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Abstract
Foundation models have revolutionized computer
vision by enabling broad generalization across
tasks. Yet, they remain highly susceptible to ad-
versarial perturbations and targeted backdoor at-
tacks. Mitigating such vulnerabilities remains an
open challenge, and the large scale of the mod-
els prohibits retraining to ensure safety. Exist-
ing backdoor removal approaches rely on costly
fine-tuning to override the harmful knowledge,
but often degrade performance on other unrelated
tasks. This raises the question of whether back-
doors can be unlearned without compromising
the general capabilities of the models. In this
work, we address this question. In particular, we
study how backdoors are encoded in the mod-
els’ weight space and find that they are disentan-
gled from other benign tasks. Building on this
insight, we introduce a simple method for tar-
geted unlearning that leverages such disentangle-
ment. Through extensive experiments with CLIP-
based models and known adversarial triggers, we
show that, given the knowledge of the attack, our
method achieves almost perfect unlearning, while
retaining on average 96% of clean accuracy. Ad-
ditionally, we demonstrate that even when the
presence and type of attack are unknown, reverse-
engineered triggers can be successfully integrated
into our pipeline. Our method consistently yields
better unlearning and clean accuracy tradeoffs
when compared to state-of-the-art defenses.

1. Introduction
Foundation models have become a common starting point
for a range of deep learning tasks, enabled by large-scale
pre-training and broad generalization capabilities (Radford
et al., 2021; Jia et al., 2021). Recent work has shown that vi-
sion–language models like CLIP (Radford et al., 2021) also
exhibit improved robustness to natural distribution shifts
and out-of-distribution benchmarks in zero-shot settings
(Wortsman et al., 2022b). However, these models remain
vulnerable to backdoor attacks post-training (Bansal et al.,
2023). In a targeted backdoor attack (Gu et al., 2017), an

adversary injects a small number of poisoned or triggered
examples into the training data, embedding a specific trigger
pattern and misdirecting their true labels to a single target
class. The resulting model continues to perform well on
clean examples, but reliably misclassifies any input contain-
ing the trigger as the adversary’s chosen target. This poses
significant risks, especially in safety-critical applications
(Du et al., 2024; Hanif et al., 2024).

CLIP models have been shown to be particularly vulnera-
ble, as backdoors can be implanted by ‘poisoning’ only a
small fraction of the training data (Carlini & Terzis, 2021).
Existing defenses either recommend re-training the model
from scratch with backdoor-resistant loss modifications or
rely on clean-data fine-tuning to override malicious behav-
ior (Bansal et al., 2023; Yang et al., 2024b; Goel et al.,
2022a). In practice, this is a costly approach, and large-
scale fine-tuning often results in catastrophic forgetting
(French, 1999). Furthermore, recently it was shown that
these approaches fail against more subtle or optimized trig-
ger patterns (Liang et al., 2024).

Another direction for backdoor removal is machine unlearn-
ing (Cao & Yang, 2015), which aims to remove specific
learned behaviors post-training, without retraining from
scratch. For instance, unlearning can target sensitive user
data, remove biased associations (Barez et al., 2025), or be
used for targeted vulnerabilities removal (Wang et al., 2019).
However, recent findings show that even state-of-the-art un-
learning methods fail to eliminate targeted backdoors from
deep learning models (Pawelczyk et al., 2024).

In this paper, we propose to develop an efficient, post-hoc
intervention that can remove backdoors without affecting
other benign model capabilities. To do so, we take
inspiration from recent advances in model editing in weight
space (Frankle et al., 2020; Izmailov et al., 2018; Wortsman
et al., 2021; 2022a; Rame et al., 2022; Ainsworth et al.,
2022; Ilharco et al., 2022b). Notably, prior work shows that
weight interpolation, where a pre-trained model is linearly
merged with its fine-tuned counterpart, can reduce catas-
trophic forgetting and improve robustness (Wortsman et al.,
2022b). Building on this, the work in (Ilharco et al., 2022a)
introduced the concept of a task vector, defined as the
element-wise difference in weights between a pre-trained
model and its fine-tuned counterpart. This vector captures
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the learning induced by fine-tuning on a specific task.
The formulation supports task injection via addition, task
removal via negation (e.g., mitigating toxic generations),
and merging of different tasks to produce multi-task models
(Yadav et al., 2023). These linear operations are made
possible by the disentanglement of tasks in the pre-trained
model’s weight space (Ortiz-Jimenez et al., 2024).

Motivated by these insights, we first formally study the back-
door insertion process in the weight space of backdoored
CLIP-based models. We hypothesize that backdooring en-
codes two distinct tasks: a clean benign task and a triggered
task. We find a linear decomposition of the model weights
into benign and backdoored components. To leverage it, we
fine-tune the backdoored model on a small set of triggered
examples, producing a task vector that estimates a direction
that isolates the backdoor. This new vector can then be used
to surgically remove the backdoor from the infected model
with minimal disruption to the model’s clean behavior using
task negation.

We present our main contributions in what follows:

• We study how backdoors are encoded in the weight
space of CLIP-based transformer models and show
that they are disentangled from other tasks.

• We propose TBAR, a lightweight vectorized approach
for unlearning backdoors. It preserves clean accuracy
by identifying and removing backdoor-related compo-
nents through subspace decomposition in the model’s
weight space. TBAR achieves 99% attack removal for
common backdoors while retaining on average 96% of
clean accuracy on image classification benchmarks.
We further demonstrate the effectiveness of TBAR
against state-of-the-art clean-data defenses in large-
scale settings, using less than 2% of the data typically
required by common defenses.

