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ABSTRACT

We present Self-Organizing Visual Embeddings (SOVE), a new training tech-
nique for unsupervised representation learning. SOVE avoids learning prototypes
from scratch and instead explores relationships between visual embeddings in a
non-parametric space. Unlike existing clustering-based techniques that employ
a single prototype to encode all the relevant features of a concept, we propose
the SOVE method, where a concept is represented by many semantically similar
representations, or judges, each containing a complementary set of features that
together can fully characterize the concept, and maximize training performance.
We reaffirm the feasibility of non-parametric self-supervised learning (SSL) by in-
troducing novel non-parametric adaptations of two loss functions with the SOVE
technique: (1) non-parametric cluster assignment prediction for class-level rep-
resentations and (2) non-parametric Masked Image Modeling (MIM) for patch-
level reconstruction. SOVE achieves state-of-the-art performance on many image
retrieval benchmarks. Additionally, SOVE demonstrates enhanced scaling perfor-
mance when trained with Vision Transformers (ViTs), showing increased gains as
more complex encoders are utilized.

1 INTRODUCTION

25 50 100 200 400

74

76

78

80
SOVE

iBOT

MaSSL

DINO

Number of parameters (Millions)

Im
ag

eN
et
k

-N
N

To
p-

1

Figure 1: k-NN top-1 accuracy on ImageNet.

In recent years, self-supervised learning (SSL)
has significantly changed how large deep
learning models are trained in industry and
academia. Today, most complex learning sys-
tems in vision and natural language process-
ing (NLP) all follow a similar training strategy
composed of two distinct stages: (1) a longer
round of self-supervised pre-training followed
by (2) a round of supervised fine-tuning on a
task of interest. This strategy not only produces
a robust predictive model but also reduces costs
associated with data labeling. In computer vi-
sion, SSL methods (Chen et al., 2021; Silva
& Ramı́rez Rivera, 2023; Chen et al., 2020a)
based on multiview and joint-embedding archi-
tectures are effective techniques for learning
representations from unlabeled images.

Current state-of-the-art SSL methods (Zhou et al., 2022; Oquab et al., 2023) follow a nearly identical
framework: they learn a set of anchors (or prototypes) that are presumed to represent hidden con-
cepts1 in the data. Upon receiving a pair of views as input, the self-supervised training assumes that
the two views should produce similar prediction patterns w.r.t. the anchors. However, when views
are too dissimilar (due to extensive augmentations), the views and anchors will exhibit inconsistent
prediction patterns. In this scenario, the neural network is forced to compress (discard) the unique
information in each view in favor of the shared features that (1) pull the views’ representations
together and (2) provide the learning signal to update the anchors. In this learning framework, the

1We use the term ”concept” as a generalized idea of a cluster, i.e., images that share a subset of features.
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anchor repels or attracts new images to a concept. Therefore, if an anchor has a limited set of features
to represent its underlying concept, the network will be compelled to discard excessive information
from the views to optimize its objective, potentially harming the learned representations.

To address this limitation, we propose a non-parametric approach where multiple anchors represent
a concept. We refer to this new method as Self-Organizing Visual Embeddings (SOVE), cf. Figure 2
(right and middle-bottom) for an initial visual description. Intuitively, each hidden concept in the
data, for instance, the concept of four-legged animals or vehicles with wheels, will be represented
by multiple anchors. Each anchor (within a concept) acts as a judge and produces a vote pertaining
to the class membership of a view to that concept. However, each additional anchor produces a
vote (similarity scores) against views based on distinct feature sets, supplementing the relationship
criterion between views and concepts. Then, we obtain a final score for a view as a weighted
combination of the individual scores from each judge within a concept. To ensure that judges within
a concept share semantic characteristics, we propose a judge selection algorithm over a pool of
non-parametric representations of previously seen images during training.

In contrast to existing solutions (Caron et al., 2020) where a single anchor represents an entire con-
cept in the data, our proposal smooths the similarity optimization between views and anchors, by
enriching the feature set of hidden concepts, allowing for consistent predictions between views. To
ensure our learned representations perform well on a variety of downstream tasks, including clas-
sification and dense prediction, we extend the non-parametric SOVE algorithm to perform Masked
Image Modeling (MIM), where masked representations must agree with corresponding non-masked
embeddings from the perspective of multiple local-level judges.

Our contributions are threefold:

• We present the novel Self-Organizing Visual Embeddings framework to improve SSL clustering-
based methods. We propose to optimize views based on the soft similarity viewpoint of a group
of semantically similar embeddings that represent a given hidden concept in the space of non-
parametric representations. By enriching the feature set of concepts with multiple judges, we
create more complex interactions between views and concepts, preventing the neural network
from discarding excessive information when optimizing for consistency.

• We demonstrate the adaptability of the MIM pretext task to a non-parametric design using the
SOVE framework. The non-parametric MIM task learns fine-grained features by reconstructing
local-level masked embeddings based on a non-parametric tokenizer that uses patch-level rep-
resentations from different images as anchor points. This adaptation increases the performance
of the learned representations and demonstrates superior performance compared to existing ap-
proaches on downstream dense prediction tasks.

• Our work demonstrates the feasibility of non-parametric clustering-based methods, where we
avoid learning prototypes from random weights, and show that such an approach is stable, does
not require extra regularizers to avoid mode collapse, is extensible to many pretext tasks such as
MIM, and produces transferable representations. Moreover, we show that SOVE’s performance
increases as we scale the model architecture.

2 METHODOLOGY

To introduce our method, we will start with an illustrative example. Assume a concept that repre-
sents four-legged animals like cats and cows. Let F = {f1,f2,f3,f4}, define a set of essential
features for the concept, such as the animal’s shape, f1, background, f2, eyes, f3, and fur texture,
f4. Given two representations of an input image z1 and z2 where the first has high response to
features {f1,f3,f4} and the second to features {f2,f4}, only feature f4 is common among the
two views. Consider two scenarios, one where the concept is poorly represented by an anchor ai

responding to features {f2,f4} and a second where ai responds to all features in F . To optimize
for consistency in the first case, i.e., to approximate the two views in the embedding space, the neu-
ral network may compress (discard) the unique features from each view, i.e., {f1,f2,f3}, so that
s
(
z1,ai

)
≈ s

(
z2,ai

)
, where s(·, ·) is a similarity function such as the cosine similarity. Feature

f4 will be the only factor used to propagate signals for updating the embeddings and the anchors.
In the second scenario, however, the increased redundancy will allow for more complex interactions
between views and anchors, and less important features will be discarded, strengthening the learning
signal and enriching the learned representations.

