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Abstract

Large Vision-Language Models (LVLMs) have001
demonstrated remarkable capabilities in pro-002
cessing both visual and textual information.003
However, the critical challenge of alignment004
between visual and textual representations is005
not fully understood. This survey presents a006
comprehensive examination of alignment and007
misalignment in LVLMs through an explain-008
ability lens. We first examine the fundamen-009
tals of alignment, exploring its representational010
and behavioral aspects, training methodologies,011
and theoretical foundations. We then analyze012
misalignment phenomena across three seman-013
tic levels: object, attribute, and relational mis-014
alignment. Our investigation reveals that mis-015
alignment emerges from challenges at multi-016
ple levels: the data level, the model level, and017
the inference level. We provide a comprehen-018
sive review of existing mitigation strategies,019
categorizing them into parameter-frozen and020
parameter-tuning approaches. Finally, we out-021
line promising future research directions, em-022
phasizing the need for standardized evaluation023
protocols and in-depth explainability studies.024

1 Introduction025

Recent Large Vision-Language Models (LVLMs)026

have achieved significant progress in multimodal027

understanding. Models such as GPT-4V (OpenAI),028

Gemini (Team et al., 2023), LLaVA (Liu et al.,029

2024b), Claude-3.5-Sonnet (Anthropic, 2024),030

Qwen2-VL (Wang et al., 2024d), and LLaMa 3.2031

(Dubey et al., 2024) demonstrate remarkable ca-032

pabilities in tasks like image captioning and vi-033

sual question answering, not only processing vi-034

sual and textual information independently but also035

reasoning across these modalities. These advances036

are built upon two two key foundations: large lan-037

guage models (LLMs) and vision encoders. LLMs038

such as GPT-3.5 (Brown, 2020), LLaMA (Touvron039

et al., 2023a), LLaMA 2 (Touvron et al., 2023b),040

and Qwen (Bai et al., 2023a) transformed natural041

language processing, while visual understanding 042

models like Vision Transformer (ViT) (Dosovit- 043

skiy et al., 2021) and vision-language models like 044

CLIP (Radford et al., 2021) have advanced the abil- 045

ity to process visual information and create aligned 046

visual-textual representations respectively. 047

The key challenge in developing effective 048

LVLMs lies in achieving proper alignment be- 049

tween visual and textual representations (Liu et al., 050

2024a). The predominant approach involves using 051

representation alignment techniques, where visual 052

features from an image encoder and textual repre- 053

sentations from an LLM are mapped into a shared 054

embedding space, typically matching the LLM’s 055

embedding dimensions (Jia et al., 2021; Yang et al., 056

2022; Shu et al., 2024). Once both modalities are 057

mapped into this shared space, alignment can be 058

achieved through various training objectives and 059

architectural designs that encourage the model to 060

understand and reason about cross-modal relation- 061

ships. This method has gained popularity due to 062

its straightforward approach and generalizability 063

across different model architectures. 064

However, the current understanding of alignment 065

mechanisms remains limited. A critical challenge 066

lies in misalignment phenomena, which manifest in 067

various forms. For instance, when shown an image 068

of a green apple, the model might fail to recognize 069

the apple altogether (object misalignment), incor- 070

rectly describe it as red (attribute misalignment), 071

or generate incorrect relationships like “the apple 072

is floating in the air” when it’s sitting on a table 073

(relational misalignment). These misalignments 074

lead to reliability issues (Zhang et al., 2024; Zhou 075

et al., 2024; Zhao et al., 2024e), where models gen- 076

erate textual outputs that are inconsistent with the 077

visual input. Understanding and addressing these 078

misalignment issues is crucial for developing more 079

reliable and trustworthy LVLMs, as they directly 080

impact the models’ ability to generate accurate and 081

consistent multimodal outputs. 082
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In this survey, we present a structured frame-083

work for understanding and addressing alignment084

challenges in LVLMs from an explainability per-085

spective. We first examine the fundamentals of086

alignment, including its representational and be-087

havioral aspects, training procedures, and theoret-088

ical foundations. We then analyze misalignment089

phenomena across three semantic levels: object,090

attribute, and relational misalignment. Our investi-091

gation reveals that misalignment stems from chal-092

lenges at the data level (e.g., quality and balance093

issues), model level (e.g., architectural limitations094

and ability gaps), and inference level (e.g., task dis-095

crepancies). We review existing mitigation strate-096

gies and outline future directions, emphasizing the097

need for standardized evaluation protocols and in-098

depth explainability studies.099

2 Alignment of LVLMs100

In this section, we examine alignment in LVLMs101

across four essential dimensions. First, we define102

the concept of alignment in LVLMs. Second, we103

detail the procedural stages through which align-104

ment is achieved in practice. Third, we explore the105

theoretical foundations that make alignment possi-106

ble between visual and textual modalities. Finally,107

we discuss methods for measuring and evaluating108

alignment in LVLMs in Appendix B.109

2.1 What is Alignment?110

In the context of LVLMs, let X be the image space111

and T be the text space. We define the alignment112

in two fundamental aspects: representational align-113

ment and behavioral alignment.114

• Representational alignment refers to the degree115

of correspondence between visual representa-116

tions v ∈ V and textual representations t ∈ T117

within the model’s internal embedding space E .118

When well-aligned, the visual features extracted119

from an image and the textual embeddings of its120

corresponding description occupy nearby regions121

in the shared latent space, exhibiting high seman-122

tic similarity d(v, t) where d is a similarity met-123

ric. This internal alignment enables the model to124

establish meaningful connections between visual125

and textual information at a fundamental level.126

• Behavioral alignment refers to the model’s abil-127

ity to generate accurate, factual, and consistent128

textual responses y ∈ Y when processing image129

inputs x ∈ X . A behaviorally aligned LVLM can130

reliably answer questions about visual content,131

provide precise descriptions, and perform reason- 132

ing tasks without introducing errors or halluci- 133

nations. This external manifestation ensures that 134

the model’s outputs faithfully reflect the actual 135

content and relationships present in the images. 136

These two aspects of alignment are inherently 137

connected. Strong representational alignment typi- 138

cally supports better behavioral alignment, as the 139

model can more effectively leverage both visual 140

and textual information to generate reliable outputs. 141

Conversely, poor alignment in either aspect can 142

lead to issues such as mismatched representations, 143

inaccurate responses, or hallucinated content. 144

2.2 How is Alignment Achieved? 145

The development of alignment in LVLMs pro- 146

gresses through three major stages (see Figure 3 147

in Appendix), each is built upon its predecessor 148

to achieve increasingly sophisticated cross-modal 149

integration. Additionally, we present prominent 150

real-world LVLM architectures in Appendix A. 151

Stage 1: Training Visual Encoders. The founda- 152

tion of LVLM alignment begins with training visual 153

encoders through contrastive learning, exemplified 154

by models like CLIP (Radford et al., 2021). In 155

this stage, the model learns to align visual and tex- 156

tual representations in a shared embedding space 157

through a contrastive loss function. The process 158

involves training on large-scale image-text pairs 159

where matching pairs are pulled together in the 160

embedding space while non-matching pairs are 161

pushed apart. This leads to the development of 162

robust visual representations that can meaningfully 163

correspond to textual descriptions. Through this 164

process, a visual encoder is created that can extract 165

semantically meaningful features from images in 166

a way that naturally aligns with language. This 167

initial stage is crucial as it establishes the basic ca- 168

pability for cross-modal understanding, though the 169

alignment is still relatively coarse-grained. 170

Stage 2: Adapter Fine-tuning. The second stage 171

involves fine-tuning an adapter module that bridges 172

the pre-trained visual encoder with the language 173

model. This stage introduces lightweight adapter 174

architectures, which typically consist of simple 175

components such as linear layers, MLPs, or cross- 176

attention layers that learn to translate between vi- 177

sual and language model embedding spaces. For 178

example, cross-attention layers can feed image en- 179

coder representations into the language model, en- 180

abling the model to attend to relevant visual fea- 181
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tures when generating text (Meta AI, 2024). A key182

