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Abstract: We address the problem of goal-directed cloth manipulation, a chal-
lenging task due to the deformability of cloth. Our insight is that optical flow, a
technique normally used for motion estimation in video, can also provide an ef-
fective representation for corresponding cloth poses across observation and goal
images. We introduce FabricFlowNet (FFN), a cloth manipulation policy that
leverages flow as both an input and as an action representation to improve per-
formance. FabricFlowNet also elegantly switches between dual-arm and single-
arm actions based on the desired goal. We show that FabricFlowNet significantly
outperforms state-of-the-art model-free and model-based cloth manipulation poli-
cies. We also present real-world experiments on a bimanual system, demonstrat-
ing effective sim-to-real transfer. Finally, we show that our method generalizes
when trained on a single square cloth to other cloth shapes, such as T-shirts and
rectangular cloths. Video and other supplementary materials are available at:
https://sites.google.com/view/fabricflownet.
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1 Introduction

Cloth manipulation has a wide range of applications in domestic and industrial settings. However,
it has posed a challenge for robot manipulation: compared to rigid objects, fabrics have a higher-
dimensional configuration space, can be partially observable due to self-occlusions in crumpled
configurations, and do not transform rigidly when manipulated. Early approaches for cloth manipu-
lation relied on scripted actions; these policies are typically slow and do not generalize to arbitrary
cloth goal configurations [27, 13, 3].

Recently, learning-based approaches have been explored for cloth manipulation [18, 33, 42, 29, 32],
including model-free reinforcement learning to obtain a policy [21, 39]. For a cloth manipulation
policy to be general to many different objectives, it must receive a representation of the current
folding objective. A standard approach for representing a goal-conditioned policy is to input an
image of the current cloth configuration together with an image of the goal [21, 32].

We will show a number of downsides to such an approach when applied to cloth manipulation. First,
the policy must learn to reason about the relationship between the current observation and the goal,
while also reasoning about the action needed to obtain that goal. These are both difficult learning
problems; requiring the network to reason about them jointly exacerbates the difficulty. Additionally,
previous work has used reinforcement learning (RL) to try to learn such a policy [21, 39]; however, a
reward function is a fairly weak supervisory signal, which makes it difficult to learn a complex cloth
manipulation policy. Finally, while many desirable folding actions are more easily and accurately
manipulated with bimanual actions, previous learning-based methods for goal-conditioned cloth
manipulation have been restricted to single-arm policies.

In this paper, we introduce FabricFlowNet (FFN), a goal-conditioned policy for bimanual cloth
manipulation that uses optical flow to improve policy performance (see Fig. 1). Optical flow has
typically been used for video-related tasks such as object tracking and estimating camera motion.
We demonstrate that flow can also be used in the context of policy learning for cloth manipulation;
we use an optical flow-type network to estimate the relationship between the current observation and
a sub-goal. We use flow in two ways: first, as an input representation to our policy; second, after es-
timating the pick points for a pick-and-place policy, we query the flow image to determine the place
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Figure 1: FabricFlowNet (FFN) overview. We collect a dataset of random actions and ground truth
flow to train FFN. FFN learns to predict flow and uses it as both an input and action representation
in a manipulation policy. FFN successfully performs single and dual-arm folding in the real world.

actions. Our method is learned entirely with supervised learning, leveraging ground truth particles
from simulation. Our method learns purely from random actions without any expert demonstrations
during training and without reinforcement learning.

