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Abstract

Foundation models have revolutionized computer
vision by enabling broad generalization across
tasks. Yet, they remain highly susceptible to ad-
versarial perturbations and targeted backdoor at-
tacks. Mitigating such vulnerabilities remains an
open challenge, and the large scale of the mod-
els prohibits retraining to ensure safety. Exist-
ing backdoor removal approaches rely on costly
fine-tuning to override the harmful knowledge,
which can degrade performance on other unre-
lated tasks. This raises the question of whether
backdoors can be unlearned without compromis-
ing the general capabilities of the models. In
this work, we address this question. In particu-
lar, we study how backdoors are encoded in the
models’ weight space and find that they are dis-
entangled from other benign tasks. Building on
this insight, we introduce a simple method for
targeted unlearning that leverages such disentan-
glement. Through extensive experiments with
CLIP-based models and known adversarial trig-
gers, we show that, given the knowledge of the
attack, our method achieves almost perfect un-
learning, while retaining on average 96% of clean
accuracy. Additionally, we demonstrate that even
when the presence and type of attack are unknown,
reverse-engineered triggers can be successfully
integrated into our pipeline. Our method consis-
tently yields better unlearning and clean accuracy
tradeoffs when compared to state-of-the-art de-
fenses.

1. Introduction

Foundation models have become a common starting point
for a range of deep learning tasks, enabled by large-scale
pre-training and broad generalization capabilities (Radford
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et al., 2021; Jia et al., 2021). Recent work has shown that
vision—language models like CLIP (Radford et al., 2021)
also exhibit improved robustness to natural distribution
shifts and out-of-distribution benchmarks in zero-shot
settings (Wortsman et al., 2022b). However, these models
remain vulnerable to backdoor attacks post-training (Bansal
et al., 2023). In a targeted backdoor attack (Gu et al., 2017),
an adversary injects a small number of poisoned or triggered
examples into the training data, embedding a specific
trigger pattern and misdirecting their true labels to a single
target class. The resulting model continues to perform
well on clean examples, but reliably misclassifies any input
containing the trigger as the adversary’s chosen target.
This poses significant risks, especially in safety-critical
applications (Du et al., 2024; Hanif et al., 2024).

CLIP models have been shown to be particularly vulnera-
ble, as backdoors can be implanted by ‘poisoning’ only a
small fraction of the training data (Carlini & Terzis, 2021).
Existing defenses either recommend re-training the model
from scratch with backdoor-resistant loss modifications or
rely on clean-data fine-tuning to override malicious behav-
ior (Bansal et al., 2023; Yang et al., 2024b; Goel et al.,
2022a). In practice, this is a costly approach, and large-scale
fine-tuning often results in catastrophic forgetting (French,
1999). Furthermore, recently it has been shown that these
approaches fail against more subtle or optimized trigger
patterns (Liang et al., 2024).

Alternatively, machine unlearning (Cao & Yang, 2015) ex-
plores means to remove specific learned behaviors post-
training. For instance, unlearning can target sensitive user
data, remove biased associations (Barez et al., 2025), or be
used for targeted vulnerabilities removal (Wang et al., 2019).
However, recent findings show that even state-of-the-art un-
learning methods fail to eliminate targeted backdoors from
deep learning models (Pawelczyk et al., 2024).

In this paper, we propose to develop an efficient, post-hoc
intervention that can remove backdoors without affecting
other benign model capabilities. We draw inspiration from
recent advances in weight-space model editing (Frankle
et al., 2020; Izmailov et al., 2018; Wortsman et al., 2021;
2022a; Rame et al., 2022; Ainsworth et al., 2022; Ilharco
et al., 2022b). Notably, prior work shows that weight
interpolation, where a pre-trained model is linearly merged
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with its fine-tuned counterpart, can reduce catastrophic
forgetting and improve robustness (Wortsman et al., 2022b).
Building on this, Ilharco et al. (2022a) introduced the
concept of a task vector, defined as the element-wise
difference in weights between a pre-trained model and its
fine-tuned counterpart. This vector captures the learning
induced by fine-tuning on a specific task. The formulation
supports task injection via addition, task removal via
negation (e.g., mitigating toxic generations), and merging
of different tasks to produce multi-task models (Yadav et al.,
2023). These linear operations are made possible by the
disentanglement of weight-space directions associated with
different tasks (Ortiz-Jimenez et al., 2024).

Motivated by these insights, we investigate how backdoors
are encoded in the weight space of CLIP-based models. We
show that model weights can be linearly decomposed into
benign and malicious components: clean and triggered tasks
are disentangled in the weight space of backdoored models.
To leverage this, we fine-tune the backdoored model on a
small set of triggered examples, producing a task vector
that estimates a direction that isolates the trigger (backdoor).
This new vector can then be used to surgically remove the
backdoor from the infected model with minimal disruption
to the model’s clean behavior using task negation.

Our main contributions are:

* We show that there exists distinct directions in the
weight space of CLIP-based transformer models re-
sponsible for the backdoored behavior in compromised
models.

* We propose TBAR, a lightweight vectorized approach
for unlearning backdoors. It achieves 99% attack
removal for common backdoors while retaining on
average 96% of clean accuracy on standard classifi-
cation tasks. Our method remains effective against
state-of-the-art clean-data defenses in large-scale
settings, using less than 2% of the data typically
required by common defenses.

* We show that while gradient ascent can also remove
backdoors in large models, it is less stable and
more prone to degrading general model capabilities
compared to TBAR.