2
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Figure 2: Existing solutions (parametric single anchor) vs. SOVE (non-parametric multi an-
chors). Clustering-based SSL methods (left) learn a finite set of anchors (colored squares) to repre-
sent hidden concepts in the data. They assume that multiple views of an image, z1 and z2, should
agree (produce similar predictions) w.r.t. the learned anchors. However, when views are too dissim-
ilar, their interaction with the anchors produces inconsistent prediction patterns (top-middle). To
achieve consistency, the optimization process discards unique features in the views in favor of the
limited shared ones, which may limit the learning of the anchors. Instead of a single learnable an-
chor, we propose having many non-parametric judges per concept (right). Each judge produces an
individual score measuring the view’s membership to the concept. Then, judges combine their votes
to produce a final score. In this example, the anchor a1 selects two additional judges, e1 and e4,
to represent its concept. In this way, we can increase the agreement between views and concepts,
leading to better transferable representations.

Notation. Let X be an image dataset and x ∼ X a uniformly random observation. We denote
by xv the v-th augmented version of x, referred to as a view of x, where the superscript v indexes
the views V . To create views, we use a random transformation function t such that xv = t(x).
For simplicity, we consider the case where V = 2. However, we explore multiple view scenarios
in the main experiments. We denote by fΦ a Vision Transformer (ViT) (Dosovitskiy et al., 2020)
encoder with parameters Φ that receives a view and produces a matrix of representation vectors
Zv = fΦ(x

v) ∈ RL×d, where L and d are the number of patch tokens and feature dimensionality
respectively, such that Zv = {zl}Ll=0 contains patch representations where the first element z0 ∈ Rd

is the classification or [CLS] token embedding and the remaining Z1:L,: elements are patch em-
beddings from an image x. Instead of learning class and patch level discrete features (or prototypes)
as previous work did (Caron et al., 2020; Zhou et al., 2022), we define feature sets EC ∈ RNC×d

and EP ∈ RNp×d to hold [CLS] and patch embeddings from previous iterations. Each set holds a
subset of the training data features for global and local representations.

2.1 LEARNING REPRESENTATIONS USING SSL CLUSTERING STRATEGIES

Current SSL methods (Oquab et al., 2023; Zhou et al., 2022) have a nearly identical framework
composed of two pretext tasks: (i) cluster assignment prediction over class-level embeddings and
(ii) token-level embedding reconstruction or Masked Image Modeling (MIM). Usually, each task is
learned with a different set of trainable parameters.

The cluster assignment prediction task aims to learn embeddings that covary w.r.t. a set of learnable
prototypes, or anchors θ ∈ RK×D. The optimization follows:

L[CLS],θ = −
∑
x∼X

P [CLS]
θ (z1

0)
T log

(
P [CLS]
θ (z2

0)
)
, (1)

where P [CLS]
θ (u) = σ(

〈
u, θT

〉
), σ (·) is the softmax function and ⟨·, ·⟩ is the cosine similarity.

Elementally, P [CLS]
θ (·) is a linear layer, parameterized by θ, that maps the views’ vector embeddings

zv into K pseudo-categories assigning each representation a soft distribution (prediction pattern)
describing its membership probabilities to all prototypes.

This objective can be viewed from a pseudo-clustering perspective, where each anchor acts as an
individual judge representing a pseudo-class, i.e., a hidden concept in the data. In both parametric
and non-parametric approaches, each judge is responsible for issuing a similarity score (a vote) that
relates a view to the concept it represents.

3
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Figure 3: Overview of the SOVE algorithm. First, we select a set of random anchors A = {ai}Ki=0
(colored squares with patterns) from a set of representations kept in memory (gray sphere). Second,
each anchor selects k nearest neighbors (2 in this illustration). The selected embeddings are treated
as members of the concept represented by each anchor ai, forming a dataset D ∈ RK(k+1)×d. Note
that a given embedding may belong to more than one class simultaneously. We use the similarity
score between the nearest embeddings and anchors as class membership confidence scores to build
soft labels Y ∈ RK(k+1)×K . Intuitively, each concept contains a set of judges that independently
estimate the degree of similarity between a view and a concept. Then, judges within a concept com-
bine their votes to produce a final score for each view. Finally, the resulting similarity distribution
for each view is optimized to be consistent across concepts.

Existing solutions typically employ a single judge (usually learnable) to determine the membership
of a view to a concept. However, a significant challenge with this approach arises when the views
are relatively different and exhibit low feature sharing, which is common due to the stochastic nature
of the view generation process. In such cases, the views receive inconsistent similarity scores w.r.t.
the anchors. In other words, each judge will provide inconsistent evaluations for views of the same
image. We argue that this inconsistency makes the objective in (1) inefficient, leading to suboptimal
downstream performance of the learned features. In the parametric case, if the two views do not
share enough features, they will receive different membership scores from a judge (anchor), limiting
the learning process (update of the anchors) due to a lack of redundant information between views.
A similar argument applies to the non-parametric case.

This framework places excessive importance on the anchors’ representations, which need to encode
a comprehensive set of relevant features to fully represent their concepts. For example, in Figure 3,
views x1 and x2 have inconsistent predictions with respect to anchor a1 because x2 and a1 share
background features that are absent in x1 due to extensive random cropping. To address this in-
consistency, the neural network could compress the grass features present in x2’s representation
z2, making the embeddings z1 and z2 more similar and their relationship with a1 more consistent.
However, this approach assumes that a1 fully represents the concept in terms of features. When
a1 underrepresents the concept, additional features are necessary to disambiguate the relationship
between views. We argue that such additional features can be found in the vicinity of a1. For in-
stance, even though view x1 and anchor a1 have low similarity, x1 has high similarity with one of
a1’s neighbors, e1, due to the resemblance between the dog and cat’s fur. Additionally, both views
are similar to another neighbor, e4 (red fox), which shares background information with x2 and
object shape and color with x1. By treating neighbors e1 and e4 as additional representatives of
a1’s concept, we enrich the feature set used to describe the concept, allowing for a more consistent
matching with views. Since prediction patterns between views and concepts are obtained from the
perspective of multiple observers within a concept, the neural network can avoid discarding useful
features to force consistency and optimize the objective.

