
Under review as a conference paper at ICLR 2021

CONTINUAL PROTOTYPE EVOLUTION: LEARNING
ONLINE FROM NON-STATIONARY DATA STREAMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Attaining prototypical features to represent class distributions is well established
in representation learning. However, learning prototypes online from streams of
data proves a challenging endeavor as they rapidly become outdated, caused by
an ever-changing parameter space in the learning process. Additionally, continual
learning does not assume the data stream to be stationary, typically resulting in
catastrophic forgetting of previous knowledge. As a first, we introduce a system
addressing both problems, where prototypes evolve continually in a shared latent
space, enabling learning and prediction at any point in time. In contrast to the major
body of work in continual learning, data streams are processed in an online fashion,
without additional task-information, and an efficient memory scheme provides
robustness to imbalanced data streams. Besides nearest neighbor based prediction,
learning is facilitated by a novel objective function, encouraging cluster density
about the class prototype and increased inter-class variance. Furthermore, the latent
space quality is elevated by pseudo-prototypes in each batch, constituted by replay
of exemplars from memory. We generalize the existing paradigms in continual
learning to incorporate data incremental learning from data streams by formalizing
a two-agent learner-evaluator framework, and obtain state-of-the-art performance
by a significant margin on eight benchmarks, including three highly imbalanced
data streams.

1 INTRODUCTION

The prevalence of data streams in contemporary applications urges systems to learn in a continual
fashion. Autonomous vehicles, sensory robot data, and video streaming yield never-ending streams
of data, with abrupt changes in the observed environment behind every vehicle turn, robot entering a
new room, or camera cut to a subsequent scene. Alas, learning from streaming data is far from trivial
due to these changes, as neural networks tend to forget the knowledge they previously acquired. The
data stream presented to the network is not identically and independently distributed (iid), emanating
a trade-off between neural stability to retain the current state of knowledge and neural plasticity to
swiftly adopt the new knowledge (Grossberg, 1982). Finding the balance in this stability-plasticity
dilemma addresses the catastrophic forgetting (French, 1999) induced by the non-iid intrinsics of the
data stream, and is considered the main hurdle for continually learning systems.

Although a lot of progress has been established in the literature, often strong assumptions apply,
impeding applicability for real-world systems. The static training and testing paradigms prevail,
whereas a true continual learner should enable both simultaneously and independently. Therefore, we
propose the two-agent learner-evaluator framework to redefine perspective on existing paradigms
in the field. Within this framework, we introduce data incremental learning, enabling completely
task-free learning and evaluation.

Furthermore, we introduce Continual Prototype Evolution (CoPE), a new online data incremental
learner wherein prototypes perpetually represent the most salient features of the class population,
shifting the catastrophic forgetting problem from the full network parameter space to the lower-
dimensional latent space. As a first, our prototypes evolve continually with the data stream, enabling
learning and evaluation at any point in time. Similar to representativeness heuristics in human
cognition (Kahneman & Tversky, 1972), the class prototypes are the cornerstone for nearest neighbor
classification. Additionally, the system is robust to highly imbalanced data streams by the combination

1

Under review as a conference paper at ICLR 2021

Learner

Evaluator

optimize

evaluate

Figure 1: Overview of the learner-evaluator framework, overcoming the static training and testing
paradigms by explicitly modelling continual optimization and evaluation from data streams in the
learner and evaluator agents. The framework generalizes to both continual learning and concept drift
with resources transparently defined as the horizon D and operational memoryM.

of replay with a balancing memory population scheme. We find batch information in the latent space
to have a significant advantage in the challenging non-stationary and online processing regime, which
we incorporate in the novel pseudo-prototypical proxy loss.

2 THE LEARNER-EVALUATOR FRAMEWORK

To date, the paradigms of task, class, and domain incremental learning (van de Ven & Tolias, 2018)
dominate the continual learning literature. However, strong and differing assumptions often lead to
confusion and overlap between implementations of these definitions. Furthermore, the concept of a
static training and testing phase is still ubiquitous, whereas continual learning systems should enable
both phases continually and independently. Therefore, we propose a generalizing framework which
disentangles the continually learning system into two agents: the learner and the evaluator. Figure 1
presents an overview of the framework.

The learning agent learns predicting function fθ : X → Y parameterized by θ, mapping the input
space X to the target output space Y . The learner receives data samples (xi,yi) from stream S
and has simultaneous access to the horizon D, i.e. the observable subset of stream S which can
be processed for multiple iterations. Data sample i is constituted by input feature xi ∈ X and
corresponding (self-)supervision signal yi for which the output space for classification is defined as a
discrete set of observed classes Yi ← Yi−1 ∪ {yi}. To manage memory usage and to enable multiple
updates and stochasticity in the optimization process, updates for θ are typically performed based on
a small-scale processing batch B ⊆ D. The data and size of the horizon D are determined by the
specific setup or application, ranging from standard offline learning with D = S to online continual
learning with D = B. Furthermore, the learner might need additional resources after observing data
from B ⊆ D, such as stored samples or model copies, confined by the operational memoryM.

The evaluating agent acts independently from the learner by evaluating fθ with horizon Deval from
the evaluation stream Seval, with small-scale processing batches Beval ⊆ Deval. This stream
can contain yet unobserved concepts by the learner in S to measure zero-shot performance. The
framework provides leeway for the concept distributions in Seval being either static or dynamically
evolving, determining how performance of the learner is measured. On the one hand, static concept
distributions can measure the degree to which the knowledge of learned concepts is preserved, as
commonly used in continual learning. On the other hand, evolving concept distributions measure
performance for the current distribution in horizon Deval only, where concepts might drift from their
original representation, also known as concept drift (Schlimmer & Granger, 1986). Evaluation can
occur asynchronously on-demand or periodically with periodicity ρ determining the resolution of the
evaluation samples.

Task, class, and domain incremental learning are based on the composition in the learner for the
observable stream subset in horizon Dt, which is incrementally replaced by a new subset of data

2

Under review as a conference paper at ICLR 2021

for the new task, set of classes, or domain, with t the identifier of the present data subset. Task
incremental learning assumes both learner and evaluator to get data (xi,yi, ti) with ti+1 ≥ ti and
the horizon spanning all data of a given task with Dt = {(xi,yi, ti) ∈ S | ti = t} (De Lange et al.,
2019; van de Ven & Tolias, 2019). Having explicit access to ti confines prediction to an isolated
output space. Similarly, in class incremental learning the learner implicitly requires ti to identify the
transitions of D, when observing new batches of classes (Rebuffi et al., 2017; Castro et al., 2018;
Shmelkov et al., 2017; Wu et al., 2018). However, the evaluator considers the entire output space
without the need for identifier t. Domain incremental learning holds the same assumptions as class
incremental learning, with concepts drifting from one domain to the other for a typically fixed output
space, exemplified by the widely used permuted-MNIST setup (Goodfellow et al., 2013).

