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ABSTRACT

Bayesian neural networks (BNNs) offer uncertainty quantification but come with
the downside of substantially increased training and inference costs. Sparse BNNs
have been investigated for efficient inference, typically by either slowly intro-
ducing sparsity throughout the training or by post-training compression of dense
BNNs. The dilemma of how to cut down massive training costs remains, par-
ticularly given the requirement to learn about the uncertainty. To solve this
challenge, we introduce Sparse Subspace Variational Inference (SSVI), the first
fully sparse BNN framework that maintains a consistently highly sparse Bayesian
model throughout the training and inference phases. Starting from a randomly
initialized low-dimensional sparse subspace, our approach alternately optimizes
the sparse subspace basis selection and its associated parameters. While basis
selection is characterized as a non-differentiable problem, we approximate the op-
timal solution with a removal-and-addition strategy, guided by novel criteria based
on weight distribution statistics. Our extensive experiments show that SSVI sets
new benchmarks in crafting sparse BNNs, achieving, for instance, a 10-20× com-
pression in model size with under 3% performance drop, and up to 20× FLOPs
reduction during training compared with dense VI training. Remarkably, SSVI
also demonstrates enhanced robustness to hyperparameters, reducing the need for
intricate tuning in VI and occasionally even surpassing VI-trained dense BNNs on
both accuracy and uncertainty metrics.

1 INTRODUCTION

Bayesian neural networks (BNNs) (MacKay, 1992) infuse deep models with probabilistic methods
through stochastic variational inference (Hoffman et al., 2013; Kingma et al., 2015; Molchanov
et al., 2017; Dusenberry et al., 2020) or Monte-Carlo-based methods (Welling & Teh, 2011; Chen
et al., 2014; Zhang et al., 2020e; Cobb & Jalaian, 2021; Wenzel et al., 2020; Zhao et al., 2019),
facilitating a systematic approach to quantify uncertainties. Such a capacity to estimate uncertainty
becomes important in applications where reliable decision-making is crucial (Filos et al., 2019;
Feng et al., 2018; Abdullah et al., 2022). Unlike traditional neural networks, which offer point
estimates, BNNs place distributions on weights and use a full posterior distribution to capture model
uncertainty and diverse data representation. This has been shown to greatly improve generalization
accuracy and uncertainty estimation across a wide variety of deep learning tasks (Zhang et al., 2020e;
Blundell et al., 2015; Wilson & Izmailov, 2020; Vadera et al., 2022a).

However, shifting from deterministic models to BNNs brings its own set of complexities. The com-
putational demands and memory requisites of BNNs, mainly stemming from sampling and integra-
tion over these weight distributions, are notably increased especially for large-scale neural networks
(Zhang et al., 2020c;d;b;a). In standard deterministic neural networks, it has been observed that neu-
ral architectures can often be significantly condensed without greatly compromising performance
(Frankle & Carbin, 2018; Evci et al., 2020). Drawing inspiration from this, some BNN approaches
have leveraged sparsity-promoting priors, such as log-uniform (Kingma et al., 2015; Molchanov
et al., 2017) or spike-and-slab (Deng et al., 2019; Wang et al., 2021), to gradually sparsify dur-
ing training, or implement pruning after obtaining standard dense BNNs based on signal-to-noise
ratios (Graves, 2011; Blundell et al., 2015; Ritter et al., 2021).
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As a result, while they do mitigate the computational burden during inference, the substantial costs
associated with training remain largely unaffected. Additionally, selecting optimal substructures
(Vadera et al., 2022b) may be challenging using the one-shot pruning methods. In order to scale up
BNNs to modern large-scale neural networks, a crucial question remains to be addressed:

How can we craft a fully sparse framework for both training and inference in BNNs?

In our pursuit of a solution, we depart from the conventional approach of designing complex sparse-
promoting priors, instead, we advocate for a strategy that embeds sparsity into the posterior from
the very beginning of training.

Figure 1: Flops v.s. Accuracy.
Our SSVI achieves the best
test accuracy with the lowest
training FLOPs.