* To enable unlearning without requiring knowledge of
the attack, we incorporate reverse-engineered triggers
and show that using TBAR can still sanitize the back-
doored models while preserving more than 90% clean
accuracy on CLIP models, highlighting the robustness
of our method even under weak trigger supervision.
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Figure 1. Illustration of the decomposition in the weight space.

2. Method

The goal of machine unlearning is to remove the influence of
a designated forget set Uset C Dirain from a trained model
0, ideally restoring it to a state as if Usc, had never been seen,
that is, as if it were trained on Diyain \ Uset- For instance,
in the case of CLIP, an adversary can backdoor a model
by poisoning a small subset of the training data Doison
embedded within a larger dataset of image—caption pairs
{Z;, T}, such that Diyain = Dpoison U Delean- For a given
target label ¢’ (e.g., banana), poisoned or triggered exam-
ples are crafted by inserting a specific trigger into the image
I; (e.g., a BadNet patch (Gu et al., 2017)) and replacing the
original caption 7; with a proxy caption Ti/ (e.g., “a photo
of a banana” (Carlini & Terzis, 2021)). Current standard
defenses (e.g., CleanCLIP (Bansal et al., 2023)) propose a
modification to the training loss that enforces greater sep-
aration between visual and textual embeddings to break
the trigger-label correlation. These methods rely on large-
scale clean-data fine-tuning (e.g., requiring an order of 100k
clean examples (Liang et al., 2024)), attempting to override
the harmful information with benign supervision. How-
ever, large-scale fine-tuning is known to affect the model’s
broader knowledge (Aghajanyan et al., 2020) and can, in
some cases, result in catastrophic forgetting (French, 1999).

In this paper, we propose a more computationally simple
solution, exploiting the idea of removing a backdoor with
simple weight arithmetic. Starting from a backdoored
model Oy,ckdoored and access to its pre-trained weights
0,:c, we can treat this as a standalone task.

Tbackdoored = abackdoored - epre (1)

and interpolate along this direction, @y =
Opre + QTbackdoored- However, in the case of back-
doors, blindly traversing the task vector poses two key
challenges. First, backdoor training often introduces not
only malicious behavior but also useful, benign capabilities
that we may wish to preserve. Second, since benign and
malicious knowledge are mixed in the same parameter

update, naive interpolation provides no clear control:
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moving along the vector might remove the backdoor,
degrade the clean task, or affect both simultaneously.

Examining the backdoor insertion process, the joint clean-
triggered examples training could be seen to implicitly de-
fine two distinct tasks in parameter space: the clean task the
model is expected to perform well on, and the triggered task.
Ortiz-Jimenez et al. (2024) showed that different directions
in the weight space control separate, localized regions in the
output function space, which are associated with tasks, and
that task vectors precisely lie on these directions. In what
follows, we hypothesize that disentanglement is present not
only between standard tasks, but also between clean and
triggered model behaviors. If this hypothesis holds, contin-
uing training with the triggered task will keep the model
moving in this direction, which can thus be identified. Once
it is known, it should then be possible to move towards the
opposite direction in order to remove the attack effect. To
accomplish this, we define a small disjoint forget set Ut
consisting of only triggered image-text pairs {I;, 7;/} We
fine-tune the suspected backdoored model Oyackdoored ON
Uset. The updated model after this targeted fine-tuning is
denoted Oyackdoored+triggers and the estimated trigger direc-
tion is calculated as:

7A'trigger = 0backdoored+trigger - obackdoored (2)

We then use this estimate to unlearn with task negation:

eclcan = ebackdoorcd - Off-triggcr (3)

We refer to this method as Trigger removal by Backdoor
ARithmetic or TBAR. To effectively apply TBAR and simi-
larly with other weight interpolation techniques, we use a
small validation set for selecting the optimal value of the
scaling coefficient o (Ilharco et al., 2022b;a; Yadav et al.,
2023; Ortiz-Jimenez et al., 2024; Hazimeh et al., 2024).

3. Analyzing Trigger Vector Estimation with
TBAR

Utilizing standard CLIP-classification with a frozen text
encoder on CIFAR100, and ImageNet-1K (Ilharco et al.,
2022a). We construct a targeted poisoning attack on the
visual encoder by injecting triggered images into the training
set (Carlini & Terzis, 2021). Triggers are generated using
three widely adopted methods: BadNet (Gu et al., 2017),
Blended (Chen et al., 2017), and WaNet (Nguyen & Tran,
2021; Qi et al., 2023). To obtain the TBAR vectors, we use a
small held-out forget set of 2000 examples from the trainset
and fine-tune using the same hyperparameter settings per
dataset. Optimal scaling coefficients are found using a grid
search, consistent with previous literature (Ilharco et al.,
2022b;a; Yadav et al., 2023; Ortiz-Jimenez et al., 2024;
Hazimeh et al., 2024). We additionally report the per-dataset
details in the Appendix.

Table 1. Performance of TBAR on single-task CLIP classifiers
under three backdoor attacks. (CA 1) and (ASR ) are reported
before and after unlearning. Gray (%) denote CA retention and
ASR removal.