Data incremental learning is a more general paradigm we introduce to facilitate learning from any
data stream, with no assumption but to observe data incrementally. In contrast to existing paradigms,
when the learner observes horizon D of data stream S, data incremental learning does not disclose
an identifier t. Consequently, there is no explicit indication to which subset of the stream is being
observed in the horizon D. Therefore, the learner either processes observed data directly in an online
fashion with processing batch B = D, or infers an implicit identifier t from statistics in stream S.
Similar to class and domain incremental learning, the evaluator operates without t on the full output
space. This paradigm endows continually learning systems with increased practical use, as real-world
streaming applications often lack supervision signal t. Moreover, even if t is provided, this would
introduce a bias in the fixed choice of the supervisor, rather than dynamically determined based on
the needs of the system.

3 PRIOR WORK

Continually learning systems are able to learn with limited resources from data streams prone to severe
distribution shifts. The main body of works presumes the presence of tasks, which divide the data
streams into large discrete batches, and are indicated to the learner with a task identifier (Kirkpatrick
et al., 2017; Li & Hoiem, 2017; Zenke et al., 2017; Aljundi et al., 2018; De Lange et al., 2020).
Replay methods retain representative data for observed data distributions, currently unavailable in
the learner’s horizon D. The replay data is either obtained directly from operational memoryM
with stored samples (Rebuffi et al., 2017; Lopez-Paz & Ranzato, 2017) or generated using generative
models (Shin et al., 2017; Kamra et al., 2017; Seff et al., 2017; Wu et al., 2018). GEM (Lopez-Paz &
Ranzato, 2017) uses replay in a constraint optimization perspective to project gradients towards a local
joint task optimum. iCaRL (Rebuffi et al., 2017) employs exemplars to distill knowledge (Hinton
et al., 2015) to the learner from a previous model version, with new class exemplars stored in a queue
to optimally represent the class mean in feature space. The prototypes are then used for nearest
neighbor prediction by the evaluator, in the same vein as concurrent work to ours (Han et al., 2020).
Nonetheless, all three works strongly rely on task identifier t for the learner, mostly unavailable for
real-world data streams. Moreover, in both prototypical approaches the prototypes remain static
between the given task transitions and become outdated. Consequently, before using the evaluator
they have to exhaustively recalculate the prototypes based on all exemplars in memory. In contrast,
our prototypes evolve in an online fashion with the data stream and remain representative for the
continual learner and evaluator at all times.

Recent works focus on online data incremental learning (Section 2) in which the learner operates
completely task-free. Reservoir (Vitter, 1985) is a replay baseline with strong potential to outperform
continual learning methods (Chaudhry et al., 2019). Samples are stored in memoryMwith probability
M/n, with n the number of observed samples and buffer sizeM . MIR (Aljundi et al., 2019a) extends
Reservoir sampling with a loss-based retrieval strategy, with the cost of additional forward passes and a
model copy to attain the losses for a subset of samples. The Reservoir buffer population approximately
follows the data stream distribution, severely deteriorating the performance of underrepresented tasks
in imbalanced data streams, as shown in Section 6.2. An alternative memory population scheme is
used in GSS (Aljundi et al., 2019b) by extending the GEM constraint optimization perspective to
an instance-based level. GSS adds samples to the buffer based on their gradients, whereas GEM
requires the number of tasks and the task transitions to divide memory equally over all tasks a priori.
In contrast, iCaRL’s memory population is incrementally subdivided over all classes after learning
a task, by iteratively adding observed samples from D to optimally approximate the class mean in
feature space. As this is computationally expensive, concurrent works to ours explore other balancing

3

Under review as a conference paper at ICLR 2021

Figure 2: Main setup. The learner updates network fθ and prototypes py,∀y ∈ Y continually. The
PPP-loss encourages inter-class variance (red arrows) and reduces intra-class variance (green arrows).

schemes (Kim et al., 2020; Chrysakis & Moens, 2020), where we propose a simple but effective
class-based Reservoir scheme with uniform retrieval.

Another branch of parameter isolation methods (De Lange et al., 2019) allocates parameters to subsets
of the data. Several task incremental works assign parameters based on the task identifier (Mallya &
Lazebnik, 2018; Serra et al., 2018). A new line of work instead focuses on task-free model expansion.
CURL (Rao et al., 2019) enables task-free and unsupervised adaptation using a multi-component
variational auto-encoder, with generative replay from a model copy avoiding forgetting in the current
model. CN-DPM (Lee et al., 2020) allocates data subsets to expert networks following a Dirichlet
process mixture. In contrast to these capacity expansion based methods, CoPE evades unbound
allocation of resources, as the memory and network capacity are fixed with the replay memory
dynamically subdivided over categories occurring in the data stream. Note that new categories require
an additional prototype, but these are only d-dimensional and therefore insignificant in size, and the
set of categories is typically limited as well.

Besides the focus on continual learning in this work, our learner-evaluator framework generalizes to
concept drift as well (Schlimmer & Granger, 1986), for which we refer to an overview in (Tsymbal,
2004; Gama et al., 2014). Further, in deep embedding learning most commonly pairs (Hadsell et al.,
2006) and triplets (Harwood et al., 2017) of samples are considered in contrastive losses, whereas
other works use batch information in lifted structure embeddings (Oh Song et al., 2016), or instance-
wise softmax embeddings (Ye et al., 2019). These approaches fully depend on the batch size, whereas
our pseudo-prototypical proxy loss aggregates both decoupled prototypes and the additional batch
pseudo-prototypes to defy class interference in the latent space. Learning prototypical representations
also shows promising results in few-shot learning (Snell et al., 2017).

4 CONTINUAL PROTOTYPE EVOLUTION

The online data incremental learning setup of the learner is described in Figure 2. Embedding network
fθ maps processing batch B, composed of samples in horizon D from the non-iid data stream S and
operational memoryM, to low-dimensional Rd latent space, followed by a nearest neighbor classifier.
We enforce ||fθ(xi)|| = 1 with an L2 normalization layer. M is subdivided in a replay memory
Mr and prototypical memoryMp. CoPE comprises three main components: continually evolving
representations, balanced replay and the pseudo-prototypical proxy (PPP) loss. In the following, we
discuss these components and formalize the optimal choice of prototype, with f ci denoting latent
space projection fθ(xci) for an instance xi of class c. For the full algorithm, we refer to Appendix A.