To this end, we introduce Sparse Subspace Variational Inference

(SSVI) framework, where we confine the parameters of the ap-
proximate posterior to an adaptive subspace, performing VI solely
within this domain, which significantly reduces training overheads.
A defining feature of SSVI is its learning strategy, where both the
parameters of the posterior and the subspace are co-learned, em-
ploying an alternating optimization technique. When updating the
subspace, our method utilizes novel criteria that are constructed us-
ing the weight distribution statistics. Empirical results show that
SSVI establishes superior standards in efficiency, accuracy, and un-
certainty measures compared to existing methods, as shown in Fig-
ure 1. Moreover, SSVI displays robustness against hyperparame-
ter variations and consistently showcases enhanced stability during
training, sometimes even outperforming VI-trained dense BNNs.
We summarize our contributions as the following:

• We propose SSVI, the first fully sparse BNN paradigm, to reduce both training and testing
costs while achieving comparable and even better performance compared to dense BNNs.

• We introduce novel criteria for evaluating the importance of weights in BNNs, leveraging
this information to simultaneously optimize the sparse subspace and the posterior.

• We set new benchmarks in performance metrics of BNNs, including efficiency, accuracy,
and uncertainty estimation, achieving a 10-20× compression in model size with under 3%
performance drop, and up to 20× FLOPs reduction during training. Through exhaustive
ablation studies, we further refine and highlight the optimal design choices of our SSVI
framework. We release the code at https://github.com/ljb121002/SSVI.

1.1 RELATED WORK

Sparse BNNs Since the introduction of the Bayesian learning framework, extensive research has
focused on deriving efficient posterior inference methods (Tipping, 2001; Graves, 2011; Zhang et al.,
2020c; Svensson et al., 2016). The challenge amplifies when transitioning to the domain of Bayesian
neural networks (BNNs) (MacKay, 1992). To reduce computational costs, many studies have em-
ployed sparse-promoting priors to obtain sparse BNNs. Built upon variational inference, Molchanov
et al. (2017) integrates variational dropout (Kingma et al., 2015) with a log-uniform prior, while
Neklyudov et al. (2017) expands it to node-sparsity. Louizos et al. (2017), Ghosh et al. (2018) and
Bai et al. (2020) further explore the use of half-Cauchy, Horseshoe and Gaussian-Dirac spike-and-
slab priors respectively. Based on Markov chain Monte Carlo (MCMC), Deng et al. (2019); Wang
et al. (2021) explore the use of a Laplace-Gaussian spike-and-slab prior. However, all these meth-
ods perform incremental pruning during training and rely heavily on intricately designed priors.
Another line of work focuses on pruning fully trained dense BNNs (Graves, 2011; Blundell et al.,
2015), thus the training costs still remain. The methodology most akin to ours is the recent work
on masked BNN (mBNN) (Kong et al., 2023), which uses a similar birth-and-death mechanism for
weight selection. However, mBNN requires a complex hierarchical sparse prior and uses MCMC to
do posterior inference.

Fully Sparse DNNs While current sparse BNNs mainly rely on post-training or during-training
pruning strategies due to the BNN training challenges, it is common in standard neural networks to
engage in fully sparse training, essentially initiating with a sparse model. For instance, RigL (Evci
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et al., 2020) starts with a sparse network, maintaining the desired sparsity throughout its training
process by adjusting weights via dropping and growing. The criteria to determine such adjustments
can derive from various factors, such as weight magnitude (Frankle & Carbin, 2018; Evci et al.,
2020), gradient measures (Ström, 2015; Evci et al., 2020), and Hessian-based criteria (Hassibi &
Stork, 1992; Singh & Alistarh, 2020).

2 PRELIMINARY

Bayesian neural networks and variational inference We use the classical Bayesian neural net-
work (BNN) formulation. Given a dataset X = (X,Y ), where X,Y are the independent and
dependent variables respectively, we want to return the probability p(x|X ), where x = (x, y) is a
new data point. Let ✓ 2 Rd be the random variables of a Bayesian neural network, we have

p(x|X ) =

Z
p(x|X , ✓)p(✓|X )d✓ ⇡ 1

N

NX

i=1

p(x|X , ✓(i)), ✓(i) ⇠ p(✓|X )

where p(✓|X ) is the posterior distribution. In this paper, we use variational inference (VI) (Jordan
et al., 1999) to approximate the true posterior. Specifically, we find a distribution q�(✓), where �
are the distribution parameters, that minimizes KL(q�(✓)||p(✓|X )). VI typically adopts mean-field
assumptions for both approximate posterior q� and prior p, which implies that q�(✓) =

