
Under review as a conference paper at ICLR 2024

DEBOSH: Deep Bayesian Shape Optimization

Anonymous authors
Paper under double-blind review

Abstract

Graph Neural Networks (GNNs) can predict the performance of an indus-
trial design quickly and accurately and be used to optimize its shape effec-
tively. However, to fully explore the shape space, one must often consider
shapes deviating significantly from the training set. For these, GNN predic-
tions become unreliable, something that is often ignored. For optimization
techniques relying on Gaussian Processes, Bayesian Optimization (BO) ad-
dresses this issue by exploiting their ability to assess their own accuracy.
Unfortunately, this is harder to do when using neural networks because
standard approaches to estimating their uncertainty can entail high com-
putational loads and reduced model accuracy. Hence, we propose a novel
uncertainty-based method tailored to shape optimization. It enables effec-
tive BO and increases the quality of the resulting shapes beyond that of
state-of-the-art approaches.

Figure 1: DEBOSH pipeline. (1) Run physical simulations. (2) Train the GNN. (3) Evaluate
the acquisition function on samples without an associated physical simulation. (4) Select promising
samples according the acquisition function, optimize their shape, add them to the training set, and
go back to step 1.

1 Introduction

Computational Fluid Dynamics (CFD) simulations are key to maximizing the performance
of aircraft wings (Li et al., 2019), windmill blades (Jureczko et al., 2005), hydrofoils (Ching-
Yeh et al., 2006), car bodies (Liu, 2008), ship hulls (Dejhalla et al., 2001), and propellers (Gur
& Rosen, 2009). However, because potentially expensive simulations must be run for each
design change, a widespread engineering practice is to test only a few. One way to actually
explore the shape space is to use genetic algorithms (Gosselin et al., 2009). In their simplest
form, they require many evaluations of a fitness function and, therefore, many expensive sim-
ulations, which makes them inefficient. Alternatives include topology optimization (Saviers
et al., 2019) and adjoint differentiation (Allaire, 2015; Gao et al., 2017; Behrou et al., 2019).
The first is highly effective but only applicable in very specific cases. The second estimates
gradients of the fitness function with respect to deformations of the 3D mesh and is only
truly applicable to relatively small deformations.

1

Under review as a conference paper at ICLR 2024

To reduce the computational cost, surrogate models are often used instead. Given a set of
parameterized shapes for which simulations are available, non-linear interpolation is used to
predict the performance of shapes whose parameters are different, which makes it possible
to optimize with respect to the parameters without further simulations. The most popular
such method is known as Kriging (Laurenceau et al., 2010) and relies on Gaussian-processes
(GP) to perform the interpolation (Rasmussen & Williams, 2006). A strength of GPs is that
they provide not only estimates of the quality of any given shape but also the reliability of
that estimate. This enables Bayesian Optimization (BO) (Mockus, 2012): Given a large set
of shapes and assuming that simulations are available only for a subset of these, BO finds
the best compromise between performing a search for optimal shapes in regions where the
model is certain about its predictions and exploring areas where the model is uncertain and
good shapes could be found, even though their predicted performance is low.

Unfortunately, Kriging works best for models that can be parameterized using relatively few
parameters, which limits its applicability. Hence, Graph Neural Networks (GNNs) (Boscaini
et al., 2016; Monti et al., 2017) have emerged as an alternative way to formulate surrogate
models (Baqué et al., 2018; Hines & Bekemeyer, 2023). Given a collection of 3D surface
meshes and corresponding simulation results, they can be trained to emulate a complex fluid-
dynamics simulator and can handle models with arbitrarily large numbers of parameters.
A key limitation, however, is that, unlike GPs, GNNs do not provide an estimate of the
reliability of their predictions, which precludes Bayesian Optimization.

In this paper, we introduce Deep Bayesian Shape Optimization (DEBOSH) to overcome
this limitation: We first use existing approaches–Deep Ensembles (Lakshminarayanan et al.,
2017) and MC-Dropout (Gal & Ghahramani, 2016)–to estimate the uncertainty of our GNNs
and to incorporate them into a Bayesian Optimization framework, which, surprisingly, had
not been done before. As depicted by Fig. 1, our method entails an iterative process that
encompasses surrogate model training, the exploration of shapes for which simulations have
not yet been conducted, guided by both surrogate model predictions and their associated
uncertainty, and the execution of simulations for selected shapes.

When using Ensembles, DEBOSH delivers good results but still at a steep computational
cost. Thus, we propose to replace Ensembles by Reentrant GNNs that deliver an even better
accuracy by exploiting a key property of CFD computations: The performance values—drag
for cars, lift-to-drag ratio for planes—we want to estimate can, in theory, be computed by
integrating pressure values along the surface. Thus, as shown in Fig. 2, we make our
GNNs estimate both the performance value and the pressure fields. We then iteratively
feed back the pressures for increasingly accurate performance estimates. In essence, when
predicting performance, the network has access to rough pressure estimates across the whole
surface, which makes it possible to account for non-local effects. Not only does this increase
accuracy, but it also gives rise to a useful behavior: For in-distribution validation samples,
we see rapid convergence of the performance estimates towards an usually correct value.
For out-of-distribution ones, the convergence is much slower, and the limit is often wrong.
In other words, convergence speed can be used as a proxy for the reliability of the estimates
and can be computed by training a single network.

In short, our contribution is both an effective BO framework that relies on deep-learning-
based surrogate models and a new deep-learning architecture, the reentrant GNN, that is
particularly well suited for it. We demonstrate its superior performance when optimizing
the shapes of 2D airfoils and 3D cars. Our code and training data will be made publicly
available.

2 Related Work

In all engineering fields that involve running computationally demanding simulations to
estimate the performance of 3D shapes, maximizing this performance is often difficult. First,
it usually is a highly non-convex function of the design parameters. Second, in industrial
practice, the simulator can only be run so many times, which limits how thoroughly the
design space can be explored. In this section, we briefly review some of the dominant
approaches to addressing these issues.

2

Under review as a conference paper at ICLR 2024

Input Shape

CFD Simulator

Approximated Pressure

1

2

Simulator Reentrant GNN

Figure 2: From simulator to reentrant GNN. (Simulator) Consider distant airfoil locations
1 and 2. In a traditional simulator, results at location 1 can easily influence the results at location
2 in spite of their distance, as often happens in real life. (Reentrant GNN) The recursive
nature of the computation makes it possible to take into account all the physical parameter values
while estimating one at a specific location, hence making the interaction between distant locations
straightforward.