characteristic of this approach is the preservation of183

the original capabilities of both the visual encoder184

and language model while learning to interface be-185

tween them. During adapter training, while the186

visual encoder parameters may be updated, the lan-187

guage model parameters often remain frozen to188

maintain their original text capabilities. This inter-189

mediate stage is essential for establishing effective190

connections between modalities while preserving191

the specialized capabilities of each component.192

Stage 3: End-to-End Fine-tuning. The final stage193

involves comprehensive fine-tuning of the entire194

system, including the visual encoder, adapter, and195

LLM components together. This comprehensive196

approach allows for deeper integration and more197

sophisticated alignment between all components.198

It enables the model to learn task-specific optimiza-199

tions that require coordinated adjustments across200

all modules. Through this process, the model de-201

velops more advanced cross-modal understanding202

capabilities and facilitates the emergence of emer-203

gent behaviors that arise from the deep integration204

of visual and textual processing. This stage of-205

ten results in the highest performance but requires206

careful balancing to avoid catastrophic forgetting207

or degradation of pre-existing capabilities.208

2.3 Why is Alignment Possible?209

Having established what alignment means and how210

it is implemented in LVLMs, a fundamental ques-211

tion arises: why is such alignment between vision212

and language modalities possible in the first place?213

The possibility of alignment between these modal-214

ities can be understood from both theoretical and215

algorithmic perspectives.216

Theoretical Perspective. From a theoretical stand-217

point, visual and textual data are different projec-218

tions of the same underlying reality. As Huh et219

al. argue in their Platonic Representation Hypothe-220

sis (Huh et al., 2024), all modalities are measure-221

ments of a real world that generates our observa-222

tions. When humans create images or write text,223

they are encoding information about this same re-224

ality, though through different measurement pro-225

cesses. Although these modalities appear distinct226

on the surface, they fundamentally capture overlap-227

ping semantic information about the same world228

state. This shared origin in physical reality, com-229

bined with the fact that humans generate both types230

of data to describe their observations of the world,231

provides the theoretical foundation for why these 232

modalities can be meaningfully aligned in a com- 233

mon representation space. 234

Algorithmic Perspective. From an algorithmic 235

perspective, although visual encoders and language 236

models are initially trained separately on differ- 237

ent modality-specific data, their learned represen- 238

tations inherently capture some similar semantic 239

structures due to their training on human-generated 240

data. Recent research has shown that these inher- 241

ent similarities exist even before explicit alignment 242

training (Maniparambil et al., 2024; Sharma et al., 243

2024; Neo et al., 2024). This natural compatibility 244

serves as a starting point for more sophisticated 245

alignment. The staged training process described 246

in Section 2.2 then is built upon this inherent com- 247

patibility through systematic refinement: first us- 248

ing contrastive learning to organize embeddings 249

in the shared latent space, then employing adapter 250

fine-tuning to bridge between modalities while pre- 251

serving their specialized capabilities, and finally 252

conducting end-to-end training to enable deep in- 253

tegration across all components. Through this sys- 254

tematic combination of training stages and opti- 255

mization objectives, the model gradually develops 256

a robust alignment between the two modalities. 257

3 Misalignment of LVLMs 258

After introducing the alignment of LVLMs, we now 259

examine a critical challenge facing these models: 260

their tendency to generate outputs that diverge from 261

the visual input. Despite significant advances in 262

alignment techniques, LVLMs still frequently ex- 263

hibit misalignment between their visual and textual 264

inputs. In this section, we provide a comprehensive 265

analysis of misalignment phenomena in LVLMs, 266

beginning with a definition and taxonomy of differ- 267

ent types of misalignment (see Figure 1), followed 268

by an examination of their underlying causes. 269

3.1 Definition of Misalignment 270

Misalignment in LVLMs occurs when the model’s 271

output semantically diverges from the visual con- 272

tent it is meant to describe. These discrepancies 273

show in several key phenomena, impacting the 274

overall performance of these models. In this pa- 275

per, we categorize behavior-level misalignment 276

phenomena in LVLM into three semantic levels 277

S = {so, sa, sr}: object misalignment (so), at- 278

tribute misalignment (sa), and relation misalign- 279

ment (sr). Rather than using the term ‘hallucina- 280
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Align

Misalign

Object Misalignment

Attribute Misalignment

Embedding Space

Positive Pair

Negative Pair
This is an elegant living 
room with a high ceiling, 
featuring modern design 
elements. There's a 
flat-screen TV mounted 
on the wall. On the left, 
there?s a small black 
sofa. In the center of the 
room, a tall indoor plant 
adds greenery to the 
whole environment.

Correct Alignment

Relational Misalignment

Figure 1: Illustration of representation-level and behavior-level alignment and misalignment in LVLMs. The left
side shows representation-level phenomena in embedding space, where aligned visual-text pairs cluster together
(positive pairs) while misaligned pairs are separated (negative pairs). The right side demonstrates behavior-level
alignment and misalignment through a room description example, showing the spectrum from correct alignment
(green) to various types of semantic misalignment: object misalignment (red), attribute misalignment (yellow), and
relational misalignment (blue). These two levels are inherently connected, as the quality of representation alignment
in the embedding space influences the model’s ability to generate semantically aligned outputs.