Qd
i=1 q�(✓i)

and p(✓) =
Qd

i=1 p(✓i). Thus, it is equivalent to minimizing:

KL(q�(✓)||p(✓))� Eq� log p(X|✓) =
dX

i=1

KL(q�(✓i)||p(✓i))� Eq� log p(X|✓). (1)

The expectation term is intractable and is usually approximated using Monte Carlo (MC) samples.
In the backward process, the reparameterization trick (Kingma & Welling, 2013) is applied to enable
gradient backpropagation for �. We use these standard assumptions and techniques in our method.

3 SPARSE SUBSPACE VARIATIONAL INFERENCE

In this section, we present our framework, sparse subspace variational inference (SSVI). First, we
introduce the formulation and introduce an overview of the optimization in Section 3.1. Then we
present the details of the alternative optimization strategy in Section 3.3.1 and 3.3.2.

3.1 SSVI FORMULATION

In conventional VI settings, the parameter vector � generally has a dimensionality that is at least
double that of ✓, accounting for both the mean and the variance. Consequently, there is a strong
desire to seek sparse solutions to reduce the complexities arising from the augmented parameter
space (Tipping, 2001). This holds particular significance when dealing with deep neural networks,
where the model complexity is more pronounced (Molchanov et al., 2017; Neklyudov et al., 2017).

To address this, we introduce SSVI, wherein we confine the support of q�(✓) to a subspace S of a
pre-assigned dimension s within Rd, implying q�(✓) = 0 for ✓ not belonging to S. To achieve a
sparse model, we consider S to be a subspace expanded directly from a subset of the axes of Rd.
We formulate SSVI as the following optimization problem

min
�,I

KL (q�(✓)kp(✓))� Eq� log p(X|✓) (2)

s.t. 8i /2 I = {n1, . . . , ns}, q�(✓i) = �(✓i).

In this formulation, S is extended by a subset of the axes of Rd through the basis vectors {eni}si=1.
Here, q�(✓j) refers to the marginal density function of ✓j according to q�(✓), and �(·) stands for
the Dirac delta function. This means for i /2 {n1, · · · , nS}, the approximate posterior distribution
of ✓i shrinks to zero. For simplicity, we consider a Gaussian distribution for q� where � 2 Rd⇥2

with �i = (µi,�2
i ) representing the mean and variance for 1  i  d. Other mean-field variational

distributions can also be combined with our method. This suggests that, for i /2 {n1, · · · , nS}, �i =
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(0, 0), resulting in a sparse solution. Equivalently, we can write (2) as the following optimization
problem. Here � means element-wise multiplication. The constraint conditions mean that when �i
is 0, µi and �i are also 0.

min
�=(µ,�2)2Rd⇥2,

�2{0,1}d⇢Rd

dX

i=1

�iKL(q�(✓i)kp(✓i))� Eq� log p(X|✓) (3)

s.t. k�k1 = s, µ = µ� �, �2 = �2 � �

The formulation (3) has three key advantages compared to previous sparse BNN methods (Kingma
et al., 2015; Molchanov et al., 2017; Neklyudov et al., 2017; Kong et al., 2023), which we discuss
in detail separately below.

Reduce training costs with constant sparsity rate Previous methods in both VI and MCMC-
based sparse BNNs typically start with a dense model and traverse the full parameter space to
eventually obtain sparse solutions — a process finalized through post-training truncations based
on specific criteria. In contrast, our SSVI approach optimizes parameters directly within a sparse
subspace. This ensures a constant sparsity level of s/d throughout training, thereby considerably
diminishing both computational and memory costs during training.

Guarantee to achieve target sparsity levels Existing approaches in both VI and MCMC-based
sparse BNNs depend on unpredictable sparsity regularization from the prior and post-hoc truncation
based on threshold values. This leads to indeterminable sparsity levels, often requiring extensive
tuning of the prior to achieve desired levels of sparsity. In contrast, our method provides a straight-
forward means of controlling sparsity through the hyperparameter s. By constraining the search
space to only subspaces with a dimension of s, any solution pair (�, �) of (3) guarantees the desired
level of sparsity.