4.1 EVOLVING REPRESENTATIONS

Each observed class c ∈ Y is represented by a slowly progressing prototype pc in operational
memoryMp. The nearest neighbor classifier finds the most similar prototype for the given query
xi, predicting c∗ = argmaxc∈Y fTi pc. Similar to (Mensink et al., 2013; Rebuffi et al., 2017), the
class-prototype approximates the center of mass in the latent space, which we formally justify in
Section 4.4. The main crux with storing representations is to prevent them from becoming obsolete
as the embedding network evolves. Additionally, this is further complicated by the shifting data
distributions in the non-stationary regime, incurring catastrophic forgetting. Experience replay from a
bufferMr is a well known approach to address this forgetting. Nonetheless, in our setup the replayed
exemplars gain additional information about the current state of the embedding space, enabling
rehearsal to rectify approximation pc to the true center of mass. Concretely, the sampled batch

4

Under review as a conference paper at ICLR 2021

Bn equals the horizon D from data stream S and joins batch BM of equal size from memoryMr,
constituting B as Bn ∪BM. However, updating the prototypes by fully relying on features extracted
from B incurs an unstable optimization process as the representative prototypes depend on stochastic
sampling of the class distributions. Therefore, we design the prototypes to evolve continually with a
high momentum based update for each observed batch, aiming to stabilize the impetuous changes in
the data stream:

pc ← αpc + (1− α)p̄c, s.t. p̄c =
1

|Bc|
∑

xc∈Bc

fθ(x
c), (1)

with momentum parameter α ∈ [0, 1], the batch subset Bc = {(xi, yi = c) ∈ B} of class c, and p̄c

the corresponding center of mass in latent space for the current batch. Due to triangle inequality pc

is no longer unit length and requires to be L2-normalized after the update in Eq. 1. We empirically
validate the effectiveness of high momentum with α ≈ 1 in the ablation study in Appendix D.

4.2 BALANCED REPLAY

Similar to Rebuffi et al. (2017); Chrysakis & Moens (2020), the total buffer size M is equally divided
over the number of observed classes |Y| in a dynamic fashion. This scheme ensures consistent buffer
capacity for all classes, making memory allocation independent of the data stream characteristics.
As S is typically highly imbalanced in real-world scenarios, this memory scheme prevents classes
to be eradicated from the buffer and assumes equal importance to represent each class at all times.
Consequently, random retrieval from the buffer resembles sampling an iid replay batch. Furthermore,
each class-specific replay memory Mc

r can simply capture a random subset of its parent class
distribution to approximate its center of mass. This avoids computationally expensive herding
techniques as in iCaRL (Rebuffi et al., 2017), which would require recalculation of the feature means
on each change of the memory size or network parameters.

4.3 PSEUDO-PROTOTYPICAL PROXY LOSS

The learner optimizes fθ to project an instance f ci ∈ Rd of class c close to its corresponding prototype
pc in the latent space. As the prototype acts as a surrogate for the class mean in latent space, the
cluster population has a common reference point to reduce intra-class variance, and enforce inter-class
variance by remaining distant from the other class prototypes. Additionally, due to the embedding
architecture we can use intrinsic information of the batch samples in the latent space. Therefore,
we exploit the supervision signal yi in a sample (xi,yi) ∈ B not only to indicate which class xi
belongs to, but also to make the distinction between positive and negative pairs in B. Consequently,
we can define one-against-all subsets for an instance of class c, with positives from the same class
in Bc = {(xi, yi = c) ∈ B} and negatives in Bk. Starting from these sets, the prototypical
attractor and repellor sets for an instance xci are constituted with the class prototype pc and the
other instances in B. First, the other instances of class c act as pseudo-prototypes p̂c in attractor set
Pci = {pc} ∪ {p̂cj = fθ(x

c
j) | ∀xcj ∈ Bc, i 6= j}. Second, the samples of other classes xkj ∈ Bk

should instead avoid both xci in latent space and the class representative pc, defined by repellor
set Uci = {pc, p̂ci = fθ(x

c
i)}. The attractor set for xci facilitates a decrease in intra-class variance

with pc safeguarding the absence of positive batch pairs with 1 ≤ |Pci | ≤ |Bc|, whereas the repellor
exploits xci and corresponding prototype as a reference point to increase inter-class variance. To
incorporate the attractor and repellor sets, we formulate a binary classification problem similar to Ye
et al. (2019), with the joint probability that instance xci is predicted as class c and instances xkj ∈ Bk
not being predicted as class c

Pi = P (c|xci)
∏
xk
j

(1− Pi(c|xkj)) (2)

with the assumption of independence between xci and xkj being recognized as c. We define the
expected posterior probabilities for the attractor and repellor sets of instance xci respectively as

P (c|xci) = E
p̃c∈Pc

i

[P (c|f ci , p̃c)] , Pi(c|xkj) = E
p̃c∈Uc

i

[
P (c|fkj , p̃c)

]
, (3)

with p̃c a proxy for the latent mean of class c in

P (c|f , p̃c) = exp(fT p̃c/τ)

exp(fT p̃c/τ) +
∑
k 6=c exp(f

Tpk/τ)
, (4)

5

Under review as a conference paper at ICLR 2021

where temperature τ controls the concentration level of the distribution (Hinton et al., 2015), assuming
a cosine similarity metric fTi fj with vectors normalized to unit length. We reformulate the objective
in Eq.(2) as loss function L by negative log-likelihood and summation over all the instances in B,
which approximates the true joint probability with assumed independent pairs in the batch:

L = − 1

|B|

∑
i

logP (c|xci) +
∑
i

∑
xk
j

log(1− Pi(c|xkj))

 . (5)

4.4 OPTIMAL PROTOTYPES

We update prototypes to approximate the mean of the parent distribution in Eq.(1). This assumption
is optimal for Bregman divergences for which the cluster mean is shown to have minimal distance to
its population (Banerjee et al., 2005). This Bregman divergence is defined for a differentiable, strictly
convex function ϕ as

dϕ(fi, fj) = ϕ(fi)− ϕ(fj)− (fi − fj)
T∇ϕ(fj), (6)

for which the squared Euclidean distance with ϕ(f) = ||f ||2 is a canonical example. The squared
Euclidean distance is proportional to the cosine distance with vectors normalized to unit length:
1
2 ||fi − fj ||2 = 1− cos∠(fi, fj). As the PPP-loss in Eq.(4) requires a similarity measure instead of a
distance measure, we employ the complementary normalized cosine similarity cos∠(fi, fj) = fTi fj
with ||fi|| = ||fj || = 1. Besides the desirable cluster-mean property of its complement, this metric is
also efficient for calculating the full batch similarity matrix using matrix multiplication libraries.

