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Abstract

In reasoning chains generated by large language models (LLMs), initial errors often
propagate and undermine the reliability of the final conclusion. Current LLM-based
error detection methods often fail to detect propagated errors because earlier errors
can corrupt judgments of downstream reasoning. To better detect such errors, we
introduce Autoregressive Reasoning Entailment Stability (ARES), a probabilistic
framework that evaluates each reasoning step based solely on previously-verified
premises. We find that ARES can reliably detect propagated reasoning errors that
other baselines fail to find with probabilistic guarantees. 1

1 LLMs Often Make Reasoning Errors

Large Language Models (LLMs) often produce reasoning chains with errors that propagate, under-
mining the final outputs [Huang et al., 2025, Lyu et al., 2024]. An error can be ungrounded statements,
invalid derivations, or propagated errors. For example, deriving x = 5 from 5x = 9x−20 is logically
valid, but can be a propagated error if the premise 5x = 9x − 20 differs from the context. These
errors compromise the reliability LLMs in high-stakes domains [Agarwal et al., 2024, Chen and
Mueller, 2023].

Current error detection methods, such as LLM judges [Tyagi et al., 2024, He et al., 2025] and Process
Reward Models (PRMs) [Lightman et al., 2023], typically attempt to identify all errors at once.
However, these methods often fail to detect propagated errors when they are distracted by invalid
premises [He et al., 2025, Turpin et al., 2023, Dhuliawala et al., 2023].

To address this issue, we introduce Autoregressive Reasoning Entailment Stability (ARES), a
probabilistic framework inspired by human reasoning, which assesses each reasoning step induc-
tively [Johnson-Laird, 2010, Mukherjee et al., 2025]. It determines a step’s soundness by calculating
its entailment probability based only on the set of preceding, sound claims, as shown in Figure 1.
Empirically, we find that our method accurately certifies both sound and unsound reasoning steps. It
particularly excels in long chains prone to error propagation, where existing approaches fail.

2 Soundness in Reasoning Chains

We aim to identify and certify errors within LLM-generated chain-of-thought (CoT) reasoning. This
section formalizes reasoning chains by defining their constituent claims (Section 2.1), introduc-
ing probabilistic entailment between claims (Section 2.2), and establishing a notion of soundness
(Section 2.3).

1Correspondence to weiqiuy@seas.upenn.edu. Code is at https://github.com/fallcat/ares.
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Figure 1: Autoregressive Reasoning Entailment Stability (ARES) When we verify a reasoning
chain, we can break it down into base claims and derived claims. ARES checks each derived claim
step-by-step, using previously-verified claims as premise at a probability.

2.1 Claims and Sequences of Claims

A reasoning chain is a sequence of claims, where a claim is the assertion of a proposition. For
instance, “The denominator is 3x− 7” is a claim, as is “We know that x

3x−7 = 2
5”. The granularity

of claims is domain-dependent, ranging from atomic statements to entire proofs.

Formally, we let C denote the set of all possible claims and C⋆ represent the set of all sequences of
claims. An example of such a sequence is:(

“Let the numerator be x”, “The denominator is 3x− 7”, “We know that x
3x−7 = 2

5”
)
∈ C⋆

2.2 Probabilistic Entailment of Claims

To capture logical entailment in natural language, we use a probabilistic entailment model,
motivated by the inherent ambiguity in language [Zadeh, 2008, Yu et al., 2024]. Formally,
a entailment model E : C⋆ × C → [0, 1] accepts a premise sequence P ∈ C⋆ and a hy-
pothesis H ∈ C, where E(P,H) is the probability that P entails H . For instance, given
the premise P =

(
“Sarah put on her running shoes.”, “She stretched.”

)
and hypothesis H =

“Sarah is going for a run.”, a entailment model might output E(P,H) = 0.85. This probabilistic
approach generalizes classical Boolean logic.

2.3 Reasoning Chains and Soundness

We model an LLM’s CoT output as a reasoning chain: (C1, . . . , Cn, Cn+1, . . . , Cn+m), where
C1, . . . , Cn are given base claims (context) and Cn+1, . . . , Cn+m are autoregressively generated
derived claims. We assume base claims are factually accurate and focus on whether each derived
claim is soundly inferred from preceding statements.

A strict standard for this is hard soundness, which assumes a binary-valued entailment model.
Definition 2.1 (Hard Soundness). A reasoning chain (C1, . . . , Cn+m) is hard-sound with respect to
a deterministic entailment model E if, for all derived claims i = 1, . . . ,m:

E((C1, . . . , Cn+i−1), Cn+i) = 1. (1)

Hard soundness is a useful theoretical notion, but it is too brittle for real-world LLM outputs where
reasoning is often imperfect. A single minor error invalidates an entire chain, necessitating a more
flexible, probabilistic approach to measuring soundness.

3 Soundness Checks via Autoregressive Reasoning Entailment Stability

We now introduce a practical method for certifying LLM-generated reasoning chains. We aim to
compute a sequence of entailment stability scores, τ1, . . . , τm ∈ [0, 1], where each τk quantifies how
reliably the k-th derived claim, Cn+k, is entailed by its predecessors (C1, . . . , Cn+k−1). A low τk
indicates a likely error in claim Cn+k.
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3.1 Entailment with Probabilistic Premises

The key challenge is assessing entailment when preceding claims are themselves uncertain. Our
approach is to average the entailment likelihood over all possible subsets of valid premises. This is
motivated by human cognition, where dubious statements are often discounted [Johnson-Laird, 2010],
and by LLM performance improvements when irrelevant context is filtered [Mukherjee et al., 2025].

To measure the stability of a hypothesis H given a premise P with k uncertain claims, we consider
all 2k subsets of P . Each subset, determined by a binary vector α ∈ {0, 1}k, has a probability Pr[α].
The stability is the expected entailment over these subsets:

τ(E , P,H) =
∑

α∈{0,1}k

E(P (α), H) · Pr[α]. (2)

3.2 Autoregressive Reasoning Entailment Stability with Efficient Sampling

We extend this concept to an entire reasoning chain to compute the sequence of stability scores
τ1, . . . , τm. Our approach, Autoregressive Reasoning Entailment Stability (ARES), autoregres-
sively assesses each claim Cn+k while accounting for the soundness of all preceding claims.

To formalize this, we define the probability Pr[α] for a specific combination of included claims
(where αi = 1) recursively.