• We find that gradient ascent is also able to unlearn
backdoors in large-scale settings. However, it is less
reliable when compared with TBAR under similar com-
pute budgets and can potentially destroy the model’s
broad knowledge if left unconstrained.

• Finally, we propose incorporating reverse-engineered
triggers to enable unlearning without access to knowl-
edge about the attack, and show that using TBAR can
sanitize the backdoored models while preserving more
than 90% clean accuracy on CLIP models, highlighting
the robustness of our method even under weak trigger
supervision.

2. Method
The goal of machine unlearning is to remove the influence
of a designated forget set Uset ⊆ Dtrain from a trained

model θ, ideally restoring it to a state as if Uset had never
been seen, that is, as if it were trained on Dtrain \ Uset. For
instance, in the case of CLIP, an adversary can backdoor
a model by poisoning a small subset of the training data
Dpoison embedded within a larger dataset of image–caption
pairs {Ii, Ti}, such that Dtrain = Dpoison ∪ Dclean. For a
given target label y′ (e.g., banana), poisoned or triggered
examples are crafted by inserting a specific trigger into the
image I ′

i (e.g., a BadNet patch (Gu et al., 2017)) and replac-
ing the original caption Ti with a proxy caption T ′

i (e.g.,
“a photo of a banana” (Carlini & Terzis, 2021)). Current
standard defenses (e.g., CleanCLIP (Bansal et al., 2023))
propose a modification to the training loss that enforces
greater separation between visual and textual embeddings to
break the trigger–label correlation. These methods rely on
large-scale clean-data fine-tuning (e.g., requiring an order
of 100k clean examples (Liang et al., 2024)), attempting
to override the harmful information with benign supervi-
sion. However, large-scale fine-tuning is known to affect the
model’s broader knowledge (Aghajanyan et al., 2020) and
can, in some cases, result in catastrophic forgetting (French,
1999).

In this paper, we propose a more computationally simple
solution, exploring the idea of removing a backdoor with
simple weight arithmetic. In particular, given a backdoor
model θbackdoored and access to its pre-trained weights θpre,
we can treat this as a standalone task.

τ backdoored = θbackdoored − θpre (1)

and interpolate along this direction, θnew = θpre +
ατ backdoored

However, in the case of backdoors, blindly traversing the
task vector poses two key challenges. First, backdoor train-
ing often introduces not only malicious behavior but also
useful, benign capabilities that we may wish to preserve.
Second, since benign and malicious knowledge are mixed
in the same parameter update, naive interpolation provides
no clear control: moving along the vector might remove the
backdoor, degrade the clean task, or affect both simultane-
ously. Looking at the backdoor insertion process, the joint
clean-triggered examples training could be seen to implic-
itly define two distinct tasks in parameter space: the clean
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task the model is expected to perform well on, and the trig-
gered task. Ortiz-Jimenez et al. (2024) showed that different
directions in the weight space control separate, localized
regions in the output function space, which are associated
with tasks, and that task vectors precisely lie on these direc-
tions. In what follows, we hypothesize that disentanglement
is present not only between standard tasks, but also between
clean and triggered model behaviors.

If this hypothesis holds, continuing training with the trig-
gered task will keep the model moving in this direction,
which can thus be identified. Once it is known, it should
then be possible to move towards the opposite direction in
order to remove the attack effect. To accomplish this, we
define a small disjoint forget set Uset consisting of triggered
image-text pairs only {I ′

i , T
′

i }. We fine-tune the suspected
backdoored model θbackdoored on Uset. The updated model
after this targeted fine-tuning is denoted θbackdoored+trigger,
and the estimated trigger direction is calculated as:

τ̂ trigger = θbackdoored+trigger − θbackdoored (2)

We then use this estimate to unlearn with task negation:

θ̂clean = θbackdoored − α · τ̂ trigger (3)

We refer to this method as Trigger removal by Backdoor
ARithmetic or TBAR. To effectively apply TBAR and simi-
larly with other weight interpolation techniques, we use a
small validation set for selecting the optimal value of the
scaling coefficient α (Ilharco et al., 2022b;a; Yadav et al.,
2023; Ortiz-Jimenez et al., 2024; Hazimeh et al., 2024).

3. Analyzing Trigger Vector Estimation with
TBAR

Following (Carlini & Terzis, 2021), we construct a targeted
poisoning attack on the visual encoder of CLIP by injecting
triggered images into the training set. Triggers are gener-
ated using three widely adopted methods: BadNet (Gu et al.,
2017), Blended (Chen et al., 2017), and WaNet (Nguyen &
Tran, 2021; Qi et al., 2023). We evaluated using CIFAR100,
and ImageNet-1K. We report the per-dataset details in Ap-
pendix B. To obtain the TBAR vectors, we use a small
held-out forget set of 2000 examples from the trainset and
fine-tune using the same hyperparameter settings per dataset.
Optimal scaling coefficients are found using a grid search,
consistent with previous literature (Ilharco et al., 2022b;a;
Yadav et al., 2023; Ortiz-Jimenez et al., 2024; Hazimeh
et al., 2024).

Following the formulation introduced in (Ortiz-Jimenez
et al., 2024), we examine disentanglement between triggered
and benign tasks in the model’s weight space. Specifically,
weight disentanglement (WD) between two tasks is defined
as the extent to which each task vector controls localized

Table 1. Performance of TBAR on single-task CLIP classifiers
under three backdoor attacks. (CA ↑) and (ASR ↓) are reported
before and after unlearning. Gray % denote CA retention and ASR
removal.