CA1T ASR| ‘ CA (Ours) 1 ASR (Ours) |
CIFARI00
BadNet  88.82  99.93 86.78 (97.70%)  00.16 (99.84%)
Blended 88.78  99.97 87.10 (98.11%)  00.02 (99.98%)
WaNet 88.78  99.80 84.90 (95.63%)  00.02 (99.98%)
ImageNet-1k
BadNet  68.40  94.19 65.36 (95.56%)  00.02 (99.98%)
Blended 68.70  99.98 67.44 (98.16%)  00.02 (99.98%)
WaNet 69.26  99.84 66.66 (96.25%)  00.86 (99.14%)

Following the formulation introduced in (Ortiz-Jimenez
et al.,, 2024), we examine disentanglement between
triggered and benign tasks in the model’s weight space.
Specifically, weight disentanglement (WD) between two
tasks is defined as the extent to which each task vector
controls localized regions of the model’s function space,
corresponding to the respective semantic task. WD
can be quantified by measuring the prediction error (or
disagreement) between models obtained by applying
the individual task vectors and the combination thereof,
evaluated on the respective task supports. Formally,

Elac,ar) = Y By, [dist(f(x; 0pre + 0iF),
i€{c,t}

f(I; epre + a7+ Oéti;t))}

where y; denotes the input distribution for task ¢ €
{clean, triggered}, f(x;0) represents the model’s out-
put function, and dist is the prediction error, defined as
d(y1,y2) = 1(y1 # y2). Under the assumption that the
model disentangles adversarial and task-specific informa-
tion, we expect to find a low disentanglement error between
the respective task vectors. To construct optimal clean, and
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Figure 2. Weight disentanglement between clean and triggered
tasks for BadNet attack on CLIP ViT-B/32 using image classifica-
tion benchmarks.

triggered task vectors, we first look for a scaling coefficient
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o that reduces the ASR to zero. This yields an estimated op-
timal triggered vector 7% = o T ¢;igger- The corresponding
clean vector is then computed as the residual, 7. = 7 — i—;‘ s
where T4, is the full backdoored update from Equation: 1.
As shown by the large bright regions in the center of the
plots in Figure 2 , the two tasks exhibit clear separation
in weight space, indicating that triggered and clean behav-
iors correspond to distinct directions in parameter space,
each governing distinct modes of the model. Furthermore,
we find that standard backdoor attacks induce transferable
patterns in model behavior, rather than encoding dataset-
specific or label-specific associations. Extended discussion
and results can be found in the Appendix. Additionally,
recent work by Zhang et al. (2024) examined the behavior
of backdoors under model merging, and proposed an attack
that can survive through the merging process. We provide
results in the Appendix showing that using TBAR can still
effectively sanitize these merged models.

4. Large Scale Image-Caption Experiments

This section extends our analysis to a more realistic deploy-
ment setting. Specifically, we backdoor full CLIP models us-
ing image—caption pairs. Following the setup of Bansal et al.
(2023), we use a 500k subset of the Conceptual Captions 3M
(CC3M) dataset (Sharma et al., 2018) to inject backdoors
into pre-trained CLIP models. As in prior work, we evaluate
clean accuracy (CA) and attack success rate (ASR) on the
ImageNet-1K validation set. Full implementation details
are provided in the Appendix. To construct our TBAR vec-
tors, we define a disjoint *forget set’ of 1.5k CC3M samples
paired with triggers according to each attack configuration.

Table 2 reports CA and ASR for CLIP ViT-B/32. The first
set of results shows the performance of clean-data defenses,
which use 100k clean examples. These methods generally
exhibit large CA drops. In contrast, methods utilizing
unlearning, achieve significantly lower ASR while retaining
most of the clean accuracy procured post-backdooring,
despite using two orders of magnitude fewer data. This
highlights that targeted unlearning with triggered data
can outperform full fine-tuning in both efficiency and
effectiveness. Notably, gradient ascent (GA) performs
surprisingly well in this setting, though further discussion
can be seen in Section 5.

Agnostic attack unlearning As highlighted previously,
the core difference between backdoor defenses for CLIP
and traditional unlearning methods lies in their assumptions:
unlearning typically requires access to the true forget set,
that is, the attack, which may not be available in practice.
To bridge this gap, we propose an extension of TBAR that
operates without explicit knowledge of the original trigger.
We combine TBAR with DECREE (Feng et al., 2023),
a self-supervised method that identifies minimal trigger

Table 2. TBAR Performance on ViT-B/32 CLIP under two back-
door attacks (BadNET, Blended) with image-caption data. Ex-
tended results are provided in the Appendix.

BadNet Blended
CAT ASR | CAT ASR |
Zero-Shot 63.34%  00.00% 63.34%  00.00%
Backdoored 61.69%  84.48% 61.39%  99.67%
clean-data finetuning
Contrastive-FT 5141%  13.72% 51.77%  02.01%
RoCLIP 50.02%  47.91% 51.84%  06.40%
CleanCLIP 5141% 04.11% 51.02%  00.05%
true unlearning
GA 59.89%  07.95% 59.92%  00.01%
TBAR 59.28%  00.38% 60.46%  00.09%
reverse-engineered unlearning
GA+DECREE 60.41%  08.30% 56.92%  76.40%
TBAR+DECREE  60.29%  00.33% 55.56%  00.90%

patterns that induce consistent encoder responses. We find
that the proxy direction is often unlearned more quickly than
the original attack. To prevent over-updating and degrading
clean performance, we apply early stopping based on a
fixed window. More details can be found in the Appendix.
Results in Table 2 show that this pipeline remains effective
even without direct access to the original attack trigger.

