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Abstract
Low-light image enhancement has been researched several years.
However, current image restoration methods predominantly focus
on recovering images from RGB images, overlooking the potential
of incorporating more modalities. With the advancements in per-
sonal handheld devices, we can now easily capture images with
depth information using devices such as mobile phones. The inte-
gration of depth information into image restoration is a research
question worthy of exploration. Therefore, in this paper, we propose
a multimodal low-light image enhancement task based on depth
information and establish a dataset named LED (Low-light Image
Enhanced with Depth Map), consisting of 1,365 samples. Each sam-
ple in our dataset includes a low-light image, a normal-light image,
and the corresponding depth map. Moreover, for the LED dataset,
we design a corresponding multimodal method, which can pro-
cesses the input images and depth map information simultaneously
to generate the predicted normal-light images. Experimental results
and detailed ablation studies proves the efficiency of our method
which exceeds previous single-modal state-of-the arts methods
from relevant field.
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1 Introduction
With the widespread use of smartphones, taking photos has be-
come increasingly convenient and the number of images has grown
exponentially. However, during photography, limitations imposed
by device performance or environmental factors, including lighting
conditions, time, andweather, can adversely affect the quality of cap-
tured photos. Restoring a low-quality image to a high-quality one
has been a research focus in recent years. Image restoration encom-
passes tasks, such as removing artifacts [13], enhancing brightness
[40], and eliminating effects like rain or snow [5]. In this paper,
our primary focus is on the restoration of images captured under
low-light conditions. The task of low-light image enhancement
(LIE) [40] involves transforming dark photos taken in low-light
environments into normal-light images. LIE has significant value in
various scenarios, such as enhancing nighttime video frames and
photographing in low-light conditions.

In recent years, with the advancement of deep learning tech-
nology, neural network models have been widely applied to LIE
tasks. Currently the most widely used datasets include LOL (v1
[40] and v2 [44]), SID [4], SMID [3], SDSD [34], LIME [10] and
DICM [21]. LOLv1 [40], in particular, is the earliest to propose
a large-scale dataset specifically for the LIE task and introduces
Retinex theory [19] for the first time into LIE. Subsequently, other
researchers have proposed various methods for LIE. Some also
leverage Retinex-based techniques [49, 50], which focus on sepa-
rating the illumination and reflectance components of an image
to enhance its visual quality. Others have explored the efficacy
of encoder-decoder architectures [14, 43], coupled with attention
mechanisms [2, 46], where attention-based mechanisms [33] play a
pivotal role in directing the model’s focus to relevant image regions.

Despite recent advances in the LIE task, the LIE task still has
room for improvement, with a key consideration in the rapid de-
velopments in smartphones. Currently, modern smartphones are
equipped with a greater number of sensors than a decade ago. Ex-
ploring how to leverage these sensors to enhance the restoration
of photos taken in low-light conditions is a highly worthwhile re-
search question. For instance, in current iPhone, LiDAR has become
standard equipment, allowing for the easy capture of images with
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Figure 1: Some samples from LED dataset. The first row is the low-light RGB image, the second row is the depth map (the
darker colors indicate a greater distance from the camera), and the third row is the normal-light image.

depth information by combining LiDARwith the camera. Therefore,
it is important to research a method to integrate depth information
into the LIE task for multimodal low-light image enhancement.

Given the absence of corresponding datasets, to facilitate re-
search in this field, we first develop an application using the ARKit
1 provided by Apple. This application is able to capture depth infor-
mation simultaneously while taking photos. We then use this appli-
cation to create a dataset called LED (Low-light Image Enhanced
with Depth Map), which comprising 1,365 sets of images, including
low-light images, normal-light images, and corresponding depth
maps. Furthermore, in this paper, we propose a model called LEDN
to effectively integrate depth information into the LIE pipeline.
LEDN employs two methods to leverage depth information. The
first method involves leveraging the clear and distinct edges in the
depth map. Using the Sobel algorithm [16], boundary information
is extracted from the depth map and then appended to the orig-
inal RGB image. This could relive the issue of unclear and blur
edges in low-light photos, and helps in segmenting the image into
different self-correlated sub-regions. The second method involves
the fusion of depth features, using an approach inspired by fast
Fourier convolution [6] to merge features from RGB images and
depth maps. Additionally, a module based on Mixture-of-Experts
(MoE) is designed to fuse features from different decoder layers to
more robustly and accurately generate the final prediction result.