Our learned policy can perform bimanual manipulation and switches easily between dual and single-
arm actions, depending on what is most suitable for the desired goal. Our approach significantly
outperforms our best efforts to extend recent single-arm cloth manipulation approaches to bimanual
manipulation tasks [18, 21]. We present experiments on a dual-arm robot system and in simulation
evaluating our method’s cloth manipulation performance. FabricFlowNet outperforms state-of-the-
art model-based and model-free baselines, and we provide extensive ablation experiments to demon-
strate the importance of each component of our method to the achieved performance. Our method
also generalizes with no additional training to other cloth shapes and colors. This paper contributes:

• A novel flow-based approach for learning goal-conditioned cloth manipulation policies that can
perform dual-arm and single-arm actions

• A test suite for benchmarking goal-conditioned cloth folding algorithms encompassing and ex-
panding on goals used in previous literature [18, 21, 15]; we perform extensive experiments using
this test suite to evaluate FabricFlowNet (FFN), baselines [18, 21], and ablations, demonstrating
that FFN outperforms previous approaches.

• Experiments to demonstrate that FFN generalizes to other cloth colors and shapes, even without
training on such variations.

2 Related Work

Bimanual Manipulation. A large body of research exists on dual-arm, or bimanual, manipula-
tion [35]. Dual-arm systems allow for more complex behaviors than single-arm systems at the
cost of greater planning complexity [14, 34], leading to research on closed kinematic chain plan-
ning [36, 4], composable skill learning [40, 7], and rewarding synergistic behavior [8]. Prior work
has also explored bimanual cloth manipulation [31], including establishing a diverse set of bench-
mark tasks [16]. Cloth manipulation is a highly underactuated task, and bimanual manipulation
enables controlling multiple cloth points [5]. A common approach for cloth flattening is to lift
a cloth with one arm and regrasp it with the other arm until it reaches the flattened configura-
tion [23, 10, 27, 13, 3]. Previous work in this direction uses hard-coded policies [27, 13, 3], whereas
we learn to achieve arbitrary folded configurations. Tanaka et al. [37] learn bimanual actions for
goal-conditioned folding, using a voxel-based dynamics model to predict how actions will change
the cloth state. However, optimizing this dynamics model can slow down inference time compared
to our model-free approach. Dynamic bimanual manipulation has also been explored in simula-
tion from ground-truth keypoints [20] and for unfolding cloth in the real world [17]; we perform
real-world bimanual folding using depth image observations.

Learning for Cloth Manipulation. Prior works have proposed various hand-defined representa-
tions for cloth manipulation, such as parameterized shape models [28] or binary occupancy fea-
tures [22]. Recent approaches use contrastive learning to learn pixel-wise latent embeddings for
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cloth [15, 6]. Both contrastive learning [15] and goal-conditioned transporter networks [32] have
been applied to imitate expert demonstrations. Our approach doesn’t require expert actions, just
sub-goal states provided at test-time to define the task. In contrast to these previous representations,
our method uses a flow-based representation, which we found to significantly outperform previous
methods for goal-based cloth manipulation.

Other approaches have applied policy learning techniques to single-arm cloth smoothing [39, 33]. In
contrast, we learn a policy that performs either single and dual-arm cloth manipulation; further, our
focus is on goal-conditioned cloth folding, rather than smoothing. For cloth manipulation, Lee et

al. [21] learns a model-free value function, but is limited by its discrete action space, and further,
they do not use a flow-based representation, which we show leads to large benefits. Prior methods for
learning goal-conditioned policies have used self-supervised learning to learn an inverse dynamics
model for rope [29, 30] but such approaches have not been demonstrated for cloth manipulation.
Lippi et al. [25] plan cloth folding actions in latent space, but do not demonstrate generalization to
unseen cloth shapes. Other papers use an online simulator [23], or learn a cloth dynamics model
in latent space [42], pixel-space [18], or over a graph of keypoints [26]. Unlike these model-based
methods, our method is model-free and does not require online simulation or time-expensive CEM
planning, leading to much faster inference. Further, we compare our approach to state-of-the-art
approaches for cloth manipulation [21, 18] and show significantly improved performance.