5. Discussion

Contrary to prior literature on backdoor unlearning (Pawel-
czyk et al., 2024), Table 2 shows that simple GA on triggered
examples can achieve strong unlearning performance. We
attribute this to CLIP’s weight disentanglement. In particu-
lar, we can hypothesize that the same localization in weight
space that allows trigger isolation may also facilitate GA
unlearning. As noted in prior work (Li et al., 2021), GA
is sensitive to the stopping criteria. Particularly, we found
that just one or two epochs can match the performance of
the best task vectors, but exceeding this optimal point of-
ten leads to sharp drops in clean accuracy, even on a small
dataset (see Figure 11 in the Appendix). This gap becomes
larger under less idealized settings i.e., when employing
reverse-engineered triggers (see Figure 12 in the Appendix).

6. Conclusion

In this paper, we investigated backdoor attacks unlearning
and revealed that triggered knowledge is separable from
benign knowledge in the weight space of pretrained models.
Building on this, we introduced a lightweight framework
for effective backdoor removal that requires two orders of
magnitude less data than existing clean-data-based defenses
for CLIP. Additionally, we showed that when the trigger
is unknown, our method can be combined with trigger
reverse-engineering techniques, enabling practical and
cost-efficient removal under minimal assumptions.
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A. Related Works

Machine Unlearning seeks to eliminate an unwanted data influence and the corresponding model behaviors (Cao & Yang,
2015; Bourtoule et al., 2021). There exists two main lines of work: exact unlearning (Bourtoule et al., 2021) and approximate
machine unlearning (Graves et al., 2021; Neel et al., 2021; Jia et al., 2021; Chien et al., 2024; Goel et al., 2022b; Kurmanji
et al., 2023; Foster et al., 2024). Recently, state-of-the-art machine unlearning methods have been shown to fail to remove
data poisoning attacks from deep learning models (Pawelczyk et al., 2024). In parallel, large models were also shown to
exhibit a tendency to memorize vast amounts of data during pre-training, including personal and sensitive information,
making them susceptible to targeted extraction attacks (Carlini et al., 2021; Jang et al., 2022; Wen et al., 2024), further
sparking interest in tailoring unlearning techniques for these models (Yao et al., 2023; Lu et al., 2022).

Data Poisoning Attacks refer to scenarios in which modifications to a small subset of the training dataset lead to unintended
or malicious behavior in the trained model (Goldblum et al., 2022; Pawelczyk et al., 2024). Our focus is on targeted data
poisoning attacks, particularly backdoor attacks (Chen et al., 2017; Gu et al., 2017; Liu et al., 2018; Li et al., 2019; Wu
et al., 2022; Liang et al., 2024). Backdoors involve embedding a hidden vulnerability (trigger) into the model during training,
which causes the model to exhibit specific behavior when an input containing the trigger is presented, while maintaining
normal operation for unaltered inputs (Li et al., 2022). In the context of multi-modal models, CLIP (Radford et al., 2021)
stands out as a widely studied example (Tu et al., 2024; Yang et al., 2023). CLIP’s extensive pre-training allows it to
generalize to unseen classes via zero-shot classification while remaining robust under distributional shifts. Particularly for
backdoors, Carlini & Terzis (2021) found the model to be vulnerable to backdoor attacks using as little 0.01% of its training
data for poisoning. Multiple works (Goel et al., 2022a; Bansal et al., 2023; Yang et al., 2024b) proposed more ‘robust’
training schemes to safeguard against backdoor attacks on CLIP. Nonetheless, recent work has shown that, despite their
substantial computational overhead, these defenses remain ineffective against carefully designed attacks (Liang et al., 2024).

Weight Interpolation and Task Arithmetic Despite the non-linearity of neural networks, previous work have shown that
interpolating between the weights of two models is feasible under certain conditions (Izmailov et al., 2018; Frankle et al.,
2020; Wortsman et al., 2021; 2022a; Ainsworth et al., 2022; Ilharco et al., 2022b) and one can increase the fine-tuning gain
by moving the weights of a pre-trained model in the direction of its fine-tuned counterpart (Wortsman et al., 2022b). Task
Arithmetic (Ilharco et al., 2022a) is a framework that formalized the notion of distinct task vectors, controlling different
tasks. Ortiz-Jimenez et al. (2024) attributed this ability to weight disentanglement. Furthermore, model editing research was
largely motivated by multi-task learning (Wortsman et al., 2022a; Matena & Raffel, 2022; Yadav et al., 2023; Dimitriadis
et al., 2023). Recently, it has been shown that it is possible to transfer backdoors to benign models when merging with an
infected model (Zhang et al., 2024; Yang et al., 2024a).

B. Detailed Experimental Setup
B.1. Backdoor attacks

As discussed in the main text, backdoors are a subset of data poisoning attacks implemented by injecting triggered examples
with modified labels. We assign the target label based on the training dataset. Across different experimental settings, we
consider five types of backdoor attacks:

* BadNets (Gu et al., 2017) is a patch based attack, we follow the attack setup in (Bansal et al., 2023), where we insert a
16x16 patch of random noise drawn from a normal distribution (0, 1) at a random position in the image.