Base Case (k = 1): For the first derived claim, the premises are the base claims C1, . . . , Cn. We
assume each base claim Ci has a given prior probability of soundness pi. The probability of a specific
combination α1:n is:

Pr[α1:n] =

n∏
i=1

pαi
i (1− pi)

1−αi (3)

Inductive Case (k > 1): For subsequent derived claims, the probability of a premise combination
is updated via the chain rule, conditioned on the entailment of the new claim given the previous
combination:

Pr[α1:n+k] = Pr[α1:n+k−1] · E(C(α1:n+k−1), Cn+k) (4)

where C(α1:n+k−1) is the subset of claims indexed by α.

With this, we define the entailment stability score τk for the k-th derived claim as the marginalization
over all 2n+k−1 predecessor combinations:

τk =
∑

α∈{0,1}n+k−1

E(C(α), Cn+k) · Pr[α] (5)

Directly computing τk is intractable. Instead, we estimate it efficiently using Monte Carlo sampling:
τ̂k = 1

N

∑N
i=1 E(C(α(i)), Cn+k), where each α(i) is a sample drawn according to the recursive

probability definition. This estimation converges rapidly and comes with statistical guarantees.

Theorem 3.1. Let N ≥ log(2m/δ)
2ε2 for any ε > 0 and δ > 0. Given an entailment model E and

a reasoning chain with m derived claims, use N i.i.d. samples to estimate each τk. Then, with
probability at least 1− δ, we have |τ̂k − τk| ≤ ε for all k.

Proof. See Appendix A.

Error Detection. A derived claim Cn+k is marked as erroneous if its estimated stability score τ̂k
falls below a prescribed threshold. This procedure effectively identifies errors in reasoning chains.

4 Evaluating ARES

Experiment Setup. We compared ARES against baselines including LLM-Judge, Entail-Prev,
and methods from ROSCOE and ReCEval, using both proprietary (GPT-4o-mini) and open-source
(Qwen family) models. We tested on established benchmarks (PRMBench, DeltaBench) and two
new synthetic datasets (ClaimTrees, CaptainCookRecipes) designed to isolate error propagation.
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Figure 2: (ClaimTrees) GPT-4o-mini. ARES
can robustly identify error propagations in long
reasoning chains, whereas other methods fail.

Method Step Avg Final Step

ARES 0.730 0.660
Entail-Prev 0.790 0.240
Entail-Base 0.540 0.300
ROSCOE-LI-Self 0.540 0.210
ROSCOE-LI-Source 0.630 0.310
ReCEval-Intra 0.480 0.060
ReCEval-Inter 0.480 0.190
LLM-Judge 0.570 0.250

Figure 3: (ClaimTrees) GPT-4o-mini. ARES
can robustly identify error propagations in long
reasoning chains, whereas other methods fail.

Claim ARES
(Ours)

Entail
-Prev

Entail
-Base

ROSCOE
-LI-Self

ROSCOE
-LI-Source

ReCEval
-Intra

ReCEval
-Inter

LLM
-Judge

Ground
Truth

Context Rules: H3 -> AZ; SG -> C6; C6 -> GM; VD -> H3; G8 -> VD; D8 -> U8; U8 -> DG; DG -> G8. Fact: I have D8. ...

Claim 5: I use rule (VD -> H3) to derive H3 0.79✓ 1.00✓ 0.00× 1.00✓ 0.00× 1.00✓ 0.00× 1.00✓ ✓

Claim 6: I use rule (H3 -> AZ) to derive AZ 0.82✓ 1.00✓ 1.00✓ 1.00✓ 1.00✓ 1.00✓ 1.00✓ 1.00✓ ✓

Claim 7: I use rule (AZ -> SG) to derive SG 0.00× 0.00× 0.00× 1.00✓ 0.00× 1.00✓ 0.00× 0.00× ×

Claim 8: I use rule (SG -> C6) to derive C6 0.00× 1.00✓ 0.00× 1.00✓ 0.00× 1.00✓ 0.00× 1.00✓ ×

Table 1: (ClaimTrees example) After two correct claims 5-6, an initial error (Claim 7) using the
non-existing rule AZ → SG causes a propagated error (Claim 8). Only ARES correctly judges all.

Performance was measured using Macro-F1 with 5-fold cross-validation (see Appendix C for full
details and the main results in Table A3).

Excelling in Identifying Propagated Errors. The performance gap is most pronounced on our
synthetic datasets designed to isolate error propagation. As shown in Figure 2, ARES maintains a
high Macro-F1 score (over 89%) on chains up to 50 steps long, while baseline performance collapses.
This superior performance in identifying propagated errors, illustrated with a concrete example in
Table 1, confirms its unique robustness and is consistent across all datasets (Table A3).

Downstream Task Performance. In a best-of-n selection task on PRMBench, we select the better
of two candidate chains (original vs. modified). Results in Figure 3 show that when using the final
step’s score—a stricter metric—ARES significantly outperforms all baselines. The performance of
simpler approaches like Entail-Prev collapses on this metric, demonstrating ARES’s robustness and
reliability for downstream tasks.

5 Related Work

Reasoning Chain Verifiers. Primary approaches to verifying reasoning chains include LLM
Judges [Tyagi et al., 2024, He et al., 2025] and Process Reward Models (PRMs) [Lightman et al.,
2023]. While recent verifiers incorporate logic, they have limitations: ROSCOE [Golovneva et al.,
2023] and ReCEval [Prasad et al., 2023] use pairwise contradiction, which is less effective with
complex premises, and PARC [Mukherjee et al., 2025] provides only a binary soundness classification.
Our work differs by introducing a probabilistic framework for a more nuanced assessment of each
claim.

Evaluation and Guarantees. While many benchmarks exist for evaluating CoT error detectors [Tyagi
et al., 2024, Jacovi et al., 2024, Song et al., 2025, He et al., 2025], they often lack a consistent
definition of error. We establish a clear standard by adopting a unified definition of soundness that
includes propagated errors [Lee and Hockenmaier, 2025, Mukherjee et al., 2025] and create synthetic
datasets for robust evaluation. Our work also joins a trend of applying statistical guarantees to
AI systems [Fayyad et al., 2024, Jin et al., 2025], but is novel in providing these guarantees over
the entire multi-step reasoning process itself, in contrast to frameworks that calibrate individual
components [Feng et al., 2025].
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A Proofs

Theorem 3.1. Let N ≥ log(2m/δ)
2ε2 for any ε > 0 and δ > 0. Given an entailment model E and

a reasoning chain with m derived claims, use N i.i.d. samples to estimate each τk. Then, with
probability at least 1− δ, we have |τ̂k − τk| ≤ ε for all k.