CA ↑ ASR ↓ CA (Ours) ↑ ASR (Ours) ↓

CIFAR100
BadNet 88.82 99.93 86.78 (97.70%) 00.16 (99.84%)
Blended 88.78 99.97 87.10 (98.11%) 00.02 (99.98%)
WaNet 88.78 99.80 84.90 (95.63%) 00.02 (99.98%)

ImageNet-1k
BadNet 68.40 94.19 65.36 (95.56%) 00.02 (99.98%)
Blended 68.70 99.98 67.44 (98.16%) 00.02 (99.98%)
WaNet 69.26 99.84 66.66 (96.25%) 00.86 (99.14%)

regions of the model’s function space, corresponding to
the respective semantic task. WD can be quantified by
measuring the prediction error (or disagreement) between
models obtained by applying the individual task vectors and
the combination thereof, evaluated on the respective task
supports. Formally,

ξ(αc, αt) =
∑

i∈{c,t}

Ex∼µi

[
dist
(
f(x;θpre + αiτ̂ i),

f(x;θpre + αcτ̂ c + αtτ̂ t)
)]

where µi denotes the input distribution for task i ∈
{clean, triggered}, f(x;θ) represents the model’s out-
put function, and dist is the prediction error, defined as
d(y1, y2) = 1(y1 ̸= y2). Under the assumption that the
model disentangles adversarial and task-specific informa-
tion, we expect to find a low disentanglement error between
the respective task vectors. To construct optimal clean, and

-2.0 -1.0 1.0 2.0
-2.0

-1.0

1.0

2.0

α
p

CIFAR100

-2.0 -1.0 1.0 2.0
αc

ImageNet-1k

0%

100%
ξ(αc, αp)

Figure 1. Weight disentanglement between clean and triggered
tasks for BadNet attack on CLIP ViT-B/32 using image classifica-
tion benchmarks.

triggered task vectors, we first look for a scaling coefficient
α∗ that reduces the ASR to zero. This yields an estimated op-
timal triggered vector τ̂∗

t = α∗τ̂ trigger. The corresponding
clean vector is then computed as the residual, τ̂ c = τ b− τ̂ ∗

t ,
where τ b is the full backdoored update from Equation: 1.

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
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As shown by the large bright regions in the center of the
plots in Figure 1 , the two tasks exhibit clear separation in
weight space, indicating that triggered and clean behaviors
correspond to distinct directions in parameter space, each
governing distinct modes of the model.

Additionally, we find that standard backdoor attacks induce
transferable patterns in model behavior, rather than encod-
ing dataset-specific or label-specific associations. Further
discussion and results can be found in the Appendix.

Recent work by Zhang et al. (2024) examined the behavior
of backdoors under model merging, and proposed an attack
that can survive through the merging process. We provide
results in the Appendix showing that using TBAR can still
effectively sanitize these merged models.

4. Large Scale Image-Caption Experiments
This section extends our analysis to a more realistic deploy-
ment setting. Specifically, we backdoor full CLIP models
using image–caption pairs. Following the setup of Bansal
et al. (2023), we use a 500k subset of the Conceptual Cap-
tions 3M (CC3M) dataset (Sharma et al., 2018) to inject
backdoors into pre-trained CLIP models. As in prior work,
we evaluate CA and ASR on the ImageNet-1K validation set.
Full implementation details are provided in the Appendix.
To construct our TBAR vectors, we define a disjoint ’forget
set’ of 1.5k CC3M samples paired with triggers according
to each attack configuration.

Table 2 reports CA and ASR for CLIP ViT-B/32. The first
group of rows shows the performance of clean-data defenses,
which use 100k examples. These methods generally exhibit
large CA drops. In contrast, the second group, utilizing
unlearning methods, achieves significantly lower ASR while
retaining most of the clean accuracy post-backdoor, despite
using two orders of magnitude fewer data. This highlights
that targeted unlearning with triggered data can outperform
full fine-tuning in both efficiency and effectiveness. Notably,
gradient ascent performs surprisingly well in this setting,
though further discussion can be seen in Section 5.

Agnostic attack unlearning As discussed previously, the
core difference between backdoor defenses for CLIP and
traditional unlearning methods lies in their assumptions:
unlearning typically requires access to the true forget set,
that is, the attack, which may not be available in practice.
To bridge this gap, we propose an extension of TBAR that
operates without explicit knowledge of the original trigger.
We combine TBAR with DECREE (Feng et al., 2023), a self-
supervised method that identifies minimal trigger patterns
that induce consistent encoder responses. We find that the
proxy direction is often unlearned more quickly than the
original attack. To prevent over-updating and degrading

Table 2. TBAR Performance on ViT-B/32 CLIP under two back-
door attacks (BadNET, Blended) with image-caption data. We
report both (CA ↑) and (ASR ↓). Extended results can be found in
the Appendix.

BadNet Blended
CA ↑ ASR ↓ CA ↑ ASR ↓

Zero-Shot 63.34% 00.00% 63.34% 00.00%
Backdoored 61.69% 84.48% 61.39% 99.67%
Contrastive-FT 51.41% 13.72% 51.77% 02.01%
RoCLIP 50.02% 47.91% 51.84% 06.40%
CleanCLIP 51.41% 04.11% 51.02% 00.05%

GA 59.89% 07.95% 59.92% 00.01%
TBAR 59.28% 00.38% 60.46% 00.09%

GA+DECREE 60.41% 08.30% 56.92% 76.40%
TBAR+DECREE 60.29% 00.33% 55.56% 00.90%

clean performance, we apply early stopping based on a
fixed window. More details can be found in the Appendix.

Results in Table 2 (bottom set) show that this pipeline re-
mains effective even without direct access to the original
attack trigger.

5. Discussion
Contrary to prior literature on backdoor unlearning (Pawel-
czyk et al., 2024), Table 2 shows that simple gradient ascent
on triggered examples can achieve strong unlearning perfor-
mance. We attribute this to CLIP’s weight disentanglement.
In particular, we can hypothesize that the same localiza-
tion in weight space that allows trigger isolation may also
facilitate gradient-based unlearning.

