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Abstract

Many generative models synthesize data by transforming a standard Gaussian
random variable using a deterministic neural network. Among these models are the
Variational Autoencoders and the Generative Adversarial Networks. In this work,
we call them "push-forward" models and study their expressivity. We formally
demonstrate that the Lipschitz constant of these generative networks has to be
large in order to fit multimodal distributions. More precisely, we show that the
total variation distance and the Kullback-Leibler divergence between the generated
and the data distribution are bounded from below by a constant depending on
the mode separation and the Lipschitz constant. Since constraining the Lipschitz
constants of neural networks is a common way to stabilize generative models, there
is a provable trade-off between the ability of push-forward models to approximate
multimodal distributions and the stability of their training. We validate our findings
on one-dimensional and image datasets and empirically show that the recently
introduced diffusion models do not suffer of such limitation.

1 Introduction

Generative modeling has become over the last years one of the most popular research topics in
machine learning and computer vision. From a mathematical perspective, the goal of generative
modeling can be seen as predicting new synthetic samples from an unknown probability distribution
ν on Rd given the information of m true samples xi drawn from ν (the data distribution). A general
approach to solve this problem is to define a parametric family of probability distributions (νθ)θ∈Θ

and solve the problem
minθ∈Θ D( 1

m

P
i δxi

, νθ) ,

where D is a similarity measure between probability distributions and δx is the delta distribution at
x. Beside their direct application (Sandfort et al., 2019; Antoniou et al., 2018), generative models
have been used in numerous applications in various machine learning subfields, such as solving
inverse problems (Ravuri et al., 2021; Ledig et al., 2017) or machine translation (Isola et al., 2017;
Yang et al., 2018). However, most generative modeling methods still lack theoretical understanding
and it remains often unclear whether the method approaches correctly the probability distribution
ν or only generates samples that appear to have been drawn from ν without fully recovering the
underlying structure of the distribution. In this work, we focus on the particular class of push-forward
generative models. Those models have in common that for any θ ∈ Θ, the parametric distribution νθ
approaching ν is of the form

νθ = gθ#µp ,
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where µp = N(0, Idp) is the Gaussian standard distribution in dimension p, # is the push-forward
operator 1, and gθ : Rp → Rd is a deterministic neural network of parameter θ. This class includes
two of the most popular generative models: the Variational Auto-Encoders (VAEs) 2 (Kingma and
Welling, 2014) and the Generative Adversarial Networks (GANs) (Goodfellow et al., 2014). It also
includes other models such as most of normalizing flows (Rezende and Mohamed, 2015).

Deep neural networks are most of the time Lipschitz mappings by design, since their activation
functions are generally Lipschitz. In the literature, constraining the Lipschitz constant of a neural
network is widely used as a way to increase its robustness (Virmaux and Scaman, 2018; Fazlyab
et al., 2019), in particular to adversarial attacks (Goodfellow et al., 2015). Common approaches to
bound Lipschitz constants of neural networks are spectral normalization (Miyato et al., 2018), adding
a gradient penalization in the loss (Gulrajani et al., 2017; Mohajerin Esfahani and Kuhn, 2018), or
Jacobian regularization (Pennington et al., 2017). These approaches have been widely used to stabilize
the training of GANs, where Lipschitz constraints have been first imposed on discrimators (Arjovsky
et al., 2017; Kodali et al., 2017; Fedus et al., 2018), while recent state-of-the-art architectures such
as BigGAN (Brock et al., 2018), SAGAN (Zhang et al., 2019) or StyleGAN2 (Karras et al., 2020)
also impose similar constraints on the generators through spectral normalization (Brock et al., 2018;
Zhang et al., 2019), or Jacobian regularization (Karras et al., 2020). In contrast to GANs, the recent
study of Kumar and Poole (2020) shows that the decoder Jacobian in VAEs is implicitly regularized,
which limits its Lipschitz constant.