2.1 Shape Optimization

A popular way to automate shape optimization is to use genetic algorithms (Gosselin et al.,
2009). However, as they require many evaluations of the fitness function, which involves
running an expensive physical simulation, a näıve implementation would be inefficient. Krig-
ing, or Gaussian-process (GP) regression (Rasmussen & Williams, 2006), is one of the most
popular ways to reduce the required number of evaluations (Jeong et al., 2005; Laurenceau
et al., 2010; Toal & Keane, 2011; Xu et al., 2017; Umetani & Bickel, 2018). The measures
of uncertainty delivered by Gaussian processes, in addition to their predictions, can be used
to explore the shape space more effectively. This works for models controlled by relatively
few design parameters but does not scale well to high-dimensional inputs. One must instead
rely on low-dimensional shape parameterizations that can be difficult to design and often
prevent the full exploration of the shape space.

Convolutional Neural Networks (CNNs) running on 3D voxel grids can be used to remedy
this. It has been done to accelerate the search for solutions of the discrete Poisson equa-
tion (Tompson et al., 2017), to directly regress the fluid velocity fields given an implicit
surface description (Guo et al., 2016), or to compute fluid simulations velocities from a
set of reduced parameters (Kim et al., 2019). However, because the underlying 3D CNN
architectures have to work on 3D grids, they tend to suffer from large memory footprints
and computationally demanding inference. This can be improved by replacing the CNNs by
Graph Neural Networks (GNNs) (Boscaini et al., 2016; Monti et al., 2017) operating on 3D
meshes (Baqué et al., 2018; Remelli et al., 2020; Hines & Bekemeyer, 2023). Given a set of
3D meshes, the GNN is trained to predict their aerodynamic characteristics, as computed
by standard CFD packages (Drela, 1989; Weller et al., 1998; Mountrakis et al., 2015). These
characteristics are then used to write an objective function that is differentiable with re-
spect to the shape parameters. The objective function can then be minimized with respect
to these parameters.

2.2 Uncertainty Estimation

The techniques discussed above allow the refinement of complex shapes parameterized by
large vectors of design variables. Because CNNs and GNNs are differentiable, this can be
done using a gradient-based technique. However, such techniques can easily be caught in
local maxima. In this work, we incorporate them into Bayesian Optimization (BO) (Mockus,
2012). It is one of the best-known approaches to finding global minima of a black-box
function g : A → R, where A represents the space of possible shapes, without assuming any
specific functional form for g. For our purposes, g is a GNN.

As described in more detail in Appendix A.2, BO relies on an acquisition function to gauge
how desirable it is to evaluate a point, given the current model state. It is a function of the
values predicted by the model and their associated uncertainty and designed to favor samples
with the greatest potential for improvement, potentially over the current optimum (Qin
et al., 2017; Auer, 2002). Hence, the model must be able to deliver a reliability estimate for
its predictions, something that CNNs and GNNs do not naturally do.

MC-Dropout (Gal & Ghahramani, 2016) and Deep Ensembles (Lakshminarayanan et al.,
2017) have emerged as two of the most popular approaches to remedying that; with Bayesian

3

Under review as a conference paper at ICLR 2024

networks (Mackay, 1995) being a third alternative that is often more difficult to train effec-
tively (Ashukha et al., 2020). MC-Dropout involves randomly zeroing out network weights
and assessing the effect, whereas Ensembles involve training multiple networks, starting
from different initial conditions. In practice, the latter tends to perform better but can be
much more computationally demanding, chiefly because the training procedure has to be
restarted from scratch multiple times.

An alternative is to use sampling-free methods that estimate uncertainty in one single for-
ward pass of a single neural network, thereby avoiding computational overheads (Amersfoort
et al., 2020; Malinin & Gales, 2018; Tagasovska & Lopez-Paz, 2018; Postels et al., 2019).
However, deploying them usually requires heavily modifying the network’s architecture (Pos-
tels et al., 2019), significantly changing the training procedures (Malinin & Gales, 2018),
or limiting oneself to very specific tasks (Amersfoort et al., 2020; Malinin & Gales, 2018;
Mukhoti et al., 2021). Additionally, using these methods can result in reduced prediction
accuracy (Postels et al., 2022). We will show that our Reentrant GNNs do not suffer from
these drawbacks.

3 Method

Given a small training dataset of shapes with simulated physical performance data and
a much larger pool of shapes without any simulations, DEBOSH iteratively repeats the
following four steps depicted by Fig. 1:

1. Use the training shapes and simulation results to train a surrogate model g̃Θ.

2. Take each shape from the unlabelled pool and make a prediction with g̃Θ.

3. Given the uncertainty of the predictions, compute the acquisition function introduced in
Section 2.2 for the shapes in the unlabelled pool.

4. Pick the best new shapes in terms of the acquisition function, optimize their shape with
gradient optimization, add them to the training set, and iterate.

These are standard BO steps, as described in Appendix A.2, except for step #4. It involves
exploring the shape space without running additional simulations. It takes advantage of
the fact that GNNs allow for gradient-based shape optimization. The key to implementing
DEBOSH is an effective way to estimate not only the performance value associated with
a shape but also the uncertainty on this estimate in step #3, which is something ordinary
GNNs (Monti et al., 2017) do not provide.

3.1 Formalization

Given a set of N 3D shapes {xi}1≤i≤N represented by triangulated meshes, we run a physics-
based simulator yielding a corresponding set {yi}1≤i≤N of physical values, such as pressure
at each vertex. Let R be the function that takes as input the y values and returns an
overall performance value r = R(y), such as overall drag for a car or lift for a wing. R is
task-specific. For example, in the case of drag, it is computed by integrating pressure values
over the 3D shape. Assuming that each mesh xi is parameterized by a lower-dimensional
latent vector zi and that there is a differentiable mapping P : z → x, this gives us the
initial training set T = {(zi,xi, ri,yi)}i that we need to initialize our optimization scheme.
Similarly, we expect a larger pool of unlabeled shapes, consisting of latent vectors and
meshes denoted as U = {(zi,xi)}i, but no simulation data. We train the surrogate model
using samples from T (Step 1) and use it to perform predictions (Step 2), compute the
acquisition function (Step 3), and select samples for simulations from the set U (Step 4).

3.2 Using a Standard GNN

DEBOSH relies on a GNN-based surrogate model to emulate physical simulations and return
performance values for 3D shapes. To this end, we use the GNN of (Baqué et al., 2018) to
predict the y values for a given shape x, from which we can infer the overall performance

4

Under review as a conference paper at ICLR 2024

value r = R(y). In practice, the GNN can also be trained to predict both r and y from x,
which turns out to be more effective. We revisit this issue in Section 3.3.

As mentioned in Section 2.2, one way to estimate the reliability of these predictions is to use
Ensembles. That is, at each training iteration—step 1 of the DEBOSH algorithm—we can
train several GNNs and use the variance of their predictions as an uncertainty estimate to
evaluate the acquisition function. Unfortunately, this is computationally demanding. Even
though MC-Dropout (Gal & Ghahramani, 2016) is a less demanding alternative, for our
purposes, it delivers worse uncertainty estimates and lower overall performance, which is
consistent with what has been reported elsewhere (Ashukha et al., 2020).