Optical Flow for Policy Learning. Optical flow is the task of estimating per-pixel correspondences
between two images, typically for video-related tasks such as object tracking and motion estimation.
State-of-the-art approaches use convolutional neural networks (CNN) to estimate flow [12, 19, 38].
Optical flow between successive observations has previously been used as an input representation
to capture object motion for peg insertion [11] or dynamic tasks [1]. Within the domain of cloth
manipulation, Yamazaki et al. [41] similarly use optical flow on successive observations to identify
failed actions. We use flow not to represent motion between successive images, but to correspond
the cloth pose between observation and goal images, and to determine the placing action for folding.
Argus et al. [2] use flow in a visual servoing task to compute residual transformations between
images from a demonstration trajectory and observed images. In contrast, we learn a policy with
flow to determine what cloth folding actions to take, not how to servo to a desired pose.

3 Learning a Goal-Conditioned Policy for Bimanual Cloth Manipulation

3.1 Problem Definition

Our objective is to enable a robot to perform cloth folding manipulation tasks. Let each task be
defined by a sequence of sub-goal observations G : {xg

1, x
g
2, . . . , x

g
N}, each of which can be achieved

by a single (possibly bimanual) pick-and-place action from the previous sub-goal. We require sub-
goals, rather than a single goal, because a folded cloth can be highly self-occluded such that a single
goal observation fails to describe the full goal state. Defining a task using a sequence of sub-goals
is found in other recent work [30]. Similar to prior work [30, 29], even if the sub-goals are obtained
from an expert demonstration, we nonetheless do not assume access to the expert actions; this is a
realistic assumption if the sub-goals are obtained from visual observations of a human demonstrator.

We assume that the agent does not have access to the sub-goal sequence G during training that
it must execute during inference. Thus, the agent must learn a general goal-conditioned policy
at = ⇡(xt,G), where xt is the current observation of the cloth and at 2 A is the action selected by
the policy. In our approach, we input each sub-goal xg

i sequentially to our policy: at = ⇡(xt, x
g
i ). A

goal recognizer [30] can also be used to decide which sub-goal observation to input at each timestep.
For convenience, we will interchangeably refer to x

g
i as a goal or sub-goal.

3.2 Overview

A common approach for a goal-conditioned policy is to input the current observation xt and the
goal observation x

g
i directly into to a neural network representation of a policy [30, 21] or a Q-

function [39, 21]. However, the network must reason simultaneously about the relationship between
the observation and the goal, as well as the correct action to achieve that goal. Our first insight is
that we can improve performance by separating these two components: we will learn to reason about
the relationship between the observation and the goal, and separately use this relationship to reason
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(a) Naive system (b) FabricFlowNet (FFN)

Figure 2: (a) A naive approach to goal-conditioned policy learning is to input observation and goal
images directly to the policy and predict the action. (b) FabricFlowNet separates representation
learning from policy learning; it first estimates the correspondence between the observation and
goal as a flow image. The flow is then used as the input to PickNet for pick point prediction, and as
a way to compute place points without requiring additional learning.

over actions. Specifically, we represent this relationship using a “flow image” f , which indicates
the correspondence between the current observation xt and sub-goal xg

i . Thus we propose using the
flow image f as an improved input representation of the policy, rather than directly inputting the
observation xt and goal observation x

g
i .

Our second insight is that we can also use flow in the output representation of the policy. We use a
pick and place action space; prior methods that learn pick and place policies for deformable object
manipulation predict place points using the policy network, either explicitly [33, 32, 42, 29, 30, 39]
or implicitly by transforming the inputs to a Q-function [21]. Instead, we simplify the problem
by leveraging flow: our policy network only learns to predict the pick points. For the place point,
we query the flow image f for the flow vector starting at the predicted pick location, and use the
endpoint of that vector as the place point.

We demonstrate that using flow in the two ways described above for our policy achieves significantly
improved performance compared to prior work. Furthermore, our approach extends naturally to
dual-arm manipulation, allowing us to easily transition between single and dual-arm actions.