5 EXPERIMENTS

This work examines five balanced data streams and 15 highly imbalanced variants based on Split-
MNIST, Split-CIFAR10 and Split-CIFAR100, from which two low-capacity balanced setups are
discussed in Appendix E. The learner is presented a data stream S, constituted by a sequence of tasks,
each delineated by a subset of classes from the original dataset. Although the learner in CoPE is
completely ignorant to the notion of task, this setup enables comparing to methods requiring task
boundaries such as GEM and iCaRL. The evaluator uses a held-out dataset of static concepts in Seval,
evaluating with the subset of seen concepts Y in Deval using the accuracy metric. The CoPE learner
processes data online with Bn = D in the data incremental setup, allowing per-task processing of 1
epoch for methods requiring task boundaries with B ⊂ D. We use vanilla stochastic gradient descent
with a limited processing batch size |Bn| of 10 as in in (Lopez-Paz & Ranzato, 2017; Aljundi et al.,
2019b; Lee et al., 2020). All results are averaged over 5 different network initializations.1

Balanced data streams contain a similar amount of data per task. We consider three benchmarks.
First, Split-MNIST constitutes the MNIST (LeCun et al., 1998) handwritten digit recognition dataset
with 60k training samples, split into 5 tasks according to pairs of incrementing digits. Second,
Split-CIFAR10 considers the CIFAR10 (Krizhevsky et al., 2009) dataset, subdivided into 5 tasks
with 2 labels each, where each task entails 10k training samples. Third, Split-CIFAR100 is a variant
of the CIFAR dataset with 100 different classes. The 50k training samples are subdivided in 20 tasks
of 2.5k samples as in (Lopez-Paz & Ranzato, 2017; Lee et al., 2020). For all datasets the evaluator
considers the entire original test subset for Seval.

Imbalanced data streams introduce a more realistic scenario without equality assumptions on
the task durations in S and address the literature mostly balancing the data streams artificially.
Besides the imbalanced Split-MNIST setup (Aljundi et al., 2019b), we introduce two novel and
more challenging benchmarks based on Split-CIFAR10 and Split-CIFAR100, where data stream S
comprises significantly more data in task Ti, denoted by S(Ti). Split-MNIST and Split-CIFAR10
have respectively 2k and 4k samples in Ti, whereas tasks Tj for j 6= i contain factor 10 less data for
five variants S(Ti), ∀i ∈ {1, ..., 5}. Split-CIFAR100 defines Ti with 2.5k samples and 1k for the
remaining tasks, with variants i ∈ {1, 5, ..., 20}.
Architectures. MNIST setups use an MLP with 2 hidden layers of 400 units with 2k memories for
the balanced setup as in (Hsu et al., 2018; Lee et al., 2020; van de Ven & Tolias, 2019), and 100 units

1Appendix details the full setup with additional experiments. Code publicly released upon paper acceptance.

6

Under review as a conference paper at ICLR 2021

with |M| = 0.3k for the imbalanced setup as in (Aljundi et al., 2019b). CIFAR setups use a slim
version of Resnet18 (He et al., 2016) with a 1k memory size for CIFAR10 (Aljundi et al., 2019b; Lee
et al., 2020), and 5k for CIFAR100 (Lopez-Paz & Ranzato, 2017).

Methods compared to CoPE entail 11 baselines, with details on prior work discussed in Section 3.
The upper reference point for performance when relaxing the challenging non-iid feature in continual
learning is set by iid-online & iid-offline. The learner shuffles the full data stream S to ensure the
iid property, for which iid-online trains a single epoch and iid-offline multiple epochs. In contrast, the
finetune learner considers non-iid data stream S sequentially, but optimizes solely for the new batch
which typically results in worst-case catastrophic forgetting. CoPE-CE is a reference point for the
merits of a prototypical approach by solely using the CoPE memory and sampling scheme, but with
a typical cross-entropy loss and softmax classifier. GEM and iCaRL are standard replay methods
considered in a class incremental setup, with the learner requiring task boundaries. For online data
incremental learning, we consider the reservoir, MIR and greedy GSS replay baselines, with CURL
and CN-DPM instead relying on model expansion.

Table 1: The three balanced data stream accuracies (%) with standard
deviation over 5 initializations. Expansion-based methods CURL and
DN-CPM report results from their original work.

Split-MNIST Split-CIFAR10 Split-CIFAR100
iid-offline 98.44± 0.02 83.02± 0.60 50.28± 0.66
iid-online 96.57± 0.14 62.31± 1.67 20.10± 0.90

finetune 19.75± 0.05 18.55± 0.34 3.53± 0.04
GEM 93.25± 0.36 24.13± 2.46 11.12± 2.48
iCARL 83.95± 0.21 37.32± 2.66 10.80± 0.37
CURL (Rao et al., 2019) 92.59± 0.66 − −
DN-CPM (Lee et al., 2020) 93.23± 0.09 45.21± 0.18 20.10± 0.12

reservoir 92.16± 0.75 42.48± 3.04 19.57± 1.79
MIR 93.20± 0.36 42.80± 2.22 20.00± 0.57
GSS 92.47± 0.92 38.45± 1.41 13.10± 0.94

CoPE-CE 91.77± 0.87 39.73± 2.26 18.33± 1.52
CoPE (ours) 93.94± 0.20 48.92± 1.32 21.62± 0.69

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

Figure 3: Balanced Split-
MNIST first seed Seval
t-SNE (Maaten & Hinton,
2008).

0.1k 0.2k 0.5k 1k 1.5k 2k
Memory size

40

60

80

A
cc

u
ra

cy
(%

)

CoPE: 89.8± 4.8
CoPE-CE: 85.2± 7.9
GEM*: 87.5± 5.7

iCaRL*: 83.3± 0.8
GSS: 71.2± 22.1

MIR: 86.0± 8.0
Reservoir: 85.6± 7.6

0.1k 0.2k 0.5k 1k 1.5k 2k
Memory size

20

40

60

A
cc

u
ra

cy
(%

)

CoPE: 45.4± 8.7
CoPE-CE: 36.2± 10.3
GEM*: 22.8± 2.9

iCaRL*: 37.5± 1.8
GSS: 33.8± 10.7

MIR: 36.0± 9.6
Reservoir: 37.3± 9.8

Figure 4: Accuracies over buffer sizes |M| for balanced Split-MNIST and Split-CIFAR10 sequences.
The legend reports averages over all observed buffer sizes. ’∗’ indicates learner with task information.

6 RESULTS AND DISCUSSION

6.1 BALANCED DATA STREAMS

The results for the three balanced data streams in Table 1 consistently report state-of-the-art for CoPE.
The difficulty for learning online is reflected in the discrepancy of performance between iid-offline
and iid-online, indicating increasing difficulty for a minimal 2% for Split-MNIST, raising by factor
10 for Split-CIFAR10, and culminating to 30% in Split-CIFAR100. For Split-MNIST the gap with
iid-online performance is closed by 0.7% compared to main competitors GEM and DN-CPM, with

7

Under review as a conference paper at ICLR 2021

our representations visualized in Figure 3. Furthermore, in the more challenging Split-CIFAR10
setup we significantly increase the gained margin by 3.7%. In the most challenging Split-CIFAR100,
CN-DPM, Reservoir and MIR are able to perform on par with the iid-online baseline, however, CoPE
establishes an improvement of at least 1.5% over all four baselines.