3.3 Using a Reentrant GNNs

Our experiments show that using Ensembles, as discussed above, outperforms standard
approaches, which is one of the contributions of the paper. However, this comes at a cost
because training ensembles is expensive. We now show that we can do better in terms of
both accuracy and computational complexity by designing a special-purpose architecture
that accounts for the specificities of the simulators our GNNs are designed to emulate.

Motivation. Traditional simulators rely on solving differential equations, such as the
Navier-Stokes equations. To this end, they compute a sequence of approximate solutions,
and each one is used to refine the next. This plays a role in modeling non-local interactions
in which a local part of the shape x can influence the simulation output y at a distant
location, as depicted by Fig. 2(Simulator). By contrast, in the GNN of (Baqué et al., 2018),
information propagation across the shape happens at the pace of successive convolutions.
Hence, it is comparatively slow. Hence, even when there are many convolutional layers,
information may not be transmitted across the whole surface during a single forward pass.

Furthermore, r and y are connected through integration function r = R(y). For example,
when optimizing an airfoil, y represents pressure for every vertex, and r is the lift-to-drag
value. As shown in Appendix A.4, computing r̃ from the predicted ỹ analytically is less
accurate than training the network to predict it directly. A way to resolve this issue is to
learn a mapping ỹ → r̃, which is what our proposed architecture does.

Reentrant Architecture. Thus, we introduce the Reentrant GNN depicted on the right
of Fig. 2. They iterate I times. At iteration i, they take as input the shape x and the
current estimate of physical properties ỹi−1 and return an updated vector ỹi, along with a
new performance estimate r̃i. Initially, we take ỹ0 to be uniformly zero. For each training
batch, we randomly pick the number of iterations I between 1 and a fixed number M . We
supervise the final predictions ỹI and r̃I with ground truth targets y and r.

This improves on standard GNNs in two important ways: First, the successive iterations
approximate better the behavior of a CFD simulator. Second, reentrant GNN estimates
individual components of ỹ, given estimates obtained at the previous iteration for all com-
ponents, which means it can account for the non-local effects mentioned above. Our exper-
iments confirm that our recursive approach yields more accurate predictions.

This is in the same spirit as the stacked hourglass networks for pose estimation (Newell et al.,
2016) or the nested U-Net (Zhou et al., 2018) for image segmentation. However, unlike these,
our network reuses its own outputs as inputs. This allows them to expand their receptive
field faster than traditional GNNs, as discussed in Appendix A.4. They use the ỹi estimates
for increasingly accurate estimations of r̃i. This exploits the specificities of our problem
because, as discussed in Section 3.2, in theory, the r̃i should be computable from the ỹi by
integration. In a sense, our network learns to integrate, as shown in Appendix A.5.

Uncertainty Estimation. In addition to improving accuracy, our reentrant GNNs pro-
vide us with an effective way to estimate uncertainty: In the experiments reported in the
following section, given a specific distribution of training samples, for in-distribution valida-
tion samples, we observe rapid convergence of the successive r̃i towards a r̃lim value, which
is usually correct. By contrast, for out-of-distribution samples, we still observe convergence
but towards a value r̃lim that is often wrong, but at a much slower rate and with oscillations,
as shown in Fig. 3. Interestingly, when using true physics-based iterative solvers, a similar

5

Under review as a conference paper at ICLR 2024

phenomenon can be observed. Their convergence rate often depends on the complexity of
the shape given as input (McAdams et al., 2011; Fedkiw et al., 2001).

Convergence

Error

Convergence

Error

Figure 3: Convergence rate vs error. For the in-distribution airfoil to the left, the consecutive
values of r̃i converge quickly and the limit is very close to the correct answer. By contrast, for an
out-of-distribution airfoil, the convergence is much slower and the limit is wrong. This is a behavior
that we have consistently observed in our experiments.

To understand why this is the case, in Appendix A.1, we analyze the behavior of a simple
Reentrant Multi-Layer Perception (MLP) applied to a 1D case: For any sample x within
the training sample distribution, the network is trained to produce the correct r̃i for any
value of i between 1 and M , the maximum number of iterations. By contrast, for a sample x
out-of-domain, because deep networks are often bad at extrapolating, there is no particular
reason for successive values of r̃i to be similar and they are not. The role of the second
argument of f can also be understood as that of a prompt sent to the network. For values
of x and ỹi within the training distribution, the prompt helps produce the right answer.
Taking the prompt to be the output of the previous iteration helps ensure that it is indeed
in distribution. For x out-of-domain, there is no reason for this to be so. What we observe
is convergence towards a random fixed point.

Thus, we use the rate of convergence of r̃i values as a proxy for accuracy. More specifically,
we count how many iterations it takes for the difference between r̃i and r̃i−1 to drop below
a threshold δ. More formally, we take the uncertainty σ(x), final prediction µ(x), and the
acquisition function a(x) used in Step 3 of the DEBOSH algorithm to be

µ(x) = r̃i ,

σ(x) = i , (1)

a(x) = µ(x) + λσ(x) ,

where i is such that ∀j < i, ∥r̃j − r̃j−1∥ > δ and ∥r̃i − r̃i−1∥ < δ, and λ > 0 is a hyper-
parameter that controls exploitation-vs-exploration tradeoff. Our experiments demonstrate
empirically that σ(x) is a valid uncertainty measure for the predicted µ(x) in the following
sense: If we train a GNN to predict performance values using samples that come from
a particular distribution, its predictions will have lower uncertainty for previously unseen
samples from the same distribution than for out-of-distribution samples.

4 Experiments

We now compare DEBOSH against state-of-the-art alternatives in two application scenarios,
optimizing airfoils in 2D and car shapes in 3D.

4.1 Baselines

We compare against the following baselines:

KNN : Given a set of simulated shapes, we use a standard K-Nearest Neighbors regressor
to estimate the performance of additional shapes and add the best one to the training
set.

Kriging : Using a Gaussian Processes (GPs) to estimate performance values and corre-
sponding uncertainty (Laurenceau et al., 2010). As discussed in Section 2.1, it can be
directly used to perform Bayesian Optimization.

GNN : GNNs (Baqué et al., 2018; Hines & Bekemeyer, 2023) are a valid alternative to
GPs for the purpose of estimating performance numbers. Since they do not compute

6

Under review as a conference paper at ICLR 2024

uncertainties, we simply add the ones that receive the best score from the GNN to the
training set and optimize their shape as in (Baqué et al., 2018).

DEBOSH/Ens: We use sets of GNNs to predict mean and variances of performance
values, which is known as an Ensemble-based technique. These are then exploited by
the DEBOSH procedure introduced at the beginning of Section 3.

DEBOSH/Drp: Instead of using Ensembles to estimate the performance numbers and
their uncertainty, we use MC-Dropout in the DEBOSH procedure.

DEBOSH/Full : Using the Reentrant GNN of Section 3.3 to estimate the performance
numbers and their uncertainty in the DEBOSH procedure.