tion’ commonly found in the literature (Liu et al.,281

2024a), we adopt the term ‘misalignment’ to bet-282

ter characterize how these discrepancies emerge283

between visual and language representations.284

• Object Misalignment (so): This is one of the most285

widely recognized forms of misalignment (Liu286

et al., 2024a; Wang et al., 2023; Li et al., 2023b).287

It occurs when the model generates descriptions288

containing objects O′ that differ from the actual289

objects O in the image, where O′ ̸⊆ O. This290

represents the most coarse-grained level of mis-291

alignment, as it simply refers whether an object292

exists in the image or not. Due to its coarse-293

grained nature, object misalignment is relatively294

straightforward to detect and mitigate.295

• Attribute Misalignment (sa): At a finer level,296

we identify attribute misalignment (Shang et al.,297

2024). This occurs when for an object o ∈ O, the298

model correctly identifies the object but generates299

incorrect attributes A′ ̸= A, where A represents300

the true attributes of o. Attribute misalignment301

typically involves adjectives or adverbs that de-302

scribe properties of objects inaccurately. For ex-303

ample, when input an image of a green apple, the304

model might incorrectly describe the color of an305

apple as ‘red’ instead of ‘green’.306

• Relation Misalignment (sr): This category in-307

volves the generation of incorrect or non-existent308

relationships R′ between objects in an image (Wu309

et al., 2024b), where R′ differs from the true rela-310

tionships R. This misalignment manifests in two311

primary ways: spatial relationship errors and ac-312

tion relationship errors. In spatial relationships, 313

the model might incorrectly describe the rela- 314

tive positions of objects, such as saying ‘next to’ 315

when the correct relation is ‘on top of’, or ‘in- 316

side’ when objects are merely ‘near’ each other. 317

In action relationships, the model might gener- 318

ate semantically impossible interactions between 319

objects, such as ‘he is walking a car’ instead of 320

‘he is driving a car’, or ‘the cat is reading a book’ 321

instead of ‘the cat is sitting on a book’. 322

To better illustrate real-life examples of misalign- 323

ment, we have selected four prominent LVLMs and 324

provided their generated responses in Appendix D. 325

3.2 Reasons of Misalignment 326

Having identified the three semantic levels of mis- 327

alignment phenomena, we now analyze their root 328

causes across three fundamental levels: Dataset, 329

Model, and Inference. The Dataset level exam- 330

ines how training data characteristics influence mis- 331

alignment during learning. The Model level investi- 332

gates how architectural decisions and training pro- 333

cedures affect alignment between modalities. The 334

Inference level explores how the generation process 335

can introduce misalignment even with well-aligned 336

underlying representations. 337

3.2.1 Dataset Level 338

Data quality and distribution patterns play crucial 339

roles in contributing to misalignment between vi- 340

sual and language representations in LVLMs. Sev- 341

eral key dataset factors can impede the model’s 342

ability to form accurate associations between visual 343
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inputs and textual descriptions, affecting both train-344

ing effectiveness and inference performance. We345

list one factor below, for additional factors please346

refer to Appendix C.347

• Data imperfections: This includes blurry images,348

vague or inaccurate captions, and mismatched349

image-caption pairs, which introduce significant350

challenges during training (Ouali et al., 2025;351

Shi et al., 2024). These quality issues manifest352

in various forms: images may suffer from poor353

resolution, inappropriate cropping, or visual arti-354

facts; captions might contain grammatical errors,355

ambiguous descriptions, or factually incorrect in-356

formation; and in some cases, the captions may357

describe content entirely unrelated to their paired358

images. These low-quality data points can distort359

the model’s ability to form precise mappings be-360

tween modalities, leading to outputs that fail to361

accurately reflect the input image and potentially362

establishing incorrect associations that persist363

through the training process.364

3.2.2 Model Level365

Beyond data-level issues, the architectural design366

and training methodology of LVLMs significantly367

influence model alignment.368

• Ability Gap: This independent pretraining pro-369

cess also creates an ability gap between the visual370

encoder and the LLM (Li et al., 2024c), where371

the LLM often demonstrates significantly greater372

capability than the visual encoder. Consequently,373

the LVLM tends to rely excessively on the LLM374

for predictions, resulting in imbalanced attention375

between visual and textual information (Chen376

et al., 2025; Min et al., 2024; Woo et al., 2024b).377

• Pretrain-finetuning Knowledge Gap: After inte-378

grating the visual encoder and LLM into a uni-379

fied LVLM, fine-tuning is typically performed to380

further enhance alignment and adapt the model381

to specific downstream tasks. However, this382

fine-tuning phase can introduce a pretraining-383

finetuning knowledge gap or conflict, where the384

general knowledge acquired during pretraining385

may clash with the specific requirements of the386

fine-tuning task (Zhou et al., 2024). Such con-387

flicts can lead to knowledge forgetting, where388

the LVLM loses previously learned information389

while adapting to the new task (Zhou et al.,390

2023a; Huang et al., 2024b). Although knowl-391

edge forgetting might appear insignificant, it can392

have cascading effects. Each unit of knowledge393

in the model’s embedding space is interconnected 394

with lots of semantic relationships. Forgetting 395

even a single piece of knowledge can disrupt 396

these relational connections, undermining the in- 397

tegrity of the embedding space. This disruption 398

causes a broader misalignment within the LVLM. 399

• Knowledge Conflict: A significant challenge 400

arises from knowledge conflicts between the vi- 401

sual knowledge of image and parametric knowl- 402

edge of LLM. These conflicts emerge when the 403

visual encoder’s direct perception of image con- 404

tent contradicts the prior knowledge embedded in 405

the LLM’s parameters during pre-training (Zhu 406

et al., 2024b; Ghosh et al., 2024). For example, 407

when an image contains a green tomato, the vi- 408

sual encoder accurately detects its color, but the 409

LLM may resist this information since it has been 410

predominantly trained on texts describing ripe, 411

red tomatoes. This misalignment between ob- 412

served visual evidence and learned textual priors 413

can manifest in various ways: the model might 414

incorrectly describe the tomato as red despite 415

clear visual evidence, generate hesitant or self- 416

contradicting descriptions, or attempt to ratio- 417

nalize the discrepancy by making unwarranted 418

assumptions about the tomato’s ripeness stage. 419

3.2.3 Inference Level 420

Misalignment can also occur during the inference 421

stage due to task discrepancy. This discrepancy 422

fundamentally represents an out-of-distribution 423

(OOD) generalization problem, as users often pose 424

questions or request tasks that deviate from the dis- 425

tribution of examples seen during training. Even 426

when a LVLM has been trained on a large and 427

diverse dataset, it may encounter novel combina- 428

tions of visual and textual elements or be asked 429

to perform tasks in ways that differ subtly but sig- 430

nificantly from its training examples. This OOD 431

challenge manifests in several ways. First, the train- 432

ing data used for pre-training or fine-tuning the 433

model may not fully align with the specific tasks 434

it is later expected to perform (Zhang et al., 2024). 435

For example, a model trained primarily on image 436

captioning data might struggle when asked to an- 437

swer specific questions about spatial relationships 438

or perform detailed visual reasoning tasks. Sec- 439

ond, users may phrase requests in ways that differ 440

from the instruction patterns seen during training, 441

leading to potential misinterpretation of the task 442

requirements. Third, the visual inputs during in- 443

ference may contain novel object configurations 444
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Figure 2: Taxonomy of Misalignment Mitigation Methods for LVLMs, including Parameter-Tuning Alignment and
Parameter-Frozen Alignment.

or scene compositions not well-represented in the445

training data. These distribution shifts can create446

misalignment in LVLMs as the model struggles to447

adapt to new and distinct tasks that require different448

interpretations of visual and textual information.449

4 Mitigation Methods450

Building upon our analysis of misalignment causes451

in LVLMs, we now examine strategies for mitigat-452

ing these challenges (see Figure 2). These mit-453

igation approaches can be categorized into two454

groups: parameter-tuning alignment methods and455

parameter-frozen alignment methods. Parameter-456

tuning alignment involves modifying specific com-457

ponents within the LVLM architecture to reduce458

misalignment through targeted parameter updates.459

In contrast, parameter-frozen alignment meth-460

ods address misalignment while maintaining the461

LVLM’s original parameters unchanged, offering462

solutions that preserve the model’s structure while463

improving its cross-modal alignment capabilities.464

We have conducted experiments comparing the per-465

formance and computational cost of several mitiga-466

tion methods (see Appendix E for details).467

4.1 Parameter Tuning Alignment468

Parameter-tuning alignment focuses on mitigating469

misalignment by refining the training scheme or470

enhancing the architecture itself. 471

Improving Training Scheme. Parameter-tuning 472

methods that improve the training scheme often 473

address misalignment broadly as a data-level issue 474

or as a general visual-textual misalignment (Ouali 475

et al., 2025; Jiang et al., 2024). This understanding 476

leads to a straightforward objective, which is re- 477

ducing the modality gap between visual and textual 478

representations. This can often achieved by im- 479

proving the dataset quality or optimizing training 480

techniques. One common approach is contrastive 481

learning, exemplified by methods such as CIT (Hu 482

et al., 2023) and HACL (Jiang et al., 2024). These 483

techniques involve using a third model to gener- 484

ate positive and negative data pairs. The LVLM 485

is then trained to bring the representations of pos- 486

itive pairs closer together while pushing negative 487

pairs apart in the embedding space. Another widely 488

adopted strategy is instruction tuning, as seen in 489

LRV-Instruction (Liu et al., 2023) and TextSquare 490

(Tang et al., 2024). Similarly, these approaches 491

rely on a third model to generate instructional data, 492

which is subsequently used to train the LVLM effec- 493

tively. However, these approaches often lack robust 494

quality assurance mechanisms to verify the accu- 495

racy or relevance of the generated data, introducing 496

potential risks. Alternatively, Reinforcement Learn- 497
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ing from Human Feedback (RLHF) employs hu-498