4
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Motivated by this example, we present a novel training framework that leverages multiple anchors
to enrich the feature set representing a concept, allowing for an improved agreement between views.

2.2 SELF-ORGANIZING VISUAL EMBEDDINGS

The inconsistency problem previously described occurs when views of the same image produce un-
stable associations with anchors. If a view contains unique features (not shared with the other view),
these features will produce unique correlations with anchors, resulting in inconsistent prediction
patterns between views. One way to solve this problem is to increase the information redundancy of
a concept by augmenting its feature set.

Grounded on these ideas, we propose a multi-anchor strategy where many semantically similar
anchors independently vote to measure the relationship between views and concepts. Ideally, each
additional judge brings a different perspective about the concept to which it belongs, such as new
essential features that represent the concept but are not either present or sufficiently strengthened in
a sole anchor. In practice, this strategy induces a smoothing effect in the anchor/view relationship so
that, on average, the prediction scores of each view w.r.t. the concepts (each represented by multiple
anchors) are more consistent, which in turn prevents the neural network from discarding important
features from the views to enforce consistency.

2.2.1 UNSUPERVISED NON-PARAMETRIC JUDGE SELECTION

One important consideration is how to bootstrap additional judges within a concept while maintain-
ing semantics. If the judges do not share semantic characteristics, their contributions will be noisy,
potentially hurting the learned features. Inspired by recent work on non-parametric SSL (Silva et al.,
2024), we use a feature set EC to store representations from previously processed images during
training and expand the idea of a simple feature store, to store and sample anchor representations.

First, we sample a subset of anchor representations A = {ai}Ki=0 ⊂ EC. Second, we perform spher-
ical k-Nearest Neighbors using the anchors A as centroids such that D = argmaxke

(〈
A,ET

C

〉)
where the argmaxke operator returns the anchors and the set of the top-k closest neighbors of each
anchor. At this point, D can be viewed as a dataset containing K pseudo-classes, each containing
k + 1 observations, i.e., anchors ai, and their k nearest neighbors. Note that this definition allows a
given vector representation ej ∈ E to belong to more than one pseudo-class, cf. Figure 3.

To account for the uncertainty from the unsupervised k-NN selection, we build pseudo-labels Y
for the dataset D to model the soft contributions of each additional neighbor (judge) towards the
views. For instance, a naive strategy would treat each neighbor as a true class member, i.e., the
pseudo-labels Y are represented as one-hot vector representations. We show in Section 3.7 that
such a strategy is suboptimal, probably because of false positives from the k-NN selection. Instead,
we propose soft labels y ∈ Y (cf. Figure 3), such that the class indicator value (strength of the
contribution) of each additional judge is defined as the embedding similarity score between itself
and the anchors, i.e., ⟨ej ,ai⟩ for j ∈ {0, 1, . . . ,K(k + 1)} and i ∈ {0, 1, . . . ,K}. Thus, the
weight contribution of each additional judge to the views is proportional to its class membership
score towards the anchor.

Now, we can compute the probability distributions for each view as, P [CLS](u) = σ(
〈
u,DT

〉
)Y ,

where Y are soft labels that sum up to one encoding the contributions of each additional judge. Com-
pared to prototype-based losses (1), our approach swaps the learnable anchors θ by non-parametric
embeddings EC, and introduces the pseudo-labels Y . Note that the matrix multiplication between
the probability distribution σ(·) and the pseudo-labels Y , represents the weighted combination of
the judges’ votes within each concept, cf. Figure 3.

Finally, we minimize the non-parametric version of L[CLS],θ (1), as

L[CLS] = −
∑
x∼X

P [CLS](z1
0)

T log
(
P [CLS](z2

0)
)
. (2)
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2.3 NON-PARAMETRIC MIM

The MIM task has been extensively explored by Zhou et al. (2022) and Oquab et al. (2023) from the
parametric perspective. The task aims to produce consistent predictions between reconstructed patch
embeddings and their corresponding uncorrupted representations w.r.t. a set of learnable discrete
local-level features. The goal is to train an online local-level tokenizer ϕ by randomly masking a
portion of the patch token representations x = {xl}Ll=0 using a binary mask m ∈ {0, 1}L such that
x̂ = {x̂i | (1−mi)xi +mie[MASK]}L is a corrupted version of the input image x, and eMASK is a
learnable token. The corrupted input x̂ is fed to the encoder Ẑ = f(x̂) and reconstructed from the
uncorrupted version following:

Lpatch,ϕ = −
L∑

l=1

mlP
patch
ϕ (z1

l )
T log

(
P patch
ϕ (ẑ1

l )
)
, (3)

where, similar to L[CLS],θ (1), P patch
ϕ (·) is a linear layer that computes the probability distributions

w.r.t. learnable discrete features ϕ by soft assigning the patch tokens to K̇ distinct discretized repre-
sentations. Note that the loss Lpatch,ϕ (3) skips the [CLS] token x0, and optimizes different versions
of the same image view, where one is masked.

We propose a new version of the MIM pretext task based on a non-parametric strategy. Instead of
learning a set of discrete features (online tokenizer), we obtain the probability distributions P patch(·)
by exploring relationships between semantically similar patch embeddings in the space of non-
parametric representations using the SOVE strategy, cf. Section 2.2.

We start by randomly sampling K̇ anchor patch discrete tokens Ȧ = {ȧj}K̇j=0 ⊂ EP. Then,
each anchor selects k nearest patch token representations to become members of a local concept
represented by anchor ȧi such that, Ḋ = argmaxke

(〈
Ȧ,ET

P

〉)
is the dataset containing local

anchors and their neighbors. Note that the EP can be seen as a non-parametric or offline tokenizer.

Similarly to Section 2.2, we obtain the patch-level probability distributions, in a non-parametric
form, as P patch(v) = σ

(〈
v, ḊT

〉)
Ẏ , and optimize

Lpatch = −
L∑

l=1

mlP
patch(z1

l )
T log

(
P patch(ẑ1

l )
)
, (4)

where we remove the learnable discrete tokens ϕ in favor of non-parametric embeddings EP and
introduce the judges’ soft contributions through Ẏ .