We will make the code publicly available to allow reproduction of our experiments.

4.2 Airfoil Optimization in 2D

2D airfoil profile optimization has become a de facto standard for benchmarking shape
optimization in the CFD community. In industrial practice, profiles have long been pa-
rameterized using a three-dimensional NACA parameter vector (Baqué et al., 2018) and
optimized using conventional Kriging-based methods (Jeong et al., 2005; Chiplunkar et al.,
2017). For this experiment, we generated an initial dataset of 1500 shapes for airfoil op-
timization by randomly selecting NACA parameters zi and then producing corresponding
2D contours xi for each one.

We use the popular XFoil simulator (Drela, 1989) to compute the pressure distribution yi
over the surface of each xi. Even though GNN models are primarily designed to handle
3D shapes, they can also handle 2D ones by considering the 2D equivalent of a surface
mesh, which is a discretized 2D contour. As in (Baqué et al., 2018), we train our model to
predict pressure values ỹi at each vertex along with the global lift-to-drag ratio r̃i = R(yi).
This is a standard measure of aerodynamic efficiency in a given flight configuration. It is
computed as the ratio of the lift generated by the airfoil moving through the air divided by
the aerodynamic drag caused by that motion. We split the data into three groups: 1000
samples for training, 300 for testing, and 200 top-performing shapes that we will treat as
out-of-distribution samples when gauging the quality of our uncertainty estimates.

200 400 600 800 1000
Samples #

2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

M
AE

DEBOSH/Ens
DEBOSH/Full
DEBOSH/Drp
GNN
Kriging
KNN

150 300 450 600 750
Samples #

0.25
0.30
0.35
0.40
0.45
0.50

M
AE

DEBOSH/Drp
DEBOSH/Full
DEBOSH/Ens
GNN
Kriging
KNN

100 110 120 130 140 150 160
Samples #

40
50
60
70
80
90

100

Lif
t-t

o-
Dr

ag

DEBOSH/Drp
GNN
DEBOSH/Ens
Kriging
DEBOSH/Full
KNN

100 110 120 130 140 150 160
Samples #

4

3

2

1

Dr
ag DEBOSH/Drp

GNN
DEBOSH/Ens
Kriging
DEBOSH/Full
KNN

(Airfoils) (Cars) (Airfoils) (Cars)

Figure 4: Left. Accuracy of the lift-to-drag estimate as a function of the number of exemplars
used to train the emulators. Right. Lift-to-drag ratio of the shapes during optimization, as a
function of number of iterations.

We use the resulting dataset to compare the six approaches introduced in Section 4.1 in
terms of emulator accuracy, shape optimization performance, and uncertainty estimation
quality. For DEBOSH/Ens, we train five GNNs at each iteration while we train only one for
DEBOSH/Drp. In both cases, we take the uncertainty to be the variance over 5 predictions.
For GPs, we use the squared exponential kernel, which has been shown to be particularly
effective for aerodynamic prediction (Toal & Keane, 2011; Rosenbaum & Schulz, 2013). For
KNN , we utilize K = 8 and distance-based neighbor weighting as in (Baqué et al., 2018).

As all six methods being compared rely on an emulator, the left airfoil plot in Fig. 4 depicts
the accuracy of each on the test set as a function of the number of samples from the training
set used to train it. Our reentrant GNN outperforms the others consistently, especially when
there are only a few training examples.

To similarly evaluate the quality of our uncertainty estimates, we use the same insight
as in (Durasov et al., 2022): A network trained on a set of shapes drawn from a given
distribution should be more confident on shapes drawn from the same distribution than

7

Under review as a conference paper at ICLR 2024

Kriging DEBOSH/Ens DEBOSH/Drp DEBOSH
ROC-AUC 0.79± 0.01 0.88 ± 0.01 0.84± 0.02 0.87 ± 0.01

A
IR

PR-AUC 0.78± 0.01 0.86 ± 0.02 0.82± 0.01 0.88 ± 0.01
ROC-AUC 0.62± 0.02 0.90 ± 0.02 0.73± 0.01 0.86 ± 0.01

C
A
RPR-AUC 0.52± 0.01 0.78 ± 0.01 0.62± 0.02 0.79 ± 0.02

Table 1: Evaluation the uncertainty measure for 2D airfoils (AIR) and 3D cars (CAR).
The best result in each category is in bold and the second best is in bold. They all correspond
to DEBOSH and DEBOSH/Ens. The two approaches are comparable in terms of evaluating
uncertainty but the reentrant GNNs deliver better accuracy, as shown in Fig. 4.

1 2 3 4 5
Convergence iteration

0.0

0.5

1.0

1.5

2.0

No
rm

al
ize

d
de

ns
ity

Airfoils
In-distribution data
Out-of-distribution data

1 2 3 4 5
Convergence iteration

0.0

0.5

1.0

1.5

2.0

No
rm

al
ize

d
de

ns
ity

Cars
In-distribution data
Out-of-distribution data

Figure 5: Convergence rates for in- and out-of-distribution samples. We plot the distri-
bution of the number of iterations to convergence of our Reentrant GNNs for in-distribution vs.
out-of-distribution samples from the test sets of airfoils and cars. In general, convergence takes
significantly fewer steps for in-distribution samples than for out-of-distribution ones.

on shapes drawn from a different one. To test this, given all the 3D shapes we have,
we took the 200 top-performing ones in terms of their lift-to-drag ratio to be the out-of-
distribution samples. The remaining shapes were then considered as the in-distribution
ones. One thousand of these were used to train the emulators, and the others were used
for testing purposes. After training, we generated uncertainty values for each shape in
the in-distribution and out-of-distribution test sets. Finally, we computed standard ROC-
AUC, PR-AUC (Malinin & Gales, 2018) metrics for in- or out-of-distribution classification
based on the uncertainty estimate. As can be seen in the top rows of Tab. 1, our approach
generates uncertainty of a quality similar to that of ensembles, which supports our claim
of Section 3.3 that σ(x) is valid uncertainty measure. Furthermore, as shown in Fig. 5,
our reentrant GNNs often only require 3 iterations for converge. This makes them a little
faster than an ensemble of 5 ordinary GNNs and, importantly, requires far less memory and
training time. We provide more details in Appendix A.3.