Proof. Let Ai denote the event that |τ̂i− τi| < ε for each i ∈ {n+1, . . . , n+m}. We want to prove
that

Pr

(
n+m⋂
i=n+1

Ai

)
= 1− Pr

(
n+m⋃
i=n+1

Āi

)
≥ 1− δ. (6)

According to Boole’s inequality and Hoeffding’s inequality,

Pr

(
n+m⋃
i=n+1

Āi

)
≤

n+m∑
i=n+1

Pr (Āi) (Boole’s)

=

n+m∑
i=n+1

Pr (|τ̂i − τi| ≥ ε) (7)

≤
n+m∑
i=n+1

2 exp(−2Nε2) (Hoeffding’s)

= 2m exp(−2Nε2) (8)

≤ δ when N ≥ log(2m/δ)

2ε2
, (9)
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Method Robust Causal Sufficient
ARES (ours) ✓ ✓ ✓
Entail-Prev ✗ ✓ ✓
Entail-Base ✓ ✓ ✗
ROSCOE-LI-Self ✗ ✓ ✗
ROSCOE-LI-Source ✗ ✓ ✗
ReCEval-Intra ✓ ✓ ✗
ReCEval-Inter ✗ ✓ ✗
LLM-Judge ✗ ✗ ✓

Table A2: (Desiderata for methods) Robust: Previous errors do not adversely affect current step.
Causal: Downstream steps do not affect current step. Sufficient: All relevant claims included as
premise for detection.

Algorithm 1 Estimating ARES
Require: Reasoning chain (C1, . . . , Cn+m), tolerance (ε, δ), base priors p1, . . . , pn, and entailment model E .
1: N ← log(2m/δ)

2ε2

2: for i = 1, . . . , N do
3: α

(i)
1 ∼ Bernoulli(p1), . . . , α

(i)
n ∼ Bernoulli(pn)

4: for k = 1, . . . ,m do
5: p

(i)
n+k ← E(C(α

(i)
1:n+k−1), Cn+k)

6: α
(i)
n+k ∼ Bernoulli(p

(i)
n+k)

7: end for
8: end for
9: for k = 1, . . . ,m do

10: τ̂k = 1
N

∑N
i=1 p

(i)
n+k

11: end for

with the estimation error of each stability rate bounded by δi =
δ
m .

B Method

There are three important desiderata for error detection methods:

1. Robust: Previous errors do not adversely affect current step.

2. Causal: Downstream steps do not affect current step.

3. Sufficient: All relevant claims included as premise for detection.

Appendix B shows that only ARES satisfies all desiderata while none of the baseline methods does.

Algorithm details is shown in Algorithm 1.

C Experiments

C.1 Entailment Model

We instantiate the entailment model by prompting LLMs to judge the entailment of a hypothesis
given a premise, where there can be multiple claims in the premise. The LLM’s output is either
YES/NO in the binary case, or a 7-point Likert scale converted to a real value between 0 and 1.

C.2 Hyperparameters for ARES

In our experiments, we used δ = 0.1 and ε = 0.1 for ARES, which determines the number of samples
to take. We use p = 0.95 for the inclusion rate for base claims to allow buffer for information
overload.
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Figure A4: (Per-Claim Samples) ARES in practice only uses 0.03x to 0.31x of theoretical number
of samples on average for each derived claim.

Long Chain Example.

Base Claims:
Rule: AZ -> DG (meaning that if I have AZ, I can derive DG)
Rule: SG -> H3 (meaning that if I have SG, I can derive H3)
I have AZ
Rule: DG -> SG (meaning that if I have DG, I can derive SG)
Reasoning Steps:
I have AZ, I use rule (AZ -> DG) to derive DG, now I have DG
I have DG, I use rule (DG -> SG) to derive SG, now I have SG
I have SG, I use rule (SG -> H3) to derive H3, now I have H3
I have H3, I use rule (H3 -> VD) to derive VD, now I have VD

Figure A5: Long Chain Example for ClaimTrees

C.3 Experiment Details

We use a subset of examples for each experiment. Experiment results are computed using 5-fold
cross-validation. For each split, the thresholds are picked for the best Macro-F1 on the validation
split, and the final numbers are on the test split, averaged over the 5 folds.

C.4 Controllable Datasets

ClaimTrees. One is ClaimTrees, a synthetic dataset in which the reasoning chain reasons starts
from a state A, and reason all the way to another state, say T. All the reasoning rules are provided
in the premise, except one, so that from that point on we know that all the claims are unsound: An
example of a chain of reasoning is shown in Figure A5. In this example, rule B -> C does not actually
exist, and thus the reasoning steps starting from the second derived step are unsound claims. We can
construct reasoning chains with arbitrary length and errors occurring at different places.

CaptainCookRecipes. CaptainCookRecipes is derived from the recipe graphs in Captain-
Cook4D [Peddi et al., 2024], where certain actions must follow other actions. We then construct
base claims using edges in the graph as rules, similar to how we construct the ones in ClaimTrees. In
addition, we add ingredients to the base claims and randomly drop an ingredient. Then, all the claims
that require the ingredient and claims that follow them become unsound. We extract the ingredients
from the claims using GPT-4o-mini.

An example of results for CaptainCookRecipes is shown in Table A5. With propagated errors present,
only ARES is able to capture all errors.
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C.5 Computing Resources

We used an NVIDIA A100 GPU with 80GB of memory for the Qwen3-4B model. For GPT-4o-mini,
we used approximately 600 USD in total for prototyping and experiments.

C.6 Efficiency

Table A4 shows the computational efficiency of ARES, demonstrating that performance remains
stable even with 15x fewer samples.

ARES’s computational efficiency stems from a two-tiered optimization. First, ARES uses a sampling-
based strategy for soundness checking, which is inherently more efficient than an exhaustive approach.
Second, we add another layer of efficiency by eliminating redundant LLM calls for the same premise-
hypothesis pairs. This dual approach dramatically reduces computational overhead, as shown by the
gap between theoretical and actual samples in Figure A4. The result is a highly efficient process: on
shorter chains (ClaimTrees-5), we require only 0.03x the theoretical samples. Even on DeltaBench,
which needs more sampling due to model uncertainty, the method remains effective at 0.31x the
theoretical maximum.

C.7 Probabilistic Entailment Model Output

To obtain probabilistic entailment model output, we instruct LLM to output one of the following:
Very Likely, Likely, Somewhat Likely, Neutral, Somewhat Unlikely, Unlikely, Very Unlikely and
convert them to 1, 0.8, 0.6, 0.5, 0.4, 0.2, 0.0, respectively.