Recently, Dhariwal and Nichol (2021) trained an unconditional Score-based Generative Model (SGM)
(Song and Ermon, 2019; Ho et al., 2020) on ImageNet (Russakovsky et al., 2015) and achieved
state-of-the-art generation. To the best of our knowledge, there is no push-forward generative model
capable of reaching this kind of performance on such a complex dataset without explicitly adding any
conditional label information in the model, see (Brock et al., 2018) for instance. SGMs (also known
as diffusion models) proceed as follows: first, noise is progressively added to the data distribution until
we reach a standard Gaussian distribution. Then this forward dynamics is reversed leveraging recent
advances in deep learning and tools from score-matching (Hyvärinen, 2005; Vincent, 2011). We refer
to Song et al. (2020) for an introduction on SGMs. In those models, the parametric distribution is also
of the form νθ = gθ#µp, where gθ is the whole reverse diffusion dynamic (which can be seen as a
composition of deterministic Lipschitz mappings) and p = d(N + 1) with N being the total number
of steps in the dynamic (More details can be found in Appendix S2). However, those models are not
push-forward generative models in the strict sense of the term, since the push-forward mapping is
not a simple neural network anymore. An important difference is that optimization is not directly
performed on the push-forward mapping itself but on an auxiliary function (the score). We therefore
categorize them as indirect push-forward generative models in this work.

Contributions of the paper. In this paper, we study the expressivity of direct and indirect push-
forward generative models in relation to the Lipschitz constant of the push-forward mapping they
learn. More precisely, in Section 3, for a Lipschitz function g and a given multimodal probability
distribution ν, we formally demonstrate that the Lipschitz constant of g must necessarily be large
in order for g#µp to approximate ν correctly, as it has been already intuitively observed in the
literature (Lu et al., 2020; Luise et al., 2020; Khayatkhoei et al., 2018). As a direct consequence, we
exhibit lower bounds on D(g#µp, ν), where D is the total variation distance or the Kullback-Leibler
divergence, with an explicit dependence on the Lipschitz constant Lip(g) of g, which highlights that
there is a fundamental trade-off for (direct) push-forward generative models between expressivity
and stability of training. In Section 4, we illustrate these theoretical results on several experiments,
showing the difficulties of GANs and VAEs to simulate multimodal distributions. We compare
these models with SGMs and show experimentally that SGMs seem to be able to generate correctly
multimodal distributions while keeping the Lipschitz constant of the score network relatively small,
suggesting that these models do not suffer of such previously mentioned limitations. All the proofs
are postponed to the appendix.

1If µ is a measure on Rp and f is a mapping from Rp to Rd, the push-forward measure f#µ is the measure
on Rd such that for all Borel set A of Rd, f#µ(A) = µ(f−1(A)).

2In this work, the VAE model considered is the Gaussian-VAE since the data are real-valued. See Appendix S2
for details on why the generated distribution is of the form gθ#µp in this model.
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2 Related Works

Assessing the efficiency of push-forward models is a recurrent and important question in the literature.
Sajjadi et al. (2018) and Kynkäänniemi et al. (2019) propose Precison and Recall metrics to assess
GANs, aiming to measure simultaneously the mode collapse and the proportion of off-manifold
generated samples. Using similar metrics, Tanielian et al. (2020) prove an upper bound on the
precision of vanilla GANs (the proportion of generated samples which could have been generated by
the target distribution). To overcome this limitation, they simply propose to reject samples associated
with large values of the generator Jacobian. The intuition behind this idea is that those samples lie in
regions of the space where the discontinuous optimal generator would "jump" between modes and so
are off-manifold.

In the context of normalizing flows, it has been shown that the invertibility constraint limits the
expressivity of the model. Indeed, Cornish et al. (2020) show that distributions generated by invertible
normalizing flows have a support which is necessarily homeomorphic to the support of the latent
distribution. As an outcome, the Lipschitz constant of the inverse flow has to approach infinity to
correctly approximate distributions lying on disconnected manifolds (Cornish et al., 2020; Hagemann
and Neumayer, 2021; Behrmann et al., 2021). To improve the expressivity of normalizing flows, it
has been proposed in Cornish et al. (2020) and Wu et al. (2020) to inject stochasticity in the model.

Another line of research focuses on the fact that the model has access to only the empirical distribution
νn = 1

n

P
i δxi

and not to the true target distribution. For instance Nagarajan et al. (2018) study
to what extend GANs only memorize the data. Gulrajani et al. (2018) highlight the fact that
common GAN benchmarks prefer training set memorization to a model which imperfectly fits the
true distribution but covers more of its support. Related to this, Stéphanovitch et al. (2022) study
specifically the Wasserstein GAN case, where the latent distribution is uniform and construct an
optimal generator which minimizes the Wasserstein distance of order 1 between the push-forward
measure and the empirical distribution, thus deriving a lower bound on the 1-Wasserstein distance. In
the same paper, and more related to our work, the authors study the asymptotic case of an infinite
number of data and show that most of the time the minimal 1-Wasserstein distance between the
push-forward measure and the target distribution remains strictly positive.