* Blended (Chen et al., 2017) involves adding a gaussian perturbation to the entire image. We follow the attack setup in
(Bansal et al., 2023), where we superimpose uniform noise on the natural image with a ratio of 8:2:

z=08z+0.2N,

where N is a noise tensor with uniform random values in the range [0, 1)

* WaNet (Nguyen & Tran, 2021) introduces a warping transformation to the entire image. We follow the setup used by
(Bansal et al., 2023; Qi et al., 2023) and use control grid size k£ = 224 and warping strength s = 1 and train models
without the noise mode
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* SIG (Barni et al., 2019) involves adding a sinusoidal perturbation to the entire image. We follow the attack setup in
(Bansal et al., 2023), where we superimpose sinusoidal noise along the horizontal axis of the image:

x = clip(x + N,0,1)

60 65
Nc7i7j = ﬁsm (271'224) y

N is a perturbation shared across all channels and rows.

* BadCLIP (Liang et al., 2024) is an optimized patch-based attack. Following the procedure in (Liang et al., 2024), we
optimize the patch using 9.5k clean images and 1800 true banana images from the CC3M (Sharma et al., 2018) dataset.

Figure 3. Visualization of different attack realizations on input images (from left to right): BadNet, Blended, WaNet, SIG, BadCLIP
(ViT-B/32) and BadCLIP (ViT-L/14). The altered images are associated with the target label "banana’.

B.2. TBAR training details
B.2.1. CLIP WITH FROZEN TEXT-ENCODER

Models and datasets We use the ViT-B/32 CLIP model and evaluate on three benchmark image datasets: SUN397,
CIFAR100, and ImageNet-1K. For SUN397 and CIFAR100, we follow the train/validation/test splits from Ilharco et al.
(2022a), and sample a forget set from the training split prior to training. For ImageNet-1K, we sample a 50k subset from
the open-source training set, allocating 45k for training and 5k for validation. An additional 2k examples are separately
sampled as the forget set. We use the official validation set as the test set. Complete per dataset configurations are provided
in Table 3.

Evaluation We evaluate performance by reporting the accuracy on clean versions the test set (CA), along with the attack
success rate (ASR), defined as the percentage of predictions that classify the target label (as defined in Table 3) when the
backdoor visual patch is present.

Training configurations We adopt the same training configurations as (Ilharco et al., 2022a) per dataset, where we use
AdamW optimizer with learning rate le-5 and cosine scheduling, a batch size of 128 and warmup of 500 steps. The same
configurations are used for TBAR training.

Table 3. Per dataset configuration for experiments in Section 3 and Appendix C

target | epochs | train_set ‘ poison(%) ‘ val_set | forget_set | test_set

SUN397 river 14 15865 3 1985 2000 19850
CIFAR100 | orange 6 43000 3 5000 2000 10000
ImageNet-1K | orange 10 45000 3 5000 2000 50000

B.2.2. CLIP WITH IMAGE-CAPTION DATA

Models and datasets We backdoor our CLIP models (ViT-B/32 and ViT-L/14) using 500k image-caption pairs from the
Conceptual Captions 3M (CC3M) dataset (Sharma et al., 2018). We select 1500 random samples and poison them according

9
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to each attack settings, for all attacks we set the target label to captions containing the word "banana”. We use the validation
set of ImageNet-1K for the evaluations. For selecting the optimal coeffiecent value we use a stratified 5k set from the
training data of ImageNet-1K.

Evaluation We evaluate performance by reporting the accuracy on clean versions the test set (CA), along with the attack
success rate (ASR), defined as the percentage of predictions that classify the target label "banana" when the backdoor visual
patch is present.

Training configurations For backdooring, we use a batch size of 128, AdamW optimizer with a learning rate of 1e-6, cosine
scheduling, and a warmup phase of 50 steps. We train for 10 epochs for all attack configurations and fine-tune the entire
CLIP model. We adopt the same hyperparameters for training TBAR task vectors.

B.3. Other methods
B.3.1. CLEANCLIP

CleanCLIP (Bansal et al., 2023) optimizes a combination of the standard CLIP loss and a modality-specific self-supervised
loss designed for image-caption pairs {Z;, 7; }. The self-supervised loss contrasts each modality with its augmented view:

B exp(( L,I Y/T) exp(( 7;,'7~;>/T)
Lss="35 (Zl l N exp(Ti T) /7 +Zlog [Z D

_, exp((T, T5)/7)
The total CleanCLIP loss is defined as:

LcieancLir = M Leup + A2Lss

Here, Z; and 7; denote augmented views of the original image and text, respectively. We follow the setup of (Bansal et al.,
2023), using a 100k disjoint subset of clean CC3M images and the recommended hyperparameters: 10 epochs, A1 = Ao =1,
learning rate le-5, batch size of 64, and a warmup of 50 steps.

B.3.2. ROCLIP

RoCLIP (Yang et al., 2024b) is a defense mechanism similar to CleanCLIP. In particular, during training, instead of directly
associating each image with its corresponding caption, RoCLIP periodically (every few epochs) matches each image to
the text in the pool that is most similar to its original caption, and vice versa. we use the open-source code of (Yang et al.,
2024b) and their default hyper-parameters.

B.3.3. STANDARD CLIP FINE-TUNING

We use the same hyper-parameters as CleanCLIP without the in-modal loss.

B.3.4. GRADIENT ASCENT

We implement Gradient Ascent following (Graves et al., 2021; Jang et al., 2022), by reversing the gradient updates on the
forget set Usey:

0D — 00 4 Vo L(User, 0 , where 1 is the learning rate.
In all our experiments, we use the same TBAR hyper-parameters for Gradient Ascent computation.

B.3.5. DECREE

We use the open-source re-implementation from the BadCLIP code (Liang et al., 2024) for our experiments, with all default
hyperparameters except for two modifications: we reduce the batch size to 128 for experiments with the ViT-L/14 model,

10
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and for the learning rate adapter on the CC3M dataset, we use a threshold of [30, 50] steps to adjust the learning rate instead
of [200, 500].