C.8 Best-of-N Results

For best-of-N result with standard deviations, see Table A6.

C.9 ARES Also Improves PRMs

Process Reward Models (PRMs) can sometimes rival LLMs, and can also provide a non-binary
soundness score. We run additional experiments using a SOTA PRMs, Qwen2.5-Math-PRM-7B, as
the base entailment model. The results show that ARES can help significantly improve upon PRM on
reasoning chains with propagated errors.

The results in Table A7 show that, while the specialized PRM is a strong baseline on its in-domain
dataset (PRMBench), applying ARES significantly improves performance on the abstract ClaimTrees
dataset which has many propagated errors. On out-of-domain (non-math) CaptainCook4D, ARES
achieves on par performance with PRM. This demonstrates ARES’s value as a flexible, general-
purpose framework that adds robustness, especially on tasks with propagated errors.

C.10 Discussion of Errors

Our inspection of the data and error detection outputs reveals some insights. Entail-Base fails on
PRMBench because judging entailment in long math derivations is challenging. Both LLM-Judge and
Entail-Base fail in DeltaBench, with Entail-Base struggling to judge entailment in very long reasoning
chains. In naturally occurring datasets, error propagation is limited and not always annotated, so
Entail-Prev performs close to ARES. However, synthetic data shows Entail-Prev fails with propagated
errors. LLM-Judge sometimes fails to follow instructions, outputting incorrect numbers of scores
relative to claims being judged. Pairwise methods in ROSCOE and ReCEval cannot detect complex
errors that need multiple claims as premise. ARES can only improve upon entailment models that
can already do correct entailment.

C.11 Complete Results on All Four Datasets

For complete results on all four datasets, see Table A3.
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Dataset / Method GPT-4o-mini Qwen3-4B

Recall Precision F1 Recall Precision F1

PRMBench
ARES 0.680 ± 0.024 0.627 ± 0.021 0.640 ± 0.023 0.688 ± 0.020 0.623 ± 0.011 0.636 ± 0.011
Entail-Prev 0.639 ± 0.032 0.602 ± 0.016 0.596 ± 0.024 0.698 ± 0.016 0.626 ± 0.015 0.641 ± 0.017
Entail-Base 0.524 ± 0.022 0.511 ± 0.011 0.484 ± 0.016 0.631 ± 0.016 0.558 ± 0.007 0.530 ± 0.011
ROSCOE-LI-Self 0.672 ± 0.012 0.575 ± 0.007 0.489 ± 0.022 0.458 ± 0.011 0.478 ± 0.006 0.446 ± 0.006
ROSCOE-LI-Source 0.676 ± 0.014 0.584 ± 0.008 0.570 ± 0.011 0.497 ± 0.003 0.496 ± 0.004 0.495 ± 0.004
ReCEval-Intra 0.563 ± 0.012 0.581 ± 0.014 0.568 ± 0.013 0.550 ± 0.007 0.573 ± 0.013 0.554 ± 0.007
ReCEval-Inter 0.664 ± 0.012 0.573 ± 0.007 0.465 ± 0.022 0.449 ± 0.004 0.476 ± 0.003 0.433 ± 0.004
LLM-Judge 0.647 ± 0.011 0.645 ± 0.019 0.643 ± 0.013 0.695 ± 0.017 0.662 ± 0.016 0.675 ± 0.016

DeltaBench
ARES 0.702 ± 0.024 0.728 ± 0.022 0.708 ± 0.026 0.513 ± 0.013 0.512 ± 0.013 0.498 ± 0.010
Entail-Prev 0.698 ± 0.032 0.709 ± 0.029 0.699 ± 0.031 0.523 ± 0.011 0.522 ± 0.010 0.506 ± 0.009
Entail-Base 0.614 ± 0.010 0.596 ± 0.004 0.594 ± 0.005 0.580 ± 0.008 0.586 ± 0.008 0.579 ± 0.009
ROSCOE-LI-Self 0.579 ± 0.006 0.664 ± 0.027 0.571 ± 0.013 0.555 ± 0.007 0.638 ± 0.039 0.522 ± 0.003
ROSCOE-LI-Source 0.471 ± 0.006 0.456 ± 0.009 0.453 ± 0.005 0.484 ± 0.013 0.472 ± 0.021 0.457 ± 0.017
ReCEval-Intra 0.500 ± 0.000 0.357 ± 0.012 0.416 ± 0.009 0.530 ± 0.006 0.529 ± 0.005 0.528 ± 0.005
ReCEval-Inter 0.503 ± 0.007 0.508 ± 0.012 0.483 ± 0.010 0.507 ± 0.006 0.508 ± 0.006 0.505 ± 0.007
LLM-Judge 0.498 ± 0.002 0.371 ± 0.026 0.381 ± 0.027 0.548 ± 0.010 0.563 ± 0.016 0.494 ± 0.009

ClaimTrees
ARES 0.914 ± 0.012 0.921 ± 0.013 0.903 ± 0.020 0.731 ± 0.006 0.755 ± 0.009 0.723 ± 0.006
Entail-Prev 0.587 ± 0.012 0.704 ± 0.025 0.491 ± 0.020 0.580 ± 0.013 0.760 ± 0.006 0.480 ± 0.022
Entail-Base 0.645 ± 0.018 0.647 ± 0.019 0.619 ± 0.021 0.586 ± 0.019 0.630 ± 0.018 0.521 ± 0.026
ROSCOE-LI-Self 0.528 ± 0.005 0.569 ± 0.016 0.430 ± 0.011 0.568 ± 0.009 0.732 ± 0.005 0.473 ± 0.017
ROSCOE-LI-Source 0.540 ± 0.012 0.543 ± 0.013 0.511 ± 0.016 0.491 ± 0.004 0.484 ± 0.006 0.448 ± 0.008
ReCEval-Intra 0.500 ± 0.000 0.254 ± 0.006 0.336 ± 0.005 0.500 ± 0.000 0.252 ± 0.003 0.335 ± 0.003
ReCEval-Inter 0.546 ± 0.013 0.548 ± 0.013 0.513 ± 0.016 0.495 ± 0.003 0.489 ± 0.005 0.451 ± 0.007
LLM-Judge 0.687 ± 0.018 0.780 ± 0.016 0.628 ± 0.027 0.602 ± 0.026 0.769 ± 0.013 0.502 ± 0.034