3 Push-forward measure and Lipschitz mappings

In this section, we study the properties of the push-forward measure g#µp when µp = N(0, Idp)
is the standard Gaussian distribution in dimension p and g is a Lipschitz mapping. First, for any
probability measure γ on Rd and any Borel set A of Rd, we define the γ-surface area of A by

γ+(∂A) = lim infε→0+(γ(Aε)− γ(A))/ε ,

where Aε = {x ∈ Rd : there exists a ∈ A, ∥x − a∥ ≤ ε} is the ε-extension of A and ∂A is the
boundary of A. The γ - surface area can be interpreted as the mass of γ on the hypersurface ∂A. Note
that the support of γ and A can be sets of intrinsic dimension smaller than d, which is most of the time
the case when working with real data which are likely to live on low dimensional manifolds (Pope
et al., 2020). The main theoretical result of this paper establishes some properties of push-forward
measures depending on the regularity of the push-forward mapping.
Theorem 1. Let g : Rp → Rd be a Lipschitz function with Lipschitz constant Lip(g). Then for any
Borel set A ∈ B(Rd),

Lip(g)(g#µp)
+(∂A) ≥ φ


Φ−1(g#µp(A))

�
, (1)

where φ(x) = (2π)−1/2 exp[−x2/2] and Φ(x) =
R x

−∞ φ(t)dt. In addition, we have that for any
r ≥ 0

g#µp(Ar) ≥ Φ

r/Lip(g) + Φ−1(g#µp(A))

�
. (2)

Sketch of proof. The proof of this result consists in establishing lower-bounds on (g#µp)
+(∂A)

and g#µp(Ar) which can be expressed as Gaussian integrals. We conclude upon combining this
result and the Gaussian isoperimetric inequality, see Sudakov and Tsirelson (1978) µ+

p (∂A) ≥
φ(Φ−1(µp(A))).
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Note that (2) implies (1) upon remarking that (2) is an equality
for r = 0, dividing by r and letting r → 0. Theorem 1 recovers
the Gaussian inequality in the case where g is the identity map-
ping and extends it to all Lipschitz mappings. As the Gaussian
inequality, Theorem 1 is dimension free, in the sense that neither
d, nor p, nor the intrinsic dimension of g(Rp) play a role in the
lower bounds. In the following section, we are going to use
Theorem 1 to (i) give a lower bound on the Lipschitz constant
so that push-forward generative models exactly match the data
distribution, (ii) give a lower bound on the total variation and the
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Figure 1: Graph of φ ◦ Φ−1.

Kullback-Leibler divergence between the push-forward and data distributions which depends on the
Lipschitz constant of the model.

3.1 Lower bounding the Lipschitz constant of push-forward mappings

Equation (1) implies that the Lipschitz constant of g must necessarily be large for g#µp to be
multimodal. It provides indeed a lower bound on the Lipschitz constant of the mappings g which push
µp into a given measure ν. In the extreme case where the support of ν is composed of disconnected
manifolds, we retrieve that there doesn’t exist any Lipschitz mapping which pushes µp into ν since it
can be found Borel sets A with null ν -surface area but such that the right-hand term of (1) is strictly
positive (which occurs when 0 < ν(A) < 1). In the intermediate case where the support of ν is
connected but ν is multimodal, the less mass ν has between modes, the larger must be the Lipschitz
constant of the mappings which push µp into ν. Indeed, if ν has little mass between its modes, one
can find sets A with small ν-surface area and such that 0 < ν(A) < 1. As a toy example, we get
an explicit bound on the Lipschitz constant of the mappings which push µp into a mixture of two
isotropic Gaussians.
Corollary 2. Let ν = λN(m1,σ

2 Idd) + (1 − λ)N(m2,σ
2 Idd) with m1,m2 ∈ Rd, σ > 0 and

λ ∈ (0, 1). Assume that there exists g : Rp → Rd Lipschitz such that g#µp = ν. Then

Lip(g) ≥ σ exp
�
∥m2 −m1∥2/(8σ2)− (Φ−1(λ))2/2

�
.

Sketch of proof. The proof of this result consists into applying Inequality (1) of Theorem 1 on the
half-space H such that ∂H is the equidistant line of the means of the two Gaussians, and then to
explicit the value of ν+(∂H). See Figure S1 for a visualization of ∂H in the univariate case.