Allow the use of Gaussian distribution for both prior and variational posterior Our formula-
tion does not require an intricated design for either the prior or the posterior. Instead, we can simply
adopt commonly used variational distributions, such as Gaussian distributions, for both the prior and
posterior distributions. Furthermore, this simplifies the computation by enabling the direct calcu-
lation of the KL divergence term without necessitating complicated and expensive approximations,
which are often required when using sparse-promoting priors.

3.1.1 ALTERNATIVE OPTIMIZATION PROCEDURE

The optimization problem in (3) includes both � and �. Denote I = {i : �i = 1}. At the beginning,
we initialize � by randomly selecting a subset I0 = {n1, . . . , ns} from {1, . . . , d} where indices
�i are set to 1. We also initialize �0 on I0 following techniques commonly used in VI-based BNN
training. Given the discrete nature of �, directly applying gradient descent for both variables is
infeasible. To address this challenge, we propose to alternatively update � and � at each iteration.
The optimization for � can be done via standard VI-based BNN training, leveraging gradient infor-
mation. However, updating � represents a more sophisticated task. We first present our algorithm
in Algorithm 1, and we will delve into the specifics of the design of the updating processes in the
forthcoming sections.

3.2 UPDATE THE VARIATIONAL PARAMETER �

Given a fixed �, the update for � is simple and can be achieved using optimization methods like
SGD. We obtain �t+1 from (�t, �t) through M gradient descent steps, and each step is similar to
the standard VI update.

During the forward process, we estimate Eq� log p(X|✓) using Monte Carlo samples from q�(✓).
For improved accuracy, distinct ✓ samples are drawn for each input in a batch. However, naive
methods, which require a forward pass per sample, are inefficient. We thus employ the local repa-
rameterization trick (LRT) (Kingma et al., 2015; Molchanov et al., 2017) to improve efficiency,
achieving equivalent outputs in just two forward processes. Specifically, for a linear operation with
inputs x 2 Rp⇥B and Gaussian matrix A 2 Rp⇥q , where B is batch size, p, q are the input and
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Algorithm 1 Sparse Subspace Variational Inference (SSVI)

Require: A BNN ✓ 2 Rd with prior p(✓), variational distribution q�(✓), target sparsity s/d, re-
placement rate {rt}, inner update steps M , total steps T .

1: Random initialize (�0, �0) from the feasible set of (3), and set ��1 = �0.
2: for t = 0, . . . , T do

3: # Update �.
4: �t,0 = Initialize(t,�t, �t, �t�1) according to Section 3.2.
5: for m = 0, . . . ,M � 1 do

6: Obtain �t,m+1 using the gradient of (3).
7: end for

8: �t+1 = �t,M .
9: # Update �.

10: �t
remove = Removal(�t,�t+1, rt) according to Section 3.3.1.

11: �t+1 = Addition(�t
remove,�

t+1, rt) according to Section 3.3.2.
12: end for

output dimensions, µ and � define A’s mean and variance, the output y is computed by

y = µ · x+
p
(� � �) · (x� x)� ", (4)

where " is sampled from standard Gaussian noise matching y’s dimension. This method mirrors
sampling distinct weights for each input x:,b via just two forwards, rather than B times. While the
forward process matches the naive approach, LRT’s backward process for � differs and influences
the SSVI design. Specifically, the gradient for � with respect to the received loss l becomes:

@l

@�
=

@l

@y
·
 

� · (x� x)p
(� � �) · (x� x)

� "

!
. (5)

Please refer to Appendix A for a detailed discussion.

Establishing initial values for �t+1
updates We find that (5) exhibits a linear dependency on

�. In the context of SSVI, the sparsity ratio of � remains constant throughout the training process.
Consequently, for all t � 1 and j satisfying �t

j � �t�1
j = 1 (referring to the indices freshly updated

to be non-zero), the value of �t
j is zero. This implies that the straightforward application of gradient

descent is infeasible as the gradient persistently equals zero for �t
j . Therefore, it is crucial to design

a strategy to set the initial value for �t
j , different from the conventional sparse training in standard

DNNs which does not require such initial values.