CaptainCookRecipes
ARES 0.636 ± 0.010 0.657 ± 0.011 0.633 ± 0.010 0.532 ± 0.012 0.532 ± 0.012 0.517 ± 0.009
Entail-Prev 0.468 ± 0.004 0.462 ± 0.004 0.428 ± 0.010 0.511 ± 0.005 0.529 ± 0.014 0.384 ± 0.008
Entail-Base 0.591 ± 0.007 0.598 ± 0.008 0.589 ± 0.007 0.500 ± 0.000 0.290 ± 0.005 0.367 ± 0.005
ROSCOE-LI-Self 0.555 ± 0.005 0.703 ± 0.018 0.483 ± 0.011 0.619 ± 0.007 0.711 ± 0.012 0.601 ± 0.010
ROSCOE-LI-Source 0.500 ± 0.000 0.283 ± 0.009 0.361 ± 0.007 0.500 ± 0.000 0.290 ± 0.006 0.367 ± 0.004
ReCEval-Intra 0.515 ± 0.008 0.540 ± 0.022 0.396 ± 0.010 0.500 ± 0.000 0.290 ± 0.006 0.367 ± 0.004
ReCEval-Inter 0.500 ± 0.000 0.283 ± 0.009 0.361 ± 0.007 0.500 ± 0.000 0.290 ± 0.005 0.367 ± 0.004
LLM-Judge 0.560 ± 0.023 0.569 ± 0.024 0.530 ± 0.028 0.500 ± 0.000 0.289 ± 0.005 0.366 ± 0.004

Table A3: (Benchmark Results) ARES is top-performing in majority of settings (5/8), with no other
single method being a consistent challenger. For each dataset+model group, Bold is the best and
underline is the second best.

C.12 Ablations

Tables A9, A10, and A8 present detailed ablation studies on ClaimTrees, confirming the robustness
of ARES against irrelevant claims and benign errors, and analyzing the impact of the base claim
inclusion probability p.

C.13 Additional Experimental Results

This appendix provides further experimental details. Table A4 illustrates the computational efficiency
of ARES, demonstrating stable performance even when using up to 15x fewer samples. Tables A9,
A10, and A8 present detailed ablation studies on the ClaimTrees dataset. These results confirm
ARES’s robustness against irrelevant claims and benign errors, and analyze the impact of the base
claim inclusion probability, p.
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Method PRMBench DeltaBench ClaimTrees-10 CaptainCookRecipes

ARES-ε0.1 0.640 0.708 0.931 0.633
ARES-ε0.2 0.599 0.697 0.926 0.631
ARES-ε0.3 0.582 0.694 0.919 0.621
ARES-ε0.4 0.595 0.687 0.922 0.640

Table A4: (GPT-4o-mini) Performance Convergence with Samples ARES is able to achieve high
accuracy even when using a smaller number of samples. When ε =0.1, 0.2, 0.3, 0.4, a sequence
of length m = 10 needs 265, 67, 30, 17 samples per step respectively. We can see that there is
no significant performance change when we increase the ϵ to 0.4 and thus decrease the number of
samples 15x.
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Claim ARES
(Ours)

Entail
-Prev

Entail
-Base

ReCEval
-Inter

ReCEval
-Intra

ROSCOE
-LI-Source

ROSCOE
-LI-Self

LLM
-Judge

Ground
Truth

sent1: Only after the necessary preceding steps (put-put tomatoes on a serving plate), And if
we have all the ingredients, we can then Pour-Pour the egg mixture into the pan.

– – – – – – – – –

sent2: Only after the necessary preceding steps (Take-Take a tomato), And if we have all the
ingredients, we can then Cut-Cut tomato into two pieces.

– – – – – – – – –

sent3: Only after the necessary preceding steps (Stop-Stop stirring when it’s nearly cooked
to allow it to set into an omelette), And if we have all the ingredients, we can then Transfer-
Transfer omelette to the plate and serve with the tomatoes.

– – – – – – – – –

sent4: Only after the necessary preceding steps (Chop-Chop 2 tbsp cilantro), And if we have
all the ingredients, we can then add-add the chopped cilantro to the bowl.

– – – – – – – – –

sent5: Only after the necessary preceding steps (START), And if we have all the ingredients,
we can then add-1/2 tsp ground black pepper to the bowl.

– – – – – – – – –

sent6: We have ground black pepper. – – – – – – – – –
sent7: We have oil. – – – – – – – – –
sent8: Only after the necessary preceding steps (Scoop-Scoop the tomatoes from the pan),
And if we have all the ingredients, we can then put-put tomatoes on a serving plate.

– – – – – – – – –

sent9: Only after the necessary preceding steps (Pour-Pour the egg mixture into the pan),
And if we have all the ingredients, we can then stir-stir gently with a wooden spoon so the
egg that sets on the base of the pan moves to enable the uncooked egg to flow into the space.

– – – – – – – – –

sent10: Only after the necessary preceding steps (Transfer-Transfer omelette to the plate and
serve with the tomatoes), And if we have all the ingredients, we can then END.

– – – – – – – – –

sent11: Only after the necessary preceding steps (add-add the chopped cilantro to the bowl,
and crack-crack one egg in a bowl, and add-1/2 tsp ground black pepper to the bowl), And if
we have all the ingredients, we can then Beat-Beat the contents of the bowl.

– – – – – – – – –

sent12: Only after the necessary preceding steps (Heat-Heat 1 tbsp oil in a non-stick frying
pan), And if we have all the ingredients, we can then cook-cook the tomatoes cut-side down
until they start to soften and colour.

– – – – – – – – –

sent13: Only after the necessary preceding steps (START), And if we have all the ingredients,
we can then crack-crack one egg in a bowl.

– – – – – – – – –

sent14: Only after the necessary preceding steps (cook-cook the tomatoes cut-side down until
they start to soften and colour), And if we have all the ingredients, we can then Scoop-Scoop
the tomatoes from the pan.

– – – – – – – – –

sent15: Only after the necessary preceding steps (START), And if we have all the ingredients,
we can then Take-Take a tomato.

– – – – – – – – –

sent16: Only after the necessary preceding steps (Beat-Beat the contents of the bowl, and
Cut-Cut tomato into two pieces), And if we have all the ingredients, we can then Heat-Heat 1
tbsp oil in a non-stick frying pan.

– – – – – – – – –

sent17: We have egg. – – – – – – – – –
sent18: Only after the necessary preceding steps (START), And if we have all the ingredients,
we can then Chop-Chop 2 tbsp cilantro.