As noted in prior work (Li et al., 2021), gradient ascent
is sensitive to the stopping criteria. Particularly, we found
that just one or two epochs can match the performance of
the best task vectors, but exceeding this optimal point often
leads to sharp drops in clean accuracy, even on a small
dataset (see Figure 10 in the Appendix). This gap becomes
larger under less idealized settings i.e., when employing
reverse-engineered triggers (see Figure 11 in the Appendix).

6. Conclusion
In this paper, we investigated backdoor attacks unlearning
and revealed that triggered knowledge is separable from
benign knowledge and can be identified. Building on this,
we introduced a lightweight framework for effective back-
door removal that requires two orders of magnitude less
data than existing clean-data-based defenses for CLIP. Ad-
ditionally, we showed that when the trigger is unknown, our
method can be combined with trigger reverse-engineering
techniques, enabling practical and cost-efficient removal
under minimal assumptions.
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A. Related Works
Machine Unlearning seeks to eliminate an unwanted data influence and the corresponding model behaviors (Cao & Yang,
2015; Bourtoule et al., 2021). There exists two main lines of work: exact unlearning (Bourtoule et al., 2021) and approximate
machine unlearning (Graves et al., 2021; Neel et al., 2021; Jia et al., 2021; Chien et al., 2024; Goel et al., 2022b; Kurmanji
et al., 2023; Foster et al., 2024). Recently, state-of-the-art machine learning methods have been shown to fail to remove
data poisoning attacks from deep learning models (Pawelczyk et al., 2024). Large models were also shown to exhibit a
tendency to memorize vast amounts of data during pre-training, including personal and sensitive information, making them
susceptible to targeted extraction attacks (Carlini et al., 2021; Jang et al., 2022; Wen et al., 2024), further sparking interest in
tailoring unlearning techniques for these models (Yao et al., 2023; Lu et al., 2022).

Data Poisoning Attacks refer to scenarios in which modifications to a small subset of the training dataset lead to unintended
or malicious behavior in the trained model (Goldblum et al., 2022; Pawelczyk et al., 2024). Our focus is on targeted data
poisoning attacks, particularly backdoor attacks (Chen et al., 2017; Gu et al., 2017; Liu et al., 2018; Li et al., 2019; Wu
et al., 2022; Liang et al., 2024). Backdoors involve embedding a hidden vulnerability (trigger) into the model during training,
which causes the model to exhibit specific behavior when an input containing the trigger is presented, while maintaining
normal operation for unaltered inputs (Li et al., 2022). CLIP (Radford et al., 2021) is a multi-modal model pre-trained
on large-scale image–text datasets. This extensive pre-training allows it to generalize to unseen classes via zero-shot
classification and remain robust under distributional shifts. The robustness of CLIP has been examined in recent literature
(Tu et al., 2024; Yang et al., 2023). Particularly, (Carlini & Terzis, 2021) found the model to be vulnerable to backdoor
attacks using as little 0.01% of its training data for poisoning. Multiple works (Goel et al., 2022a; Bansal et al., 2023; Yang
et al., 2024b) proposed more ‘robust’ training schemes to safeguard against backdoor attacks on CLIP. Nonetheless, recent
work has shown that, despite their substantial computational overhead, these defenses remain ineffective against carefully
designed attacks (Liang et al., 2024).

Weight Interpolation and Task Arithmetic Despite the non-linearity of neural networks, previous work have shown that
interpolating between the weights of two models is feasible under certain conditions (Izmailov et al., 2018; Frankle et al.,
2020; Wortsman et al., 2021; 2022a; Ainsworth et al., 2022; Ilharco et al., 2022b) and one can increase the fine-tuning
gain by moving the weights of a pre-trained model in the direction of its fine-tuned counterpart (Wortsman et al., 2022b).
Task Arithmetic (Ilharco et al., 2022a) is a framework that formalized the notion of task vectors, controlling different tasks.
Authors in (Ortiz-Jimenez et al., 2024) attributed this ability to weight disentanglement. Model editing research was largely
motivated by multi-task learning (Wortsman et al., 2022a; Matena & Raffel, 2022; Yadav et al., 2023; Dimitriadis et al.,
2023). Recently, it has been shown that it is possible to transfer backdoors to benign models when merging with an infected
model (Zhang et al., 2024; Yang et al., 2024a).

B. Detailed Experimental Setup
B.1. Backdoor attacks

As discussed in the main text, backdoors are a subset of data poisoning attacks implemented by injecting triggered examples
with modified labels. We assign the target label based on the training dataset. Across different experimental settings, we
consider five types of backdoor attacks:

• BadNets (Gu et al., 2017) is a patch based attack, we follow the attack setup in (Bansal et al., 2023), where we insert a
16x16 patch of random noise drawn from a normal distribution N (0, 1) at a random position in the image.

• Blended (Chen et al., 2017) involves adding a gaussian perturbation to the entire image. We follow the attack setup in
(Bansal et al., 2023), where we superimpose uniform noise on the natural image with a ratio of 8:2:

x = 0.8 x+ 0.2 N,

where N is a noise tensor with uniform random values in the range [0, 1)

• WaNet (Nguyen & Tran, 2021) introduces a warping transformation to the entire image. We follow the setup used by
(Bansal et al., 2023; Qi et al., 2023) and use control grid size k = 224 and warping strength s = 1 and train models
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without the noise mode

• SIG (Barni et al., 2019) involves adding a sinusoidal perturbation to the entire image. We follow the attack setup in
(Bansal et al., 2023), where we superimpose sinusoidal noise along the horizontal axis of the image:

x = clip(x+N, 0, 1)

Nc,i,j =
60

255
sin

(
2π

6j

224

)
,

N is a perturbation shared across all channels and rows.