We consider two potential strategies. The initial approach sets �t
j to a very small number close to

zero, which helps stabilize training while avoiding the zero gradient issue. Alternatively, �t
j can be

set to the average value of the non-zero �k, derived from the same module — that is, the identical
convolutional kernel or the same fully connected layer as �t

j . Favorably, the latter strategy does not
demand additional hyperparameters and has demonstrated superior stability in experimental settings,
thereby being our method’s default choice.

3.3 UPDATE THE SPARSE SUBSPACE �

The set of non-zero elements in � outlines the architecture of the subnetwork. Since � takes discrete
values, it cannot be updated using regular gradient-based methods. Based on the existing (�t+1, �t),
we propose to obtain �t+1 through a process of selective removal and addition of indices in �t. This
adjustment process takes inspiration from traditional sparse training techniques seen in regular, non-
Bayesian neural network training (Frankle & Carbin, 2018; Evci et al., 2020). Notably, we introduce
several novel techniques that are especially compatible with BNN training.

3.3.1 SUBSPACE REMOVAL

To derive �t+1, we begin by identifying and eliminating less significant indices in �t based on
�t+1 = (µt+1,�t+12) 2 Rd⇥2. In standard DNN sparse training, one common approach is to prune
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weights with small magnitudes, under the assumption that small weights tend to have a negligible
impact on the output. Building upon this insight, we derive several novel criteria for removing
indices in the subspace. We omit the step t in the following.

Criteria 1: |µ| A straightforward adaptation for BNNs is to remove indices using the absolute
values of the mean, i.e., |µ|, to set �i with the smallest |µi| to be zero. However, this strategy
overlooks the critical information about uncertainty encoded in �2.

Criteria 2: SNRq�(✓) = |µ|/� Another commonly used metric to decide the importance of
weights in BNN is the Signal-to-Noise Ratio (SNR) (Kingma et al., 2015; Neklyudov et al., 2017),
i.e.,|µ|/�. This metric considers both the magnitude and variance of the weights. Though previous
works have utilized SNR for post-training pruning (Kingma et al., 2015; Neklyudov et al., 2017;
Louizos et al., 2017) , to the best of our knowledge, its application during training is novel.

Criteria 3: Eq� |✓| We introduce a new criterion that considers both the mean and the uncertainty.
Criteria 1 |µ| essentially equates to |Eq�✓|. However, in BNN, where weights are randomly sampled
before each forward pass with given inputs, it is more appropriate to use Eq� |✓|. The reasoning
behind this is that weights with smaller absolute values, on average, have lesser influence on the
outputs. Notably, this criterion can be explicitly calculated when q� follows a Gaussian distribution.
Specifically, for i-th dimension of weight ✓i with mean µi and variance �2

i , we have

Eq� |✓i| = µi

✓
2�

✓
µi

�i

◆
� 1

◆
+

2�ip
2⇡

exp

✓
� µ2

i

2�2
i

◆
, where �(x) :=

Z x

�1

1p
2⇡

exp

✓
�y2

2

◆
dy.

(6)

The full derivation can be found in Appendix B. This criterion differs significantly from Criteria 1
by expressing a theoretically-backed new rule that combines the magnitude insights from Criteria 1,
represented by |µ|, with the uncertainty dimensions from Criteria 2, denoted by |µ|/�. We highlight
that the role of µ/� is deliberately bounded in this formula, either by the cumulative distribution
function �(·) or by the inverse of the exponential function 1/ exp(·). Given that the uncertainty
measure � can be challenging to estimate accurately during initial training phases, this imposed
boundary on µ/� prevents it from excessively skewing weight prioritization, thus helping to ad-
dress potential issues of model instability. Besides the constrained behavior of µ/�, the criteria
prominently lean towards µi because of its linear relationship. However, a concerning aspect is
the near-linear dependency on �i. This is problematic as a high �i typically indicates a weight’s
insignificance. To counteract this, we propose subsequent criteria that introduce regularization.