A schematic overview of our system can be found in Fig. 2b. We first compute the flow f between
the current observation xt and goal xg

i . Next, we input the flow f to a policy network (PickNet),
which outputs pick points pi. We then query the flow image f(pi) to determine the place points for
each robot arm. Further details of our approach are described below.

3.3 Estimating Flow between Observation and Goal Images

We learn flow to use it as an input representation to our pick prediction network, and as an action
representation for computing place points. Given an observed depth image xt and desired goal depth
image x

g
i , we estimate the flow f = (f1

, f
2), mapping each pixel (u, v) in xt to its corresponding

coordinates (u0
, v

0) = (u + f
1(u), v + f

2(v)) in x
g
i . This task formulation differs from standard

optical flow tasks as the input image pairs (xt, x
g
i ) are not consecutive images from video frames.

To capture the complex correspondences between xt and x
g
i , we train a convolutional neural network

to estimate the flow image f (see Appendix for details). The training loss we use to supervise the
network is endpoint error (EPE), the standard error for optical flow estimation. EPE is the Euclidean
distance between the predicted flow vectors f and the ground truth f

⇤, averaged over all pixels:
LEPE = 1

N

PN
i=1 kf⇤ � fk2. We use a cloth simulation to collect training examples with ground

truth flow. The simulator provides the ground-truth correspondence between the particles of the
cloth in different poses. The simulation cloth particles are not as dense as the depth image pixels;
as a result, we only have ground-truth flow supervision for a sparse subset of the pixels that align
with the cloth particles. Thus, we mask the loss to only supervise the flow for the pixels that align
with the location of the cloth particles. We train the flow network using data collected from random
actions. See Sec. 3.6 for more details on the simulator, data collection, and network training.
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Figure 3: PickNet architecture. We utilize a two-network architecture for bimanual manipulation,
where the second pick point is conditioned on the prediction of the first pick point.

3.4 Learning to Predict Pick Points

Our bimanual action space A consists of actions a = (p1, p2, q1, q2), where p and q are the pick
and place points respectively, paired according to the subscripts. We train a neural network called
PickNet to estimate the pick points p1, p2. Crucially, the input to PickNet is a flow image f , es-
timated between the current depth image xt and the desired goal depth image x

g
i , as described in

the previous section. The flow image indicates, for each pixel (u, v) in the current observation, the
location f(u, v) that the pixel has moved to in the goal observation. Our flow network (Sec. 3.3
above) reasons about the observation-goal relationship, so that the policy network (PickNet) only
needs to reason about the action, specifically the two pick points (p1, p2); computing the place points
is described in Sec. 3.5.

For dual-arm actions, the pick points must be estimated conditionally, as the location of pick point
p1 on the cloth influences the optimal location of pick point p2, and vice versa. To decouple this
conditional estimation problem, we propose a two-network architecture, PickNet1 and PickNet2,
to estimate the pick points (see Fig. 3). This architecture was inspired by Wu et al. [39], which
used two networks for pick-conditioned placing; we instead use two networks to condition dual-arm
picking. PickNet1 is a fully convolutional network that receives flow image f as input and outputs
a single heatmap H1 estimating the optimal pick points for arm 1. We compute the first pick point
as p1 = argmaxp H1(p). The second network, PickNet2, predicts the second arm’s pick point p2
conditioned on p1; PickNet2 takes as input both the flow image f and an additional image with
a 2D Gaussian centered on p1, and is otherwise identical to PickNet1. PickNet2 outputs heatmap
H2, from which we compute the second pick point: p2 = argmaxp H2(p). The two-network
architecture decouples the conditionally dependent pick point predictions and does not require us
to resort to heuristics to extract two pick points from a single heatmap. We refer to PickNet1 and
PickNet2 together as “PickNet.”