With LED and LEDN, we conduct experiments and compare our
method with previous state-of-the-art (SOTA) methods on the LIE
task. The experimental results demonstrate that our method sur-
passes previous approaches in accuracy. Furthermore, we also carry
out comprehensive ablation experiments, including both quantita-
tive and qualitative analyzes, which confirm the effectiveness of
our approach. Our contributions can be summarized as follows:

• We construct the first-of-its-kind large-scale low-light image
enhancement dataset with depth information.

• We propose a novel method named LEDN, which could in-
tegrate depth information into LIE models, thus improving
image restoration accuracy.

1https://developer.apple.com/augmented-reality/

• Wedemonstrate the effectiveness and flexibility of ourmethod
with detailed comparative experiments and ablation studies.

2 Related Work
2.1 LIE Datasets
Recent advances in low-light image enhancement have spurred
significant interest in developing datasets that accurately reflect the
challenges posed by dark environments. One notable and earliest
dataset in this domain is the LOL [40, 44] dataset, which encom-
passes a diverse range of real-world low-light scenarios. LOL offers
a rich collection of images captured under challenging lighting
conditions, facilitating the training and evaluation of models for
low-light image enhancement tasks. The SID [4] and SMID [3]
datasets are captured by camera with both short and long exposure
to obtain low- and normal-light images separately. The SDSD [34]
is constructed by a camera with an ND filter in both indoor and
outdoor. Different from previous dataset, Adobe FiveK [1] use the
image adjusted by several photographer experts as the ground truth
rather than the noraml light image in the same scenario. All of the
above mentioned datasets primarily focus on how to reconstruct
normal-light images from a given low-light RGB image. The LED
dataset we propose in this paper first extend LIE task to multimodal
by introducing depth information, and LED can thereby advancing
research about the multimodal low-light image enhancement task.

2.2 LIE Methods
In recent years, LIE has become a prominent research area in com-
puter vision and image processing. Numerous methods have been
proposed to address the challenges posed by low light conditions
and improve the visibility and quality of images captured in such
environments. Traditional approaches [8, 15, 27] often relied on his-
togram equalization and contrast stretching techniques, but these
methods tend to introduce artifacts and may not effectively handle
complex low light scenarios. Advanced techniques have emerged,
leveraging deep learning (DL) and neural networks for low light
image enhancement. Researchers have explored the use of convo-
lutional neural networks (CNNs) [20] to learn complex mappings

https://developer.apple.com/augmented-reality/
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between low- and normal-light images, enabling the generation
of visually pleasing results. Additionally, attention mechanisms
[33, 46] and generative adversarial networks (GANs) [7, 30] have
been employed to capture and enhance important details in low
light scenes. Traditional Retinex [19] theory is also combine with
DL methods and used in some methods [19, 40, 46]. However, pre-
vious methods are designed exclusively for only RGB images. Our
LEDN is the first method designed for multimodal low-light image
inputs with depth information.