The non-parametric MIM objective (4) encourages the network to reconstruct the missing patches
so that the prediction patterns between reconstructed and original embeddings are consistent from
the point of view of multiple judges within each concept.

The final loss is a convex combination of the two losses, LSOVE = λ1L[CLS]+ λ2Lpatch. By default,
λ1 = λ2 = 1.

3 MAIN EXPERIMENTS

We begin by assessing the quality of the pre-trained representations on a range downstream tasks,
adhering the experimental protocol outlined by Zhou et al. (2022). Subsequently, we justify the
choices in our architecture by ablating its main components.

3.1 LINEAR EVALUATION ON IMAGENET

k-NN and Linear probing. In Table 1, we evaluate the linear transferability power of the repre-
sentations learned by SOVE using two methods: (1) non-parametric k-NN and (2) linear models.
For the k-NN estimator, we sweep different values of k and report the best. For linear probing, we
use the pre-trained SOVE encoder as a feature extractor and train a linear layer on top of the frozen

6
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Table 1: Linear probing, semi-supervised fine-
tuning, and k-NN evaluations on ImageNet-1M.
Method Arch Ep. Lin. 1% 10% k-NN

EsViT Swin-T/14 300 78.7 77.0
iBOT Swin-T/14 300 79.3 76.2
SOVE Swin-T/14 300 79.3 77.0

DeiT ViT-S/16 800 79.8 79.3
DINO ViT-S/16 800 77.0 60.3 74.3 74.5
iBOT ViT-S/16 800 77.9 61.9 75.1 75.2
MaSSL ViT-S/16 800 77.8 75.1
SOVE ViT-S/16 800 77.8 61.8 75.0 75.2

DeiT ViT-B/16 400 81.8 75.6 81.4 81.0
MoCo-v3 ViT-B/16 400 76.7
NNCLR ViT-B/16 1000 76.5
DINO ViT-B/16 400 78.2 64.4 76.3 76.1
iBOT ViT-B/16 400 79.5 68.5 78.1 77.1
MaSSL ViT-B/16 400 79.6 77.2
SOVE ViT-B/16 400 79.9 69.5 78.2 78.4

iBOT ViT-L/16 250 81.0 78.0
I-JEPA ViT-L/16 600 77.5

ViT-H/14 300 79.3
SOVE ViT-L/16 250 81.2 79.2

Table 2: Object detection and instance seg-
mentation on COCO and semantic seg-
mentation on ADE20k. Results for ViT-B
encoders.

Method Det. iSeg. Seg† Seg
APb APm mIoU mIoU

Sup. 49.8 43.2 35.4 46.6
BEiT 50.1 43.5 27.4 45.8
DINO 50.1 43.4 34.5 46.8
iBOT 51.2 44.2 38.3 50.0
SOVE 51.4 44.3 38.7 50.6

Table 3: Transfer learning by fine-tuning
SSL methods on smaller datasets. We re-
port top-1 accuracy for ViT-B encoders.

Method C10 C100 iNat18 iNat19 Flwrs Cars

Rand 99.0 90.8 73.2 77.7 98.4 92.1
BEiT 99.0 90.1 72.3 79.2 98.0 94.2
DINO 99.1 91.7 72.6 78.6 98.8 93.0
iBOT 99.2 92.2 74.6 79.6 98.9 94.3
SOVE 99.3 92.4 74.6 79.7 99.0 94.5

features. SOVE improves over existing methods by +1.2 top-1 accuracy on the k-NN benchmark.
SOVE’s k-NN top-1 accuracy (ViT-L, 307 million params) is similar to the linear top-1 accuracy
of I-JEPA (Assran et al., 2023) (ViT-H, 632 million params) with a pre-training schedule of 300
epochs. Additionally, we report performance values for supervised baseline DeiT (Touvron et al.,
2021), as well as for the strong SwinT (Liu et al., 2021) baseline EsViT (Li et al., 2022).

We observed an interesting performance scaling when training ViTs with the SOVE algorithm. As
we increased the complexity of the ViT backbones, the expected performance gains were higher
than those of competing methods. In Table 1, while SOVE’s performance using the ViT-S backbone
is similar to existing solutions, more complex backbones, such as ViT-B/L and SwinT, produced
larger performance gains. These gains are primarily shown in the k-NN evaluation, suggesting a
strong boost in the off-the-shelf representational power for retrieval tasks, cf. Section 3.5.

3.2 SEMI-SUPERVISED FINE-TUNING ON IMAGENET

In Table 1, we measure SOVE’s representation capacity to learn tasks using a limited set of labeled
examples. We follow the unsupervised pre-train, supervised fine-tune protocol and report top-1
accuracy using 1% and 10% of ImageNet-1M labeled images. Similar to other experiments, we
observe that SOVE’s performance tends to increase and surpass competing methods when trained
with more complex encoders. We observe a large performance gap between SOVE and iBOT in
smaller data regimes, such as with 1% labeled data. As the fraction of annotated data increases,
performances tend to level out. Following previous work (Chen et al., 2020b), we fine-tune the
pre-trained encoders for 1000 epochs from the first layer of the projection head.

3.3 DENSE PREDICTION TASKS

Dense prediction tasks involve multiple predictions per input observation. We consider three down-
stream evaluations on (1) object detection, (2) semantic segmentation, and (3) instance segmentation.
To solve detection and segmentation tasks, the learned representation needs to encode information
regarding the objects’ localization and their classes. An optimal fixed-size representation needs to
strike a balance between coarse and fine-grained features used to classify and segment objects by
performing pixel predictions.

Object Detection and Instance Segmentation on COCO. In Table 2, first and second columns,
we report APb and APm for various SSL methods on the COCO dataset using the Mask R-CNN (He

7
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et al., 2017) as the task layer. The entire network is fine-tuned for 12 epochs, following Zhou et al.’s
(2022) protocol. SOVE ’s representations exhibit modest improvements of +0.2 in APb and +0.1
in APm over iBOT on object detection and inst. segmentation tasks, respectively.