To train PickNet, we collect a dataset of random actions (see Sec. 3.6 for details) and record the
current observation xt, the bimanual action a = (p1, p2, q1, q2), and the next observation xt+1. We
also estimate the flow f from xt to xt+1, as explained in Sec. 3.3. We create ground truth pick
heatmaps H⇤

i for arm i using the recorded random action a, by placing a 2D Gaussian N (pi,�) on
each ground truth pick location pi. We then supervise PickNet using the binary cross-entropy (BCE)
loss between predicted heatmaps H1, H2 and ground truth heatmaps H⇤

1 , H
⇤
2 . However, it might be

unclear to the network which pick point should be output by PickNet1 and which should be output
by PickNet2. We compute the loss for both possible correspondences and use the minimum:

lBCE(Hi, Hj , H
⇤
i , H

⇤
j ) = BCE(Hi, H

⇤
i ) + BCE(Hj , H

⇤
j )

LPick = min[lBCE(H1, H2, H
⇤
1 , H

⇤
2 ), lBCE(H2, H1, H

⇤
1 , H

⇤
2 )]

(1)

At inference time, PickNet outputs the pick points p1, p2, computed from the argmax of H1, H2

respectively, as described above.

3.5 Estimating the Place Points from Flow

After estimating the pick points p1, p2 from flow, the remaining step to predict a bimanual pick and
place action a = (p1, p2, q1, q2) is to estimate the place points q1, q2. A straightforward approach
would be to train the network to predict place points q1, q2, similar to the pick points p1, p2 as
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described above (see Fig. 2a). Instead, our approach uses the flow image to find the place points, so
that the place points do not have to be learned separately.

Our approach makes the assumption that, to achieve a desired subgoal configuration, the point picked
on the cloth should be moved to its corresponding position in the goal image (which is estimated
by the flow). This is a simplifying assumption, since it is possible that the picked point will shift
slightly after it is released by the gripper; our method does not take into account such small move-
ments. Using this assumption, to compute the place points q1, q2, we query the flow f at each pick
point p1, p2 to estimate the delta between the pick point location in the observation image and the
corresponding location of the pick points in the goal image. We use these predicted correspondences
as the place points: qi = f(pi) + pi, for each arm i.

Action predictions estimated by our approach can produce nearly overlapping pick and place points,
indicating that arm 1 and arm 2 should perform identical actions. We observe this behavior from
PickNet when the goal is best achieved with a single-arm action, rather than a bimanual one. On a
real robot, grippers are likely to collide if grasping points that are too close. Therefore, to switch
between executing a single-arm or bimanual action, we compute the L2 pixel distance between pick
points dpick = kp1 � p2k2 and place points dplace = kq1 � q2k2. We use a single-arm action when
either distance is smaller than a threshold ↵, which we set to 30 for all experiments.

3.6 Implementation Details

We use SoftGym [24], an environment for cloth manipulation built on the particle-based simulator
Nvidia Flex, to collect training datasets. The simulator models cloth as particles connected by
springs. We use pickers that simulate a grasping action by binding to the nearest cloth particle
within a threshold to execute pick and place actions in SoftGym. We collect data by taking random
actions, biased towards grasping corners of the cloth. We demonstrate that we are able to train our
method in SoftGym and then transfer the policy to the real world. Details on the data collection, as
well as the network architecture and training details, can be found in Appendix Sec. A.1.

4 Experiments

4.1 Simulation Experiments

Experiment Setup. We evaluate FabricFlowNet (FFN) and compare to state-of-the-art baselines in
the SoftGym [24] simulator; real-world evaluations are below in Sec. 4.2. Our experiments focus
on folding tasks, and we assume that a cloth smoothing method (e.g., [17, 33]) is used to flatten the
cloth before folding is executed. Our error metric is the average particle position error between the
achieved and goal cloth configuration. We evaluate on two sets of goals: 40 one-step goals that can
be achieved with a single fold action, and 6 multi-step goals that require multiple folding actions.
The multi-step goals each consist of a sequence of sub-goal images, with the next sub-goal presented
after each action. This protocol follows from our problem formulation in Sec. 3.1, and is similar to
the protocol in Nair et al. [29]. Our goals include test goals from Ganapathi et al. [15] and Lee et

al. [21] that are achievable with one arm, as well as additional goals more suitable for two-arm
actions (see Appendix Fig. S2 for the full set of goals).