2.3 RGBD Datasets
Currently, multimodal-basedmethods have been popular researched
to improve model performance [22, 35, 37, 38, 42]. In the realm of
computer vision and scene understanding [41, 45], RGBD datasets
play a pivotal role in advancing the capabilities of various multi-
modal applications. Previous RGBD datasets mainly focus on 3D
computer vision tasks. Over the years, researchers have contributed
significantly to the development of diverse and comprehensive
RGBD datasets, facilitating the algorithms for tasks such as 3D
object recognition [28], 3D scene understanding [12], and 3D se-
mantic segmentation [9]. One famous dataset is the NYU Depth V2
[31] dataset, which comprises indoor scenes captured by a Kinect
sensor, providing RGB images along with corresponding depth
maps. Another prominent dataset is the SUN RGB-D [32] dataset,
offering a vast collection of indoor scenes with precise annotations
for object instances and room layouts. These datasets have not only
spurred advancements in computer vision research but also served
as benchmark resources for evaluating the efficacy of algorithms
across a spectrum of RGBD tasks. The depth map is less affected
by changes in lighting and texture loss, and our LED dataset is the
first that try to introduce the advantages of depth information to
solve the problem in the LIE task.

3 Dataset

Table 1: Comparison of LED with different LIE datasets.

Dataset #Sample Depth Type Source

LOLv1 [40] 500 % Image real
LOLv2-real [44] 789 % Image real
LOLv2-syn [44] 1,000 % Image synthe
SID [4] 2,697 % Image real
SMID [3] 404 % Video real
SDSD [34] 150 % Video real

LED (ours) 1,365 " Image real

3.1 Collection
To construct LED, we start from building the camera application
with ARKit on iOS. ARKit is a framework developed by Apple for
creating augmented reality (AR) experiences on iOS devices. It en-
ables developers to integrate immersive AR content into their appli-
cations, blending digital elements with the real-world environment
captured by the device’s camera. In this paper, we primarily utilized

ARKit to access the LiDAR device alongside the rear camera of the
iPhone, enabling the simultaneous capture of depth information
during photography.

Unlike conventional binocular RGBD cameras or Time-of-Flight
(ToF)-based cameras, iPhone’s LiDAR employs pulsed laser beams,
which is more stable and allowing for longer-range capture. Accord-
ing to ARKit’s official documentation, the LiDAR on the iPhone can
reach distances of approximately 5 meters. For capturing low-light
images, similar to prior research [3, 4, 40], we adjust the exposure
time and ISO of camera using iOS API to decrease brightness and
simulate low-light conditions. For each scene, our data collection
process involves: (1) fix the phone in place; (2) capture normal-light
image with default camera configuration and record depth map
at the same time; (3) adjust camera parameters and capture image
under low-light conditions.

3.2 Quality Control
To ensure each image contains meaningful depth information, dur-
ing capture, we ensured that the nearest object to the camera is at
a maximum distance of 3 meters from the camera. And to enhance
the balance of our dataset, we capture scenes that included both
indoor and outdoor environments and controlling their quantities
to be roughly equivalent. Additionally, to maximize data diversity,
we capture only one image per scene, and we introduce randomness
in adjusting exposure time and ISO, minimizing the chances of the
model exploiting patterns. Moreover, our scene captures are also
distributed across various time periods throughout the day. After
collecting all data, because the maximum resolution of the depth
map on the iPhone is only supported up to 768 × 576, we uniformly
resize the resolution of both low-light and normal-light images
to match the size of the depth map. We also perform Min-Max
normalization on the depth map. Table 1 shows the comparison
between our LED and previous LIE datasets. It can be found that
LED is currently the only one that supports multimodal low-light
image enhancement with additional depth information.

4 Methodology
4.1 Overview
Figure 2 shows the overall pipeline of our proposed LEDN. LEDN
is a encoder-decoder based neural network in which we first use
encoder layers to encode and down-sample the input low-light
image, and then use the same number of decoder layers to decode
and up-sampling the hidden states layer by layer. We also add a
skip connection between the encoder and decoder in the same layer
inspired by U-Net [29]. Finally, an RGB prediction layer is applied
to estimate the color under normal light conditions.