Compared to balanced replay with standard cross-entropy (CoPE-CE), the prototypical approach
(CoPE) proves effective with significant gains of 2.2%, 9.2% and 3.3% respectively over the three
benchmarks. Except for GEM in Split-MNIST, class incremental learning methods GEM and iCaRL
are not competing in the online setting and additionally require from the setup to reveal an identifier t
to the learner. From the expansion-based methods DN-CPM is competitive, whereas CURL is more
suited for unsupervised learning and lacks behind. Although Reservoir and extension MIR perform
on par with iid-online for Split-CIFAR100, the imbalanced experiments in Section 6.2 show that full
reservoir-based population of the buffer strongly relies on this assumption of equally sized tasks,
which is unlikely to occur in real-world data streams.

Buffer size ablation study in Figure 4 shows CoPE to prevail over all sizes of replay bufferMr

compared to other replay methods, extending robustness to low capacity regimes. Although iCaRL
shows competitive results for low capacity, CoPE scales with growing capacity leading to significantly
outperforming iCaRL with 11% in Split-MNIST (2k) and Split-CIFAR100 (5k), and 17% in Split-
CIFAR10 (2k). We refer to Appendix E for the Split-CIFAR100 results.

6.2 IMBALANCED DATA STREAMS

Results for the highly imbalanced data stream benchmarks are reported in Figure 4. CoPE significantly
outperforms all baselines in the three scenarios, with low standard deviation for the 15 variants
indicating robustness over a wide spectrum of imbalanced sequences. Gradient-based sample selection
(GSS) outperforms Reservoir and MIR for Split-MNIST, in correspondence with results in Aljundi
et al. (2019b), whereas loss-based retrieval in MIR has significant gains for the challenging Split-
CIFAR100 setting. However, CoPE surpasses both GSS and MIR for all three benchmarks, and on top
of that operates profusely more resource efficient as discussed in Appendix C. The balancing memory
scheme in CoPE-CE highly improves Reservoir over imbalanced Split-MNIST and Split-CIFAR10
variants with 10.8% and 3.4% respectively, and performs on par for Split-CIFAR100 where balancing
over 100 classes with limited batch size proves more difficult. Although CoPE and CoPE-CE share
memory and retrieval schemes, the prototypical CoPE surpasses the cross-entropy based CoPE-CE
with 4.0%, 2.9% and 6.7% respectively on the three benchmarks, indicating the merits of the PPP-loss
and continually evolving prototypes. Figure 6 compares the CoPE and CoPE-CE confusion matrices
at the end of learning, showing that CoPE better preserves the recall over early learned classes.
CoPE-CE exhibits high plasticity as classes 8 and 9 of the last task have high recall compared to
the earlier learned classes. Hence, CoPE seems to better preserve stability, effectively alleviating
catastrophic forgetting.

S(T1) S(T2) S(T3) S(T4) S(T5) Avg.

60

80

CoPE: 84.4± 0.7
CoPE-CE: 80.4± 0.9
GSS: 78.9± 2.0

MIR: 70.9± 4.9
Reservoir: 69.7± 4.5

S(T1) S(T2) S(T3) S(T4) S(T5) Avg.
20

30

40

CoPE: 37.4± 1.7
CoPE-CE: 34.5± 1.1
GSS: 30.6± 2.8

MIR: 29.6± 2.3
Reservoir: 31.4± 2.7

S(T1) S(T5) S(T10)S(T15)S(T20) Avg.

10

15

20

CoPE: 18.6± 0.4
CoPE-CE: 11.9± 0.8
GSS: 10.8± 0.4

MIR: 17.8± 0.3
Reservoir: 11.8± 0.5

Figure 5: Accuracy (%) for imbalanced Split-MNIST (left), Split-CIFAR10 (center) and Split-
CIFAR100 (right) sequences. The legend reports average accuracies over all the sequence variations.

6.3 PPP-LOSS ANALYSIS

In the challenging setting for online processing of non-iid data streams, the PPP-loss exploits
information in the small processing batchB, introducing pseudo-prototypes p̂ on top of the prototypes.
This leads to questioning to what extent the pseudo-prototypes actually contribute to the quality of
the embedding, and how this relates to the batch size. We examine both inquiries in Table 2 for the