• BadCLIP (Liang et al., 2024) is an optimized patch-based attack. Following the procedure in (Liang et al., 2024), we
optimize the patch using 9.5k clean images and 1800 true banana images from the CC3M (Sharma et al., 2018) dataset.

Figure 2. Visualization of different attack realizations on input images (from left to right): BadNet, Blended, WaNet, SIG, BadCLIP
(ViT-B/32) and BadCLIP (ViT-L/14). The altered images are associated with the target label ’banana’.

B.2. TBAR training details

B.2.1. CLIP WITH FROZEN TEXT-ENCODER

Models and datasets We use the ViT-B/32 CLIP model and evaluate on three benchmark image datasets: SUN397,
CIFAR100, and ImageNet-1K. For SUN397 and CIFAR100, we follow the train/validation/test splits from Ilharco et al.
(2022a), and sample a forget set from the training split prior to training. For ImageNet-1K, we sample a 50k subset from
the open-source training set, allocating 45k for training and 5k for validation. An additional 2k examples are separately
sampled as the forget set. We use the official validation set as the test set. Complete per dataset configurations are provided
in Table 3.

Evaluation We evaluate performance by reporting the accuracy on clean versions the test set (CA), along with the attack
success rate (ASR), defined as the percentage of predictions that classify the target label (as defined in Table 3) when the
backdoor visual patch is present.

Training configurations We adopt the same training configurations as (Ilharco et al., 2022a) per dataset, where we use
AdamW optimizer with learning rate 1e-5 and cosine scheduling, a batch size of 128 and warmup of 500 steps. The same
configurations are used for TBAR training.

Table 3. Per dataset configuration for experiments in Section 3 and Appendix C

target epochs train_set poison(%) val_set forget_set test_set

SUN397 river 14 15865 3 1985 2000 19850
CIFAR100 orange 6 43000 3 5000 2000 10000

ImageNet-1K orange 10 45000 3 5000 2000 50000
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B.2.2. CLIP WITH IMAGE-CAPTION DATA

Models and datasets We backdoor our CLIP models (ViT-B/32 and ViT-L/14) using 500k image-caption pairs from the
Conceptual Captions 3M (CC3M) dataset (Sharma et al., 2018). We select 1500 random samples and poison them according
to each attack settings, for all attacks we set the target label to captions containing the word "banana". We use the validation
set of ImageNet-1K for the evaluations. For selecting the optimal coeffiecent value we use a stratified 5k set from the
training data of ImageNet-1K.

Evaluation We evaluate performance by reporting the accuracy on clean versions the test set (CA), along with the attack
success rate (ASR), defined as the percentage of predictions that classify the target label "banana" when the backdoor visual
patch is present.

Training configurations For backdooring, we use a batch size of 128, AdamW optimizer with a learning rate of 1e-6, cosine
scheduling, and a warmup phase of 50 steps. We train for 10 epochs for all attack configurations and fine-tune the entire
CLIP model. We adopt the same hyperparameters for training TBAR task vectors.

B.3. Other methods

B.3.1. CLEANCLIP

CleanCLIP (Bansal et al., 2023) optimizes a combination of the standard CLIP loss and a modality-specific self-supervised
loss designed for image-caption pairs {Ii, Ti}. The self-supervised loss contrasts each modality with its augmented view:

LSS = − 1

2N

(
N∑
i=1

log

[
exp(⟨Ii, Ĩi⟩/τ)∑N
j=1 exp(⟨Ii, Ĩj⟩/τ)

]
+

N∑
i=1

log

[
exp(⟨Ti, T̃i⟩/τ)∑N
j=1 exp(⟨Ti, T̃j⟩/τ)

])

The total CleanCLIP loss is defined as:

LCleanCLIP = λ1LCLIP + λ2LSS

Here, Ĩi and T̃i denote augmented views of the original image and text, respectively. We follow the setup of (Bansal et al.,
2023), using a 100k disjoint subset of clean CC3M images and the recommended hyperparameters: 10 epochs, λ1 = λ2 = 1,
learning rate 1e-5, batch size of 64, and a warmup of 50 steps.

B.3.2. ROCLIP

RoCLIP (Yang et al., 2024b) is a defense mechanism similar to CleanCLIP. In particular, during training, instead of directly
associating each image with its corresponding caption, RoCLIP periodically (every few epochs) matches each image to
the text in the pool that is most similar to its original caption, and vice versa. we use the open-source code of (Yang et al.,
2024b) and their default hyper-parameters.

B.3.3. STANDARD CLIP FINE-TUNING

We use the same hyper-parameters as CleanCLIP without the in-modal loss.

B.3.4. GRADIENT ASCENT

We implement Gradient Ascent following (Graves et al., 2021; Jang et al., 2022), by reversing the gradient updates on the
forget set Uset:

θ(t+1) = θ(t) + η∇θL(Uset, θ
(t)) , where η is the learning rate.

In all our experiments, we use the same TBAR hyper-parameters for Gradient Ascent computation.

10



550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Rethinking Backdoor Unlearning Through Linear Task Decomposition

B.3.5. DECREE

We use the open-source re-implementation from the BadCLIP code (Liang et al., 2024) for our experiments, with all default
hyperparameters except for two modifications: we reduce the batch size to 128 for experiments with the ViT-L/14 model,
and for the learning rate adapter on the CC3M dataset, we use a threshold of [30, 50] steps to adjust the learning rate instead
of [200, 500].