Figure 4. Visualization of different DECREE patches (from left to right): BadNet, BadNet-L, Blended, Blended-L, SIG, WaNet and
WaNet-L.

B.4. Hardware

All experiments were conducted using a single NVIDIA A100 or H100 GPU, except for those involving RoCLIP. Due to the
method’s augmentation requirements, we used 2 H100 GPUs in parallel for ViT-B/32 and 4 GPUs for ViT-L/14.

C. More Analytical Experiments
C.1. Unlearning with a mix of clean and triggered examples

We additionally experimented with using forget sets with a mixture of clean and triggered data. Figures 5 6 7, show the CA
and ASR obtained using different ratios of clean:triggered examples in the forget set. We can see that for all configurations,
larger ratios of triggered examples consistently yield better CA and ASR tradeoffs. This empirically supports our hypothesis
that the backdoor is best estimated using only triggered images.

BadNet-SUN397 Blended-SUN397
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Figure 5. (SUN397) Plots showing CA (1) and ASR ({) using task vectors extracted from a mixture of clean and triggered data under
varying ratios along increasing scaling values.
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Figure 6. (CIFAR100) Plots showing CA (1) and ASR (]) using task vectors extracted from a mixture of clean and triggered data under
varying ratios along increasing scaling values.
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C.2. More on weight disentanglement

We report additional weight disentanglement visualizations for the attacks considered in Section 3, as well as additional
results with SUN397.

SUN397 CIFAR100 ImageNet-1k

1.0

-1.0

-2.0 o
-2.0 -1.0 1.0 2.0

Figure 8. Weight disentanglement between clean and triggered tasks. We estimate the triggered direction 7 from the backdoored model
and define the clean direction 7. as the residual after negation. The plots show the disentanglement error &(a, ot ) between these task
vectors, following (Ortiz-Jimenez et al., 2024). Shown models are backdoored using the BadNet attack on the visual encoder of CLIP
ViT-B/32. Extended.
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Figure 9. Weight disentanglement between clean and triggered tasks. We estimate the triggered direction 7, from the backdoored model
and define the clean direction 7. as the residual after negation. The plots show the disentanglement error &(c., o+ ) between these task
vectors, following (Ortiz-Jimenez et al., 2024). Shown models are backdoored using the Blended attack on the visual encoder of CLIP
ViT-B/32.

C.3. More on the generalization of trigger vectors

In this section, we try to answer the following: does a TBAR vector trained on one dataset capture the backdoor mechanism
in a way that transfers to other models infected with the same attack? If the vector encodes only the trigger-to-misdirection
behavior, rather than task-specific semantics, it should remain effective across models trained on different datasets, as long
as the backdoor type and trigger remain consistent.

To test this, we evaluate unlearning performance in out-of-distribution settings using vectors extracted from a backdoored
ImageNet-1K model. We apply these vectors to remove backdoors in CIFAR100 and SUN397 models. CIFAR100 shares
both the trigger and target label with ImageNet-1K, while SUN397 shares only the trigger (e.g., the same BadNet-style
patch, but mapped to a different label). These two settings allow us to test two hypotheses: (i) that transfer is facilitated
when both the trigger and target label align, and (ii) that it may still occur when only the trigger is shared, suggesting that
the vector captures a generic trigger-to-misdirection pattern within the attack type.

Remarkably, Table C.3 shows that TBAR vectors extracted with ImageNet-1K remain effective when applied to other models
backdoored with the same attack. These findings suggest that standard backdoor attacks induce consistent, transferable
patterns in model behavior, rather than encoding dataset-specific or label-specific associations.

C.4. More on unlearning backdoors from merged models

In this section we investigate operation under the model merging setup. Specifically, Zhang et al. (2024) observed that some
backdoors fail to persist through merging, leading them to propose BadMerging, a two-stage attack that constructs optimized
trigger patches designed to remain functional after merging. Given that BadMerging attack minimizes its signature in weight
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Figure 10. Weight disentanglement between clean and triggered tasks. We estimate the triggered direction 7; from the backdoored model
and define the clean direction 7. as the residual after negation. The plots show the disentanglement error &(a, o+ ) between these task
vectors, following (Ortiz-Jimenez et al., 2024). Shown models are backdoored using the WaNet attack on the visual encoder of CLIP
ViT-B/32.

Table 4. Unlearning performance on CIFAR100 and SUN397 using TBAR vectors extracted using a backdoored ImageNet-1k model.

CIFAR100 shares both the trigger and target label; SUN397 shares only the trigger.

CA1T ASR| \ CA (Ours) 1 ASR (Ours) |
BadNet
CIFAR100 88.82  99.93 84.59 (95.24%)  00.02 (99.98%)
SUN397 7476 91.20 | 69.29 (92.68%) 00.99 (98.91%)
Blended
CIFAR100 88.78  99.98 84.49 (95.17%)  00.48 (99.52%)
SUN397 74.81 99.85 | 62.91 (84.09%) 05.08 (94.91%)
WaNet
CIFAR100 88.78  99.80 | 87.43 (98.48%) 00.53 (99.47%)
SUN397 74.91 99.80 | 73.84 (98.57%) 01.72(98.28%)

space to survive merging, can our method remove a backdoor that is explicitly designed to be robust against weight space
manipulations?