Criteria 4: SNRq�(|✓|) Although Eq� |✓| already contains uncertainty information, we can fur-
ther consider the SNR of |✓| as opposed to ✓ in Criteria 2. For ✓i, we have

Varq�(|✓i|) = Eq� |✓i|2 �
�
Eq� |✓i|

�2
= Eq�✓

2
i �

�
Eq� |✓i|

�2
= �2

i + µ2
i �

�
Eq� |✓i|

�2
.

Hence, the SNR is

SNRq�(|✓i|) =
µi

⇣
2�
⇣

µi

�i

⌘
� 1
⌘
+ 2�ip

2⇡
exp

⇣
� µ2

i

2�2
i

⌘

r
�2
i + µ2

i �
h
µi

⇣
2�
⇣

µi

�i

⌘
� 1
⌘
+ 2�ip

2⇡
exp

⇣
� µ2

i

2�2
i

⌘i2 . (7)

Given that the denominator of (7) progresses linearly with respect to �, it counteracts the unfavorable
characteristic seen in (6). Additionally, µ retains its prominent role as the denominator behaves sub-
linearly with µ, whereas the numerator exhibits a linear relationship.

Criteria 5 & 6: Eq�e
�|✓|

and SNRq�(e
�|✓|) When examining weight importance in the net-

work, one could go beyond the straightforward metrics like the expectation and SNR of |✓| and delve
into more general functions f . These functions should be monotonic within the range [0,+1) to
ensure that ✓ with greater absolute values always has high importance. As a practical example, we
adopt the function f(|✓|) = exp(�|✓|), where � is a positive hyperparameter. This choice results
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Table 1: Comparisons with dense BNNs. Our method achieves 10-20x savings in both training costs
and model complexity via keeping high-sparsity subspaces throughout the training. Here we show
the results with two different sparsity levels as inputs of SSVI.

Dataset Model Accuracy ECE Sparsity Training FLOPs

CIFAR-10
Dense BNN 95.13 0.004 0% 1x(1.1⇥ 1017)

w/ SSVI 94.58 0.005 90% 0.10x

w/ SSVI 93.69 0.006 95% 0.05x

CIFAR-100 Dense BNN 78.20 0.0016 0% 1x(1.2⇥ 1017)
w/ SSVI 75.81 0.0017 90% 0.10x

w/ SSVI 73.83 0.0018 95% 0.05x

in an explicit calculation of both the expectation and SNR of f(|✓|) under a Gaussian distribution
without necessitating further approximations. For � > 0, the derived outcomes are outlined below:

Eq�e
�|✓| = �

⇣µ
�
+ ��

⌘
e

�2�2

2 +�µ + �
⇣
�µ

�
+ ��

⌘
e

�2�2

2 ��µ,

SNRq� (e
�|✓|) = (8)

�
�µ
� + ��

�
e

�2�2

2 +�µ + �
�
�µ

� + ��
�
e

�2�2

2 ��µ

s

�
�µ
� + 2��

�
e2�2�2+2�µ + �

�
�µ

� + 2��
�
e2�2�2�2�µ �

✓
�
�µ
� + ��

�
e

�2�2
2 +�µ + �

�
�µ

� + ��
�
e

�2�2
2 ��µ

◆2
.

Criteria Selection Criteria 4 SNR(|✓|) has a compelling theoretical explanation, and our empiri-
cal results in Section 4 further support its superior and stable performance during training compared
to other criteria. Consequently, we choose it as the default for SSVI.

3.3.2 SUBSPACE ADDITION

After pruning spaces using one of the proposed criteria, it is essential to reintroduce some of the
removed spaces back to �. Drawing inspiration from traditional sparse training in DNNs, we select
important weights by their gradient’s absolute magnitude. Specifically, for BNN training with a
stochastic batch, denoting the loss function in (3) as f✓,�(x), where ✓ is a sample for a stochastic
batch x with batch size B, the selection criterion is given by:

Eq�

�����Ex
1

B

BX

i=1

r✓f✓,�(xi)

����� . (9)

To compute the two expectations, we propose three criteria, using Monte Carlo approximation:

1. Apply a one-step Monte-Carlo for (✓, x):
��� 1B
PB

i=1 r✓f✓,�(xi)
���.

2. Apply a one-step Monte-Carlo for x with ✓ set to µ:
��� 1B
PB

i=1 r✓fµ,�(xi)
���.