8

Under review as a conference paper at ICLR 2021

0 1 2 3 4 5 6 7 8 9

Predicted label

0

1

2

3

4

5

6

7

8

9

T
ru

e
la

b
el

0.94 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.01 0.00

0.00 0.95 0.00 0.00 0.00 0.00 0.01 0.00 0.03 0.00

0.01 0.01 0.82 0.01 0.02 0.01 0.03 0.02 0.07 0.01

0.00 0.00 0.02 0.76 0.00 0.09 0.01 0.02 0.06 0.02

0.00 0.00 0.00 0.00 0.80 0.00 0.03 0.00 0.01 0.14

0.02 0.00 0.01 0.03 0.01 0.80 0.04 0.01 0.07 0.02

0.02 0.00 0.02 0.00 0.02 0.01 0.90 0.00 0.02 0.00

0.01 0.01 0.03 0.01 0.01 0.01 0.00 0.83 0.02 0.08

0.01 0.01 0.02 0.02 0.01 0.05 0.02 0.02 0.82 0.02

0.01 0.01 0.01 0.01 0.07 0.01 0.01 0.04 0.01 0.83

(a) CoPE

0 1 2 3 4 5 6 7 8 9

Predicted label

0

1

2

3

4

5

6

7

8

9

T
ru

e
la

b
el

0.92 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.03 0.01

0.00 0.92 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00

0.01 0.01 0.75 0.01 0.01 0.00 0.03 0.01 0.14 0.02

0.00 0.00 0.01 0.71 0.00 0.05 0.00 0.01 0.17 0.03

0.00 0.00 0.00 0.00 0.67 0.00 0.02 0.00 0.02 0.28

0.01 0.00 0.00 0.03 0.01 0.67 0.03 0.01 0.19 0.04

0.02 0.00 0.01 0.00 0.02 0.01 0.88 0.00 0.05 0.01

0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.70 0.04 0.22

0.01 0.00 0.00 0.01 0.00 0.02 0.01 0.00 0.91 0.03

0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.01 0.03 0.92

(b) CoPE-CE

0 1 2 3 4 5 6 7 8 9

Predicted label

0

1

2

3

4

5

6

7

8

9

T
ru

e
la

b
el

0.31 0.05 0.10 0.04 0.05 0.05 0.04 0.06 0.23 0.08

0.03 0.48 0.02 0.03 0.03 0.02 0.06 0.03 0.09 0.22

0.08 0.01 0.31 0.08 0.13 0.14 0.12 0.07 0.05 0.02

0.03 0.02 0.10 0.21 0.10 0.21 0.17 0.08 0.02 0.05

0.05 0.02 0.14 0.08 0.29 0.08 0.14 0.12 0.04 0.03

0.02 0.02 0.11 0.16 0.09 0.33 0.09 0.14 0.02 0.03

0.02 0.02 0.09 0.10 0.13 0.10 0.47 0.03 0.01 0.04

0.02 0.02 0.06 0.08 0.09 0.15 0.05 0.44 0.02 0.07

0.17 0.09 0.04 0.04 0.03 0.03 0.03 0.02 0.48 0.07

0.04 0.16 0.03 0.05 0.02 0.04 0.07 0.05 0.09 0.45

(c) CoPE

0 1 2 3 4 5 6 7 8 9

Predicted label

0

1

2

3

4

5

6

7

8

9

T
ru

e
la

b
el

0.15 0.01 0.03 0.02 0.02 0.02 0.03 0.05 0.49 0.17

0.00 0.27 0.00 0.01 0.01 0.01 0.03 0.03 0.18 0.47

0.03 0.00 0.20 0.05 0.11 0.09 0.14 0.11 0.18 0.08

0.01 0.01 0.05 0.13 0.07 0.15 0.17 0.12 0.09 0.19

0.02 0.00 0.09 0.06 0.24 0.05 0.15 0.16 0.11 0.13

0.01 0.00 0.07 0.11 0.06 0.24 0.09 0.21 0.06 0.15

0.00 0.01 0.04 0.06 0.10 0.07 0.46 0.06 0.05 0.15

0.01 0.00 0.03 0.05 0.07 0.10 0.05 0.44 0.05 0.20

0.04 0.03 0.01 0.01 0.01 0.01 0.01 0.02 0.73 0.13

0.01 0.08 0.01 0.01 0.01 0.02 0.03 0.05 0.17 0.62

(d) CoPE-CE

Figure 6: CoPE and CoPE-CE confusion matrices at the end of learning averaged over all variations
S(Ti) for the imbalanced Split-MNIST setup in (a) and (b), and Split-CIFAR10 in (c) and (d).

three balanced data streams by comparing inclusion and exclusion of the pseudo-prototypes p̂ in
the PPP-loss, and extending the batch size |Bn|. First, including the pseudo-prototypes significantly
improves overall performance, and especially for the harder CIFAR-based data streams. Although
both setups use batch information to update the prototypes following Eq.(1), it seems crucial to
use additional pseudo-prototypes in the PPP-loss to improve latent space quality. Second, results
for smaller batch sizes of 10 and 20 are very similar, and deteriorate towards increasing sizes. The
PPP-loss implements the expectation over the prototype and the pseudo-prototypes, assuming uniform
distribution in Eq.(3). Although this assumption impedes significance of the prototype for increasingly
higher batch sizes, it results in ideal robustness for small online processing batches, ideally suited for
data incremental learning. Small batches maintain the additional benefit of more frequent prototype
updates for the same amount of processed data.

Table 2: Accuracies (%) for ablating pseudo-prototypes p̂ in the PPP-loss and varying batch size.

PPP-loss Batch Size |Bn|
incl. p̂ excl. p̂ 10 (Online) 20 50 100 200

Split-MNIST 93.9± 0.2 92.4± 0.6 93.9± 0.2 93.9± 0.6 93.7± 0.3 93.1± 0.6 89.3± 0.5
Split-CIFAR10 48.9± 1.3 41.3± 2.0 48.9± 1.3 48.4± 1.9 43.4± 2.7 37.4± 3.0 37.0± 1.3
Split-CIFAR100 21.6± 0.7 16.3± 0.7 21.6± 0.7 21.7± 0.7 16.5± 0.4 13.8± 0.5 11.2± 0.4

7 CONCLUSION

In this work, we introduced a new perspective on current paradigms in continual learning with a
novel two-agent learner-evaluator framework. To overcome the standard paradigm of static training
and testing phases, we explicitly model continual optimization and evaluation in the learner and
evaluator agents respectively. We formalized the required resources as the horizon D, containing the
simultaneously available data of the data stream, and the operational memoryM for operation of the
learning algorithm. Transitions in the horizon Dt → Dt+1 enable a uniform differentiation between
existing paradigms of task, class and domain incremental learning, and the horizon size encloses the
range from online (D = B) to offline (D = S) learning.

Using the framework, we defined the task-free data incremental learning paradigm, requiring no
additional information on the identifier t of the horizon for both the learner and evaluator. In this
challenging setup, we proposed Continual Prototype Evolution (CoPE) as a prototypical solution to
learn online from non-stationary data streams. As a first, CoPE prevents the prototypes becoming
obsolete in an ever evolving representation space, while using the prototypes to combat catastrophic
forgetting. The three main components, continually evolving prototypes, a novel Pseudo-Prototypical
Proxy loss (PPP-loss), and an efficient balancing replay scheme are proven remarkably effective over
11 baselines in both balanced and highly imbalanced benchmarks. We hope to encourage research in
the direction of data incremental learning with online processing of data streams and applications
beyond classification.

9

Under review as a conference paper at ICLR 2021

REFERENCES

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
Memory aware synapses: Learning what (not) to forget. In Proceedings of the European Conference
on Computer Vision (ECCV), pp. 139–154, 2018.

Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Laurent Charlin, Massimo Caccia, Min Lin,
and Lucas Page-Caccia. Online continual learning with maximal interfered retrieval. In Advances
in Neural Information Processing Systems, pp. 11849–11860, 2019a.

Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection
for online continual learning. In Advances in Neural Information Processing Systems, pp. 11816–
11825, 2019b.

Arindam Banerjee, Srujana Merugu, Inderjit S Dhillon, and Joydeep Ghosh. Clustering with bregman
divergences. Journal of machine learning research, 6(Oct):1705–1749, 2005.

Francisco M Castro, Manuel J Marín-Jiménez, Nicolás Guil, Cordelia Schmid, and Karteek Alahari.
End-to-end incremental learning. In Proceedings of the European conference on computer vision
(ECCV), pp. 233–248, 2018.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K
Dokania, Philip HS Torr, and Marc’Aurelio Ranzato. Continual learning with tiny episodic
memories. arXiv preprint arXiv:1902.10486, 2019.

Aristotelis Chrysakis and Marie-Francine Moens. Online continual learning from imbalanced data.
Proceedings of Machine Learning Research, 2020.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ales Leonardis, Gregory
Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification
tasks. arXiv preprint arXiv:1909.08383, 2019.

Matthias De Lange, Xu Jia, Sarah Parisot, Ales Leonardis, Gregory Slabaugh, and Tinne Tuytelaars.
Unsupervised model personalization while preserving privacy and scalability: An open problem.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
14463–14472, 2020.

Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences, 3
(4):128–135, 1999.

João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid Bouchachia. A
survey on concept drift adaptation. ACM computing surveys (CSUR), 46(4):1–37, 2014.

Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical investi-
gation of catastrophic forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211,
2013.

Stephen Grossberg. Studies of mind and brain : neural principles of learning, perception, development,
cognition, and motor control. Boston studies in the philosophy of science 70. Reidel, Dordrecht,
1982. ISBN 9027713596.

Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an invariant
mapping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’06), volume 2, pp. 1735–1742. IEEE, 2006.