We compare our method to Fabric-VSF [18], which learns a visual dynamics model and uses CEM
to plan using the model. We only use Fabric-VSF with RGB-D input, as depth-only input performs
poorly for folding tasks [18]. FabricFlowNet only uses depth and does not rely on RGB, which
enables our method to transfer easily to the real world without extensive domain randomization.
We also compare to Lee et al. [21], a model-free approach. We extend the the original single-arm
method to a dual-arm variant and compare against both. For both our method and the baselines, we
only allow each method to perform one pick-and-place action for each subgoal (e.g. one pick and
place action for each single-step goals). Additional baseline details can be found in the Appendix.

4.1.1 Simulation Results

Table 1 contains our simulation results for all methods. We report average particle distance error
(in mm) for one-step goals only, multi-step goals only, and over both one-step and multi-step goals.
Our results show that FFN achieves the lowest error over all goals and has the fastest inference time.
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Table 1: Mean Particle Distance Error (mm) and Inference Time (sec) on Cloth Folding Goals

Method One Step (n=40) Multi Step (n=6) All (n=46) Inference Time

Lee et al., 1-Arm [21] 16.18± 08.38 26.20± 16.31 17.49± 10.10 ⇠ 0.04
Lee et al., 2-Arm 36.62± 14.51 47.71± 21.95 38.07± 15.82 ⇠ 0.04
Fabric-VSF [18] 6.31± 06.55 21.33± 11.20 8.27± 08.90 ⇠ 420
FabricFlowNet (Ours) 4.46± 02.62 25.04± 22.88 7.14± 11.06 ⇠ 0.007

We also investigate whether using flow as a goal recognizer improves performance. When an ob-
servation closely matches the goal, the flow for all points is close to zero. We leverage this fact by
evaluating FFN with “iterative refinement”: we allow the policy to take multiple actions per subgoal
to try to further minimize the flow between the observation and subgoal. When the average flow
between observation and current subgoal reaches a minimum threshold, the policy moves forward
to the next subgoal. FFN with iterative refinement achieves a mean error of 6.62 over all goals vs.
7.14 without refinement. Additional details on iterative refinement can be found in the Appendix,
along with additional results from baseline variants, crumpled initial configurations, and end-to-end
training.

4.1.2 Ablations

We run series of ablations to evaluate the importance of the components of our system; results
averaged over all 46 goals are in Table 2. Additional details and results are in Appendix Sec. D. Our
ablations are designed to answer the following questions:

What is the benefit of using flow as input? We modify PickNet to receive depth images of the
observation and goal as input to the network (“NoFlowIn”), as is commonly done in previous work
on goal-conditioned RL [21, 32]. In this ablation, the PickNet needs to reason about both the rela-
tionship between the observation and the goal, as well as the action. In contrast, our method uses the
flow network to compare the observation and goal; the picknet separately reasons about the action.
What is the benefit of using flow to choose the place point? In this ablation, we train a network
to predict the place points directly (“NoFlowPlace”). This is in contrast to our approach where we
use the flow field, evaluated at the pick point f(pi), to compute the place point qi for arm i. Our ap-
proach leads to a 32.4% improvement, showing the benefit to using flow as an action representation.
What is the performance with no flow? We combine the above two ablations and remove flow en-
tirely, (“NoFlow”; ours has 60.4% improvement). The above ablations all indicate the strong benefit
of using flow as both an input and action representation for cloth manipulation.
What is the benefit of biasing the data collection to grasp corners? Our method uses prior
knowledge about cloth folding tasks to bias the training data and pick at corners of the cloth. In this
ablation, we choose pick points randomly (“NoCornerBias”, ours has 35.5% better performance).
What is the performance with a simpler architecture? We also compare our architecture for
PickNet (Sec. 3.4) to a simpler architecture that takes as input the flow image If and outputs a
two heatmaps, one for each pick point (“NoSplitPickNet”; ours has 2.1% better performance).
Does the loss formulation in Eq. 1 improve performance? We compare our method to an ablation
where the first ground-truth heatmap is used to supervise PickNet1 and similarly for the second, i.e.
LPick = lBCE(H1, H2, H

⇤
1 , H

⇤
2 ). (”NoMinLoss”; ours has similar performance).