We now turn to shape optimization using each one of the 6 methods. In each case, we
used 100 randomly chosen samples from the training set, along with the corresponding
simulations, to train the initial emulator. The rest of the training set, plus the OOD set,
were treated as a set of unlabelled shapes. After the initial training, we ran the inference for
each shape in it. For non-uncertainty approaches (KNN and GNN), this yielded predicted
performance values, and for the other values of the acquisition function (UCB with λ = 3).
We sorted the unlabelled shapes according to these values and picked the 10 best. For GNN-
based methods, for each one of these 10 shapes, we also performed 10 steps of gradient-based
optimization (Kingma & Ba, 2015). This relatively small number of iterations was chosen to
allow us to reap the benefits of GNN-based shape optimization (Baqué et al., 2018), without
moving too far away from the starting points and producing shapes whose acquisition value
is too different from that of the starting point. We discuss the influence of the number
of iterations we perform in Appendix A.6. Finally, we ran simulations for these chosen
shapes, added them to the training set, and iterated. For each method, we ran this whole
process three times and plot the resulting lift-to-drag ratios as a function of the number
of BO iterations performed in the right airfoil plot in Fig. 4. The shaded areas depict
the corresponding variances. Again, DEBOSH/Full outperforms the other approaches by a
statistically significant margin.

Recall from Section 3.3 that our approach is predicated on the fact that convergence of
the Reentrant GNNs can be expected to be slower for out-of-distribution samples than for

8

Under review as a conference paper at ICLR 2024

in-distribution ones. The plot on the left side of Fig. 5 validates this hypothesis on the
in-distribution and out-of-distribution splits.

4.3 Minimizing Car Drag in 3D

Figure 6: Optimized car shapes. Left. A car from the initial training set. Right. Best final
car. The color depict the vector y of pressure values predicted by the emulator.

Even though airfoil optimization using the NACA parameterization is a standard bench-
mark, it relies on a 3D latent vector and is therefore low-dimensional. We now turn to
a higher-dimensional problem in which the latent vector is of dimension 256: Car-shape
optimization in 3D to minimize aerodynamic drag, as depicted by Fig 6.

We use a cleaned-up and processed subset of the ShapeNet dataset (Chang et al., 2015)
that features N = 1400 car meshes suitable for CFD simulation. For each such mesh xi,
we run OpenFOAM (Jasak et al., 2007) to estimate the pressure field yi created by air
traveling at 15 meters per second towards the car. We also use MeshSDF (Remelli et al.,
2020) in conjunction with an auto-decoding approach (Park et al., 2019) to learn a function
P : R256 → R and a set of latent vectors {zi} such that ∀i xi = P (zi). We chose to use
MeshSDF because it yields the differentiable 3D mesh representation we need to optimize
with respect to the latent vector components.

As before, we compare all the methods in terms of accuracy, uncertainty, and final per-
formance delivered by Bayesian Optimization. We use the same protocols with one minor
modification. For accuracy evaluation, at each iteration, we add 150 new samples. We report
our results in the car plots of Fig. 4 and the bottom rows of Tab. 1. Again, DEBOSH/Full
consistently outperforms the other methods. As in the case of airfoils, the plot on the right
side of Fig. 5 validates shows that convergence happens faster for in-distribution samples
than for out-of-distribution ones.

5 Conclusion

We have presented a Bayesian Optimization approach to refining 2D and 3D shapes for
increased performance, such as maximizing the lift-to-drag ration of an airfoil or minimizing
the aerodynamic drag of a car. It relies on a novel GNN architecture to estimate both the
performance values to be improved and the reliability of these estimates. In essence, our
GNN learns to both predict physical values, such as pressure, and to integrate them over the
whole shape to compute performance numbers. Hence, the estimates it delivers are more
accurate than those of competing techniques, which in the end makes it possible optimize
shapes better.

In this work, we have focused on aerodynamics but the principle applies to many other
devices, ranging from the cooling plates of an electric vehicle battery to the optics of an
image acquisition device. In future work, we will therefore explore a broader set of potential
applications.

9

Under review as a conference paper at ICLR 2024

References

G. Allaire. A Review of Adjoint Methods for Sensitivity Analysis, Uncertainty Quantification
and Optimization in Numerical Codes. Ingénieurs de l’Automobile, 836:33–36, July 2015.

Van Amersfoort, J. A. Smith, L. A. Teh, Y. Whye, and Y. Gal. Uncertainty Estimation Using
a Single Deep Deterministic Neural Network. In International Conference on Machine
Learning, pp. 9690–9700, 2020.

A. Ashukha, A. Lyzhov, D. Molchanov, and D. Vetrov. Pitfalls of In-Domain Uncertainty
Estimation and Ensembling in Deep Learning. In International Conference on Learning
Representations, 2020.

P. Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine
Learning Research, 3(Nov):397–422, 2002.

P. Baqué, E. Remelli, F. Fleuret, and P. Fua. Geodesic Convolutional Shape Optimization.
In International Conference on Machine Learning, 2018.

R. Behrou, R. Ranjan, and J. K. Guest. Adaptive Topology Optimization for Incompressible
Laminar Flow Problems with Mass Flow Constraints. Computer Methods in Applied
Mechanics and Engineering, 346:612–641, 2019.

D. Boscaini, J. Masci, E. Rodolà, and M. Bronstein. Learning Shape Correspondence with
Anisotropic Convolutional Neural Networks. In Advances in Neural Information Process-
ing Systems, pp. 3189–3197, 2016.

A. Chang, T. Funkhouser, L. G., P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva,
S. Song, H. Su, J. Xiao, L. Yi, and F. Yu. Shapenet: An Information-Rich 3D Model
Repository. In arXiv Preprint, 2015.

H. Ching-Yeh, W. Jia-Lin, and S.F. Chang. Design and optimization method for a two-
dimensional hydrofoil. Journal of Hydrodynamics, Ser. B, 18(3):323–329, 2006.

A. Chiplunkar, E. Bosco, and J. Morlier. Gaussian Process for Aerodynamic Pressures Pre-
diction in Fast Fluid Structure Interaction Simulations. In World Congress of Structural
and Multidisciplinary Optimisation, pp. 221–233, 2017.

D.-A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and Accurate Deep Network Learning
by Exponential Linear Units (ELUs). In arXiv Preprint, 2015.

R. Dejhalla, Z. Mrša, and S. Vuković. Application of genetic algorithm for ship hull form
optimization. International shipbuilding progress, 48(2):117–133, 2001.

M. Drela. XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils. In
Conference on Low Reynolds Number Aerodynamics, pp. 1–12, 1989.

Nikita Durasov, Nik Dorndorf, and Pascal Fua. ZigZag: Universal Sampling-free Uncertainty
Estimation Through Two-Step Inference. arXiv Preprint, 2022.

Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. Visual simulation of smoke. In Pro-
ceedings of the 28th annual conference on Computer graphics and interactive techniques,
pp. 15–22, 2001.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geo-
metric. In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Y. Gal and Z. Ghahramani. Dropout as a Bayesian Approximation: Representing Model
Uncertainty in Deep Learning. In International Conference on Machine Learning, pp.
1050–1059, 2016.

Y. Gao, Y. Wu, and J. Xia. Automatic Differentiation Based Discrete Adjoint Method for
Aerodynamic Design Optimization on Unstructured Meshes. Chinese Journal of Aero-
nautics, 30(2):611–627, 2017.