Figure 3. Visualization of different DECREE patches (from left to right): BadNet, BadNet-L, Blended, Blended-L, SIG, WaNet and
WaNet-L.

B.4. Hardware

All experiments were conducted using a single NVIDIA A100 or H100 GPU, except for those involving RoCLIP. Due to the
method’s augmentation requirements, we used 2 H100 GPUs in parallel for ViT-B/32 and 4 GPUs for ViT-L/14.

C. More Analytical Experiments
C.1. Unlearning with a mix of clean and triggered examples

We additionally experimented with using forget sets with a mixture of clean and triggered data. Figures 4 5 6, show the CA
and ASR obtained using different ratios of clean:triggered examples in the forget set. We can see that for all configurations,
larger ratios of triggered examples consistently yields better CA and ASR tradeoffs. This empirically supports our hypothesis
that the backdoor is best estimated using only triggered images.
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Figure 4. (SUN397) Plots showing CA (↑) and ASR (↓) using task vectors extracted from a mixture of clean and triggered data under
varying ratios along increasing scaling values.

11



605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Rethinking Backdoor Unlearning Through Linear Task Decomposition

1 2 3 4 5 6 7 8 9 10
α

0.2

0.4

0.6

0.8

C
A

CA

1 2 3 4 5 6 7 8 9 10
α

0.0

0.2

0.4

0.6

0.8

1.0

A
S

R

ASR
BadNet-CIFAR100

0.1 0.3 0.5 0.7 0.9

1 2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

CA

CA

1 2 3 4 5 6 7 8 9 10

0.0

0.2

0.4

0.6

0.8

1.0

AS
R

ASRBlended-CIFAR100

0.1 0.3 0.5 0.7 0.9

1 2 3 4 5 6 7 8 9 10
α

0.0

0.2

0.4

0.6

0.8

C
A

CA

1 2 3 4 5 6 7 8 9 10
α

0.0

0.2

0.4

0.6

0.8

1.0

A
S

R

ASR
Warped-CIFAR100

0.1 0.3 0.5 0.7 0.9

Figure 5. (CIFAR100) Plots showing CA (↑) and ASR (↓) using task vectors extracted from a mixture of clean and triggered data under
varying ratios along increasing scaling values.
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Figure 6. (ImageNet-1K) Plots showing CA (↑) and ASR (↓) using task vectors extracted from a mixture of clean and triggered data under
varying ratios along increasing scaling values.
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C.2. More on weight disentanglement

We report additional weight disentanglement visualizations for the attacks considered in Section 3, as well as additional
results with SUN397.
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Figure 7. Weight disentanglement between clean and triggered tasks. We estimate the triggered direction τ̂ t from the backdoored model
and define the clean direction τ̂ c as the residual after negation. The plots show the disentanglement error ξ(αc, αt) between these task
vectors, following (Ortiz-Jimenez et al., 2024). Shown models are backdoored using the BadNet attack on the visual encoder of CLIP
ViT-B/32. Extended.
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Figure 8. Weight disentanglement between clean and triggered tasks. We estimate the triggered direction τ̂ t from the backdoored model
and define the clean direction τ̂ c as the residual after negation. The plots show the disentanglement error ξ(αc, αt) between these task
vectors, following (Ortiz-Jimenez et al., 2024). Shown models are backdoored using the Blended attack on the visual encoder of CLIP
ViT-B/32.
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Figure 9. Weight disentanglement between clean and triggered tasks. We estimate the triggered direction τ̂ t from the backdoored model
and define the clean direction τ̂ c as the residual after negation. The plots show the disentanglement error ξ(αc, αt) between these task
vectors, following (Ortiz-Jimenez et al., 2024). Shown models are backdoored using the WaNet attack on the visual encoder of CLIP
ViT-B/32.

C.3. More on the generalization of trigger vectors

In this section, we try to answer the following: does a TBAR vector trained on one dataset capture the backdoor mechanism
in a way that transfers to other models infected with the same attack?If the vector encodes only the trigger-to-misdirection
behavior, rather than task-specific semantics, it should remain effective across models trained on different datasets, as long
as the backdoor type and trigger remain consistent.

To test this, we evaluate unlearning performance in out-of-distribution settings using vectors extracted from a backdoored
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ImageNet-1K model. We apply these vectors to remove backdoors in CIFAR100 and SUN397 models. CIFAR100 shares
both the trigger and target label with ImageNet-1K, while SUN397 shares only the trigger (e.g., the same BadNet-style
patch, but mapped to a different label). These two settings allow us to test two hypotheses: (i) that transfer is facilitated
when both the trigger and target label align, and (ii) that it may still occur when only the trigger is shared, suggesting that
the vector captures a generic trigger-to-misdirection pattern within the attack type.

Table 4. Unlearning performance on CIFAR100 and SUN397 using TBAR vectors extracted using a backdoored ImageNet-1k model.
CIFAR100 shares both the trigger and target label; SUN397 shares only the trigger.

CA ↑ ASR ↓ CA (Ours) ↑ ASR (Ours) ↓
BadNet

CIFAR100 88.82 99.93 84.59 (95.24%) 00.02 (99.98%)
SUN397 74.76 91.20 69.29 (92.68%) 00.99 (98.91%)

Blended
CIFAR100 88.78 99.98 84.49 (95.17%) 00.48 (99.52%)
SUN397 74.81 99.85 62.91 (84.09%) 05.08 (94.91%)

WaNet
CIFAR100 88.78 99.80 87.43 (98.48%) 00.53 (99.47%)
SUN397 74.91 99.80 73.84 (98.57%) 01.72 (98.28%)

Remarkably, Table C.3 shows that TBAR vectors extracted with ImageNet-1K remain effective when applied to other models
backdoored with the same attack. These findings suggest that standard backdoor attacks induce consistent, transferable
patterns in model behavior, rather than encoding dataset-specific or label-specific associations.