Table 2: Mean Particle Distance Error (mm) for Ablations over All Goals (n=46)

NoFlowIn NoFlowPlace NoFlow NoCornerBias NoSplitPickNet NoMinLoss FFN (Ours)

9.37 10.56 18.02 11.07 7.29 7.15 7.14

4.2 Real World Experiments

We evaluate FabricFlowNet in the real world and demonstrate that our approach successfully ma-
nipulates cloth on a real robot system.

Experiment Setup. Our robot system consists of two 7-DOF Franka Emika Panda arms and a
single wrist-mounted Intel RealSense D435 sensor (See Fig. 1). We plan pick and place trajectories
using MoveIt! [9]. We evaluate on a 30x30 cm towel, using 6 single-step and 5 multi-step goals (see
Fig. 4) that form a representative subset of our simulation test goals.
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To transfer from simulation to the real world, we align the depth between real and simulated images
by subtracting the difference between the average depth of the real support surface (i.e. the table)
and the simulated surface. We mask the cloth by color-thresholding the background; see Appendix
for details. We found that these simple techniques were sufficient to transfer the method trained
entirely in simulation to the real world, because we use only depth images as input. Simulated depth
images match reasonably well to real depth images, unlike RGB images.

4.2.1 Real World Results

(a) One-step Square Cloth (b) Multi-step Square Cloth

Figure 4: Qualitative results for FFN on real world experiments. FFN only takes depth images as
input, allowing it to easily transfer to cloth of different colors.

Fig. 4 provides qualitative real world results, showing that we successfully achieve many of the
goals. Our website (link in abstract) contains videos of these trials.

We compare FabricFlowNet to the NoFlow ablation from Sec. 4.1.2. Both methods used the same
sim-to-real techniques described in the previous section. While we do not have access to the true
cloth position error in the real world, Intersection-over-Union (IoU) on the achieved cloth masks
serves as a reasonable proxy metric [21]. FFN achieves 0.80 mean IoU over 3 trials for the square
cloth, compared to 0.53 for NoFlow. See the Appendix for additional details.

(a) Rectangular Cloth (b) Printed T-shirt

Figure 5: Generalization to new cloth shapes for FFN trained only on a square cloth in simulation.
FFN achieves single and multi-step goals for rectangular fabric and a printed T-shirt.

Generalization. In addition to evaluating the folding policy on square cloth for various goal con-
figurations, we also test the generalization of our method to other shapes of cloth. We evaluate the
performance of FFN trained only on a square cloth on folding goals for a rectangular cloth as well as
a T-shirt. These fabrics are also thinner than the square blue towel used in the real world experiments
above. Fig. 5 shows that FFN trained on a square yellow cloth in simulation is able to generalize to
other cloth shapes, textures, and colors (FFN only receives depth images as input). See Appendix
for additional details.

5 Conclusion

In this work we present FabricFlowNet, a method which utilizes flow to learn goal-conditioned fabric
folding. We leverage flow to represent the correspondence between observations and goals, and as
an action representation. The method is trained entirely using random data in simulation. Our results
show that separating the correspondence learning and the policy learning can improve performance
on an extensive suite of single- and dual-arm folding goals in simulated and real environments. Our
experiments also demonstrate generalization to different fabric shapes, textures, and colors. Future
work on flow-based fabric manipulation could incorporate actions beyond pick and place, such as
parameterized trajectories or dynamic actions.
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