Semantic Segmentation on ADE20K. In Table 2, third and fourth columns, we report mean inter-
section over union (mIoU) for semantic segmentation on the ADE20K dataset (Zhou et al., 2017).
Following Zhou et al. (2022), we consider two protocols (1) linear probing and (2) fine-tuning. In
the first, we keep the patch tokens from the pre-trained SOVE encoder fixed and only train a linear
model on top of the frozen features. In the second, we use the task layer in UPerNet (Xiao et al.,
2018) and finetune all the network’s parameters. In both scenarios, SOVE pre-trained representa-
tions improved iBOT’s strong baselines by +0.4 and +0.6 and broadened the gap to the supervised
baselines by +3.3 and +5.0 mIoU, respectively.

3.4 TRANSFER LEARNING

In Table 3, we study transfer learning tasks using SOVE pre-trained encoders as initialization to
perform fine-tuning on several classification tasks using smaller datasets. We report top-1 accuracy
for six datasets including CIFAR-10/100, iNaturalist 2018/2019, Oxford 102 Flower, and Stanford
Cars. SOVE encoders achieve strong downstream performances on fine-tuning protocols, surpassing
competitors on 5 out of 6 datasets with modest gains. We hypothesize that due to the long fine-
tuning regime from Zhou et al.’s (2022) protocol of 1000 epochs, most methods end up reaching
similar performances, also indicating saturation.

3.5 IMAGE RETRIEVAL

Image retrieval. To assess the image retrieval properties of SOVE, we consider the revisited Oxford
and Paris image retrieval datasets (Radenović et al., 2018). Each dataset has three sets of increasing
difficulty. We use frozen pre-trained encoders as feature extractors and apply k-NN on top of the
frozen features. In Table 5, we report Mean Average Precision (mAP) for the Medium (M) and
Hard (H) splits. SOVE significantly improves over current state-of-the-art methods, increasing mAP
performance by up to +3.2 on the Hard split of both benchmarks. For reference, we report results
from a supervised retrieval-specific method (Revaud et al., 2019).

Video instance segmentation. In Table 4, we employ frozen patch tokens from SOVE pre-trained
models to perform video scene segmentation using a nearest neighbor classifier between consecu-
tive frames. Since we do not update any extra parameters, this evaluation is particularly interesting
to validate the fine-grained downstream capabilities of SOVE frozen features learned through re-
construction using the non-parametric MIM loss (4). We compare SOVE’s performance to existing
SSL methods and to a supervised ViT-S/8 trained on ImageNet-1M. SOVE improves upon the iBOT
baseline by up to +1.3 on mean contour-accuracy Fm.

3.6 ROBUSTNESS

We evaluate SOVE’s performance on a robustness test over seven variations of fore-
ground/background mixing and masking using the ImageNet-9 dataset (Xiao et al., 2020). We report
results in Table 6 for ViT-B encoders. SOVE significantly outperforms competitors in six out of the
seven background changes with significant gains on most of the categories such as: Only-FG (OF)
+2.3, Mixed-Rand (MR) +2.6, Mixed-Next (MN) +2.7, and Only-BG-B (OBB) +2.3.

3.7 ABLATIONS

To understand why SOVE learns useful visual representations using unsupervised data, we explore
its main components and our reasoning for choosing the optimal set of hyper-parameters.

Online vs. non-parametric tokenizers. In Table 7, we compare the performance of methods using
online or pre-trained tokenizers with our non-parametric approach, using ViT-S encoders pre-trained
for 300 epochs without multi-crop augmentation. We ablate the effect of each loss function, (2)
and (4). The symbol ∆ denotes methods that use a pre-trained DALL-E encoder (Ramesh et al.,
2021) as a tokenizer. We observe that pre-training without the L[CLS] loss (2) negatively affects
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Table 4: Video object segmentation on DAVIS
2017. We report mean region similarity Jm and
mean contour-based accuracy Fm.

Method Data Arch. (J&F)m Jm Fm

Sup.
IN-1K IN-1K ViT-S/8 66.0 63.9 68.1
STM I/D/Y RN50 81.8 79.2 84.3

Self-Sup.
CT VLOG RN50 48.7 46.4 50.0
MAST YT-VOS RN18 65.5 63.3 67.6
STC Kinetics RN18 67.6 64.8 70.2
DINO IN-1K ViT-S/16 61.8 60.2 63.4

IN-1K ViT-B/16 62.3 60.7 63.9
iBOT IN-1K ViT-S/16 61.8 60.4 63.2

IN-1K ViT-B/16 62.7 61.7 63.7
SOVE IN-1K ViT-B/16 63.3 61.7 65.0

Table 5: Image retrieval. We report mAP using
off-the-shelf features.

ROx RPar

Method Arch. Epo. M H M H

Sup. RN101 100 49.8 18.5 74.0 52.1

DINO ViT-B/16 400 37.4 13.7 63.5 35.6
iBOT ViT-B/16 400 36.8 14.3 64.1 36.6
MaSSL ViT-B/16 400 39.3 14.1 65.8 38.1
SOVE ViT-B/16 400 42.7 17.5 67.3 41.3

Table 6: Robustness against background
changes. Results for ViT-B encoders.

Background Changes Clean

OF MS MR MN NF OBB OBT IN-9

iBOT 91.9 89.7 81.9 79.7 54.7 17.6 20.4 96.8
MaSSL 91.0 90.2 83.0 80.4 53.4 15.8 23.7 97.6
SOVE 93.3 91.4 85.6 83.1 55.8 19.9 22.8 97.1

Table 7: Parametric vs non-parametric tok-
enizers. ∆: pre-trained DALL-E encoder.

Method L[MIM] L[CLS] k-NN Lin.

iBOT ✓ ✓ 69.1 74.2
✓ ✗ 9.5 29.8

BEIT ∆ ✗ 6.9 23.5
DINO ✗ ✓ 67.9 72.5
BEIT+DINO ∆ ✓ 48.0 62.7

SOVE ✓ ✓ 70.0 74.3
✓ ✗ 16.8 30.2
✗ ✓ 68.6 72.7

Table 8: The effect of having additional judges
on each pretext task. We report top-1 k-NN ac-
curacy.