Xu Han, Yi Dai, Tianyu Gao, Yankai Lin, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou.
Continual relation learning via episodic memory activation and reconsolidation. In Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics, pp. 6429–6440, 2020.

Ben Harwood, BG Kumar, Gustavo Carneiro, Ian Reid, Tom Drummond, et al. Smart mining for
deep metric learning. In Proceedings of the IEEE International Conference on Computer Vision,
pp. 2821–2829, 2017.

10

Under review as a conference paper at ICLR 2021

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Yen-Chang Hsu, Yen-Cheng Liu, Anita Ramasamy, and Zsolt Kira. Re-evaluating continual learning
scenarios: A categorization and case for strong baselines. arXiv preprint arXiv:1810.12488, 2018.

Daniel Kahneman and Amos Tversky. Subjective probability: A judgment of representativeness.
Cognitive psychology, 3(3):430–454, 1972.

Nitin Kamra, Umang Gupta, and Yan Liu. Deep generative dual memory network for continual
learning. arXiv preprint arXiv:1710.10368, 2017.

Chris Dongjoo Kim, Jinseo Jeong, and Gunhee Kim. Imbalanced continual learning with partitioning
reservoir sampling. arXiv preprint arXiv:2009.03632, 2020.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114
(13):3521–3526, 2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Soochan Lee, Junsoo Ha, Dongsu Zhang, and Gunhee Kim. A neural dirichlet process mixture model
for task-free continual learning. arXiv preprint arXiv:2001.00689, 2020.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935–2947, 2017.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. In
Advances in Neural Information Processing Systems, pp. 6467–6476, 2017.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605, 2008.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
7765–7773, 2018.

Thomas Mensink, Jakob Verbeek, Florent Perronnin, and Gabriela Csurka. Distance-based image
classification: Generalizing to new classes at near-zero cost. IEEE transactions on pattern analysis
and machine intelligence, 35(11):2624–2637, 2013.

Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. Deep metric learning via lifted
structured feature embedding. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 4004–4012, 2016.

Dushyant Rao, Francesco Visin, Andrei Rusu, Razvan Pascanu, Yee Whye Teh, and Raia Hadsell.
Continual unsupervised representation learning. In Advances in Neural Information Processing
Systems, pp. 7645–7655, 2019.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pp. 2001–2010, 2017.

Jeffrey C Schlimmer and Richard H Granger. Beyond incremental processing: Tracking concept drift.
In AAAI, pp. 502–507, 1986.

11

Under review as a conference paper at ICLR 2021

Ari Seff, Alex Beatson, Daniel Suo, and Han Liu. Continual learning in generative adversarial nets.
arXiv preprint arXiv:1705.08395, 2017.

Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
forgetting with hard attention to the task. arXiv preprint arXiv:1801.01423, 2018.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. In Advances in Neural Information Processing Systems, pp. 2990–2999, 2017.

Konstantin Shmelkov, Cordelia Schmid, and Karteek Alahari. Incremental learning of object detectors
without catastrophic forgetting. In Proceedings of the IEEE International Conference on Computer
Vision, pp. 3400–3409, 2017.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
Advances in neural information processing systems, pp. 4077–4087, 2017.

Alexey Tsymbal. The problem of concept drift: definitions and related work. Computer Science
Department, Trinity College Dublin, 106(2):58, 2004.

Gido M van de Ven and Andreas S Tolias. Generative replay with feedback connections as a general
strategy for continual learning. arXiv preprint arXiv:1809.10635, 2018.

Gido M van de Ven and Andreas S Tolias. Three scenarios for continual learning. arXiv preprint
arXiv:1904.07734, 2019.

Jeffrey S Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical Software
(TOMS), 11(1):37–57, 1985.

Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, Zhengyou Zhang,
and Yun Fu. Incremental classifier learning with generative adversarial networks. arXiv preprint
arXiv:1802.00853, 2018.

Mang Ye, Xu Zhang, Pong C Yuen, and Shih-Fu Chang. Unsupervised embedding learning via
invariant and spreading instance feature. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 6210–6219, 2019.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 3987–
3995. JMLR. org, 2017.

12

Under review as a conference paper at ICLR 2021

APPENDIX

A ALGORITHM

Our proposed algorithm is fully formalized in this section, as well as in our code that will be made
publicly available on acceptance of this paper. Algorithm 1 and Algorithm 2 describe the learner
for CoPE, whereas the evaluator uses c∗ = argmaxc∈Y fTi pc, classifying xi as category c∗ with
the most similar prototype pc

∗
. As for a true continually progressing system, the evaluator can urge

prediction at any point in time, while the learner keeps acquiring knowledge from the data stream.

Algorithm 1 The CoPE learner in the data incremental learning setup.
Require: data stream S, prototype momentum α, memory capacity M , learning rate η
Initialize operational memoryM = ∅, observed classes Y = ∅, sample count per class N = ∅,

model parameters θ
1: for Bn = {(x1,y1), ..., (x|Bn|,y|Bn|)} ∼ S do . Data stream batch w/o task information
2: BM ← RANDOMSAMPLE(Mr, |Bn|) . Randomly sample |Bn| exemplars fromMr

3: B = ∅
4: for (xi,yi) ∈ Bn ∪BM do
5: if yi /∈ Y then
6: INITCLASS(M, N,Y, yi) . Initialize memory and prototype
7: end if
8: B ← B ∪ fθ(xi) . Collect features
9: end for

10: L ← 0 . Initialize loss
11: for f ci ∈ B do
12: L ← L− 1

|B|

[
logP (c|xci) +

∑
xk
j
log(1− P (c|xkj))

]
. Sum al instances PPP-loss

13: end for
14: θ ← θ + η ∇L . Optimize objective with SGD
15: PROTOTYPEUPDATE(Mp,B, N, α) . Update prototypes inMp

16: MEMORYUPDATE(Mr, Bn, N) . Update memoryMr with new input samples
17: end for

Algorithm 2 Memory Management of the replay memory and prototypes. UNIFORMRd

(s1, s2)
samples elements in a d-dimensional vector with uniform probability in range [s1, s2] ∈ R.
Require: memory capacity M

1: function INITCLASS(M, N,Y, y)
2: N ← N ∪ {Ny = 0} . Sample counts
3: Y ← Y ∪ {y} . Observed classes
4: m =M/|Y| . Capacity per class
5: forMc

r = (x1, ...,x|Mc
r|) ∈Mr do

6: Mc
r ← (x1, ...,xm) . Keep first m

7: end for
8: M←M∪ {My = ∅}
9: py ← UNIFORMd(0, 1)

10: My
p ← {py/||py||2} . Init prototype

11: end function

1: function PROTOTYPEUPDATE(Mp,B, N, α)
2: for pc ∈Mp do
3: N c ← N c + |Bc|
4: p̄c = 1

|Bc|
∑

fc∈Bc f c

5: pc ← αpc + (1− α)p̄c

6: pc ← pc/||pc||2 . Normalize
7: end for
8: end function
9: function MEMORYUPDATE(Mr, Bn, N)