Note that assuming there exists g : Rp → Rd such that g#µp = ν implies p ≥ d since ν covers the
whole ambient space and so g must be a surjective mapping. This bound is maximal in the balanced
case when λ = 1/2 since Φ−1(λ) = 0 in that case. Otherwise, the more unbalanced the modes are,
the smaller the bound is since the two terms in the exponential compensate each other more and more.
Extending this corollary to mixtures of more than two Gaussians with different covariance matrices is
technically difficult but we could expect a similar exponential growth in the square distance between
modes since it depends mainly on the order of magnitude of the local minima of the distribution
density. As a by product of Theorem 1, we also get the following result which shows that (in the
one-dimensional case) the optimal transport map for the ℓ2 cost minimizes the Lipschitz constant of
the push-forward mapping.
Corollary 3. Let ν be a probability measure on R with density w.r.t. the Lesbesgue measure and
such that supp(ν) = R. Assume that there exists g : Rp → R Lipschitz such that ν = g#µp. Let us
denote TOT = Φ−1

ν ◦ Φ the Monge map between µ1 and ν, where Φν is the cumulative distribution
function of ν. Then we have Lip(g) ≥ Lip(TOT).

To the best of our knowledge, extending this proposition to the case where d > 1 remains an open
problem. We show now that Equation (2) of Theorem 1 allows to derive lower bounds on similarity
measures between the push-forward measure and the target distribution.

3.2 Lower bounds on similarity measures between probability distributions

Equation (2) provides a bound on the minimal mass the push-forward measure g#µp can have on
a given set when g is fixed with Lipschitz constant Lip(g). As a consequence, if ν is a distribution
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such that there exists sets on which ν has less mass than the minimal quantity that g#µp can reach
on those sets given the value of Lip(g), then g#µp cannot be equal to ν, implying that most of
similarity measures between g#µp and ν will be automatically strictly positive. In the following, we
consider that g and ν are fixed and we derive lower bounds on the total variation distance and the
Kullback-Leibler divergence between g#µp and ν. We recall that the total variation distance between
two probability measures on Rd, ν0, ν1 is given by

dTV(ν0, ν1) = sup{ν0(A)− ν1(A) : A ∈ B(Rd)} .

Similarly, we define the Kullback-Leibler divergence between two probability measures on Rd, ν0, ν1,
using the Donsker-Varadhan representation (Dupuis and Ellis, 2011, Lemma 1.4.3a):

dKL(ν0||ν1) = sup{
R
Rd f(x)dν0(x)− log

R
Rd exp[f(x)]dν1(x)

�
: f ∈ B(Rd,R)} ,

where B(Rd,R) denotes the set of all bounded mappings from Rd to R. In the following, we will
denote for any A ∈ B(Rd) and r > 0,

αg(A, r) = Φ

r/Lip(g) + Φ−1(g#µp(A))

�
,

βg(A, r) = αg(A, r)− g#µp(A) ,

where αg(A, r) and βg(A, r) are the lower bounds of g#µp(Ar) and g#µp(Ar \ A) provided by
Theorem 1. We start by proving lower bounds on the total variation distance.
Theorem 4. Let ν be a probability measure on Rd and let g : Rp → Rd be a Lipschitz function.
Then,

dTV(g#µp, ν) ≥ sup{αg(A, r)−min{g#µp(A), ν(A)}− ν(Ar \ A) : A ∈ B(Rd), r > 0} . (3)

Sketch of Proof. The proof of this result consists in bounding from below the total variation distance
on one hand by |g#µp(Ar \ A) − ν(Ar \ A)| and on the other hand by |g#µp(Ar) − ν(Ar)| for a
given A ∈ B(Rd) and a given r > 0, and then applying Theorem 1.

Observe that (3) always holds but the right-hand term may become negative if the Lipschitz constant
of g is large enough. The main idea behind this bound is to find a set A and a real r > 0 such
that ν has a lot of mass on A but almost no mass on Ar \ A. For instance, if ν is a distribution on
two disconnected manifolds M1 and M2, an optimal choice for A would either be M1 or M2 and
the optimal r would be the distance between the two manifolds. Using Theorem 4, one can derive
smaller but more explicit lower bounds only depending on ν and the Lipschitz constant of g. As a
first example, we derive an explicit lower bound in the case where ν is a bi-modal distribution on two
disconnected manifolds.
Corollary 5. Let ν be a measure on Rd on two disconnected manifolds M1 and M2 such that
ν(M1) = λ and ν(M2) = 1 − λ, with λ ∈ [1/2, 1), and let g : Rp → Rd be a Lipschitz function.
Then,

dTV(g#µp, ν) ≥
R d(M1,M2)/2Lip(g)+Φ−1(λ)

Φ−1(λ)
φ(t)dt ,

where d(M1,M2) = inf{∥m1 −m2∥ : m1 ∈ M1,m2 ∈ M2}.