# of Judges [CLS]

[MIM] 1 3 5 7 9

1 69.2 69.4 69.3 69.7 70.2
3 68.9 69.3 69.3 69.9
5 68.8 69.2 69.8
7 69.2 69.3
9 69.0

the performance of the learned representations. However, SOVE ’s non-parametric strategy (4)
outperforms the parametric counterpart by 7.3% accuracy points in k-NN, suggesting that non-
parametric MIM learns faster and contributes more to the final representation.

On the number of additional judges. In Table 8, we examine the impact of incorporating addi-
tional judges into each of the proposed loss functions, (2) and (4). Our findings indicate that the
global loss function (2), which operates on [CLS] tokens, benefits significantly from the inclusion
of more judges, demonstrating a clear trend of performance improvement as the number of judges
per concept increases. Conversely, for the local level [MIM] loss (4), Table 8 shows that the addition
of multiple judges does not lead to performance enhancements.

Table 9: Modeling the individual contributions of
additional judges in the SOVE algorithm.

Method Soft One Hot

k-NN 70.2 69.8

Modeling the contributions of addition
judges. As described in Section 2.2.1, addi-
tional judges are selected as the closest embed-
dings to the concept’s anchor using spherical k-
NN. When combining the individual scores of
judges within a concept, the contribution of each judge to a view is proportional to its distance
from the anchor. Consequently, judges closer to the anchor have a stronger influence on the view
membership calculation than those farther away. In Table 9, we explore an alternative approach
to modeling the contributions of additional judges. Instead of using the distance to the concept’s
anchor as the contribution weight, we assign a one-hot distribution to each additional judge, mean-
ing that all judges within a concept contribute equally when computing the views’ membership.
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SOVE demonstrates robustness to both methods, with a slight preference for our soft-contribution
approach, as discussed in Section 2.2.1.

4 RELATED WORK

Clustering and representation learning. Combining clustering and deep learning has been a long-
promising approach for unsupervised visual representation learning. Caron et al. (2018; 2019);
Van Gansbeke et al. (2020) incorporated classic methods such as k-Means and k-NN in a deep
unsupervised learning framework for visual features. Asano et al. (2020) proposed a self-labeling
unsupervised method as an instance of the optimal transport problem. Caron et al. (2020) proposed a
mini-batch version of the Sinkhorn-Knopp algorithm (Cuturi, 2013) to optimize cluster assignments
between views of an image. Silva & Ramı́rez Rivera (2022) follows the clustering idea using SGD.
Caron et al. (2021) scaled previous ideas to ViTs (Dosovitskiy et al., 2020). Inspired by modern
NLP methods (Devlin et al., 2019), Zhou et al. (2022) investigated the masked image modeling
(MIM) pre-text task, also studied by Bao et al. (2021). These methods require special regularization
techniques, such as centering, sharpening, and Sinkhorn-Knopp, to avoid ill-posed states.

Non-parametric SSL. The term non-parametric does not imply learning systems without parame-
ters. Instead, it describes a framework where the relationship between variables can be derived from
the data without assuming any parametric form (Sanborn et al., 2024). Wu et al. (2018) proposed
a non-parametric alternative to the parametric softmax classifier to solve unsupervised classifica-
tion problems at the instance level using Noise Contrastive Estimation (NCE) to approximate the
full softmax and a memory bank containing features from previous iterations to sample positive
and negative representations following the noise distribution. Subsequent work by He et al. (2020)
and Chen et al. (2021) builds upon this idea but uses augmented versions of the same image (views)
as positives. He et al. (2020) employed a memory bank to sample negative pairs and optimizes a
variation of the NCE loss, termed the InfoNCE (Oord et al., 2018). Chen et al. (2020a) avoided
an external memory by exploring in-batch representations to sample negatives. Similarly, Dwibedi
et al. (2021) optimized the InfoNCE using different images as positive pairs. For each input image,
the most similar representation in memory is taken as a positive and the rest of the representations in
memory are deemed as negatives. Recently, Silva et al. (2024) proposed a non-parametric approach
for clustering-based SSL. The main learning assumption is that views of an image should produce
similar prediction patterns when compared to previous concepts stored in memory.

SOVE. Different from previous approaches, SOVE learns image embeddings by taking into consid-
eration the viewpoint of many semantically similar anchors (judges) from different images repre-
senting a hidden concept in the data. Each judge encodes different aspects of a concept to enrich the
concept’s features avoiding excessive compression of important features. SOVE does not require
negative sampling and does not optimize the NCE or the InfoNCE objectives. SOVE is a general
framework, and under a strict configuration, it is equivalent to the framework of Silva et al. (2024).
In addition, SOVE proposes the novel non-parametric MIM loss, where the reconstruction task is
based on the viewpoint of local-level embeddings from different images in a non-parametric space.

5 CONCLUSIONS

We presented Self-Organizing Visual Embeddings, a novel SSL pre-training strategy to learn ef-
fective representations from unlabeled images. SOVE addresses the problem of underrepresented
concepts in clustering-based SSL methods, by enhancing the feature set of concepts through multiple
anchors that live in a semantically meaningful region in the non-parametric space of features. SOVE
avoids leaning prototypes and presents two novel non-parametric pre-text tasks that are stable to train
and do not require extra regularizations to avoid ill-posed solutions. Our comprehensive benchmark-
ing shows that SOVE’s visual representations are state-of-the-art in many downstream tasks such as
object detection, instance and semantic segmentation, image retrieval, and linear probing. Addi-
tional improvements such as hyper-parameter tuning, extra regularizers, and scaling techniques, as
studied by Oquab et al. (2023), can potentially improve SOVE’s performance and are reserved for
future work.
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ford and Paris: Large-scale image retrieval benchmarking. In IEEE/CVF Inter. Conf. Comput. Vis.
Pattern Recog. (CVPR), pp. 5706–5715, 2018.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In Inter. Conf. Learn. Represent. (ICLR),
pp. 8821–8831. Pmlr, 2021.

Jerome Revaud, Jon Almazán, Rafael S Rezende, and Cesar Roberto de Souza. Learning with
average precision: Training image retrieval with a listwise loss. In IEEE Inter. Conf. Comput. Vis.
(ICCV), pp. 5107–5116, 2019.

Sophia Sanborn, Johan Mathe, Mathilde Papillon, Domas Buracas, Hansen J Lillemark, Christian
Shewmake, Abby Bertics, Xavier Pennec, and Nina Miolane. Beyond euclid: An illustrated guide
to modern machine learning with geometric, topological, and algebraic structures. arXiv preprint
arXiv:2407.09468, 2024.