10

Under review as a conference paper at ICLR 2024

L. Gosselin, M. Tye-Gingras, and F. Mathieu-Potvin. Review of Utilization of Genetic
Algorithms in Heat Transfer Problems. International Journal of Heat and Mass Transfer,
52(9):2169–2188, 2009.

X. Guo, W. Li, and F. Iorio. Convolutional Neural Networks for Steady Flow Approximation.
In Conference on Knowledge Discovery and Data Mining, 2016.

O. Gur and A. Rosen. Optimization of propeller based propulsion system. Journal of
Aircraft, 46(1):95–106, 2009.

K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. In
Conference on Computer Vision and Pattern Recognition, pp. 770–778, 2016.

Derrick Hines and Philipp Bekemeyer. Graph Neural Networks for the Prediction of Aircraft
Surface Pressure Distributions. Aerospace Science and Technology, 137:108268, 2023.

Hrvoje Jasak, Aleksandar Jemcov, Zeljko Tukovic, et al. OpenFOAM: A C++ Library for
Complex Physics Simulations. In International workshop on coupled methods in numerical
dynamics, 2007.

S. Jeong, M. Murayama, and K. Yamamoto. Efficient Optimization Design Method Using
Kriging Model. Journal of Aircraft, 42(2):413–420, 2005.

M. Jureczko, M. Pawlak, and A. Mezyk. Optimisation of wind turbine blades. Journal of
materials processing technology, 167(2-3):463–471, 2005.

Byungsoo Kim, Vinicius C Azevedo, Nils Thuerey, Theodore Kim, Markus Gross, and
Barbara Solenthaler. Deep Fluids: A Generative Network for Parameterized Fluid Simu-
lations. In Computer Graphics Forum, pp. 59–70, 2019.

D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimisation. In International
Conference on Learning Representations, 2015.

S. K. Kumar. On weight initialization in deep neural networks. arXiv Preprint, 2017.

B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and Scalable Predictive Uncer-
tainty Estimation Using Deep Ensembles. In Advances in Neural Information Processing
Systems, 2017.

J. Laurenceau, M. Meaux, M. Montagnac, and P. Sagaut. Comparison of Gradient-Based
and Gradient-Enhanced Response-Surface-Based Optimizers. American Institute of Aero-
nautics and Astronautics Journal, 48(5):981–994, 2010.

Jichao Li, Mohamed Amine Bouhlel, and Joaquim R. R. A. Martins. Data-Based Approach
for Fast Airfoil Analysis and Optimization. American Institute of Aeronautics and As-
tronautics Journal, 57(2):581–596, 2019.

X. Liu. Shape optimization of car body structure based on uniform design method. In 2008
IEEE Vehicle Power and Propulsion Conference, pp. 1–4. IEEE, 2008.

D. J. Mackay. Bayesian Neural Networks and Density Networks. Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment, 354(1):73–80, 1995.

A. Malinin and M. Gales. Predictive Uncertainty Estimation via Prior Networks. In Ad-
vances in Neural Information Processing Systems, 2018.

Aleka McAdams, Yongning Zhu, Andrew Selle, Mark Empey, Rasmus Tamstorf, Joseph
Teran, and Eftychios Sifakis. Efficient Elasticity for Character Skinning with Contact
and Collisions. ACM SIGGRAPH, pp. 1–12, 2011.

J. Mockus. Bayesian Approach to Global Optimization: Theory and Applications, volume 37.
Springer Science & Business Media, 2012.

11

Under review as a conference paper at ICLR 2024

F. Monti, D. Boscaini, J. Masci, E. Rodolà, J. Svoboda, and M. M. Bronstein. Geometric
Deep Learning on Graphs and Manifolds Using Mixture Model CNNs. In Conference on
Computer Vision and Pattern Recognition, pp. 5425–5434, 2017.

L. Mountrakis, E. Lorenz, O. Malaspinas, S. Alowayyed, B. Chopard, and A.G. Hoekstra.
Parallel Performance of an IB-LBM Suspension Simulation Framework. Journal of Com-
putational Science, 2015.

J. Mukhoti, van Amersfoort, J. A. Torr, P. HS, and Y. Gal. Deep Deterministic Uncertainty
for Semantic Segmentation. In arXiv Preprint, 2021.

A. Newell, K. Yang, and J. Deng. Stacked Hourglass Networks for Human Pose Estimation.
In European Conference on Computer Vision, 2016.

J. J. Park, P. Florence, J. Straub, R. A. Newcombe, and S. Lovegrove. Deepsdf: Learn-
ing Continuous Signed Distance Functions for Shape Representation. In Conference on
Computer Vision and Pattern Recognition, 2019.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. Devito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer. Automatic Differentiation in Pytorch. In Advances in Neural
Information Processing Systems, 2017.

J. Postels, F. Ferroni, H. Coskun, N. Navab, and F. Tombari. Sampling-Free Epistemic
Uncertainty Estimation Using Approximated Variance Propagation. In Conference on
Computer Vision and Pattern Recognition, pp. 2931–2940, 2019.

J. Postels, M. Segu, T. Sun, L. Van Gool, F. Yu, and F. Tombari. On the Practicality of
Deterministic Epistemic Uncertainty. In International Conference on Machine Learning,
Proceedings of Machine Learning Research, pp. 17870–17909. PMLR, 2022.

C. Qin, D. Klabjan, and D. Russo. Improving the expected improvement algorithm. Ad-
vances in Neural Information Processing Systems, 30, 2017.

C. E. Rasmussen and C. K. Williams. Gaussian Process for Machine Learning. MIT Press,
2006.

E. Remelli, A. Lukoianov, S. Richter, B. Guillard, T. Bagautdinov, P. Baque, and P. Fua.
Meshsdf: Differentiable Iso-Surface Extraction. In Advances in Neural Information Pro-
cessing Systems, 2020.

B. Rosenbaum and V. Schulz. Response Surface Methods for Efficient Aerodynamic Surro-
gate Models. In Computational Flight Testing, pp. 113–129. Springer, 2013.

K. R. Saviers, R. Ranjan, and R. Mahmoudi. Design and Validation of Topology Optimized
Heat Exchangers. In AIAA Scitech 2019 forum, pp. 1465, 2019.

N. Tagasovska and D. Lopez-Paz. Frequentist Uncertainty Estimates for Deep Learning. In
arXiv Preprint, 2018.

D. Toal and A.J. Keane. Efficient Multipoint Aerodynamic Design Optimization via Cok-
riging. Journal of Aircraft, 48(5):1685–1695, 2011.

J. Tompson, K. Schlachter, P. Sprechmann, and K. Perlin. Accelerating eulerian fluid sim-
ulation with convolutional networks. In International Conference on Machine Learning,
pp. 3424–3433. PMLR, 2017.

N. Umetani and B. Bickel. Learning Three-Dimensional Flow for Interactive Aerodynamic
Design. ACM Transactions on Graphics, 37(4):89, 2018.