man feedback to train a reward model, ensuring that499

the generated data aligns with human preferences500

(Sun et al., 2023; Yu et al., 2024c). While RLHF501

guarantees high-quality training data, it comes at502

a significant cost. To address this, some methods503

leverage preference optimization, wherein multiple504

responses are generated for the same input image,505

ranked or scored by a third model, and categorized506

into positive and negative pairs (Ouali et al., 2025;507

Zhao et al., 2023b; Gunjal et al., 2024). The model508

is then fine-tuned on this curated dataset. Although509

these methods can significantly improve the model,510

they are often constrained by either high resource511

requirements (as in RLHF) or the uncertain quality512

of generated data (as in contrastive learning and513

instruction tuning) or rerank model (as in prefer-514

ence optimization). This highlights the ongoing515

need for large, diverse, and high-quality datasets to516

effectively address data-level misalignment.517

Improving Model Architecture. Methods that im-518

prove the model architecture often involve a deep519

understanding of the root causes of misalignment,520

allowing researchers to pinpoint deficiencies within521

specific components of the LVLM. Typical LVLM522

architectures consist of three main components:523

the visual encoder, the adapter module, and the524

LLM (Liu et al., 2024a; Bai et al., 2024). Most525

architecture-focused approaches concentrate on en-526

hancing the visual encoder or the adapter module,527

with relatively few addressing improvements to the528

LLM itself. This aligns with our earlier model-level529

claim of the model ability gap, where the LLM of-530

ten outperforms the visual encoder. Blindly enhanc-531

ing the LLM could exacerbate this gap, potentially532

worsening the misalignment issue. To reduce this533

ability gap, some studies scale up the visual en-534

coder by increasing its parameter size (Chen et al.,535

2024c). Others introduce additional components to536

the visual encoder to improve its capabilities with-537

out necessarily scaling up its size (You et al., 2023;538

Jain et al., 2024; Li et al., 2024b). In addition to the539

visual encoder, many methods focus on improving540

the adapter module, which serves as the critical541

bridge between the visual and textual modalities.542

Enhancements to the adapter module often involve543

adding intermediary layers or mechanisms to better544

align the visual encoder’s outputs with the LLM’s545

input requirements. For example, PATCH (Shang546

et al., 2024) employs trainable virtual tokens to en-547

hance the projection layer, improving cross-modal548

alignment. Similarly, HallE-Switch (Zhai et al., 549

2023) introduces a dynamic mechanism that ad- 550

justs the flow of information between the visual 551

encoder and the LLM based on input complex- 552

ity. By addressing these architectural components, 553

parameter-tuning methods aim to reduce the modal- 554

ity gap and improve the alignment between visual 555

and textual representations, ultimately enhancing 556

the LVLM’s performance across tasks. 557

4.2 Parameter Frozen Alignment 558

Parameter-frozen alignment methods have gained 559

increasing popularity due to their significant practi- 560

cal advantages. These training-free approaches are 561

highly modular and easy to implement, allowing 562

them to be readily integrated into existing systems 563

without requiring costly retraining or fine-tuning 564

processes. This makes them particularly attractive 565

for real-world applications where computational 566

resources may be limited. We categorize these 567

parameter-frozen methods into four types based 568

on where they intervene in the LVLM process- 569

ing pipeline: Augment-based mitigation, augment- 570

ing the LVLM by incorporating external knowl- 571

edge; inference-based mitigation, operating in the 572

model’s latent space during intermediate process- 573

ing; decoding-based mitigation, which guides the 574

text generation process; and post-decoding mitiga- 575

tion, which refines the final outputs. 576

Augment-based Methods. As analyzed in Sec- 577

tion 3, insufficient input of image information is 578

one of the primary causes of misalignment, lead- 579

ing to poor visual understanding. To address this, 580

retrieval-augmented generation (RAG) methods 581

have been adapted to dynamically integrate exter- 582

nal knowledge into LVLMs through retrieved re- 583

sults (Qu et al., 2024; Chen et al., 2023a; Ramos 584

et al., 2023a,b; Sarto et al., 2024; Yang et al., 2024). 585

By reranking the similarity of image-text pairs, 586

RAG approaches provide more visual context and 587

guidance to the model. Similarly, other methods 588

rely on generating approach to enrich the input with 589

additional information. For instance, Zhao et al. 590

(2024d), Li et al. (2024a), and Zhao et al. (2023a) 591

propose integrating an auxiliary model to generate 592

relevant information based on the image. Alter- 593

natively, methods such as RITUAL (Woo et al., 594

2024a) bypass the need for external models. It en- 595

hances the model’s exposure to diverse visual con- 596

texts by applying random transformations to input 597

images. Additionally, approaches like (Kim et al., 598
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2024b; Ghosh et al., 2024) employ self-generated599