As a second example, we also get an explicit lower bound in the case where ν is a mixture of two
isotropic Gaussians. For simplicity we stick to the balanced case.
Corollary 6. Let ν = (1/2)[N(m1,σ

2 Idd) + N(m2,σ
2 Idd)] with m1,m2 ∈ Rd and σ ≥ 0. Let

g : Rp → Rd be a Lipschitz function. Then,

dTV(g#µp, ν) ≥
R ∥m2−m1∥/4σLip(g)
0

φ(t)dt− (1/2)
R ∥m2−m1∥(2σ+1)/4σ2

∥m2−m1∥(2σ−1)/4σ2 φ(t)dt .

In both corollaries, the lower bound tends to 1/2 when the distance between the modes tends to
infinity, meaning that g#µp is far from well approaching ν. Note that the lower bound exhibited in
Corollary 5 is always strictly positive regardless of the value of the Lipschitz constant of g. One
can also observe that this latter bound is maximal in the balanced case, when λ = 1/2, since the
standard normal distribution concentrates its mass around 0. Finally, we end this section by deriving
a similar lower bound on the Kullback-Leibler divergence between g#µp and ν. We consider the
Kullback-Leibler divergence since this is a measure of similarity between measures which is bounded
and is very sensitive to the mismatch of supports between the generated and the data distributions.
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Theorem 7. Let ν be a probability measure on Rd and let g : Rp → Rd be a Lipschitz function.
Then,

dKL(g#µp||ν) ≥ sup{βg(A, r) log
�

βg(A,r)
ν(Ar\A)

�
+ (1− βg(A, r)) log

�
1−βg(A,r)
1−ν(Ar\A)

�
: A ∈ B(Rd), r > 0} .

Sketch of Proof. The proof of this result consists in setting f = ζχAr\A with ζ > 0 and where χA

is the characteristic function of the set A and plugging it in the Donsker-Varadhan representation in
order to get a lower bound depending on the probability g#µp(Ar \ A) for a given A, a given r and a
given ζ. Then we apply Theorem 1 and we derive the optimal value of ζ.

As above, this bound always holds but the right-hand term becomes negative if Lip(g) is large enough.
As for Theorem 4, the main idea is to find a set A and a real r such that ν has a lot of mass on A, but
ν has almost no mass on Ar \A. Observe that if ν(Ar \A) tends to 0, the left-hand term of the bound
tends to infinity. This is coherent with the behavior of the Kullback-Leibler divergence. Similarly to
Corollary 6, we also get an explicit lower bound in the case where ν is a mixture of two isotropic
Gaussians. As for Corollary 6, we stick to the balanced case for simplicity.
Corollary 8. Let ν = (1/2)

�
N(m1,σ

2 Idd) + N(m2,σ
2 Idd)

�
with m1,m2 ∈ Rd and σ ≥ 0. Let

g : Rp → Rd be a Lipschitz function. We denote

λ = g#µp


{(m2 −m1)

T (x− (m2 +m1)/2) ≤ 0 : x ∈ Rd}
�
,

and we suppose without loss of generality, that λ ∈ (0, 1/2]. Then,

dKL(g#µp, ν) ≥ A log

A
B

�
+ (1−A) log

�
1−A
1−B

�
,

where

A =
R ∥m2−m1∥/4σLip(g)−Φ−1(1−λ)

−Φ−1(1−λ)
φ(t)dt , and B = (1/2)

R ∥m2−m1∥(2σ+1)/4σ2

∥m2−m1∥(2σ−1)/4σ2 φ(t)dt .

Observe that this time, Lip(g) is no longer the only dependency in g since the bound also depends on
the proportion of the modes of g#µp. However, it should be noted that when g#µp approximates
correctly ν, λ is automatically close to 1/2 and so Φ−1(1− λ) is small in that case. To conclude, this
section, we highlight the fact that, if our results are dimension free in theory, the dimension might
be hidden in the distances between modes and the Lipschitz constant of g when working with real
datasets. Indeed, the order of magnitude of the Euclidean distance between two samples xi is likely
to increases with the dimension d. As an outcome, the orders of magnitude of the distance between
modes and so the Lipschitz constant that g must reach for correct generation probably increase with
d also.