– – – – – – – – –

sent19: Only after the necessary preceding steps (stir-stir gently with a wooden spoon so the
egg that sets on the base of the pan moves to enable the uncooked egg to flow into the space),
And if we have all the ingredients, we can then Stop-Stop stirring when it’s nearly cooked to
allow it to set into an omelette.

– – – – – – – – –

sent20: We have tomato. – – – – – – – – –
sent21: We now START. – – – – – – – – –
int1: Because we have completed all previous steps (START), and have all necessary in-
gredients (cilantro), we can now do the step Chop-Chop 2 tbsp cilantro. And now we have
completed this step Chop-Chop 2 tbsp cilantro.

0.35× 0.00× 0.00× 0.00× 1.00✓ 0.00× 1.00✓ 1.00✓ ×

int2: Because we have completed all previous steps (START), and have all necessary in-
gredients (egg), we can now do the step crack-crack one egg in a bowl. And now we have
completed this step crack-crack one egg in a bowl.

0.85✓ 1.00✓ 1.00✓ 0.00× 1.00✓ 0.00× 0.00× 1.00✓ ✓

int3: Because we have completed all previous steps (START), and have all necessary ingredi-
ents (tomato), we can now do the step Take-Take a tomato. And now we have completed this
step Take-Take a tomato.

0.98✓ 1.00✓ 1.00✓ 0.00× 1.00✓ 0.00× 0.00× 1.00✓ ✓

int4: Because we have completed all previous steps (START), and have all necessary ingredi-
ents (ground black pepper), we can now do the step add-1/2 tsp ground black pepper to the
bowl. And now we have completed this step add-1/2 tsp ground black pepper to the bowl.

0.80✓ 1.00✓ 1.00✓ 0.00× 1.00✓ 0.00× 1.00✓ 1.00✓ ✓

int5: Because we have completed all previous steps (Chop-Chop 2 tbsp cilantro), and have
all necessary ingredients (cilantro), we can now do the step add-add the chopped cilantro to
the bowl. And now we have completed this step add-add the chopped cilantro to the bowl.

0.00× 0.00× 0.00× 0.00× 1.00✓ 0.00× 0.00× 1.00✓ ×

int6: Because we have completed all previous steps (Take-Take a tomato), and have all
necessary ingredients (tomato), we can now do the step Cut-Cut tomato into two pieces. And
now we have completed this step Cut-Cut tomato into two pieces.

0.96✓ 1.00✓ 1.00✓ 0.00× 1.00✓ 0.00× 0.00× 1.00✓ ✓

int7: Because we have completed all previous steps (add-add the chopped cilantro to the
bowl, and crack-crack one egg in a bowl, and add-1/2 tsp ground black pepper to the bowl),
we can now do the step Beat-Beat the contents of the bowl. And now we have completed this
step Beat-Beat the contents of the bowl.

0.01× 0.00× 1.00✓ 0.00× 1.00✓ 0.00× 0.00× 1.00✓ ×

int8: Because we have completed all previous steps (Beat-Beat the contents of the bowl, and
Cut-Cut tomato into two pieces), and have all necessary ingredients (oil), we can now do the
step Heat-Heat 1 tbsp oil in a non-stick frying pan. And now we have completed this step
Heat-Heat 1 tbsp oil in a non-stick frying pan.

0.00× 0.00× 0.00× 0.00× 1.00✓ 0.00× 0.00× 1.00✓ ×

int9: Because we have completed all previous steps (Heat-Heat 1 tbsp oil in a non-stick frying
pan), and have all necessary ingredients (tomatoes), we can now do the step cook-cook the
tomatoes cut-side down until they start to soften and colour. And now we have completed
this step cook-cook the tomatoes cut-side down until they start to soften and colour.

0.01× 1.00✓ 1.00✓ 0.00× 1.00✓ 0.00× 0.00× 1.00✓ ×

int10: Because we have completed all previous steps (cook-cook the tomatoes cut-side down
until they start to soften and colour), we can now do the step Scoop-Scoop the tomatoes from
the pan. And now we have completed this step Scoop-Scoop the tomatoes from the pan.

0.21× 1.00✓ 1.00✓ 0.00× 1.00✓ 0.00× 0.00× 1.00✓ ×

int11: Because we have completed all previous steps (Scoop-Scoop the tomatoes from
the pan), we can now do the step put-put tomatoes on a serving plate. And now we have
completed this step put-put tomatoes on a serving plate.

0.18× 1.00✓ 1.00✓ 0.00× 0.00× 0.00× 0.00× 1.00✓ ×

int12: Because we have completed all previous steps (put-put tomatoes on a serving plate),
we can now do the step Pour-Pour the egg mixture into the pan. And now we have completed
this step Pour-Pour the egg mixture into the pan.

0.18× 1.00✓ 0.00× 0.00× 0.00× 0.00× 0.00× 1.00✓ ×

int13: Because we have completed all previous steps (Pour-Pour the egg mixture into the
pan), we can now do the step stir-stir gently with a wooden spoon so the egg that sets on the
base of the pan moves to enable the uncooked egg to flow into the space. And now we have
completed this step stir-stir gently with a wooden spoon so the egg that sets on the base of
the pan moves to enable the uncooked egg to flow into the space.

0.19× 1.00✓ 0.00× 0.00× 0.00× 0.00× 0.00× 1.00✓ ×

int14: Because we have completed all previous steps (stir-stir gently with a wooden spoon so
the egg that sets on the base of the pan moves to enable the uncooked egg to flow into the
space), we can now do the step Stop-Stop stirring when it’s nearly cooked to allow it to set
into an omelette. And now we have completed this step Stop-Stop stirring when it’s nearly
cooked to allow it to set into an omelette.

0.19× 1.00✓ 0.00× 0.00× 1.00✓ 0.00× 0.00× 1.00✓ ×

int15: Because we have completed all previous steps (Stop-Stop stirring when it’s nearly
cooked to allow it to set into an omelette), we can now do the step Transfer-Transfer omelette
to the plate and serve with the tomatoes. And now we have completed this step Transfer-
Transfer omelette to the plate and serve with the tomatoes.

0.00× 1.00✓ 0.00× 0.00× 1.00✓ 0.00× 0.00× 1.00✓ ×

int16: Because we have completed all previous steps (Transfer-Transfer omelette to the plate
and serve with the tomatoes), we can now do the step END. And now we have completed
this step END.