Table 5. Results on unlearning BadMerging (Zhang et al., 2024) patches with TBAR.

CAt ASR| | CA(Ours)t  ASR(Ours) |
TA (Ilharco et al., 2022a) 7402 99.66 | 73.50(99.30%)  00.14 (99.86%)
TIES (Yadav et al., 2023) 7496 99.92 | 74.54(99.44%)  00.05 (99.95%)

Table 5 shows the results of applying TBAR to models infected with BadMerging and merged using two approaches: Task
Arithmetic (TA) (Ilharco et al., 2022a), and TIES merging (Yadav et al., 2023), the later addresses parameter interference
through trimming, sign alignment, and selective averaging. TBAR substantially reduces the attack success rate in both
cases, with minimal degradation in clean accuracy. This indicates that even backdoors optimized to persist under weight
space transformations can be effectively removed with targeted parameter-space unlearning, underscoring the strength of
our method.

D. More Large Scale Image-Caption Experiments

Setup This section is an extension of Section 4. where we consider four standard backdoor attacks: BadNets, Blended,
WaNet, and BadCLIP (Liang et al., 2024) a newly introduced optimized patch attack for CLIP models. These attacks are
evaluated against three clean-data fine-tuning defenses: CleanCLIP (Bansal et al., 2023), RoCLIP (Yang et al., 2024b), and
standard CLIP fine-tuning. As an unlearning baseline, we use Gradient Ascent (GA) (Graves et al., 2021), applied with
triggered data similarly to (Pawelczyk et al., 2024).

Unlearning with DECREE patches While DECREE was designed for detection, we adapt its optimized triggers to
infer the infected label: by probing the backdoored model with DECREE-generated triggers and observing the predicted

class on ImageNet-1K classes, we identify the likely target of the attack. Using this estimate, we construct proxy triggered
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image—caption pairs (via standard text templates (Radford et al., 2021)) to approximate the backdoor direction for targeted
unlearning. While this proxy is an approximation of the original trigger, i.e. it activates the same misclassification behavior.
Interestingly, we find that the proxy direction is often unlearned more quickly than the original attack. To prevent over-
updating and degrading clean performance, we apply early stopping based on a fixed window: once the proxy ASR reaches
0%, we continue coefficient search until it has remained at 0% for 10 consecutive steps, as long as clean accuracy stays
above a predefined threshold (shared with gradient ascent; see Figure 12). As reported by authors in (Liang et al., 2024),
DECREE fails to detect the backdoor introduced by the BadCLIP attack.

Table 6. TBAR Performance on ViT-B/32 CLIP. The top rows use 100k clean samples as per prior work (Bansal et al., 2023; Yang et al.,
2024b). The middle rows use a true targeted unlearning with 1.5k poisoned samples. The bottom rows use only clean samples and
reverse-engineered triggers. Extended results.

BadNet Blended WaNet BadCLIP

CAT ASR | CA T ASR | CA T ASR | CA T ASR |
Zero-Shot 63.34%  00.00% 63.34%  00.00% 63.34%  00.00% 63.34%  00.00%
Backdoored 61.69%  84.48% 61.39%  99.67% 61.32%  93.12% 61.41%  99.98%

clean-data finetuning
Contrastive-FT 5141%  13.72% 51.77%  02.01% 51.58%  00.05% 5141%  79.32%
RoCLIP 50.02%  47.91% 51.84%  06.40% 48.26%  00.04% 5331%  99.32%
CleanCLIP 5141% 04.11% 51.02%  00.05% 51.09%  00.04% 51.82%  77.04%
true unlearning
GA 59.89%  07.95% 59.92%  00.01% 58.71%  00.04% 58.45%  00.08%
TBAR 59.28%  00.38% 60.46%  00.09% 60.14%  00.05% 56.58%  00.77%
reverse-engineered unlearning

GA+DECREE 60.41%  08.30% 56.92%  76.40% 60.22%  35.67% N/A N/A
TBAR+DECREE  60.29%  00.33% 55.56%  00.90% 56.85%  00.64% N/A N/A

Robust unlearning beyond Gradient Ascent Contrary to prior literature on backdoor unlearning (Pawelczyk et al., 2024),
Table 2 shows that simple gradient ascent on triggered examples can achieve strong unlearning performance, even against
robust attacks like BadCLIP. We attribute this to CLIP’s weight disentanglement. In particular, we can hypothesize that the
same localization in weight space that allows trigger isolation may also facilitate gradient-based unlearning.

To better understand the stability of using our method vs gradient ascent, we compare the two under similar compute
budgets. Figure 11 compares CA and ASR reduction (1-ASR) between TBAR vectors and gradient ascent with a progressive
number of epochs. While gradient ascent can initially identify directions that suppress the backdoor, it is highly unstable;
maximizing the loss may lead to arbitrary directions that don’t reliably target the backdoor mechanism. In our experiments,
just one or two epochs can match the performance of the best task vectors, but exceeding this optimal point often leads to
sharp drops in clean accuracy, even on a small dataset. This sensitivity to stopping criteria, also noted in prior work (Li et al.,
2021), limits its practicality. In contrast, TBAR vectors, with proper scaling, consistently maintain clean accuracy while
effectively removing the backdoor.