4 Experiments

In what follows, we illustrate the pratical implications of our results by training GANs, VAEs and
SGMs on simple bi-modal distributions. More precisely, we show on one hand that generating
multimodal distributions with GANs and VAEs is difficult since for those models, good generation
necessarily involves generative networks with large Lipschitz constants. On the other hand, we show
that SGMs seem to be able to generate multimodal distributions while keeping the Lipschitz constant
of the score network relatively small and thus do not suffer of the same limitation. First, we focus
on the univariate case where we can easily assess the Lipschitz constants of the networks. Then
we illustrate our results in higher dimensions by training the three models on datasets derived from
MNIST (LeCun et al., 1998). In all our experiments, we use the same architecture for the VAE
decoder and the GAN generator in order to offer rigorous comparisons of the different models. For
score-based modeling, we use architectures with similar numbers of learnable parameters. All details
on the experiments and architecture of the networks can be found in Appendix S5.

4.1 Univariate case

First, we train a VAE and a GAN with one-dimensional latent spaces on 50000 independent samples
drawn from a balanced mixture of two univariate Gaussians ν = (1/2)[N(−m, 1) + N(m, 1)] for
different values of m > 0. We also train a SGM on the same samples.
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Histograms of generated distributions. Figure 2 shows histograms of generated distributions
for m = 10 with the three different models. VAE models seem to generate Gaussians modes
but interpolate significantly between them, while GANs do not interpolate but fail to retrieve the
structure of the target distribution and forget parts of their support, which is known as mode collapse
and is a common pitfall of such models (Arjovsky and Bottou, 2017; Metz et al., 2017). On the
same task, SGMs do not suffer from such shortcomings. In the following section, we will link the
interpolation/mode-collapsing properties of these models with their Lipschitz constants.

�� �� � � � �� �� �� �� � � � �� �� �� �� � � � �� ��

Figure 2: Histograms of distributions generated with VAE (left, in orange), GAN (middle, in green),
and with SGM (right, in purple) for m = 10. The data distribution densities are plotted in blue.

Lipschitz constant and mass between modes. In Figure 3 (right), we observe that the GAN
generator reaches much larger Lipschitz constants than the VAE decoder. This explains the difference
of behaviors between GAN and VAE observed in Figure 2, as the mapping learned by the VAE is not
stiff enough to concentrate the push forward measure on the two modes. One possible explanation
for the interpolating behavior of the VAE is that the Euclidean norm of the Jacobian of the VAE
decoder is implicitly regularized during training, as it has been demonstrated in Kumar and Poole
(2020). Both GAN and VAE saturate the constraint on g#µp([−m/2,m/2]) provided by Theorem 1,
meaning that the generative networks minimize the amount of mass between modes as much as their
Lipschitz constants allow it. Finally, we can observe that the score network is able to keep a relatively
small Lipschitz constant compared to the GAN, while managing to interpolate less than the latter. A
probable explanation for this follows from the fact that the score network is used multiple time during
inference. Hence, the Lipschitz constant of the push-forward mapping (the whole generation dynamic)
is likely much larger than the Lipschitz constant of the neural network itself, and so the model is
able to push-forward a Gaussian distribution into a multimodal distribution keeping a relatively small
Lipschitz constant of the score network. Finally, in Figure 3 (left), we observe that when m increases,
the Lipschitz constant of the VAE decoder and the GAN generator becomes rapidly much smaller
than the value of the lower bound provided by Corollary 2. This means that for m large enough it
is not possible to close the gap between the data distribution and the push-forward distribution. We
highlight that this observation does not apply to SGMs since in this setting the network is applied
multiple times.