textual descriptions appended to the input prompt,600

ensuring the model has sufficient knowledge to601

answer questions accurately.602

Inference-based Methods. Some methods oper-603

ate in the model’s latent space during the infer-604

ence process, prior to decoding, by intervening in605

both visual and textual representations to improve606

alignment. For instance, Visual and Textual In-607

tervention (VTI) (Liu et al., 2024c) pre-computes608

intervention directions using a small set of ex-609

amples and applies them during inference to en-610

hance feature stability and vision-text alignment,611

without requiring additional training. Similarly,612

Image-Object Cross-Level Trusted Intervention613

(ICT) (Chen et al., 2024a) introduces a lightweight614

mechanism that intervenes in the model’s attention615

at both image and object levels, applying targeted616

activation shifts to selected attention heads. Since617

they operate directly on the model’s internal repre-618

sentations, they can make precise adjustments to619

improve alignment without disrupting the model’s620

broader language understanding capabilities. This621

makes inference-based methods effective at reduc-622

ing misalignment while preserving the model’s abil-623

ity to generate contextually appropriate responses.624

Decoding-based Methods. Another common ap-625

proach to mitigating misalignment involves modi-626

fying the decoding process. These methods often627

target issues of imbalanced attention. However,628

the imbalance attention between what still remain629

debated. Some researchers argue that the model630

over-focuses on irrelevant image tokens, such as631

background elements or unimportant details (Woo632

et al., 2024b; Gong et al., 2024). However, the633

prevailing view is that the model prioritizes tex-634

tual tokens over visual ones, neglecting critical635

visual information (Leng et al., 2024; Wang et al.,636

2024e; Kim et al., 2024a; Liu et al.). Despite these637

differences in interpretation, most decoding-based638

methods use contrastive decoding to rebalance at-639

tention between modalities, typically by reducing640

attention to textual tokens while enhancing focus641

on visual tokens. This approach, however, con-642

trasts with inference-based methods, which avoid643

reducing attention to textual information and in-644

stead preserve the model’s overall language under-645

standing. Another interesting observation is that,646

while decoding-based methods typically lead to647

similar approaches, they can sometimes result in648

divergent strategies. For instance, OPERA (Huang649

et al., 2024a) hypothesizes that the model over- 650

relies on summary tokens, instead of focusing vi- 651

sual tokens. However, text summarization is SGD’s 652

solution (Min et al., 2024) to misalignment. It uses 653

summarization to shorten textual context and helps 654

model shift focus toward visual information. This 655

divergence underscores how subtle differences in 656

understanding misalignment’s root causes can lead 657

to contradicted methodologies. 658

Post-decoding Methods. Lastly, post-decoding 659

approaches present broader hypotheses about mis- 660

alignment causes, tackling issues ranging from 661

data-level biases to model-level deficiencies. Meth- 662

ods such as LURE (Zhou et al., 2023b) and Wood- 663

pecker (Yin et al., 2023) exemplify this category. 664

LURE focuses on addressing object hallucinations 665

by revising the generated text, identifying halluci- 666

natory content, and reconstructing less biased out- 667

puts. Woodpecker employs a five stages validation 668

mechanism to extract and correct inconsistencies 669

in the generated response. Despite their specific 670

details, these methods converge on a shared strat- 671

egy, which involves modifying the model’s outputs 672

after decoding without altering parameters or archi- 673

tecture, making them easily adaptable to various 674

LVLMs. This flexibility lies in their goal-oriented 675

nature, as they directly target specific misalignment 676

phenomena. 677

5 Conclusions 678

In this paper, we systematically survey alignment 679

and misalignment in LVLMs through an explain- 680

ability lens. We show that achieving proper align- 681

ment involves complex interactions between data 682

quality, model architecture, and inference proce- 683

dures. We categorize misalignment into object, 684

attribute, and relational levels, providing a clear 685

framework to understand these challenges and de- 686

velop targeted solutions. Our review of mitigation 687

strategies highlights approaches ranging from com- 688

putationally intensive parameter-tuning methods 689

to practical parameter-frozen solutions, each with 690

trade-offs in effectiveness and feasibility. Lastly, 691

we outline key future directions for building ro- 692

bust vision-language systems (see Appendix F), in- 693

cluding development of standardized benchmarks, 694

deeper investigation into explainability approaches 695

to reveal internal alignment mechanisms, and ar- 696

chitectural innovations to address fundamental lim- 697

itations in current designs. 698
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Limitations699

While this paper provides a comprehensive survey700

of alignment and misalignment in LVLMs, we ac-701

knowledged there are several limitations. Currently,702

the scope of this survey is limited to the alignment703

between vision and language modalities. However,704

real-world applications often require the integra-705

tion of multiple modalities, such as audio, video,706

or sensor data. We plan to expand the scope to707

explore the challenges and alignment techniques708

in such complex multi-modal settings, including709

investigating alignment mechanisms in architec-710

tures that incorporate three or more modalities, de-711

veloping new evaluation metrics for multi-modal712

alignment, and studying the interactions between713

different modalities in integrated systems.714
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A Overview of LVLM Architectures1291

Table 1 summarizes the architectural components1292

of six prominent LVLMs discussed throughout this1293

survey paper on model alignment and misalign-1294

ment. The comparison reveals common patterns in1295

LVLM design: transformer-based vision encoders1296

(predominantly ViT variants), adapter modules of1297

varying complexity to connect vision and language1298

components, and state-of-the-art language models.1299

B How to Measure Alignment?1300

This section examines approaches for quantifying1301

the effectiveness of alignment in LVLMs. These1302

measurement approaches naturally align with our1303

earlier definition in Section 2.1 of representation1304

alignment and behavioral alignment, and can be1305

organized along these two fundamental levels.1306

Representation Level. At the representation level,1307

alignment can be directly measured between vi-1308

sual and textual representations within the LVLM’s1309

embedding space by assessing how similarly the1310

visual and textual modalities encode and relate to1311

the same concepts or data points. The simplest ap-1312

proach is to compute the cosine similarity between1313

the embeddings of visual and textual data. High1314

alignment corresponds to scores close to 1, while1315

low alignment corresponds to scores closer to 01316

(Shu et al., 2024). More sophisticated metrics have1317

been developed to assess alignment between the1318

two representation spaces. For instance, the mu-1319

tual nearest-neighbor metric quantifies alignment1320

by evaluating the consistency of nearest neighbors1321

across modalities (Huh et al., 2024). Another ap-1322

proach is kernel alignment, which evaluates the1323

similarity of pairwise relationships within each1324

modality’s embedding space, providing a holis-1325

tic view of the alignment structure (Maniparambil1326

et al., 2024).1327

Behavioral Level. The behavioral level measures1328

alignment through the model’s performance on var-1329

ious downstream tasks and benchmarks, using both1330

direct comparisons and automated evaluation sys-1331

tems. The strength of alignment directly impacts1332

the LVLM’s performance, as better alignment typi-1333

cally leads to improved task outcomes. These mea-1334

surements generally involve comparing the model’s1335

outputs against ground truth labels, either through1336

direct comparison or using evaluation models to1337

simulate human judgment. Numerous benchmarks1338

have been developed to assess LVLM alignment1339

across a range of tasks, from coarse-grained evalua- 1340

tions (e.g., object existence) to fine-grained assess- 1341

ments (e.g., color, count, spatial relations). Exam- 1342

ples of such benchmarks include POPE (Li et al., 1343

2023b), CHAIR (Rohrbach et al., 2018), MME (Fu 1344

et al., 2023), MMHal-Bench (Sun et al., 2023), and 1345

LLaVa-Bench (Liu et al., 2024b). In addition to tra- 1346

ditional benchmarks, advanced evaluation models 1347

like GAVIE (Liu et al., 2023), CCEval (Zhai et al., 1348

2023) and HaELM (Wang et al., 2023) provide so- 1349

phisticated assessments by considering context and 1350

evaluating responses comprehensively, similar to 1351

human evaluators. The flexibility and diversity of 1352

evaluation models enable thorough measurement 1353

capabilities needed for open-ended questions. 1354

In Table 2, we compare several existing bench- 1355

marks. While most of these benchmarks focus on 1356

evaluating misalignment, some also assess reason- 1357

ing capabilities, such as whether the LVLM can 1358

reason based on image information or whether the 1359

LVLM fully follow user input instructions. Future 1360

benchmarks should also adopt this comprehensive 1361

approach, evaluating not only misalignment but 1362

also whether mitigating misalignment impacts the 1363

LVLM’s reasoning ability, as our goal is to develop 1364

LVLMs with minimal misalignment while preserv- 1365

ing their reasoning capabilities. 1366

C More Reasons for Misalignment 1367

Beyond the dataset-level issues discussed in Sec- 1368

tion 3.2.1, we present additional dataset-related 1369

challenges that may contribute to the misalignment 1370

of LVLMs. 1371

• Data Imbalance: When certain classes or types 1372

of data are disproportionately represented, it 1373

skews the model’s training process (Liu et al., 1374

2023; Hu et al., 2023). For example, visual 1375

question-answering datasets often overrepresent 1376

positive answers, subtly training the model to 1377

favor these outcomes while underperforming on 1378

underrepresented negative answers. 1379

• Data Inconsistency: Inconsistencies exacerbate 1380

misalignment by introducing contradictory out- 1381

puts across different tasks for the same image. 1382

For instance, an image captioning task might de- 1383

scribe an image as depicting ‘a tiger eating a 1384

chicken,’ yet in a visual question-answering task 1385

for the same image, the answer to ‘what is the 1386

tiger eating?’ might label the prey as ‘a duck’ 1387

(Maharana et al., 2023). Such contradictions dis- 1388

rupt the model’s ability to generate coherent and 1389
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Figure 3: Overview of the three-stage LVLM training process, showing the progression from contrastive learning of
visual-text encoders, through adapter fine-tuning with frozen components, to end-to-end model training.