In LEDN, we introduce three additional components to incor-
porate depth information into low-light image restoration. First,
before input the orignal low-light image into image encoder, we
use a Depth Boundary-Aware (DBA) module, based on the Sobel al-
gorithm [16], to extract edge information of objects from the depth
map, obtaining a binary mask image, and then concatenate it with
the original image to impart edge-awareness to the input informa-
tion. In low-light images, the edges of objects are often unclear,
but the depth map, despite lacking color and lighting information,
provides accurate edge information. This edge information can be
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Figure 2: Overall pipeline of LEDN. “DBA” means Depth Boundary-Aware module, “MFC” means Multimodal Fourier Convolu-
tion module, “MoE” means Mixture-of-Experts layer. The red line means up-sampling convolution.

used to assist in the restoration of the image. The details of DBA
are presented in Section 4.2.

Second, in addition to image encoders, here we employ the same
number of depth encoders to encode depth map layer by layer. And
we design a Multimodal Fourier Convolution (MFC) module to fuse
image and depth features in the same layer, thus to integrate depth
information into the RGB image. The details of the MFC module
are described in Section 4.3.

The last major innovation of our model is the Layered Feature
Aggregation (LFA) module. In LFA, instead of only using the out-
put of the last decoder as the predicted restored image, we use
the outputs of all three decoder layers to obtain the normal-light
image. Since each layer from the bottom layer to the top layer has
a different receptive field, and each receptive field is crucial for
image restoration, here we employ a Mixture-of-Experts (MoE) to
aggregate features from these three layers, resulting in the final
output, which is detailed described in Section 4.4.

4.2 Depth Boundary-Aware Module

-1 0 +1

-2 0 +2

-1 0 +1

+1 +2 +1

0 0 0

-1 -2 -1

Figure 3: Pipeline of Depth Boundary-Aware module.

As described in Section 4.1, compared to low-light images with
blurry boundaries, depth maps, unaffected by lighting conditions,
can provide clear object edge boundaries. Thus, we can extract
edges from the depth map to enhance the original image. To ensure
computational efficiency while maintaining accuracy, we have em-
ployed the Sobel kernel [16] as the key component of our Depth

Boundary-Aware (DBA) module. The Sobel operator is a widely
used image edge detection algorithm designed to identify intensity
changes, particularly at edge locations within an image. The op-
erator consists of a pair of 3 × 3 convolution kernels (K𝑥 and K𝑦 )
as shown in Figure 3. The kernels can be applied separately to the
input image I ∈ R3×𝐻×𝑊 , to produce separate measurements of
the gradient component in each orientation. It operates through
convolution, sliding a Sobel kernel across the image to detect gra-
dients in both the horizontal and vertical directions to obtain the
gradient map G𝑥 and G𝑦 as follows:

G𝑥 = ConvK𝑥
(I), G𝑦 = ConvK𝑦

(I). (1)

G𝑥 and G𝑦 can then be combined together to find the absolute
magnitude of the gradient G ∈ R1×𝐻×𝑊 and also the orientation
of that gradient at each pixel, which can be formulated as:

G =

√︃
G2
𝑥 + G2

𝑦

Max(
√︃
G2
𝑥 + G2

𝑦)
. (2)

where Max() selects the biggest element value to conduct normal-
ization. Since a high spatial frequency usually corresponds to the
edge, we then use the gradients in both the horizontal and vertical
directions to calculate the edge mask E ∈ R1×𝐻×𝑊 as follows:

Ei, j =

{
1, if Gi, j > 𝜀

0, otherwise
(3)

where 𝜀 is a threshold. After obtaining the binary edge mask, we
concatenate it with the original image along the RGB dimension.
Compared to parameterized methods based on deep learning, there
is no parameter that need to be trained in DBA. This allows it to
run at the fastest speed and meanwhile find high-quality edges,
ensuring the effectiveness and efficiency.
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Figure 4: More details about LEDN.