Lipschitz constants Mass between modes
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Figure 3: Left: evolution of the Lipschitz constants of the three different generative models trained on
50000 samples of (1/2)[N(−m, 1) + N(m, 1)], in function of m. Right: evolution of the proportion
of samples generated by the three models on the interval [−m/2,m/2]. We also show on this graph
the lower bounds predicted by Theorem 1 for the VAE and the GAN, as well as the true probability
ν([−m/2,m/2]). Experiments are averaged over 10 runs and the colored bands correspond to +/-
the standard deviation.
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Stability of GAN and mode collapse. Odena et al. (2018) suggested that the magnitude of the
norm of the generator jacobian may be causally related to instability and mode collapse. This is why
many state-of-the-art GANs apply spectral normalization (Miyato et al., 2018) on their generators.
In Figure 4 (left), we show that this technique cannot be used when training GANs on multimodal
distributions: since spectral normalization constraints the Lipschitz constant of the generator to be
smaller than 1, the GAN is trained towards concentrating in one of the modes of the distribution over
interpolating massively between them. This has been referred to as mode dropping by Khayatkhoei
et al. (2018). To complete this analysis, we also train the GAN adding an additional gradient penalty
term 10/L2 maxz∼N(0,Idp)(∥∇zgθ(z)∥22 −L)2, in the generator loss function, similarly to WP-GAN
(Gulrajani et al., 2017), where L is an hyperparameter corresponding to the targeted Lipschitz
constant. As expected, we can observe in Figure 4 (right), that when Lip(g) increases, the GAN begin
to generate both modes but becomes also more and more prone to mode collapse. This illustrates the
fundamental trade-off between expressivity and robustness in push-forward generative models.
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Figure 4: Histograms of distributions generated with GANs with spectral normalization applied on
the generator (left), and with gradient penalty (right) for Lip(g) ≈ L = 5, Lip(g) ≈ L = 15 and
Lip(g) ≈ L = 25. The data distribution densities are plotted in blue.

Influences of generator depth and time of training. In Figure 5, we study the effect of increasing
the number of layers of the generative network as well as increasing the training time on the value of
the Lipschitz constant of the VAE decoder and the GAN generator. In the VAE setting, the Lipschitz
constant increases linearly with the depth of the decoder. This is not the case in the GAN setting,
where increasing the size of the model seems to dramatically affect its stability. For both models,
the Lipschitz constants of the generative network grow with the number of epochs. Yet this growth
seems to be logarithmic for the VAE and the GAN seems to becomes more unstable as the number of
epochs increases.
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Figure 5: Evolution of the Lipschitz constant of the generative network with respect to its number
of layers (left) and of the Lipschitz constant in function of the numbers of epochs (right). The
experiments are averaged over 10 runs and the colored bands correspond to +/- the standard deviation.

Influence of generator architecture. Finally, we study in Figure 6 the impact of the architecture
of the generative network (i.e. the VAE decoder and the GAN generator) on its Lipschitz constant
as well as on the training stability of the model by comparing three different architectures: first, we
use a simple feed-forward network as precedently, then we add additive skip-connections of type
"resnet" (He et al., 2016) to the previous backbone, and last we add concatenation skip-connections of
type "densenet" (Huang et al., 2017) instead of additive skip-connections. For both models, it seems
that more expressive decoder architectures do not help to reach larger values of Lipschitz constant.
However, one can observe that in the GAN setting, even if the model remains certainly too unstable
for correct distribution generation, adding additive skip-connections seems to stabilize the training a
little since the colored bands are narrower than for the two other models. This suggests that some
generator architectures may be better than others at learning mappings with large Lipschitz constants
while staying stable.
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Figure 6: Evolution of the Lipschitz constant of the VAE decoder (left) and the GAN generator
(right) trained on 50000 samples of (1/2)[N(−m, 1) + N(m, 1)] for 3 different architectures of the
generative network: simple feed-forward backbone, backbone with skip-connections of type "resnet",
and backbone with skip-connections of type "densenet". Experiments are averaged over 5 runs and
the colored bands correspond to +/- the standard deviation.

4.2 Experiments on MNIST

We train a VAE, a GAN and a SGM on two datasets derived from MNIST (LeCun et al., 1998):
first, two images of two different digits (3 and 7) are chosen and 10000 noisy versions of theses
images are drawn with a noise amount of σ = 0.15, forming a dataset of n = 20002 independent
samples drawn from a balanced mixture of two Gaussian distributions in dimension 784 = 28× 28.
Second, we train the models on the subset of all 3 and 7 of MNIST. We emphasize that our goal is
not reach state-of-the-art performance on this problem but rather to illustrate our theoretical results in
a moderate dimensional setting.

Figure 7: mixture of Gaussians (top): histograms of projections on the line passing through the mean
of each Gaussian. Subset of MNIST (bottom): histograms of projections on the line passing through
the barycenters of all the 3 and 7 in the deep Wasserstein embedding space. Bins of data are colored
in blue if they are classified as 3, in green if classified as 7, and in red if classified as another digit.