Table 1: Comparison of Vision-Language Models

Vision Encoder Adapter LLM

Qwen-VL (Bai et al., 2023b) Vision Transformer (ViT) Single cross-attention layer Qwen
Qwen2-VL (Wang et al., 2024d) ViT MLP layer Qwen2
MiniGPT-4 (Zhu et al., 2023) ViT-G/14 Single linear projection layer Vicuna
Llama 3.2-Vision (Meta AI, 2024) Modified ViT (16×16 patches) Multiple cross-attention layers Llama 3.1 text-only model
LLAVA-1.5 (Liu et al., 2024b) CLIP-ViT-L-336px MLP projection layer Vicuna v1.5
DeepSeek-VL2 (Wu et al., 2024c) SigLIP-SO400M-384 Two-layer MLP DeepSeekMoE

consistent outputs across tasks.1390

• Data False Negative: False negatives in the1391

dataset further complicate alignment, as nega-1392

tive image-text pairs, though not perfectly match-1393

ing, share overlapping components (Liang et al.,1394

2022; Byun et al., 2024). During training, embed-1395

dings of positive pairs are drawn closer together,1396

while those of negative pairs are pushed apart.1397

This binary method can suppress latent similari-1398

ties within false negatives, reducing the model’s1399

capacity to effectively align diverse modalities.1400

• Data Polysemy: The inherent polysemy within1401

datasets introduces additional complexity. Poly-1402

semy enriches data diversity by allowing a sin-1403

gle word or image to convey multiple meanings1404

depending on context, but this ambiguity also1405

amplifies the risk of misalignment (Ma et al.,1406

2020; Ding and Van Noord). For example, an1407

image caption of ‘the bat hit the ball’ could refer1408

to the animal or the baseball bat. This variabil-1409

ity challenges the model to establish consistent1410

mappings between modalities.1411

D Examples of LVLM Descriptions1412

In this section, we present examples from four1413

leading LVLMs and illustrate their generated de-1414

scriptions for given images. We have selected1415

one closed-source model, ChatGPT-4o, accessed 1416

through its official website https://chatgpt. 1417

com/, and three open-source models, Qwen2-VL- 1418

72B-Instruct, DeepSeek-VL2, and LLaVa-1.5-13B- 1419

hf, loaded directly from Hugging Face. All imple- 1420

mentation settings, including parameters such as 1421

temperature, were kept at their default values to en- 1422

sure consistency. The experiments were conducted 1423

using an A100 PCIE 80GB GPU. To enhance com- 1424

putational efficiency and performance, the models 1425

were loaded in float16 precision. During the eval- 1426

uation phase, each model was provided with an 1427

image along with the following prompt: ‘Describe 1428

this image in detail. Include specific objects, their 1429

attributes, and relationships.’ The input images and 1430

the corresponding descriptions generated by each 1431

model are presented in Figure 4, 5, and 6. 1432

E Mitigation Methods Comparison 1433

As shown in Table 3, we selected LLaVa-V1.5-7B 1434

as the baseline model and evaluated it on POPE 1435

benchmarks. We then tested three mitigation meth- 1436

ods: SoM-LLaVA (Yan et al., 2024), SID (Huo 1437

et al., 2024), and LogicCheckGPT (Wu et al., 1438

2024a), to assess their effectiveness and efficiency 1439

in mitigating misalignment in the baseline model. 1440

The baseline model was loaded directly from Hug- 1441

ging Face, with parameters in float16 precision 1442

16
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Table 2: Comparison of Misalignment Benchmark across Different Evaluation Dimensions. The evaluation
dimensions are categorized into two main aspects: (1) Evaluating misalignment, which examines object, attribute,
and relational misalignments in model outputs; and (2) Evaluating reasoning, which assesses models’ cognitive
reasoning abilities and instruction following capabilities. The rightmost column indicates whether the benchmark
uses traditional evaluation methods or third-model evaluation approaches.

Evaluating Misalignment Evaluating Reasoning
Object

Misalignment
Attribute

Misalignment
Relational

Misalignment
Cognition
Reasoning

Instruction
Following

Traditional/
Third-model

POPE (Li et al., 2023b) ✓ ✗ ✗ ✗ ✗ Traditional
CHAIR (Rohrbach et al., 2018) ✓ ✗ ✗ ✗ ✗ Traditional
MME (Fu et al., 2023) ✓ ✓ ✓ ✓ ✗ Traditional
MMHal-Bench (Sun et al., 2023) ✓ ✓ ✓ ✓ ✗ Traditional
LLaVa-Bench (Liu et al., 2024b) ✓ ✓ ✓ ✗ ✗ Traditional
LVLM-eHub (Xu et al., 2024) ✓ ✓ ✗ ✓ ✗ Traditional
GAVIE (Liu et al., 2023) ✓ ✓ ✓ ✗ ✓ Third-model
CCEval (Zhai et al., 2023) ✓ ✗ ✗ ✗ ✗ Third-model
HaELM (Wang et al., 2023) ✓ ✓ ✓ ✗ ✗ Third-model

Table 3: Comparison of Mitigation Methods on the POPE Benchmark. The table demonstrates the performance of
the baseline model and different mitigation methods that address baseline misalignment. Performance is evaluated
using Accuracy, Precision, Recall, and F1 score (with the highest score in each category underlined). Additionally,
the computational cost (in seconds per input) for both the baseline and each mitigation method is provided.

POPE-Random POPE-Adversarial POPE-Popular Comp. Cost
Method Acc Precis Recall F1 Acc Precis Recall F1 Acc Precis Recall F1 Sec/Input

Baseline
LLaVa-V1.5-7B 88.4 87.5 89.7 88.6 77.9 72.6 89.7 80.3 84.8 81.7 89.7 85.5 1.27