Thalles Silva and Adı́n Ramı́rez Rivera. Representation learning via consistent assignment of views
to clusters. In IEEE Inter. Symp. Applied Comput. Intell. Inf. (SACI), pp. 987–994, 2022. ISBN
9781450387132. doi: 10.1145/3477314.3507267.

Thalles Silva and Adı́n Ramı́rez Rivera. Representation learning via consistent assignment of views
over random partitions. In Adv. Neural Inf. Process. Sys. (NeurIPS), 2023. URL https://
openreview.net/forum?id=fem6BIJkdv.

Thalles Silva, Helio Pedrini, and Adı́n Ramı́rez Rivera. Learning from memory: Non-parametric
memory augmented self-supervised learning of visual features. In Inter. Conf. Mach. Learn.
(ICML), pp. 1–17, July 2024.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
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A IMPLEMENTATION DETAILS

For the main experiments in Section 3, we train SOVE using three Vision Transformer architectures:
ViT-Small, ViT-Base, and ViT-Large, with 21, 85, and 307 billion parameters, respectively. In addi-
tion to the classic ViT architecture, we train SOVE using a Swin-Transformer backbone containing
28 billion parameters. Following previous methods (Caron et al., 2021; Zhou et al., 2022), we create
twelve views of the same image at each training iteration. Views indexed from v = {0, 1} have
shape xv ∈ R224×224×3, and views indexed from v = {2, 3, 4, ..., 11} have shape xv ∈ R96×96×3.

The feature sets EC ∈ RNC×d and Ep ∈ RNp×d hold vector representations from global and local
patches, respectively. In practice, we use NC = 65536, Np = 8192, and set the feature dimen-
sionality to d = 256. At each iteration, we update the two feature sets following a FIFO (first-in
first-out) strategy. For EC, we select the [CLS] token representation from one of the global views
and insert it into one end of EC. For Ep, we randomly pick one of the local patch embeddings using
a uniform distribution and insert it into one end of Ep.

For the unsupervised non-parametric judge selection algorithm (2), we uniformly sample K = 8192
anchors. Each anchor selects an additional k = 8 neighbors, resulting in a total of 9 judges per
concept. Refer to Section 3.7 for additional context on the optimal number of judges. After judge
selection, we create the pseudo-dataset D ∈ RK(k+1)×d, where K is the number of anchors, k is
the number of additional judges, and d = 256 is the feature vector dimensionality. Likewise, the
pseudo-labels are Y ∈ RK(k+1)×K .

For the non-parametric MIM loss (4), we sample K̇ = 512 anchors. As shown in Table 8, the non-
parametric MIM loss does not seem to benefit from multiple judges. Thus, we use a single judge, the
anchor itself, to represent a local concept. Consequently, the pseudo-dataset and labels have shapes
Ḋ ∈ RK̇×d and Ẏ ∈ RK̇×K̇ .

In practice, for the global loss (2), given the values of K = 8192 and k = 8, the pseudo-dataset
D has shape R73728×256. Likewise, for the non-parametric MIM local loss (4), with K̇ = 512, the
pseudo-dataset Ḋ has shape R512×256.

B EXTENDED EXPERIMENTS

B.1 TIME AND COMPUTING TRADE-OFF

In Table B.1, we present the trade-off between parametric and non-parametric SSL. Following the
exact protocol from (Silva et al., 2024), we report the training time and memory requirements for
SOVE and existing solutions. The main difference between iBOT/DINO and SOVE is the absence
of learnable prototypes in SOVE. Instead, SOVE employs two feature sets, EC and Ep, to store
[CLS] and patch-level representations, respectively. In contrast, iBOT learns two separate sets of
prototypes: one for [CLS] tokens and a second for patch-level tokens trained with MIM. From a
resource perspective, learning the prototypes requires extra memory to store gradients for updating
the prototypes during the backward pass. SOVE on the other hand, updates the prototypes following
a simpler FIFO strategy. Despite this, the overall training time and memory requirements for pre-
training SOVE on ImageNet-1M are very similar to those of iBOT.
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Table B.1: Training time and memory: We report top-1 k-NN performance on ImageNet-1M (accu-
racy), training time (hours), and memory (gigabytes) for SSL methods using ViT-S/16 backbones.

100 epochs 300 epochs 800 epochs

k-NN Time k-NN Time k-NN Time Mem

DINO 69.7 24.2h 72.8 72.6h 74.5 180.0h 15.4GB
iBOT 71.5 24.3h 74.6 73.3h 75.2 193.4h 19.5GB
MaSSL 72.7 24.2h 74.7 72.4h 75.1 177.3h 15.1GB
SOVE 72.8 24.4h 74.7 73.3h 75.2 193.5h 19.4GB

B.2 SEMI-SUPERVISED EVALUATIONS WITH FROZEN FEATURES

In Table 1, we assessed the semi-supervised performance of SSL methods using the unsupervised
pre-train and supervised fine-tune paradigm. Additionally, in Table B.2, we compare the perfor-
mance of multiple SSL methods on the semi-supervised learning task using frozen, off-the-shelf
features on the ImageNet dataset. We report k-NN top-1 accuracy for the best-performing value of
k ∈ 10, 20, 100, 200 using the data splits provided by Chen et al. (2020a).

SOVE’s performance significantly improves as model complexity increases. For ViT-S backbones,
SOVE performs comparably to iBOT in both data regimes. However, with the more complex ViT-B
and SwinT backbones, the performance gap between SOVE and its competitors widens significantly,
yielding gains of +2.3 and +1.4 for ViT-B on data regimes of 1-10% labels, respectively.

We emphasize the still large gap between supervised methods (Touvron et al., 2021) and unsuper-
vised methods on retrieval-based tasks. Specifically, for low data regimes, the existing gap suggests
that current SSL methods still have room for improvement.

Table B.2: Semi-supervised evaluations with frozen features on ImageNet-1M: We report k-NN top-
1 accuracy using 1-10% of labels. For reference, we include results from supervised DeiT (Touvron
et al., 2021).