3. Apply a multi-step Monte-Carlo for (✓, x): 1
K

PK
k=1

��� 1B
PB

i=1 r✓f✓k,�(x
k
i )
���.

Ablation studies in Section 4 indicate that Criteria 1, while being the most straightforward, delivers
performance on par with the other two. Thus, we default to Criteria 1 for SSVI.

4 EXPERIMENTS

4.1 MAIN RESULTS

We conduct experiments using CIFAR-10 and CIFAR-100 datasets (Krizhevsky, 2009) and ResNet-
18 (He et al., 2016) as the backbone networks. To facilitate stable training, we use KL warm-up
(Molchanov et al., 2017; Sønderby et al., 2016), a technique widely applied in VI-based BNNs.
Specifically, an auxiliary coefficient � is introduced for the KL term in Eq.(1), gradually increasing
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Table 2: Comparison with previous sparse BNNs on CIFAR-10 and CIFAR-100. SSVI achieves the
best accuracy and uncertainty quantification with the lowest computation and memory costs.

Dataset Algorithm Accuracy Loss ECE Sparsity Complexity Training FLOPs (⇥1015)

CIFAR-10

VD (Louizos et al., 2017) 90.6 0.298 0.009 76.8% 2.60M 67.1
SBP (Neklyudov et al., 2017) 90.1 0.301 0.009 81.1% 2.12M 67.1

AEB (Deng et al., 2019) 91.84 0.308 0.023 90.0% 1.2M 383.4
mBNN (Kong et al., 2023) 93.14 0.227 0.008 96.4% 0.41M 22.8

SSVI 93.74 0.218 0.006 95.0% 0.56M 5.7

CIFAR-100

VD (Louizos et al., 2017) 60.0 1.977 0.0060 58.3% 4.66M 67.1
SBP (Neklyudov et al., 2017) 62.3 1.834 0.0053 61.2% 4.34M 67.1

AEB (Deng et al., 2019) 70.26 1.103 0.0110 90% 1.2M 383.4
mBNN (Kong et al., 2023) 73.42 1.078 0.0024 87.8% 1.37M 25.9

SSVI 75.81 0.983 0.0017 90% 1.12M 11.4

from 0 to �max during training. More training details are shown in Appendix C. For inference, we
consider accuracy, loss, and expected calibration error (ECE) (Guo et al., 2017) as the metrics, which
are obtained by five samples from the posterior distribution following prior work Kong et al. (2023).
We also do evaluations on distribution shift benchmarks in Appendix D.1. For all the experiments,
we train with three different seeds and average the results.

We first demonstrate the results of the reduction in training costs and model complexity compared
with dense BNNs in Table 1. SSVI achieves comparable test accuracy and ECE with drastically
reduced model size and training costs. For example, SSVI achieves 20x model size compression
and FLOPs reduction with under 2% accuracy drop and 0.002 ECE increase on CIFAR-10, and 10x
model size compression and FLOPs reduction with under 3% accuracy drop and 0.0001 ECE in-
crease on CIFAR-100. We also compare our method with previous sparse BNN methods in Table 2.
The results show that SSVI significantly outperforms all previous works across all metrics on both
datasets, achieving the best accuracy and uncertainty quantification with the lowest computation and
memory costs. It strongly indicates that our method, optimizing both the subspace and variational
parameters, can lead to better sparse solutions than using complicated sparse-promoting priors.

4.2 ANALYSIS AND ABLATION STUDIES

In this section, we perform a thorough analysis of SSVI’s properties and present ablation studies
focusing on its core designs. Here we train ResNet-18 on the CIFAR-100 dataset, which is more
challenging than CIFAR-10, and can help distinguish different algorithm designs.

Flexible target sparsity Different from previous works (Molchanov et al., 2017; Kong et al.,
2023), SSVI can flexibly assign the target sparsity before training. In Figure 2, we plot the results
on a broad range of sparsity from 50% to 1%. The plots show that our SSVI is robust to different
sparsity levels with minimal accuracy drop. For a clearer perspective, we contrast our results with
RigL (Evci et al., 2020), a method closely aligned with our approach in the domain of sparse training
for traditional DNNs. While both methods employ similar subspace training techniques, our criteria
are tailored for BNNs. The results indicate that while the performance trajectory of our BNNs in
relation to sparsity closely mirrors that of RigL, our approach is more robust to varying sparsity
levels, as evidenced by a lesser decline in accuracy.