H. G. Weller, G. Tabor, H. Jasak, and C. Fureby. A Tensorial Approach to Computational
Continuum Mechanics Using Object-Oriented Techniques. Computational Physics, 12(6):
620–631, November 1998.

12

Under review as a conference paper at ICLR 2024

G. Xu, X. Liang, S. Yao, D. Chen, and Z. Li. Multi-Objective Aerodynamic Optimization
of the Streamlined Shape of High-Speed Trains Based on the Kriging Model. PloS one,
12(1):1–14, 01 2017.

Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh, and Jianming Liang.
Unet++: A Nested U-Net Architecture for Medical Image Segmentation. In Deep Learn-
ing in Medical Image Analysis and Multimodal Learning for Clinical Decision Support,
2018.

13

Under review as a conference paper at ICLR 2024

A Appendix

In this section, we first examine the behavior of re-entrant networks in a very simple case.
We then provide details about the training procedure and additional supporting evidence
for some of the claims made in the paper.

A.1 Analysis of a Simple Case

(a = 3, b = 4) (a = 5, b = 4) (a = 8, b = 9)

Figure 7: Learning to interpolate a 1D function. Using a two-layer perceptron to interpolate
f(x) = sin(a∗x) cos(b∗ y) given training pairs (x, f(x)) for which 0 < x < 1. Each curve represents
the value of yt

i from Eq. 2 for values of x ranging from -1.0 to 2.0, that is, both inside and outside
the training domain. There is one curve per iteration i in Eq. 2, ranging from 1 to 5. Top row.
Taking tanh to be the activation function. Bottom row. Using ReLu.

To model the behavior of our reentrant-GNNs in a simpler and easier-to-analyze context,
we replace GNN with a perceptron fW that takes two scalar inputs x and y and outputs a
scalar. Given a training set {(xi, ri) , 1 ≤ i ≤ N}, we make it re-entrant by computing

y1i = fW (x, 0), y2i = fW (x, y1i), ... , y
(ti)
i = fW (x, y

(ti−1)
i) (2)

for each i, where ti is a different random integer between 1 and T for each sample. In these

examples, we use T = 5. We then minimize the total loss
∑

i(ri − y
(ti)
i)2. Fig. 7 depicts the

results of this process when the xi are uniformly sampled between 0 and 1 and the ri are
taken to be sin(a ∗ xi) ∗ cos(b ∗ xi) for different values of a and b. For values of x between 0
and 1, that is, for values that are within the training domain, we have y0i ≈ y1i ≈ yTi ≈ ri.
In contrast, out of domain, that is, outside the range [0,1], this is not true anymore, and
we can see strong oscillations of the successive yti values for 1 ≤ t ≤ T . This makes sense
because deep networks are known not to extrapolate well. Thus, even though the network
is trained to produce similar predictions for all values of t in-domain, the out-of-domain
predictions are essentially random, and there is no reason for them to be equal. In the
results section, we showed that, for both airfoils and car shapes, out-of-domain values of
x tend to produce oscillations and slow convergence. Interestingly, we observe exactly the
same behavior on this very simple example, as evidenced by the fact that the curves of Fig. 7
are not superposed for x < 0 and x > 1.

The exact values obtained for these out-of-domain samples are very hard to predict. As can
be seen by comparing the two rows of Fig. 7, they depend critically on the chosen activation
function, tanh or ReLu in this case. They also depend heavily on how the networks have
been initialized, as can be seen in Fig. 8. In one case, we initialized the weights of our
perceptrons using normally distributed weights. In the other, we used the slightly more
sophisticated Xavier Initialization (Kumar, 2017).

14

Under review as a conference paper at ICLR 2024

(Before training) (After training)

Figure 8: Influence of initialization. We plot the same curves as in Fig. 7 when learning
to interpolate the function f(x) = sin(5 ∗ x) cos(4 ∗ y), but over a more extended range of x and
starting from a different initialization of the perceptron weights in each row. Before training. As
before, each curve represents the values yt

i as a function of x. Here we plot those returned by our
perceptrons after initialization of their activation weights, but before actual training. The two plots
correspond to the two different initializations. After training. Values after training. There are
similar for 0 < x < 1 but different out of this domain. Not that they are also very different across
the two rows because of the slightly different initializations.

Crucially, in all cases, seeing large variations in the values of the successive yk(x) for a given
x is always a warning sign that the estimated value is likely to be incorrect. This is what
we exploit in this work.

A.2 Bayesian Optimization

Given a performance estimator of uknown reliability, exploration-and-exploitation tech-
niques seek to find global optimum of that estimator while at the same time accounting
for potential inaccuracies in its predictions.

Bayesian Optimization (BO) (Mockus, 2012) is one of the best-known approaches to finding
global minima of a black-box function g : A → R, where A represents the space of pos-
sible shapes, without assuming any specific functional form for g. It is often preferred to
more direct approaches, such as the adjoint method (Allaire, 2015), when g is expensive to
evaluate, which often is the case when g is implemented by a physics-based simulator.

BO typically starts with a surrogate model g̃Θ : A → R whose output depends on a set of
parameters Θ. g̃Θ is assumed to approximate g, to be fast to compute, and to be able to
evaluate the reliability of its own predictions in terms of a uncertainty. It is used to explore
A quickly in search of a solution of x∗ = argminx∈A g(x). Given an initial training set
{(xi, ri)}i of input shapes xi and outputs ri = g(xi), it iterates the following steps:

Step 1: Find Θ that yields the best possible prediction by g̃Θ.

Step 2: Generate new samples not present in the training set.

Step 3: Evaluate an acquisition function on these samples.

Step 4: Add the best ones to the training set and go back to Step 1.

As shown in the example of Fig. 9, the role of the acquisition function is to gauge how
desirable it is to evaluate a point, based on the current state of the model. It is often
taken to be the Expected Improvement (EI) (Qin et al., 2017) or Upper Confidence Bound
(UCB) (Auer, 2002) that favor samples with the greatest potential for improvement over

15

Under review as a conference paper at ICLR 2024

the current optimum. It is computed as a function of the values predicted by the surrogate
and their associated uncertainty.

0.0 0.2 0.4 0.6 0.8 1.0

2

0

2

4
Iterations #1

GP's mean
GP's std
Target function

Data points
New sample

0.0 0.2 0.4 0.6 0.8 1.0

2

0

2

4
Iterations #2

GP's mean
GP's std
Target function

Data points
New sample

0.0 0.2 0.4 0.6 0.8 1.0

2

0

2

4
Iterations #3

GP's mean
GP's std
Target function

Data points
New sample

0.0 0.2 0.4 0.6 0.8 1.0
x

1.0

0.5

0.0

Acquisition function

Maximal value

0.0 0.2 0.4 0.6 0.8 1.0
x

1.25

1.00

0.75

0.50

0.25

0.00
Acquisition function

Maximal value

0.0 0.2 0.4 0.6 0.8 1.0
x

1

0

1

2

Acquisition function

Maximal value

Figure 9: Bayesian Optimization. Given three initial data points for the function (dashed
blue)we want to optimize, we train a GP surrogate model (Step 1) and compute the UCB acquisition
function (Auer, 2002) over the [0, 1] range (Steps 2-3). We then select the points that maximize,
evaluate the target function at those points, and include the results in our training dataset (Step
4). The process is then iterated and, eventually, we find the true maximum of the function at
x ≈ 1, whereas a simple gradient based method would probably have remained trapped at the local
maximum x ≈ 0.58.