Mitigations
SoM-LLaVA (Yan et al., 2024) 89.6 89.1 90.2 89.6 81.0 76.2 90.2 82.6 84.8 81.4 90.2 85.6 1.62
SID (Huo et al., 2024) 89.4 92.2 86.1 89.0 80.4 77.4 85.9 81.4 85.9 85.9 85.9 85.9 1.68
LogicCheckGPT (Wu et al., 2024a) 88.0 98.3 77.3 86.5 85.0 94.1 74.7 83.3 86.7 95.1 77.3 85.3 51.5

and all other implementation details set to default.1443

Each mitigation method was implemented strictly1444

according to its official GitHub repository, with-1445

out modifications to core components, except for1446

necessary adjustments such as path configurations.1447

We evaluated model performance using Accu-1448

racy, Precision, Recall, and F1-score, with the high-1449

est values underlined in the table. The results indi-1450

cate that mitigation methods generally improve per-1451

formance across most metrics compared to the base-1452

line, particularly SoM-LLaVA and LogicCheck-1453

GPT, which achieved five and six highest scores,1454

respectively. However, a deeper analysis reveals1455

that some methods negatively impacted certain met-1456

rics. For instance, while LogicCheckGPT achieved1457

the highest Precision on all benchmarks, it exhib-1458

ited relatively lower Recall and F1 scores, some-1459

times even worse than the baseline. This occurs1460

because LogicCheckGPT is conservative in predict-1461

ing positives, meaning it only classifies a sample1462

as positive when it is highly confident, resulting in1463

fewer false positives but more false negatives. In-1464

terestingly, SoM-LLaVA consistently achieved the1465

highest Recall across all benchmarks, indicating1466

that it is less strict in determining positive cases1467

compared to LogicCheckGPT. This highlights how 1468

different mitigation strategies lead to different pre- 1469

diction behaviors, emphasizing the need for future 1470

works to report performance across multiple met- 1471

rics rather than focusing solely on a single high- 1472

performing metric. 1473

Beyond performance, we also evaluated the com- 1474

putational cost of each mitigation method in sec- 1475

onds per input. While SoM-LLaVA and SID had 1476

only a minor increase in inference time compared 1477

to the baseline, LogicCheckGPT required signifi- 1478

cantly more time. This is because LogicCheckGPT 1479

relies on an external third model, such as GPT- 1480

3.5, to assess logical consistency and mitigate ob- 1481

ject misalignment, making its computational cost 1482

highly dependent on the third model’s complexity. 1483

This trade-off between performance and computa- 1484

tional efficiency is critical, as high computational 1485

time may hinder real-world deployment of miti- 1486

gation techniques. Future research should aim to 1487

balance effectiveness with efficiency to ensure prac- 1488

tical usability. 1489
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F Future Research Directions1490

In this section, we discuss several important di-1491

rections for future research in understanding and1492

improving alignment in LVLMs.1493

F.1 Standardized Benchmarks1494

The current evaluation of misalignment in LVLMs1495

suffers from a critical limitation, i.e., the lack of1496

standardized, comprehensive benchmarks that can1497

systematically assess different types of misalign-1498

ment across models. While existing benchmarks1499

have made important contributions, they typically1500

focus on specific aspects of misalignment in iso-1501

lation. For instance, POPE (Li et al., 2023b) pri-1502

marily evaluates object hallucination, while other1503

benchmarks concentrate on particular relationship1504

errors or attribute inconsistencies. What is ur-1505

gently needed is a unified evaluation framework1506

that can systematically assess misalignment across1507

all semantic levels, from object-level (e.g., describ-1508

ing a non-existent dog in an image) to attribute-1509

level (e.g., color, size, texture errors) and relation-1510

level misalignment (e.g., spatial relationship er-1511

rors). Such a comprehensive benchmark would en-1512

able direct comparisons between different LVLM1513

architectures and alignment techniques using stan-1514

dardized metrics, evaluate both representational1515

alignment and behavioral alignment, and assess1516

how misalignment manifests across different types1517

of tasks. The benchmark should also consider both1518

the frequency and severity of different types of mis-1519

alignment, rather than treating all misalignments as1520

equally problematic. The development of such stan-1521

dardized benchmarks would represent a significant1522

step forward in our understanding of misalignment1523

in LVLMs and accelerate progress toward more1524

reliable and trustworthy vision-language systems.1525

F.2 Explainability based Diagnose1526

To better understand and address alignment issues1527

in LVLMs, future research should leverage ad-1528

vanced explainability techniques that can reveal the1529

internal mechanisms of these models. There are1530

two critical categories of explainability approaches1531

that warrant investigation: (1) internal knowledge1532

decoding and (2) attribution methods.1533

The first category of explainability approaches1534

centers on internal knowledge decoding and un-1535

derstanding how information is processed within1536

LVLMs (Zhao et al., 2024b,a). Mechanistic inter-1537

pretability approaches could help identify specific1538

components and circuits within LVLMs that are 1539

responsible for cross-modal alignment, providing 1540

insights into how visual and language represen- 1541

tations are integrated and processed. Similarly, 1542

probing techniques can analyze the emergence and 1543

evolution of aligned representations across differ- 1544

ent layers and attention heads, helping researchers 1545

understand where and how misalignment occurs 1546

within the model architecture (Zhao et al., 2024c). 1547

This detailed understanding of the internal working 1548

mechanisms would not only advance theoretical 1549

knowledge but also guide the development of more 1550

effective alignment techniques. 1551

The second critical category focuses on attribu- 1552

tion methods that can determine the relative in- 1553

fluence of different information sources on model 1554

outputs. LVLMs have three primary information 1555

sources for generating outputs: user text prompts, 1556

input images, and knowledge stored within pre- 1557

trained LLMs. Future research needs to develop 1558

sophisticated attribution algorithms that can deter- 1559

mine whether a model’s output primarily depends 1560

on the input text prompt, derives from the visual 1561

information in the image, or relies on the LLM’s in- 1562

ternal knowledge. This detailed attribution analysis 1563

would help identify when and why misalignment 1564

occurs, such as cases where the model inappropri- 1565

ately relies on LLM knowledge rather than visual 1566

evidence, or when it fails to properly integrate infor- 1567

mation from multiple sources. Such insights would 1568

be useful for designing targeted mitigation strate- 1569

gies that address specific types of misalignment 1570

and improve the overall reliability of LVLMs. 1571

F.3 Architectural Innovations 1572

Current LVLM architectures face fundamental chal- 1573

lenges, including significant ability gaps between 1574

visual encoders and LLMs, persistent attention im- 1575

balances between modalities, and knowledge con- 1576

flicts between visual and textual representations. 1577

While most existing solutions focus on improv- 1578

ing training procedures or adding post-processing 1579

steps, future research should focus on architec- 1580

tural innovations that address these structural lim- 1581

itations. This could include developing novel in- 1582

tegration mechanisms that better balance the ca- 1583

pabilities of visual and language components, and 1584

dynamic architectures that can adaptively adjust 1585

their attention mechanisms to maintain equilibrium 1586

between modalities. The field would benefit from 1587

multi-stage processing architectures that explicitly 1588

manage knowledge conflicts through specialized 1589
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components for different levels of semantic un-1590

derstanding. Additionally, new transformer archi-1591

tectures specifically designed for vision-language1592

tasks, rather than adapted from unimodal architec-1593

tures, could help bridge the ability gap between1594

visual and textual processing.1595
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ChatGPT-4o:
The image showcases a beautifully designed 
open-concept living room and kitchen area with a 
modern farmhouse aesthetic… Two dark brown 
leather armchairs with tufted backrests and 
wooden armrests face the sofa, each featuring a 
decorative pillow…. A dark wooden square coffee 
table sits in the center of the seating arrangement, 
holding a black bowl with decorative white stones, 
a potted green plant, a stack of books, and a 
sculptural decorative object.
The ceiling features exposed dark wooden beams 
that contrast with the white ceiling, adding a rustic 
touch to the space. Black recessed ceiling lights 
are evenly distributed across the ceiling, providing 
soft illumination... A large island with a wooden top 
and black barstools sits at the center of the 
kitchen, complementing the overall color scheme…
Decorative elements throughout the space include 
artwork on the walls, such as a framed black and 
white photo, a vibrant red abstract piece, and a 
landscape painting...