4.3 Multimodal Fourier Convolution Module
Due to the complexity and multi-scale nature of the image and
depth data D ∈ R1×𝐻×𝑊 , it is essential to effectively capture both
local and global features before fuse them together. Therefore, we
employ two different convolutional approaches to process the input
images and depth features before combination. Figure 4a illustrates
the structure of our Multimodal Fourier Convolution (MFC) module.
Specifically, the first Local 2D Convolution (L2C) is a regular 2D
convolution, utilized to extract local features. The secondGlobal FFT
Convolution (GFC) is a global convolution enhanced with Fourier
Convolution (FC) based on Fast Fourier Transform (FFT), aimed
at capturing global feature information. Since the convolution on
frequencies impacts all pixels, we can thus achieve a global-level
receptive field. Here, we implement GFC similar to the Spectral
Transformer [6] as shown in Figure 4b.

In GFC, for input features, we first utilize a convolution layer to
reduce their dimensionality to speed up the subsequent calculation.
Then, for the processed features, the global FC branch on the left
first performs FFT on the input features to convert them into the
frequency domain. Then, it conducts convolution on the real and
imaginary parts separately in the frequency domain. At last, the
inverse FFT (IFFT) is used to return the features back to the spatial
domain. On the right local FC branch, before performing FC, it

divides the features into several parts and applies FC separately to
each of these parts, and then concatenates the resulting features at
the end. This division ensures that convolutions occur only within
each segmented feature block and achieves segment-level percep-
tion. Finally, we add the original features to the features obtained
from the two branches to obtain the final output feature.

With L2C and GFC, we are able to obtain image and depth feature
with both local and global information by adding the two kinds of
features together, which are formulated as:

Ih = L2C(I) + GFC(I), Dh = L2C(D) + GFC(D). (4)

where Iℎ ∈ R𝐶×𝐻×𝑊 and Dℎ ∈ R𝐶×𝐻×𝑊 are hidden states with 𝐶
channels for I and D, separately. Those two features are then input
into the Image-Depth Fusion (IDF) layer (Figure 4a). IDF first takes
the image and depth feature as input and calculates the relation
map by element-wise dot production. The image feature and the
attention feature are then concatenated and followed by a channel
attention block to obtain the weight map. The channel attention
block consists of a convulsion layer, a feed-forward network layer,
and a sigmoid layer to constrain the weight to 0 to 1. Finally, the
weight map is used to enhance the image feature by dot production
with the initial image feature. The overall process can be formulated
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as follows:

F = Sigmoid(FFN(Conv( [Iℎ · Dℎ ; Iℎ]))) · Iℎ . (5)

where F ∈ R𝐶×𝐻×𝑊 is the fusion feature that combined RGB and
depth features through the above operations.

4.4 Layered Feature Aggregation Module
In the Layered Feature Aggregation (LFA) module, we try to com-
bine the outputs from all three decoder layers to better restore the
image from hidden states. For the three output hidden features of
decoder side O1, O2, O3 that shape [𝐶,𝐻,𝑊 ], [2𝐶,𝐻/2,𝑊 /2] and
[4𝐶,𝐻/4,𝑊 /4] respectively, from O1 to O2, O2 to O3, the receptive
field area of features increases doubly each time. This leads to fea-
tures that at different levels are able to focus on key features from
different aspects. Since for each pixel, restoring its normal-light
RGB value is not only related to itself but also to its surrounding
pixels, incorporating features with various receptive field sizes en-
ables each pixel to capture coarse-to-fine details, leading to a more
precise restoration.

Furthermore, instead of simply reshaping and adding all the
features together, here we employ a Mixture-of-Experts (MoE) layer
to combine those features in a weighed manner. As shown in Figure
4c, we first resize the three hidden features in the shape [𝐻,𝑊 ],
then apply linear convolution to reduce their channels to 3, which
corresponds to the R-G-B values, and then stack them together
along the channel dimension to O𝑠 ∈ R9×𝐻×𝑊 as follows:

O𝑠 = Stack( [R1;R2;R3]), 𝑤ℎ𝑒𝑟𝑒 R𝑖 = Conv(Resize(O𝑖 ). (6)

For O𝑠 , we reduce its channel dimension to 3 without altering the
width and height of the features by convolution. Then a softmax is
applied along the channel dimension to obtain the weights O𝑤 ∈
R3×𝐻×𝑊 :

O𝑤 = Softmax(Conv(O𝑠 )) . (7)

For each element in O𝑤 , it contains three weights that will be
applied from O1 to O3. Finally, we use O𝑤 and O𝑠 perform the
weighted sum to obtain the final output O ∈ R3×𝐻×𝑊 which are
formulated as:

O =

3∑︁
𝑖=1

O𝑖
𝑤 · R𝑖 . (8)

where O𝑖
𝑤 ∈ R1×𝐻×𝑊 is per layer of O𝑤 along the channel dimen-

sion.