Method Arch. 1% 10%

Supervised
DeiT ViT-S/16 77.3 78.7
DeiT ViT-B/16 80.2 80.9

Self-supervised
DINO ViT-S/16 61.3 69.1

ViT-B/16 63.6 71.0
iBOT ViT-S/16 62.3 70.1

ViT-B/16 66.3 72.9
SwinT-14 64.2 71.5

SOVE ViT-S/16 62.2 70.3
ViT-B/16 68.6 74.3
SwinT-14 65.3 72.3

B.3 DENSE PREDICTION TASKS

In Table B.3, we provide additional metrics for object detection, instance segmentation, and se-
mantic segmentation evaluations using SOVE’s ViT-B backbone. For object detection and instance
segmentation, we use the Cascade Mask R-CNN as the task layer and the COCO dataset (Lin et al.,
2014). In addition to the metrics reported in Table 2, we include APb50 and APb75 for object
detection, and APm50 and APm75 for instance segmentation.

For semantic segmentation on ADE20k (Zhou et al., 2017), we follow the protocol from Zhou et al.
(2022) and consider two scenarios: (1) training a linear layer on top of the frozen encoder, and
(2) using UPerNet as the task layer.
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Table B.3: Additional results for object detection, instance segmentation, and semantic segmentation
using ViT-B encoders.

Det. & Inst. Seg. w/ Cascade Mask R-CNN Seg. w/ Lin. Seg. w/ UperNet
Method APb APb

50 APb
75 APm APm

50 APm
75 mIoU mAcc mIoU mAcc

Sup. 49.8 69.6 53.8 43.2 66.6 46.5 35.4 44.6 46.6 57.0
DINO 50.1 68.5 54.6 43.5 66.2 47.1 27.4 35.5 45.8 55.9
iBOT 51.2 70.8 55.5 44.2 67.8 47.7 38.3 48.0 50.0 60.3
SOVE 51.4 70.9 55.5 44.3 68.0 47.8 38.7 48.1 50.6 60.5

C EXTENDED ABLATIONS

Multiple tasks improve the learned representations. As explained in Section 2.2, the SOVE
algorithm first samples a subset of anchors A = {ai}Ki=0 ⊂ EC, where each anchor represents a
hidden concept in the data. Then, each anchor ai further selects additional representatives (judges)
through k-Nearest Neighbor. Hence, each concept is represented by its anchor ai and k additional
judges ej , as per the k-NN criterion.

One important consideration is that this process can be done many times per training iteration. In Ta-
ble C.1, we report the effect of such a strategy for each of the pretext tasks described in Section 2.2.1
and Section 2.3. We observe a positive trend as the number of SOVE tasks performed per training
iteration increases. Moreover, Table C.1 suggests that both, global and local, tasks benefit from this
strategy.

Table C.1: The effect of the number of independent pretext tasks per iteration.

# of Tasks [CLS]

1 2 4 [MIM]

68.0 68.5 68.6 0
69.6 70.0 70.0 1

69.7 69.7 2
70.2 4

Learning global-level features: [CLS] vs. average patch embeddings. In Table C.2, we ex-
plore common strategies to learn class level representations with ViTs. We compare the (i) default
strategy that uses a dedicated [CLS] token embedding to learn the global-level information in an
image, against the (ii) alternative strategy that uses the average representation from the patch-level
embeddings. For SOVE, the default strategy of using the [CLS] token results in a significantly
more useful representations.

Table C.2: Global-level representations as
[CLS] vs AVG. patch tokens.

[CLS] AVG. Patch

k-NN 69.2 67.8

Table C.3: Does the number of class-level anchors
matter?

K 1024 2048 4096 8192 16384

k-NN 68.3 68.9 69.2 70.2 69.7

The masking strategy. In Figure C.1, we explore two masking strategies for the non-parametric
MIM task: blockwise, and random masking. The blockwise algorithm follows the iterative technique
proposed by Bao et al. (2021) where, at each iteration, a block of the image is randomly masked. For
each block, the algorithm selects a random size (number of patches) and a random aspect ratio for
the block. The algorithm repeats until the masking ratio is satisfied. The random masking strategy
randomly masks patches of an image following a mask ratio. We use a masking ration of 0.3 (30%)
for blockwise masking and 0.7 for random masking. Figure C.1 shows a consistent performance
gain (top-1 k-NN accuracy) for the blockwise strategy.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

50 100 150 200 250 300

50

60

70

Epochs

To
p-

1

RAND
BLOCK

Figure C.1: Blockwise vs. Random masking.

Table C.4: Does the number of patch-level an-
chors matter?

K̇ 256 512 1024

k-NN 69.0 69.2 69.2

Table C.5: The effect of the momentum hyper-
parameter on the teacher encoder.

m .992→1 .994→1 .996→1

k-NN 69.2 69.4 69.4

Does the number of [CLS] anchors matter? As described in Section 2.2.1, the first step of
the SOVE algorithm is to select a subset of anchor representations from a set of embeddings from
previous iterations EC. These anchors intuitively represent hidden concepts in the data and are
used as comparison standpoints to learn consistency between views. In Table C.3, we explore how
the anchor sampling size affects SOVE’s learning capabilities. The experiment suggests that as
we increase the anchors’ sampling size, the representations k-NN accuracy also increases up until
8192. Nevertheless, SOVE is very robust to the number of anchors without significant performance
changes under different configurations.

Does the number of local-level anchors matter? Similar to the global [CLS] task, to perform
non-parametric MIM, we sample a subset of patch-level anchors Ȧ from a set of stored embeddings
from previous iterations EP. Each of these anchors represents a local concept in the embedding space
where patch-level representations share semantic features. In Table C.4, we study the sampling size
of local anchors and its impact on the k-NN performance of the learned representations. In general,
SOVE shows robustness to many sampling sizes.

Updating the momentum encoder. As a standard practice in SSL, SOVE employs two sibling
encoders, viewed as a teacher-student setup. The student encoder receives gradient updates while
the teacher encoder receives updates following a moving average from the weights of the student
following, Φt = mΦt + (1 − m)Φs, where Φs and Φt are the weights of the student and teacher
encoders respectively. This framework can also be interpreted from a distilling perspective where
the teacher distills knowledge from previous iterations into the student. In Table C.5, we study the
effect of the hyper-parameter m on the learned representations.
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