use guidance scales γ1 and γ2, with the corresponding scores as Eq. 6,
where uθ is the noise predictor, and ∅ is the null prompt, representing the denoising result under
unconditional settings.

Derivation. Given inference timestep of T , we can obtain the inverted latent x̃T as

x̃T =

√
αT

αT−1
x̃T−1 +

√
αT

(√
1

αT
− 1−

√
1

αT−1
− 1

)
ϵTθ (x̃T−1). (12)

For the sake of convenience, we set

mT =

√
αT

αT−1
, nT =

√
αT

(√
1

αT
− 1−

√
1

αT−1
− 1

)
. (13)

Through iterative and combinatorial processes, x̃T could be expressed as

x̃T = mT x̃T−1 + nT ϵ
T
θ (x̃T−1)

= mTmT−1x̃T−2 +mTnT−1ϵ
T−1
θ (x̃T−2) + nT ϵ

T
θ (x̃T−1)

= mTmT−1mT−2x̃T−3 +mTmT−1nT−2ϵ
T−2
θ (x̃T−3) +mTnT−1ϵ

T−1
θ (x̃T−2) + nT ϵ

T
θ (x̃T−1)

=

T∏
i=0

mix̃0 +

T∑
t=1

nt

T∏
k=t+1

mkϵ
t
θ(x̃t−1). (18)

(14)
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Similarly, we can perform iterative derivations to obtain the equivalent form of xT as

xT =

T∏
i=0

mix0 +

T∑
t=1

nt

T∏
k=t+1

mkϵ
t
θ(xt). (15)

Then in Z-sampling, we focus solely on local cycle of xt → xt−1 → x̃t. Substituting Eq. 8 into
Eq. 9 yield x̃t as

x̃t = xt −
√
1− αtϵ

t
θ(xt) +

√
(1− αt−1)αt

αt−1
ϵtθ(xt)

+
√
αt

(√
1

αt
− 1−

√
1

αt−1
− 1

)
ϵtθ(x̃t−1)

= xt +
√
1− αt

(
ϵtθ(x̃t−1)− ϵtθ(xt)

)
+

√
(1− αt−1)αt

αt−1

(
ϵtθ(xt)− ϵtθ(x̃t−1)

)
= xt +

(
√
1− αt −

√
(1− αt−1)αt

αt−1

)(
ϵtθ(xt)− ϵtθ(x̃t−1)

)
= xt +

√
αt

(√
1

αt
− 1−

√
1

αt−1
− 1

)(
ϵtθ(xt)− ϵtθ(x̃t−1)

)
.

(16)

We define the latent difference of Z-Sampling is accumulated as

δZ−Sampling =

T∑
t=1

(xt − x̃t)
2

=

T∑
t=1

αth
2
t

(
ϵtθ(xt)− ϵtθ(x̃t−1)

)2

=

T∑
t=1

αth
2
t

 ϵtθ(xt)− ϵtθ(x̃t)︸ ︷︷ ︸
τ1:semantic information gain term

+ ϵtθ(x̃t)− ϵtθ(x̃t−1)︸ ︷︷ ︸
τ2:approximation eror term


2

.

(17)

Excluding the approximation error introduced by inversion algorithm, we can rewrite Eq. 17 as

δZ−Sampling =

T∑
t=1

αth
2
t

(
ϵtθ(xt)− ϵtθ(x̃t)

)2
. (18)

Thus, we have demonstrated that δZ−Sampling ∝
∑T

t=1(τ1(t))
2. Although the step-by-step ap-

proach results in xt and x̃t being the same at each timestep t, from Eq. 6, we note that ϵtθ(xt) and
ϵtθ(x̃t) are obtained under guidance scales γ1 and γ2 respectively. Thus the effect of Z-sampling is
further equivalent as

δZ−Sampling =

T∑
t=1

αth
2
t

(
(1 + γ1)uθ(xt, c, csN , t)− γ1uθ(xt, ∅, csN , t)

− (1 + γ2)uθ(x̃t, c, csn , t) + γ2uθ(x̃t, ∅, csn , t)
)2 (19)

In our experiments, we adopted the parameter settings from ZigZag, setting γ2 = 0, which simplifies
the above equation as follows:

δZ−Sampling =

T∑
t=1

αth
2
t ((1 + γ1)uθ(xt, c, csN , t)− γ1uθ(xt, ∅, csN , t)− uθ(x̃t, c, csn , t))

2

(20)
At a given time step t, since sN remains constant, thus, δZ−Sampling ∝

∑T
t=1(uθ(xt, c, csn , t))

2.
At this point, the proof of Eq. 7 has been completed.
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E MORE SAMPLE IMAGES GENERATED BY SKETCHEVO

Chair Butterfly

Blimp Hot Dog on side

Giraffe

Rusted sedan car

Zebra

Jellyfish swimming

Pineapple

Bread Helicopter Harp

Figure 9: More visualization results for the Sketchy datasets.

Barn

Shoe

Ambulance

Bed

Helme
t

Bicycle

Bench

Couch LaptopBulldozer

Cell phone

Bush

Figure 10: More visualization results for the QuickDraw datasets.

Hand drawn anime style portrait.

Hand drawn anime style portrait. Hand drawn anime style portrait.

Hand drawn anime style portrait.

Hand drawn anime style portrait.

Hand drawn anime style portrait.

Hand drawn anime style portrait.

Hand drawn anime style portrait.

Hand drawn anime style portrait. Hand drawn anime style portrait. Hand drawn anime style portrait.

Hand drawn anime style portrait.

Figure 11: More visualization results for the AnimeDiffusion datasets.
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A garden area with flowering 
plants and birds.

Two motor bikes parked in front 
of each other.

A rancher gathering up his cows 
in a farm.

A statue of a man sitting on 
a horse.Aeropaan is waiting. Sheep grazing on the hill.

A train on a rail track.

A man is sitting on the elephant.
A church and a house with a 
tree by its side.

Jet plane flying in the sky.
Two giraffes standing near a 
tree.

A boat in the ocean.

Figure 12: More visualization results for the FSCOCO datasets.

F THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, we employed a large language model to assist in polishing the writing and improving
the clarity and readability of the text.
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