4.5 Loss Function
We use Mean Squared Error (MSE) as the loss function and the goal
is to minimize the MSE value between the predicted RGB value to
the ground truth value, formulated as:

MSE =
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖 )2 . (9)

where 𝑛 denotes the number of samples, 𝑦𝑖 represents the actual
values, and 𝑦𝑖 corresponds to the predicted values.

5 Experiment
5.1 Experiment Settings
We implement LEDN using Pytorch [26] and train it with a 24GB
RTX4090 GPU card. Throughout the training process, we resize the
input images to a size of 400 × 400. For optimization, we employ
Adam [17] with a momentum value of 0.9 and a weight decay of 1e-
4. The base learning rate is set to 2e-4, while the batch size and the
number of training epochs are set to 8 and 100, respectively. During
training, we utilize the cosine learning rate decay. All the compared
methods we reproduce are implemented using the original code
released by the respective authors. We do not employ any data
augmentation techniques or post-processing methods to refine
all predictions for fair comparison. The LED dataset is randomly
divided into training and validation sets in an 8:2 ratio, with 1,083
and 282 samples, respectively.

For evaluation, we use five types of metrics to assess model per-
formance: Mean Squared Error (MSE), Peak Signal-to-Noise Ratio
(PSNR) [11], Structural Similarity Index (SSIM) [36], Multi-Scale
Structural Similarity Index (MS-SSIM) [39] and Learned Perceptual
Image Patch Similarity (LPIPS) [48]. We use a pretrained AlexNet
[18] as the feature extraction backbone 2 in LPIPS.

5.2 Quantitative Anaysis
We first conduct an experiment that compares our LEDN with
previous SOTA methods on our LED dataset. Here, we choose
methods over the past four years, including MIRNet [47], DeepLPF
[24], SNR-Net [43], Restormer [46], EFINet [23], ChebyLighter [25],
LEDNet [51], DNF [14], Retinexformer [2]. All experimental results
are shown in Table 2. Our method achieves SOTA performance on
all five metrics on the LED. Even compared to recent best method
Retinexformer, our method is able to outperform it by a significant
margin especially in PSNR (20.90 vs. 20.46), SSIM (0.481 vs. 0.469)
and LPIPS (0.465 vs. 0.492). This proves that by using different
modules in our method to combine the depth information, we can
better restore the low-light images to normal light.

To further reveal the necessity of incorporating depth infor-
mation into the LIE task, we try to enhance the previous SOTA
methods by integrating depth information fusion into their mod-
els. The goal is to observe whether this integration could further
improve accuracy compared to using only RGB images. We test
several methods from Table 2 and enhance them with our MFC
module to incorporate depth information into them. The results
are shown in Table 3. It can be observed that in the vast majority
of cases, MFC brings substantial performance improvements to
different methods. This not only demonstrates the importance of
introducing depth information for low-light image enhancement,
but also validates the effectiveness of the MFC module we designed.

5.3 Ablation Study
We validate the impact of each module on LEDN by disabling one
or more components and comparing the performance on the LED
test set, and the results are shown in Table 4. To better demonstrate
the effect of our proposed modules, we first concatenate the depth
map onto the RGB image as RGBD input for comparison. The result

2https://github.com/richzhang/PerceptualSimilarity

https://github.com/richzhang/PerceptualSimilarity


Multimodal Low-light Image Enhancement with Depth Information MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

Table 2: Comparison of LEDN with different SOTA methods from LIE task on LED dataset. The top and second best results are
highlighted in red and blue.