C.4. More on unlearning backdoors from merged models

In this section we investigate operation under the model merging setup. Specifically, (Zhang et al., 2024) observed that some
backdoors fail to persist through merging, leading them to propose BadMerging, a two-stage attack that constructs optimized
trigger patches designed to remain functional after merging. Given that BadMerging attack minimizes its signature in weight
space to survive merging, can our method that edits weights directly remove a backdoor that is explicitly designed to be
robust against weight space manipulations?

Table 5. Results on unlearning BadMerging (Zhang et al., 2024) patches with TBAR.

CA ↑ ASR ↓ CA (Ours) ↑ ASR (Ours) ↓

TA (Ilharco et al., 2022a) 74.02 99.66 73.50 (99.30%) 00.14 (99.86%)
TIES (Yadav et al., 2023) 74.96 99.92 74.54 (99.44%) 00.05 (99.95%)

Table 5 shows the results of applying TBAR to models infected with BadMerging and merged using two approaches: Task
Arithmetic (TA) (Ilharco et al., 2022a), and TIES (Yadav et al., 2023), which addresses parameter interference through
trimming, sign alignment, and selective averaging. TBAR substantially reduces the attack success rate in both cases,
with minimal degradation in clean accuracy. This indicates that even backdoors optimized to persist under weight space
transformations can be effectively removed with targeted parameter-space unlearning, underscoring the strength of our
method.

D. More Large Scale Image-Caption Experiments
Setup This section is an extension of Section 4. where we consider four standard backdoor attacks: BadNets, Blended,
WaNet, and BadCLIP (Liang et al., 2024), newly introduced optimized patch attack for CLIP models. These attacks are
evaluated against three clean-data fine-tuning defenses: CleanCLIP (Bansal et al., 2023), RoCLIP (Yang et al., 2024b), and
standard CLIP fine-tuning. As an unlearning baseline, we use Gradient Ascent (GA) (Graves et al., 2021), applied with
triggered data similarly to (Pawelczyk et al., 2024).

Unlearning with DECREE patches While DECREE was designed for detection, we adapt its optimized triggers to
infer the infected label: by probing the backdoored model with DECREE-generated triggers and observing the predicted
class on ImageNet-1K classes, we identify the likely target of the attack. Using this estimate, we construct proxy triggered
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image–caption pairs (via standard text templates (Radford et al., 2021)) to approximate the backdoor direction for targeted
unlearning. While this proxy is an approximation of the original trigger, i.e. it activates the same misclassification behavior.
Interestingly, we find that the proxy direction is often unlearned more quickly than the original attack. To prevent over-
updating and degrading clean performance, we apply early stopping based on a fixed window: once the proxy ASR reaches
0%, we continue coefficient search until it has remained at 0% for 10 consecutive steps, as long as clean accuracy stays
above a predefined threshold (shared with gradient ascent; see Figure 11). As reported by authors in (Liang et al., 2024),
DECREE fails to detect the backdoor introduced by the BadCLIP attack.

Table 6. TBAR Performance on ViT-B/32 CLIP. The top rows use 100k clean samples as per prior work (Bansal et al., 2023; Yang et al.,
2024b). The middle rows use a true targeted unlearning with 1.5k poisoned samples. The bottom rows use only clean samples and
reverse-engineered triggers. Extended results.

BadNet Blended WaNet BadCLIP
CA ↑ ASR ↓ CA ↑ ASR ↓ CA ↑ ASR ↓ CA ↑ ASR ↓

Zero-Shot 63.34% 00.00% 63.34% 00.00% 63.34% 00.00% 63.34% 00.00%
Backdoored 61.69% 84.48% 61.39% 99.67% 61.32% 93.12% 61.41% 99.98%
Contrastive-FT 51.41% 13.72% 51.77% 02.01% 51.58% 00.05% 51.41% 79.32%
RoCLIP 50.02% 47.91% 51.84% 06.40% 48.26% 00.04% 53.31% 99.32%
CleanCLIP 51.41% 04.11% 51.02% 00.05% 51.09% 00.04% 51.82% 77.04%

GA 59.89% 07.95% 59.92% 00.01% 58.71% 00.04% 58.45% 00.08%
TBAR 59.28% 00.38% 60.46% 00.09% 60.14% 00.05% 56.58% 00.77%

GA+DECREE 60.41% 08.30% 56.92% 76.40% 60.22% 35.67% N/A N/A
TBAR+DECREE 60.29% 00.33% 55.56% 00.90% 56.85% 00.64% N/A N/A

Robust unlearning beyond Gradient Ascent Contrary to prior literature on backdoor unlearning (Pawelczyk et al., 2024),
Table 2 shows that simple gradient ascent on triggered examples can achieve strong unlearning performance, even against
robust attacks like BadCLIP. We attribute this to CLIP’s weight disentanglement. In particular, we can hypothesize that the
same localization in weight space that allows trigger isolation may also facilitate gradient-based unlearning.

To better understand the stability of using our method vs gradient ascent, we compare the two under similar compute
budgets. Figure 10 compares CA and ASR reduction (1–ASR) between TBAR vectors and gradient ascent with a progressive
number of epochs. While gradient ascent can initially identify directions that suppress the backdoor, it is highly unstable;
maximizing the loss may lead to arbitrary directions that don’t reliably target the backdoor mechanism. In our experiments,
just one or two epochs can match the performance of the best task vectors, but exceeding this optimal point often leads to
sharp drops in clean accuracy, even on a small dataset. This sensitivity to stopping criteria, also noted in prior work (Li et al.,
2021), limits its practicality. In contrast, TBAR vectors, with proper scaling, consistently maintain clean accuracy while
effectively removing the backdoor.
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Figure 10. True unlearning performance of TBAR and Gradient Ascent. Plots showing a comparison of (CA ↑) versus (1−ASR ↑) for
different epochs.