Mixture of Gaussians. For this experiment, we set the dimension of the latent space in the GAN
and the VAE to 784 = 28×28 since it is the intrinsic dimension of the support of the data distribution.
In order to visualize the interpolation between modes, we project the data on the line passing through
the mean of each Gaussian, i.e. the two original clean images, and we plot histograms of the one-
dimensional projections. In order to understand which bins of data in the histograms correspond to
which digit, we train a classifier and we assign a color in function of which digit the data have been
classified as. Results can be found in Figure 7 top. Moreover, GAN and VAE both fail to generate
noisy versions of the images. As in the univariate case, the SGM is able to not interpolate between
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modes and seem to retrieve the Gaussian structure of the modes. This suggests that while direct
push-forward models fail at representing multimodal distributions, considering stacked models with
noise input at each step (as in SGM) might help to close the gap between the generated and the data
distributions. However SGM does not manage to retrieve the right modes proportions. This is a
well-known shortcoming of score-based models which has been studied in (Wenliang and Kanagawa,
2020).

Subset of MNIST. Finally we train the three different models on the subset of MNIST composed
of all 3 and 7 (no Gaussian noise was added). We choose a latent dimension of 20 for the VAE and
the GAN. Since the Euclidean distance is not a meaningful metric to compare the different digits of
MNIST, we use the deep Wasserstein embedding proposed by Courty et al. (2018): an autoencoder is
learned in a supervised fashion such that the Euclidean distance in the latent space approximates the
Wasserstein distance between pairs of images of MNIST. In the learned Wasserstein space, we project
data on the line passing through the Euclidean barycenters of all 3 and 7 and plot histograms of
projections, using the same classifier as before. Results can be found in Figure 7 (bottom). Note that
the distribution does not exhibit strong multimodality features contrary to the mixture of Gaussians
settings, see Figure 7. As before, the VAE interpolate between modes, the GAN manages to not
interpolate but generate a narrower histogram, and the score-based model does not interpolate and
seems to recover the structure of the distribution, but doesn’t retrieve the right modes proportions.
However, we emphasize that all these models seem to perform better than on the previous dataset. A
possible explanation of this is that the modes are less separated than in the Gaussian mixtures and
therefore the model is easier to train.

5 Discussion

In this work, given a Lipschitz mapping g and a measure ν, we derived lower bounds on the total
variation distance and the Kullback-Leibler divergence between the push-forward measure g#µp

and ν depending on the Lipschitz constant of the mapping g. These bounds indicate how the
mass between the modes of the push-forward measure depends on the Lipschitz constant of the
push-forward mapping. They highlight the trade-off between the ability of VAEs and GANs to fit
multimodal distributions and the stability of their training.

A common assumption in the imaging literature, validated empirically by Pope et al. (2020), is that
distributions of natural images live on low dimensional manifolds. Understanding whether these
distributions are composed of separated modes or not remains, to the best of our knowledge, an open
problem. To that extent, the fact that unsupervised push-forward generative models perform well
on datasets such as CelebA (Liu et al., 2015) could possibly be, in regard of our work, an indicator
that the data distributions of those datasets are unimodal, or at least not composed of well separated
modes.

Several techniques have been proposed in the literature to fit data distributions on disconnected
manifolds. Most of them consist in overparametrizing the model, either by using stacked generative
networks (Khayatkhoei et al., 2018; Mehr et al., 2019) or by learning a more complex latent distribu-
tion than the standard Gaussian (Gurumurthy et al., 2017; Rezende and Mohamed, 2015; Kingma
et al., 2016; Luise et al., 2020). Other methods consist in rejecting a posteriori samples associated
to large values of the Jacobian generator (Tanielian et al., 2020; Issenhuth et al., 2020). In this
work, we empirically showed that score-based models seemed to be able to fit separated manifolds
without model overparametrization or additional posterior sample rejection scheme. This suggests
that the structure of the generation dynamic in these models is particularly adapted to (indirectly)
learn mappings with large Lipschitz constants. Their good performance on multimodal distributions
might follow from the fact that these models do not optimize directly the push-forward mapping itself
and/or that noise is injected at each step during the generation process. Hence, a future perspective of
work would be to study what are the structural aspects of diffusion models that play a significant role
in their expressivity.

A possible limitation of this work is that the bounds derived on the Kullback-Leibler divergence and
total variation distance are not tight (see Appendix S6), mainly because they take no account of the
fact that when interpolating, g#µp has automatically less mass than ν on the modes since a significant
amount of its total mass is between them. In future work, we plan to tighten the gap between our
bounds and the true distance.
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