Method Venue&Year MSE↓ PSNR↑ SSIM↑ MS-SSIM↑ LPIPS↓
EFINet [23] TCSVT-2022 0.0198 17.82 0.443 0.734 0.607
ChebyLighter [25] ACMMM-2022 0.0201 17.80 0.445 0.729 0.485
DeepLPF [24] CVPR-2020 0.0211 18.06 0.414 0.749 0.698
DNF [14] CVPR-2023 0.0153 19.60 0.432 0.784 0.722
MIRNet [47] ECCV-2020 0.0125 19.80 0.414 0.779 0.680
LEDNet [51] ECCV-2022 0.0144 20.02 0.439 0.796 0.700
SNR-Net [43] CVPR-2022 0.0116 20.21 0.463 0.803 0.544
Restormer [46] CVPR-2022 0.0111 20.40 0.431 0.797 0.627
Retinexformer [2] ICCV-2023 0.0102 20.46 0.469 0.810 0.492

LEDN (ours) Review-2024 0.0100 20.90 0.481 0.822 0.465

Table 3: Experimental results of previous SOTA methods enhanced with our MFC module. Performance improvements are
shown in parentheses, where green numbers represent increased performance and red represent degraded performance.

Method MSE↓ PSNR↑ SSIM↑ MS-SSIM↑ LPIPS↓
EFINet [23] (+ MFC) 0.0195 (0.0003) 17.95 (0.13) 0.446 (0.003) 0.754 (0.020) 0.611 (0.004)
DeepLPF [24] (+ MFC) 0.0130 (0.0081) 19.74 (1.68) 0.457 (0.043) 0.793 (0.044) 0.565 (0.133)
DNF [14] (+ MFC) 0.0121 (0.0032) 20.02 (0.42) 0.455 (0.023) 0.802 (0.018) 0.625 (0.097)
MIRNet [47] (+ MFC) 0.0137 (0.0012) 19.47 (0.33) 0.484 (0.070) 0.806 (0.027) 0.507 (0.173)
LEDNet [51] (+ MFC) 0.0107 (0.0037) 20.60 (0.58) 0.458 (0.019) 0.820 (0.024) 0.632 (0.068)
SNR-Net [43] (+ MFC) 0.0111 (0.0005) 20.34 (0.13) 0.467 (0.004) 0.801 (0.002) 0.598 (0.046)

Table 4: Ablation studies on different modules in LEDN. The
first two rows respectively show the results of using RGB
and RGBD image as input without using three modules.

DBA MFC LFA MSE↓ PSNR↑ SSIM↑ MS-SSIM↑ LPIPS↓

% % % 0.0147 18.97 0.448 0.779 0.495
% % % 0.0146 18.89 0.460 0.788 0.500

" % % 0.0137 19.24 0.463 0.796 0.494
% " % 0.0104 20.75 0.473 0.811 0.492
% % " 0.0135 19.31 0.462 0.789 0.473

" " % 0.0104 20.76 0.475 0.817 0.485
" % " 0.0127 19.42 0.457 0.784 0.477
% " " 0.0101 20.81 0.474 0.816 0.469

" " " 0.0100 20.90 0.481 0.822 0.465

is shown in the second row of the Table 4. It can be observed
that directly using RGBD image did not significantly improve the
model’s performance. We think this may because the RGB values
of low-light images are relatively small, typically much less than
0.1, while the normalized depth values are uniformly distributed
between 0 and 1. This results in a huge disparity between these
two kinds of value, making it difficult for the model to utilize depth
information effectively to reconstruct the image.