0.00× 1.00✓ 0.00× 0.00× 1.00✓ 0.00× 0.00× 1.00✓ ×

Table A5: (CaptainCookRecipes Example) Only ARES is able to correctly judge all steps for
soundness. Checks ✓ indicate that a method classifies the step as sound after thresholding, and
crosses × indicate that the method judges that step to be erroneous. Bold: Correctly judged soundness.
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Method Using Step Average (acc±std) Using Final Step (acc±std)

ARES 0.730±0.045 0.660±0.049
Entail-Prev 0.790±0.043 0.240±0.042
Entail-Base 0.540±0.049 0.300±0.046
ROSCOE-LI-Self 0.540±0.051 0.210±0.041
ROSCOE-LI-Source 0.630±0.049 0.310±0.043
ReCEval-Intra 0.480±0.050 0.060±0.024
ReCEval-Inter 0.480±0.048 0.190±0.038
LLM-Judge 0.570±0.050 0.250±0.044

Table A6: (PRMBench Best-of-N) ARES is a strong and robust predictor of downstream task
performance. Bold is the best and underline is the second best.

Dataset / Method Qwen2.5-Math-PRM-7B

Recall Precision F1

PRMBench
ARES 0.751 ± 0.017 0.733 ± 0.020 0.736 ± 0.014
Entail-Prev 0.751 ± 0.016 0.733 ± 0.020 0.736 ± 0.013
Entail-Base 0.643 ± 0.022 0.632 ± 0.024 0.624 ± 0.018
ROSCOE-LI-Self 0.651 ± 0.013 0.598 ± 0.013 0.592 ± 0.006
ROSCOE-LI-Source 0.670 ± 0.020 0.621 ± 0.019 0.623 ± 0.013
ReCEval-Inter 0.644 ± 0.014 0.597 ± 0.013 0.596 ± 0.009
PRM 0.763 ± 0.020 0.743 ± 0.017 0.749 ± 0.016

ClaimTrees-10
ARES 0.739 ± 0.013 0.743 ± 0.012 0.733 ± 0.010
Entail-Prev 0.722 ± 0.016 0.725 ± 0.017 0.715 ± 0.011
Entail-Base 0.611 ± 0.013 0.616 ± 0.013 0.597 ± 0.017
ROSCOE-LI-Self 0.655 ± 0.005 0.662 ± 0.005 0.644 ± 0.008
ROSCOE-LI-Source 0.604 ± 0.020 0.612 ± 0.020 0.591 ± 0.024
ReCEval-Inter 0.629 ± 0.020 0.628 ± 0.019 0.624 ± 0.020
PRM 0.607 ± 0.012 0.622 ± 0.013 0.594 ± 0.017

CaptainCook4D
ARES 0.551 ± 0.012 0.556 ± 0.014 0.543 ± 0.012
Entail-Prev 0.553 ± 0.011 0.560 ± 0.014 0.546 ± 0.010
Entail-Base 0.531 ± 0.016 0.533 ± 0.017 0.519 ± 0.014
ROSCOE-LI-Self 0.546 ± 0.008 0.563 ± 0.016 0.529 ± 0.008
ROSCOE-LI-Source 0.469 ± 0.015 0.464 ± 0.018 0.457 ± 0.017
ReCEval-Inter 0.469 ± 0.015 0.465 ± 0.018 0.461 ± 0.017
PRM 0.560 ± 0.013 0.569 ± 0.017 0.552 ± 0.013

Table A7: (Benchmark Results on Qwen2.5-Math-PRM-7B) ARES performs the best across
various datasets and backbone entailment models. For each dataset+model group, Bold is the best
and underline is the second best.
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Dataset / Method Recall Precision F1

ClaimTrees-5
ARES-1 0.881 0.900 0.873
ARES-0.95 0.861 0.889 0.854
ARES-bin-1 0.898 0.913 0.891
ARES-bin-0.95 0.909 0.919 0.902
Entail-Prev 0.704 0.813 0.673
Entail-Base 0.830 0.832 0.824
ROSCOE-LI-Self 0.499 0.500 0.351
ROSCOE-LI-Source 0.647 0.650 0.640
ReCEval-Intra 0.500 0.250 0.332
ReCEval-Inter 0.645 0.648 0.638
LLM-Judge 0.811 0.864 0.803

ClaimTrees-10
ARES-1 0.937 0.943 0.936
ARES-0.95 0.931 0.936 0.931
ARES-bin-1 0.960 0.965 0.962
ARES-bin-0.95 0.947 0.951 0.948
Entail-Prev 0.608 0.783 0.538
Entail-Base 0.626 0.636 0.616
ROSCOE-LI-Self 0.524 0.589 0.420
ROSCOE-LI-Source 0.544 0.548 0.533
ReCEval-Intra 0.500 0.247 0.330
ReCEval-Inter 0.566 0.573 0.555
LLM-Judge 0.767 0.839 0.750

ClaimTrees-20
ARES-1 0.979 0.979 0.978
ARES-0.95 0.971 0.971 0.971
ARES-bin-1 0.964 0.966 0.963
ARES-bin-0.95 0.968 0.970 0.968
Entail-Prev 0.551 0.760 0.440
Entail-Base 0.533 0.537 0.522
ROSCOE-LI-Self 0.521 0.580 0.414
ROSCOE-LI-Source 0.508 0.509 0.480
ReCEval-Intra 0.500 0.248 0.331
ReCEval-Inter 0.513 0.516 0.482
LLM-Judge 0.640 0.788 0.586

ClaimTrees-30
ARES-1 0.973 0.972 0.971
ARES-0.95 0.931 0.934 0.929
ARES-bin-1 0.967 0.973 0.969
ARES-bin-0.95 0.957 0.960 0.956
Entail-Prev 0.530 0.731 0.387
Entail-Base 0.531 0.539 0.499
ROSCOE-LI-Self 0.543 0.595 0.460
ROSCOE-LI-Source 0.498 0.498 0.461
ReCEval-Intra 0.500 0.262 0.343
ReCEval-Inter 0.506 0.509 0.464
LLM-Judge 0.581 0.757 0.482

ClaimTrees-50
ARES-1 0.895 0.899 0.890
ARES-0.95 0.871 0.871 0.867
ARES-bin-1 0.887 0.904 0.886
ARES-bin-0.95 0.892 0.892 0.888
Entail-Prev 0.512 0.601 0.340
Entail-Base 0.507 0.508 0.486
ROSCOE-LI-Self 0.555 0.581 0.504
ROSCOE-LI-Source 0.505 0.509 0.442
ReCEval-Intra 0.500 0.262 0.343
ReCEval-Inter 0.498 0.496 0.428
LLM-Judge 0.529 0.714 0.385

Table A8: GPT-4o-mini (ClaimTrees) ARES consistently identifies errors in long reasoning chains
while other methods gradually fail.