Qwen2-VL:
This image depicts a modern, open-concept living space 
with a combination of rustic and contemporary design 
elements… Lighting: There are several recessed lights 
installed in the ceiling, providing ample illumination… 
Sofa: A large, gray sectional sofa is positioned against the 
wall… Armchairs:… They have tufted backs and are
accompanied by small side tables. Coffee Table:... It has a 
few decorative items on top, including a book, a small 
bowl, and a vase with greenery… Kitchen Area: A white
kitchen island with a marble countertop is visible. It has 
bar stools tucked under it. Appliances: Stainless steel 
appliances, including a refrigerator and oven, are 
integrated into the kitchen design… Front Door: A wooden 
front door with glass panels is visible...

DeepSeek-VL2:
This image depicts a well-designed living room with a 
modern rustic and cozy interior. The room features a
large, dark wooden beams on the ceiling... The room has 
a large gray sofa with multiple cushions… and a wooden 
side tables. The room also has a staircase…, and a 
kitchen area with marble countertops and a large potted 
plants. The room has a door with glass panels.

LLaVa-1.5:
The image depicts a spacious and well-furnished living 
room with a wooden floor. The room features a couch 
situated on the left side, a chair on the right side, and a 
dining table in the center… There are several books 
scattered around the room, with some on the dining table
and others on the floor. A vase can be seen on the dining 
table, and a remote control is placed nearby. A clock is 
mounted on the wall, and a bowl is located on the floor.
The living room is connected to a kitchen area, which 
includes a sink and an oven. A staircase can be seen in 
the background, leading to another floor of the house.

Object Misalignment Attribute Misalignment Relational Misalignment

Figure 4: This figure presents examples of descriptions generated by different LVLMs when given the image shown
in the upper left corner. The highlighted text segments in the descriptions represent different types of misalignment.
Specifically, red highlights indicate object misalignment. Yellow highlights represent attribute misalignment. Blue
highlights denote relational misalignment.
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ChatGPT-4o:
The image captures a lively and bustling scene of 
Times Square in New York City, filled with bright 
lights, advertisements, and the energy of city life. 
The street is busy with the iconic yellow taxis 
driving along clearly marked lanes, accompanied 
by a few white cars adding to the traffic. A central
divider with short bollards helps organize the flow 
of vehicles, and pedestrian crossings and 
directional signs are visible on the asphalt, 
ensuring movement is orderly.
Surrounding the street, towering buildings are 
adorned with large electronic billboards 
showcasing advertisements for famous brands, 
Broadway shows, and various products... Notable 
advertisements, such as those from Disney and 
other prominent entertainment companies, add to 
the commercial appeal of the scene. One of the 
tallest buildings prominently displays a clock and a 
digital screen showing promotional content, making 
it a distinctive feature in the skyline.

Qwen2-VL:
This image depicts a vibrant and bustling scene from 
Times Square in New York City. Buildings and 
Advertisements:… Notable signs include those for "Coca-
Cola," "Disney," and "ABC News.“… Traffic and 
Vehicles:… There are also a few other cars and possibly a 
bus or two visible in the background. The road has 
multiple lanes, and there are crosswalks marked on the 
pavement. Pedestrians: The sidewalks are crowded with 
people walking and standing. Some pedestrians appear to 
be tourists, as indicated by their casual attire and the fact 
that they are taking photos or looking around. Street 
Elements: There are several potted plants lining the 
sidewalk…

DeepSeek-VL2: 
This image depicts a bustling urban scene, likely in a 
major city. The image is filled with vibrant colors and a 
busy street lined with tall buildings. The buildings are 
adorned with numerous large, brightly lit billboards and 
advertisements. The advertisements for various products, 
movies, and brands. The street is filled with yellow taxis, 
cars, and pedestrians. The street is marked with white 
lines and has a "NO"NO" sign…

LLaVa-1.5:
The image depicts a busy city street filled with traffic, 
including several cars and taxis. There are multiple cars 
driving down the street, with some positioned closer to the 
foreground and others further away. Two taxis are also 
visible, with one near the center of the scene and another 
towards the right side. Numerous pedestrians can be 
seen walking along the sidewalks, with some closer to the 
foreground and others further back. The street is bustling 
with activity, and the presence of tall buildings in the 
background adds to the urban atmosphere.

Object Misalignment Attribute Misalignment Relational Misalignment

Figure 5: This figure presents examples of descriptions generated by different LVLMs when given the image shown
in the upper left corner. The highlighted text segments in the descriptions represent different types of misalignment.
Specifically, red highlights indicate object misalignment. Yellow highlights represent attribute misalignment. Blue
highlights denote relational misalignment.
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ChatGPT-4o:
The image shows a busy classroom filled with 
students engaging in various creative activities… 
The chairs are mostly pink, with a few beige ones 
mixed in, and they are positioned haphazardly 
around the tables… To the right, another student 
with blonde hair and a black hoodie is seated, 
concentrating on a piece of paper with art supplies 
spread out in front of them. Several black pencil 
cases are visible on the tables, along with scissors, 
glue, and other art tools. In the middle of the 
image, a group of students is gathered around a 
table… Towards the back of the room, a 
whiteboard covered with colorful posters, drawings, 
and notes serves as a focal point... An American 
flag is displayed in the upper right corner... On the 
far left, a student wearing a black shirt stands near 
a ladder, possibly looking for something or 
observing their classmates. Another student in a 
pink sweater is seated at a desk, seemingly 
immersed in their task. In the foreground, bottles of 
hand sanitizer and cleaning supplies are placed on 
a table, suggesting an emphasis on hygiene and 
cleanliness within the classroom. 

Qwen2-VL:
The image depicts a classroom setting with several 
students engaged in various activities… Students:… A 
student in a red shirt is standing near the right side of the 
room, looking down at something on the floor. Tables:… 
Some tables have laptops or tablets open, indicating that 
digital work is being done… Chairs: The chairs are mostly 
orange and are positioned around the tables… Windows: 
The room has large windows on the right side, allowing 
natural light to enter. The windows have blinds, which are 
partially open. Additional Items: There are several bottles 
of hand sanitizer placed on the tables… Floor: The floor is 
carpeted, providing a comfortable environment for the 
students…

DeepSeek-VL2: 
The image depicts a classroom setting with multiple 
students engaged in various activities. All students are 
seated at tables, working on different tasks. The tables 
are equipped with chairs. The classroom has shelves 
filled with supplies. There are posters and papers on the 
walls. The students are wearing casual clothing. The 
classroom appears to be well-lit.

LLaVa-1.5:
The image depicts a classroom setting with a group of 
children sitting at tables, working on various projects... 
The children are engaged in activities such as using 
laptops, working on papers, and possibly drawing.
The room is filled with numerous books scattered across 
the tables and the floor... In addition to the children and 
their belongings, there are a few bottles placed around the 
room, possibly containing drinks for the children. A TV is 
mounted on the wall, which could be used for 
presentations or educational purposes.

Object Misalignment Attribute Misalignment Relational Misalignment

Figure 6: This figure presents examples of descriptions generated by different LVLMs when given the image shown
in the upper left corner. The highlighted text segments in the descriptions represent different types of misalignment.
Specifically, red highlights indicate object misalignment. Yellow highlights represent attribute misalignment. Blue
highlights denote relational misalignment.
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