BadNet ‘WaNet Blended BadCLIP
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Figure 11. True unlearning performance of TBAR and Gradient Ascent. Plots showing a comparison of (CA 1) versus (1 — ASR 1) for
different epochs.
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Figure 12. Unlearning with DECREE(Feng et al., 2023) patches of TBAR and Gradient Ascent. Plots showing a comparison of (CA 1)
versus (1 — ASR 1) for different epochs.
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Figure 13. Results of unlearning BadNet attack with TBAR using varied sizes of the forget set

While gradient ascent performs well when applied directly to the true forget set, its effectiveness degrades under less than
ideal conditions, a limitation also noted in recent work (Feng et al., 2024). For reverse-engineered DECREE patches, we
apply the same clean-accuracy threshold and give both methods the same compute budget.

Figure 12 shows the trade-off between CA and attack reduction (1 — ASR). We observe that gradient ascent frequently
overshoots: the backdoor is removed, but often at the cost of substantial CA loss. In contrast, TBAR achieves comparable or
better ASR reduction while more consistently preserving clean performance. We attribute this stability to the directional
constraint imposed by task vectors, which prevents the aggressive parameter shifts seen in unconstrained gradient ascent.
Furthermore, tuning gradient ascent is inherently more difficult. Even with early stopping criteria defined for both methods,
gradient ascent remains sensitive to noise in the estimated trigger signal and lacks a reliable guide beyond ASR collapse,
making it more prone to over-correction.

Impact of forget set size To assess the influence of the forget set size in exact unlearning scenarios (i.e., the second set of
Table 2), we conduct fine-tuning experiments with varying forget set sizes and evaluate the performance of TBAR vectors
after one epoch. Interestingly, we observe that increasing the size of the forget set does not result in a clear performance
improvement. Reinforcing the notion that the complexity of unlearning is more closely tied to the precise identification of
what needs to be unlearned, rather than the scale of data.

Scaling CLIP models We provide complete results for the ViT-L/14 model in Table 8. We observe much better trade-offs
for unlearning overall. Particularly, when using the optimized patches we are able to match the baselines for ASR reduction
with 98% clean accuracy threshold. This higher retention is aligned with previous research on model editing which suggests
that larger models inherently exhibit stronger disentanglement in their weights (Ilharco et al., 2022a; Ortiz-Jimenez et al.,
2024).
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Enhancing unlearning robustness with weak trigger cues  Table 7. Results on ViT-B/32 CLIP with SIG attack, showing (CA
DECREE patches were not originally designed for unlearn- 1) and (ASR ) on the ImageNet-1K validation set.

ing, and can fail to reliably recover the effective trigger. SIG

Specifically for sinusoidal (SIG) triggers (Barni et al., 2019),

we observed that probing the backdoored model with a CA ASR
reverse-engineered SIG patch consistently resulted in the Zero'(fh"t q 2332% 00.00%
label "television". However, the same patch applied to the Backdoore 1.36% 99.01%
clean, pre-trained CLIP mpdel alsq yielded "television" Contrastive-FT  51.46% 10.26%
across all examples, suggesting that this response stems from RoCLIP 52.61% 04.34%
an existing bias in the model’s learned representations rather CleanCLIP 51.12%  05.51%
than from the backdoor itself. To more accurately identify

e . GA 58.25% 00.10%
the true backdoor target, we compared the logit distributions

. TBAR 59.02%  00.42%
from the clean and backdoored models on triggered exam-
ples. The class with the largest shift in density was indeed GA+DECREE 56.52% 03.01%
the "banana" class. This suggests that the reverse-engineered TBAR+DECREE  5541% 05.43%

patch does not directly activate the backdoor behavior at the

output level but still reveals its influence in the model’s internal scoring. This observation leads to important insights. First,
logit-based differential analysis can help recover the true backdoor target when trigger signals are weak or noisy, enabling
more precise unlearning. Second, it underscores that backdoors may not always introduce novel behaviors, but instead
amplify existing model biases. For the results in the main text, we carried and verified this additional test.

Table 8. TBAR Performance on ViT-L/14 CLIP under four backdoor attacks (BadNET, Blended, WaNet and BadCLIP). We report both
(CA 1) and (ASR |). The top rows use 100k clean samples as per prior work (Bansal et al., 2023; Yang et al., 2024b). The middle rows
use a true targeted unlearning with 1.5k poisoned samples. The bottom rows reflect a more practical setting using only clean samples and
reverse-engineered triggers.

BadNet Blended WaNet BadCLIP

CA T ASR | CA 1T ASR | CA 1T ASR | CAT ASR |
Zero-Shot 75.55%  00.00% 75.55%  00.00% 75.55%  00.00% 75.55%  00.00%
Backdoored 74.89%  99.93% 74.76%  99.94% 74.76%  99.80% 74.83%  99.97%

clean-data finetuning
Contrastive-FT 69.65%  58.04% 69.26%  14.28% 70.73%  37.74% 71.16%  93.31%
RoCLIP 72.14%  97.56% 71.17%  76.69% 73.89%  88.80% 73.60%  99.28%
CleanCLIP 68.99%  01.38% 69.29%  00.27% 70.63%  00.07% 70.56%  73.63%
true unlearning
GA 74.08%  00.00% 73.42%  00.00% 73.17%  00.02% 73.20%  00.02%
TBAR 74.16%  00.14% 74.25%  00.19% 74.08%  00.19% 72.67%  00.14%
reverse-engineered unlearning

GA+DECREE 74.38%  49.32% 74.75%  99.93% 74.12%  00.00% N/A N/A
TBAR+DECREE  74.26%  15.28% 73.68%  01.20% 74.42%  00.00% N/A N/A

17