Then we compare the model performance with and without our
three modules. First, it can be observed that by extracting edge
information and concatenating it onto the RGB image, we are able
to enhance the model’s performance, which reveals not only the
importance of edge information in LIE task but also the effectiveness
of DBA. Furthermore, when using only one module, MFC has the
most significant impact among the three modules. Compared to the
basic network without any specific module, it increases the PSNR
accuracy by 1.78. This demonstrates the effectiveness of the feature
fusion approach employed by MFC, and meanwhile proving that
introducing depth information into the LIE task is useful. LFA is the
second most useful module, while DBA, although not as significant
as the other two, still contributes to improving the model accuracy
to some extent. Another interesting finding is that when using
LFA, we are able to get a better LPIPS score compared to other two
modules, which proves that the combination of different decoders’
outputs can help to generate normal-light image that is preferred by
humans. The model that simultaneously utilizes all three modules
achieves the highest accuracy, which indicates that each module in
LEDN makes a positive contribution to overall accuracy.

5.4 Qualitative Analysis
5.4.1 Comparison. Tomore intuitively compare the performance
differences between our approach and the previous methods, we
select several samples from the test set and visualize the recon-
struction results of each model in Figure 5. We highlight some
significant differences with the red boxes. Through comparison,
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Figure 5: Results on LED dataset. Our method effectively improves image visibility while preserving correct color, especially in
extremely dark areas.

Figure 6: Four samples of DBA module on LED dataset. From left to right are: (1) depth map; (2) boundary mask of depth map;
(3) low-ligth image; (4) boudary mask of low-light image; (5) normal-light image.

it can be observed that, compared to previous methods, our ap-
proach performs better on the edges of objects, and our model’s
reconstruction results are closest to the ground truth, especially in
particularly dark areas. For instance, in the first sample, the shadow
color produced by our method in the lower right corner of the bed
cabinet is the lightest, whereas other methods, like Retinexformer,
generate darker black shadows that do not exist in the actual image.
In the second sample, for the slippers in the lower left corner, our
model reconstructs the clearest outline by leveraging depth map
information. Similarly, in the third sample, the boundaries between
the stone stool and the stone floor in our generated images are more
distinct, due to the boundary information extracted from the depth
map. Moreover, the overall color of our reconstructed images is
closer to the real scene. This demonstrates that by leveraging depth
information, our method exhibits better robustness for low-light
images under different lighting and environmental conditions.

5.4.2 Visualization of DBA. To visually demonstrate the role of
the DBA module more intuitively, we utilize the DBA module to
extract the corresponding boundary masks for depth maps and low-
light images of four samples. These masks are displayed in Figure
6. As shown in this figure, in these four samples, the boundaries
extracted from the depth maps are much clearer and contain less
noise than those extracted directly from low-light images. For ex-
ample, in the first and last samples, the boundaries in the low-light
images are only clear in the bright areas on the left side, while in the
dark areas on the right side, effective boundary information cannot
be extracted. On the contrary, depth maps, unaffected by lighting

conditions, can extract most of the prominent object boundaries.
Moreover, by observing the second and third samples, it can be
noticed that the noise present in low-light images is reflected in the
extracted boundary information, leading to dense and erroneous
boundary information in some areas. For comparison, this confirms
the effectiveness of our DBA module in extracting boundaries from
depth maps and emphasizes the potential of improving the perfor-
mance of low-light image enhancement models by focusing on the
boundaries using additional depth information.

6 Conclusion
This paper presents a first-of-its-kind study of depth-based mul-
timodal low-light image enhancement task. To facilitate further
research in this area, we have created a first-of-its-kind compre-
hensive dataset called LED, which consists of 1,365 samples, each
with a low-light image, a normal-light image, and a correspond-
ing depth map. Additionally, we propose a novel network called
LEDN, which incorporates feature fusion between RGB images
and depth map to improve low-light image enhancement. Through
extensive experiments and detailed analysis, we demonstrate that
LEDN outperforms existing methods in LIE tasks with additional
depth information on the LED dataset, which also proves the neces-
sarily of leveraging depth map in LIE. Moreover, by combining our
designed module with the previous method, we prove the effective-
ness and flexibility of our approach, showing its ability to easily
integrate with other models. We hope that our dataset and method
can contribute to the advancement of this field in the future.
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