14



Dataset / Method Recall Precision F1

ClaimTrees-s3d3
ARES-1 0.921± 0.102 0.980± 0.018 0.941± 0.074
ARES-0.95 0.904± 0.110 0.975± 0.027 0.927± 0.081
Entail-Prev 0.821± 0.046 0.951± 0.032 0.863± 0.039
Entail-Base 0.859± 0.122 0.866± 0.142 0.837± 0.134
ROSCOE-LI-Self 0.500± 0.000 0.115± 0.060 0.181± 0.078
ROSCOE-LI-Source 0.623± 0.101 0.593± 0.087 0.497± 0.161
ReCEval-Intra 0.500± 0.000 0.115± 0.060 0.181± 0.078
ReCEval-Inter 0.585± 0.081 0.562± 0.061 0.449± 0.115
LLM-Judge 0.833± 0.051 0.957± 0.022 0.875± 0.035

ClaimTrees-s3d5
ARES-0.95 0.867± 0.171 0.971± 0.037 0.887± 0.146
Entail-Prev 0.718± 0.090 0.936± 0.045 0.761± 0.097
Entail-Base 0.659± 0.061 0.618± 0.076 0.610± 0.091
ROSCOE-LI-Self 0.497± 0.044 0.500± 0.242 0.460± 0.074
ROSCOE-LI-Source 0.513± 0.117 0.514± 0.077 0.340± 0.081
ReCEval-Intra 0.500± 0.000 0.100± 0.054 0.161± 0.074
ReCEval-Inter 0.550± 0.070 0.539± 0.050 0.356± 0.083
LLM-Judge 0.774± 0.178 0.942± 0.057 0.796± 0.169

ClaimTrees-s5d3
ARES-1 0.875± 0.217 0.889± 0.232 0.880± 0.223
ARES-0.95 0.867± 0.217 0.889± 0.232 0.875± 0.222
Entail-Prev 0.767± 0.181 0.873± 0.223 0.799± 0.191
Entail-Base 0.824± 0.205 0.700± 0.149 0.729± 0.167
ROSCOE-LI-Self 0.500± 0.000 0.055± 0.033 0.097± 0.052
ROSCOE-LI-Source 0.650± 0.054 0.560± 0.031 0.380± 0.073
ReCEval-Intra 0.500± 0.000 0.055± 0.033 0.097± 0.052
ReCEval-Inter 0.594± 0.095 0.539± 0.043 0.357± 0.063
LLM-Judge 0.742± 0.192 0.868± 0.222 0.770± 0.201

ClaimTrees-s5d5
ARES-1 0.900± 0.163 0.990± 0.017 0.920± 0.139
ARES-0.95 0.900± 0.163 0.990± 0.017 0.920± 0.139
Entail-Prev 0.723± 0.096 0.969± 0.018 0.783± 0.095
Entail-Base 0.692± 0.141 0.597± 0.067 0.610± 0.083
ROSCOE-LI-Self 0.481± 0.020 0.446± 0.018 0.462± 0.010
ROSCOE-LI-Source 0.578± 0.063 0.533± 0.027 0.321± 0.055
ReCEval-Intra 0.500± 0.000 0.053± 0.019 0.094± 0.031
ReCEval-Inter 0.584± 0.097 0.534± 0.059 0.310± 0.084
LLM-Judge 0.847± 0.140 0.951± 0.082 0.881± 0.111

Table A9: GPT-4o-mini (ClaimTrees) ARES differs from other methods in deeper trees instead of
wider trees. s3d5 means trees with 3 sources and depth of 5.
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Dataset / Method Recall Precision F1

ClaimTrees-v5i1
ARES-1 0.985± 0.014 0.950± 0.046 0.965± 0.032
ARES-0.95 0.990± 0.022 0.998± 0.005 0.994± 0.015
Entail-Prev 0.992± 0.011 0.974± 0.038 0.982± 0.026
Entail-Base 0.900± 0.027 0.788± 0.030 0.813± 0.038
ROSCOE-LI-Self 0.975± 0.009 0.918± 0.025 0.942± 0.019
ROSCOE-LI-Source 0.690± 0.062 0.626± 0.038 0.545± 0.058
ReCEval-Intra 0.500± 0.000 0.100± 0.000 0.167± 0.000
ReCEval-Inter 0.755± 0.047 0.671± 0.021 0.590± 0.066
LLM-Judge 1.000± 0.000 1.000± 0.000 1.000± 0.000

ClaimTrees-v5i2
ARES-1 1.000± 0.000 1.000± 0.000 1.000± 0.000
ARES-0.95 0.995± 0.011 0.998± 0.005 0.996± 0.008
Entail-Prev 0.990± 0.010 0.981± 0.019 0.985± 0.015
Entail-Base 0.863± 0.009 0.823± 0.007 0.815± 0.013
ROSCOE-LI-Self 0.965± 0.030 0.951± 0.036 0.956± 0.033
ROSCOE-LI-Source 0.635± 0.054 0.642± 0.058 0.555± 0.057
ReCEval-Intra 0.500± 0.000 0.167± 0.000 0.250± 0.000
ReCEval-Inter 0.695± 0.029 0.721± 0.020 0.594± 0.038
LLM-Judge 0.978± 0.016 0.960± 0.028 0.967± 0.024

ClaimTrees-v5i5
ARES-1 0.988± 0.028 0.991± 0.020 0.989± 0.026
ARES-0.95 0.998± 0.004 0.998± 0.005 0.998± 0.005
Entail-Prev 0.988± 0.013 0.990± 0.010 0.989± 0.011
Entail-Base 0.930± 0.019 0.950± 0.012 0.936± 0.018
ROSCOE-LI-Self 0.938± 0.012 0.955± 0.008 0.943± 0.012
ROSCOE-LI-Source 0.661± 0.006 0.736± 0.033 0.649± 0.011
ReCEval-Intra 0.500± 0.000 0.278± 0.000 0.357± 0.000
ReCEval-Inter 0.665± 0.024 0.826± 0.008 0.642± 0.034
LLM-Judge 0.982± 0.017 0.983± 0.017 0.982± 0.017

Table A10: GPT-4o-mini (ClaimTrees) ARES does not differ much from other methods in inserted
errors that do not affect downstream reasoning. v5i2 means 5 valid claims and 2 inserted claims.
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