A.3 Training setups

GNN DEBOSH/Ens DEBOSH/Drp DEBOSH
Memory 1x 5x 1x 1x A

IRInf. Time 1x 5x 5x 3x
Train. Time 1x 5x 1x 2x
Memory 1x 5x 1x 1x C

A
RInf. Time 1x 5x 5x 3x

Train. Time 1x 5x 1x 2x

Table 2: Computational costs. The Memory, Inference Time, and Training Time metrics
measure the amount of time and memory required to train the network(s) and to perform inference,
in comparison to a single model.

For our experiments, we used single Tesla V100 GPU with 32Gb of memory. The training
process was implemented using the Pytorch (Paszke et al., 2017) and Pytorch Geomet-
rics (Fey & Lenssen, 2019) frameworks.

Airfoils. For airfoils, we have generated 1500 shapes from NACA parameters, and sim-
ulated pressure and lift-to-drag values with XFOIL simulator. As an emulator, we use
architecture that consists of 35 GMM layers (Monti et al., 2017) with ReLU activations.
First, we extract node features with these GMM layers and pass them to pressure branch,
that consists out of 3 GMM layers, and lift-to-drag branch, that uses global pooling and 3
fully-connected layers to predict final scalar. For training, we use Adam optimizer (Kingma
& Ba, 2015) and perform 200 epochs with 128 batch size and 0.001 learning rate. Both
for lift-to-drag and pressure, we use mean squared error (MSE) loss and combine them into
final loss with weights 1 for scalar and 100 for pressure. δ value for convergence method is
set to 0.1

Cars. For cars dataset, we have generated 1500 shapes from MeshSDF vectors, and sim-
ulated pressure and drag values with OpenFOAM simulator. As an emulator, we use ar-
chitecture that consists of 50 GMM layers with ELU activations (Clevert et al., 2015) and
skip-connections (He et al., 2016). Similar to airfoils, we extract node features with these
GMM layers and pass them to pressure branch, that consists out of 5 GMM layers, and
drag branch, that uses global pooling and 5 fully-connected layers to predict final scalar.
For training, we use Adam optimizer and perform 6 epochs with 8 batch size and 0.001
learning rate. Both for lift-to-drag and pressure, we use mean squared error (MSE) loss and
combine them into final loss with weights 1 for scalar and 1/200 for pressure. δ value for
convergence method is set to 0.05.

16

Under review as a conference paper at ICLR 2024

A.4 Propagating Information

In a standard GNN information is propagated across the shape with each successive convo-
lution. Hence, it is comparatively slow and our reentrant GNNs address this. To support,
this claim we ran an experiment to test the influence of the receptive fields of the GNNs,
which control the speed at which information percolates across the network. We trained
5 airfoils and car emulator models of increasing depth while keeping total weights number
fixed. Starting from the original architecture, we plot the prediction mean error for both
lift-to-drag and drag in Fig. 10 in red. As expected, the error decreases as depth increases
and more information is propagated across the shape. The exact same behavior can be
observed when using a reentrant GNN run iteratively, as shown by the black curves. This
supports our claim that each iteration helps propagate the information across the shape just
as effectively as when using the deeper network.

1 2 3 4 52.4

2.6

2.8

3.0

M
AE

GNN
Reentrant GNN

1 2 3 4 5
0.25

0.26

0.27

0.28

0.29

0.30

M
AE

GNN
Reentrant GNN

Lift-to-Drag Drag

Figure 10: Propagating information across an shape. A comparable behavior is observed
when increasing the depth of a standard GNN (red curves) and when running several iterations of
a shallower reentrant GNN (black curves).

A.5 Learning to Integrate

We mentioned in Section 3.2 that our reentrant architecture ”learns” to integrate the local
pressure values to produce a global drag or lift-to-drag ratio. To demonstrate its effective-
ness, we compare against several baselines:

1. Only predicting performance value—-drag or lift-to-drag-ration–without predicting
the local pressure values.

2. Predicting both performance and local pressure values, but without enforcing con-
sistency, as in (Baqué et al., 2018).

3. Predicting pressure and computing performance using integration.

4. Our recursive approach.

As can be seen in Table 3, our approach does best. Interestingly, training the network to
predict the local pressure values even without explicitly using them, as in the #2 approach,
helps and yields the second best performing method.

#1: w/o pressure #2: w/ pressure #3: integration #4: Reentrant
AIR 3.309± 0.01 2.807± 0.01 3.61± 0.01 2.6 ± 0.01
CARS 0.35± 0.02 0.32 ± 0.01 0.51 ± 0.07 0.30 ± 0.01

Table 3: Mean error and variance of predicted performance for the four methods of Sec-
tion A.5.

17

Under review as a conference paper at ICLR 2024

A.6 Gradient Optimization

Given the shapes selected according to the acquisition function during Bayesian Optimiza-
tion, our method performs several gradient steps in order to refine these shapes and makes
them more performant. In this subsection, we examine the impact of performing this opti-
mization.

100 110 120 130 140 150 160
Samples #

40
50
60
70
80
90

100
Lif

t-t
o-

Dr
ag

DEBOSH/Ens
DEBOSH/Full
DEBOSH/Full w/o grad

Figure 11: Impact of refining the shapes. Turning on gradient optimization of new samples
delivers a small performance increase, but smaller than the one used by replacing ensembles with
a version of our approach without the refinement.

In the results shown in the main paper, given the current state of the emulator, we performed
10 steps of an Adam-based optimizer with a 1e − 4 learning rate to refine each selected
shape. In Fig. 11, we plot the results obtained for the airfoils by doing this refinement
(DEBOSH/full), not doing it (DEBOSH/Full w/o grad), or using deep ensembles. DEBOSH
without refinement already delivers an improvement overs ensembles, with a further but
smaller improvement when performing the refinement. We tried increasing the number of
refinement steps but that brought no further improvement.

18

	Introduction
	Related Work
	Shape Optimization
	Uncertainty Estimation

	Method
	Formalization
	Using a Standard GNN
	Using a Reentrant GNNs

	Experiments
	Baselines
	Airfoil Optimization in 2D
	Minimizing Car Drag in 3D

	Conclusion
	Appendix
	Analysis of a Simple Case
	Bayesian Optimization
	Training setups
	Propagating Information
	Learning to Integrate
	Gradient Optimization