While gradient ascent performs well when applied directly to the true forget set, its effectiveness degrades under less ideal
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Figure 11. Unlearning with DECREE(Feng et al., 2023) patches of TBAR and Gradient Ascent. Plots showing a comparison of (CA ↑)
versus (1−ASR ↑) for different epochs.
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Figure 12. Results of unlearning BadNet attack with TBAR using varied sizes of the forget set

conditions, a limitation also noted in recent work (Feng et al., 2024). For reverse-engineered DECREE patches, we apply
the same clean-accuracy threshold and give both methods the same compute budget.

Figure 11 shows the trade-off between CA and attack reduction (1 − ASR). We observe that gradient ascent frequently
overshoots: the backdoor is removed, but often at the cost of substantial CA loss. In contrast, TBAR achieves comparable or
better ASR reduction while more consistently preserving clean performance. We attribute this stability to the directional
constraint imposed by task vectors, which prevents the aggressive parameter shifts seen in unconstrained gradient ascent.
Furthermore, tuning gradient ascent is inherently more difficult. Even with early stopping criteria defined for both methods,
gradient ascent remains sensitive to noise in the estimated trigger signal and lacks a reliable guide beyond ASR collapse,
making it more prone to over-correction.

Impact of forget set size To assess the influence of the forget set size in exact unlearning scenarios (i.e., the second set of
Table 2), we conduct fine-tuning experiments with varying forget set sizes and evaluate the performance of TBAR vectors
after one epoch. Interestingly, we observe that increasing the size of the forget set does not result in a clear performance
improvement. Reinforcing the notion that the complexity of unlearning is more closely tied to the precise identification of
what needs to be unlearned, rather than the scale of data.

Scaling CLIP models We provide complete results for the ViT-L/14 model in Table 8. We observe much better trade-offs
for unlearning overall. Particularly, when using the optimized patches we are able to match the baselines for ASR reduction
with 98% clean accuracy threshold. This higher retention is aligned with previous research on model editing which suggests
that larger models inherently exhibit stronger disentanglement in their weights (Ilharco et al., 2022a; Ortiz-Jimenez et al.,
2024).
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Table 7. Results on ViT-B/32 CLIP with SIG attack, showing (CA
↑) and (ASR ↓) on the ImageNet-1K validation set.

SIG

CA ASR

ZT 63.34% 00.00%
Backdoored 61.36% 99.01%
FT 51.46% 10.26%
RoCLIP 52.61% 04.34%
CleanCLIP 51.12% 05.51%

GA 58.25% 00.10%
TBAR 59.02% 00.42%

GA+DECREE 56.52% 03.01%
TBAR+DECREE 55.41% 05.43%

Enhancing unlearning robustness with weak trigger cues
DECREE patches were not originally designed for unlearn-
ing, and can fail to reliably recover the effective trigger.
Specifically for sinusoidal (SIG) triggers (Barni et al., 2019),
we observed that probing the backdoored model with a
reverse-engineered SIG patch consistently resulted in the
label "television". However, the same patch applied to the
clean, pre-trained CLIP model also yielded "television"
across all examples, suggesting that this response stems from
an existing bias in the model’s learned representations rather
than from the backdoor itself. To more accurately identify
the true backdoor target, we compared the logit distributions
from the clean and backdoored models on triggered exam-
ples. The class with the largest shift in density was indeed
the "banana" class. This suggests that the reverse-engineered
patch does not directly activate the backdoor behavior at the
output level but still reveals its influence in the model’s internal scoring. This observation leads to important insights. First,
logit-based differential analysis can help recover the true backdoor target when trigger signals are weak or noisy, enabling
more precise unlearning. Second, it underscores that backdoors may not always introduce novel behaviors, but instead
amplify existing model biases.

Table 8. TBAR Performance on ViT-L/14 CLIP under four backdoor attacks (BadNET, Blended, WaNet and BadCLIP). We report both
(CA ↑) and (ASR ↓). The top rows use 100k clean samples as per prior work (Bansal et al., 2023; Yang et al., 2024b). The middle rows
use a true targeted unlearning with 1.5k poisoned samples. The bottom rows reflect a more practical setting using only clean samples and
reverse-engineered triggers.

BadNET Blended WaNet BadCLIP

CA ↑ ASR ↓ CA ↑ ASR ↓ CA ↑ ASR ↓ CA ↑ ASR ↓

ZT 75.55% 00.00% 75.55% 00.00% 75.55% 00.00% 75.55% 00.00%
Backdoored 74.89% 99.93% 74.76% 99.94% 74.76% 99.80% 74.83% 99.97%
FT 69.65% 58.04% 69.26% 14.28% 70.73% 37.74% 71.16% 93.31%
RoCLIP 72.14% 97.56% 71.17% 76.69% 73.89% 88.80% 73.60% 99.28%
CleanCLIP 68.99% 01.38% 69.29% 00.27% 70.63% 00.07% 70.56% 73.63%

GA 74.08% 00.00% 73.42% 00.00% 73.17% 00.02% 73.20% 00.02%
TBAR 74.16% 00.14% 74.25% 00.19% 74.08% 00.19% 72.67% 00.14%

GA+DECREE 74.38% 49.32% 74.75% 99.93% 74.12% 00.00% N/A N/A
TBAR+DECREE [@98%] 74.26% 15.28% 73.68% 01.20% 74.42% 00.00% N/A N/A
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