SSVI’s edge over VI While SSVI inherently optimizes parameters within a subspace, making it
more efficient than standard VI, it even occasionally outperforms VI. This superior performance
is largely due to its enhanced resilience to hyperparameter variations. To illustrate, consider VI
with Gaussian distributions where the parameters are represented as � = (µ,�). The optimization
process requires an initialization �0 = (µ0,�0) where �0 is typically sampled from a Gaussian
with minimal mean and variance. Ensuring small �0 is important for preventing training failures
in the initial phase. Our results further verify the instability of BNN training with VI to initial
values, highlighting the need for precise hyperparameter tuning. In contrast, BNNs trained with
SSVI demonstrate increased tolerance to deviations in the initial configurations, thus simplifying
the intricacies associated with hyperparameter optimization.

Our findings are presented in Figure 2. We use SSVI with sparsity 0.1 with different removal crite-
ria. By adjusting the initialization mean of �0 from 0.001 to 0.01 while keeping all other settings
unchanged for both VI and SSVI, we clearly see that as the mean marginally increases, VI’s perfor-
mance deteriorates immediately. In contrast, SSVI maintains robustness across all different dropping
criteria and even outperforms VI at a significantly reduced training expense.
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Figure 2: Left: the performance of SSVI for BNNs compared to RigL (Evci et al., 2020) for standard
NNs across various sparsity levels. SSVI demonstrates superior robustness to different sparsity lev-
els. Right: the results for VI at full density and SSVI at 0.1 density using different removal criteria.
We see that VI is heavily dependent on precise hyperparameter tuning, especially concerning KL
warmup, whereas SSVI offers more consistent training across all drop criteria without additional
tricks, and outperforms VI at initialization value 0.01. Notably, among all criteria, SNR(|✓|) stands
out, leveraging uncertainty information in a theoretically backed manner.

Figure 3: Left: ablation results concerning the number of MC steps, indicating minimal differences
between them. Right: ablations related to initialization, highlighting the advantage of initializing
with the mean.
Ablation study on removal and addition criteria In Section 3.3.1, we introduce several criteria
tailored for BNNs using weight distribution statistics. Figure 2 compares accuracy for these criteria.
We see that SNRq�(|✓|) achieves the best accuracy on all sparsity levels, aligning with our analysis
in Section 3.3.1. We also calculate the Intersection over Union (IoU) among the weights removed
based on each criteria pair. See Appendix D.2 for details. Figure 3 shows the results using different
MC steps, highlighting that multi-step MC is not better than the 1-step MC. Thus, we advocate for
the one-step MC due to its superiority in both efficacy and performance.
Ablation study on updating � In Section 3.2, we highlighted the necessity for a specialized
design in initializing the variance parameters � in � before its update using gradient descent, as
opposed to starting with zero, as driven by the gradient outlined in (5). Two strategies were proposed:
one starts with a small value close to zero, and the other uses the average of the remaining non-zero
� values. The comparison results of these strategies, while holding other factors the same, are
showcased in Figure 3. the optimal hyperparameter setting for the first method appears to closely
mirror the results when � is initialized using the mean of non-zero � values. Therefore, we adopt the
mean-based initialization approach, which also eliminates the necessity for extra hyperparameters.

5 CONCLUSION

In this paper, we propose Sparse Subspace Variational Inference (SSVI), the first fully sparse frame-
work for both training and inference in Bayesian neural networks (BNNs). Specifically, SSVI op-
timizes the sparse subspace and variational parameters alternately, employing novel criteria based
on weight distribution statistics for the removal and addition within the subspace. We conduct com-
prehensive experiments to demonstrate that SSVI establishes new benchmarks in sparse BNNs, by
significantly outperforming previous methods in terms of both performance and efficiency. We also
perform in-depth analysis to explore SSVI’s properties and identify optimal design choices for cri-
teria. As we look ahead, our future endeavors will focus on refining the optimization process. This
could involve designing new weighting functions for the SNR removal criteria and exploring new
addition criteria that utilize higher-order information of the weight distribution.
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