10: for xci ∈ Bn do . Class Reservoir
11: j = UNIFORMN1

(1, N c)
12: if j ≤ |Mc

r| then
13: Mc

r [j]← xci . Replace exemplar
14: end if
15: end for
16: end function

13

Under review as a conference paper at ICLR 2021

B SETUP

A gridsearch in the online continual learning setup was adopted, selecting the setup with highest
performance, similar to (Lopez-Paz & Ranzato, 2017). All methods are prone to learning rate
gridsearch [0.05, 0.01, 0.005, 0.001]. iCaRL knowledge distillation strength is set to 1, and GEM bias
is set to 0.5, following (Lopez-Paz & Ranzato, 2017; Rebuffi et al., 2017; Aljundi et al., 2019b). GSS
and MIR follow their original setup from their codebase in (Aljundi et al., 2019b) and (Aljundi et al.,
2019a), with our additional learning rate gridsearch. CURL (Rao et al., 2019) and DN-CPM (Lee
et al., 2020) results, and the best imbalanced Split-MNIST results out of the greedy/IQP versions
for GSS (Aljundi et al., 2019b) are reported from their original works. CoPE searched for a suitable
temperature τ = [0.1, 0.2, ..., 1, 2] which was set to 0.1 for all balanced and imbalanced Split-
MNIST and Split-CIFAR10 experiments, similar to (Ye et al., 2019). Based on the ablation study in
Appendix D, we set the prototypical momentum fixed to 0.99. For the challenging Split-CIFAR100
setting methods are allowed multiple iterations per batch as in (Lopez-Paz & Ranzato, 2017), from
which the best results are selected (baselines, reservoir, CN-DPM perform 1 iteration, others 5). The
CIFAR100 temperature required higher concentration with τ = 0.05 and prototypical momentum 0.9.
For the balanced setups, the latent dimensionality d is fixed to 100 for Split-MNIST as in (Rao
et al., 2019), and selected 256 in a gridsearch [128, 256] and [128, 256, 512] for Split-CIFAR10
and Split-CIFAR100 respectively. The imbalanced benchmarks follow the low capacity setup in
Appendix E.1, with d ∈ [16, 32, 64] set to 64 for Split-MNIST and d ∈ [128, 256] set to 128 for
Split-CIFAR10 and 256 for Split-CIFAR100. Results are obtained without L2 normalization of the
prototypes as we found it to have insignificant effect. The CIFAR10 labels in the confusion matrices
from 0 to 10 stand for the indices in the following list: [airplane, automobile, bird, cat, deer, dog,
frog, horse, ship, truck]. We will make our code publicly available upon acceptance of this paper to
ensure reproducibility.

C RESOURCE ANALYSIS TASK-FREE REPLAY METHODS

In this section we compare usage of computational and memory resources for the replay methods
fitted for the online data incremental learning paradigm.

Reservoir is a powerful baseline for balanced data streams (Chaudhry et al., 2019), with only minimal
computational cost by keeping count n of how many samples have been observed. This count is then
used relative to the buffer size M to define the probability M/n to store the new sample. As shown
in the imbalanced data stream experiments, Reservoir is not fit for more real-world scenarios with
typically varying frequency of occurrence per class. Improving this simple experience replay has led
to research focusing on more complex strategies, discussed in the following.

MIR (Aljundi et al., 2019a) replaces the random retrieval from the buffer in Reservoir with a loss-
based approach. They store a momentary update of the network optimized for the new incoming
batch and calculate the change in loss for a random subset of replay memories B̃, which is larger than
the batch size (ideally five times the batch size for their experiments (Aljundi et al., 2019a)). Besides
a copy of the full model, this also requires calculating the loss twice in a sequential manner for the
full subset B̃ and an extra temporary model update using only the new batch Bn, both significantly
increasing processing time for the learner.

GSS (Aljundi et al., 2019b) resides with Reservoir to use random retrieval of the buffer, but proposes
a gradient-based population strategy. They introduce two variants, in which the first solves an
Integer Quadratic Problem (IQP) with polynomial complexity w.r.t. the replay memory. As this is
not scalable, they also propose a stochastic GSS-greedy variant. This more efficient GSS-greedy
approach requires an additional forward pass, loss calculation, and backwards pass to obtain the
gradients for the full considered subset B̃ in the memory. Additionally, it uses similarities of the
gradients for stochastic sample selection in the replay memoryMr, straining memory requirements
as batch Bn requires for each sample |B̃|+ 1 gradients to be accessed simultaneously to calculate
|B̃| cosine similarities in the high-dimensional gradient-space.

CoPE (ours) resembles Reservoir’s memory population by keeping count of the samples per class-
specific replay memory subset. The PPP-loss requires calculation of a similarity matrix with all the
d-dimensional representations in the batch B. Using a normalized cosine similarity, this implies

14

Under review as a conference paper at ICLR 2021

efficient matrix multiplication with the low-dimensional vectors. This is in high contrast to GSS,
which calculates cosine similarity in the full high-dimensional gradient space for additional samples
that are not present in current batch B, and therefore requires additional costly forward and backward
passes. Furthermore, in our prototypical approach the prototype momentum updates also rely solely
on samples that are in the current batch B, hence requiring only minimal additional computation.
Comparing to both MIR and GSS, we don’t require storing model copies or additional gradients,
but merely store low-dimensional prototypes for each class, saving a significant amount of required
storage space. For example, a Resnet18 model requires 11.7 million parameters to enable model
copies or gradients, whereas our method even for 1000-way classification with d = 1024 would
require only 9% of the model capacity in memory for the prototypes.

D EXTENDED ABLATION STUDY

D.1 ABLATION PROTOTYPE MOMENTUM

In all experiments, a high momentum is employed to update prototypes with the latent mean of the
batch. Table 3 illustrates the influence of higher momentum (≥ 0.9). Compared to low momentum of
0.1, Split-MNIST only gains a small margin of 0.45%, whereas Split-CIFAR10 and Split-CIFAR100
significantly improve with at least 3.0% and 4.2% respectively. Using momentum prevents the
prototype to rely solely on the current batch instances, and higher momentum values attain a more
gradual change of the prototypes by stabilizing its trajectory in the ever-evolving latent space.

Table 3: Ablation study changing momentum strength for prototype updates, reported in average
accuracy (%) over 5 runs. Higher momentum values (≥ 0.9) obtain better performance, especially
for the CIFAR sequences, compared to low momentum (0.1).

Prototype Momentum
0.1 0.9 0.95 0.99

Split-MNIST 93.49± 0.70 94.11± 0.34 93.96± 0.30 93.94± 0.20
Split-CIFAR10 44.48± 3.19 48.02± 2.49 47.98± 3.14 48.92± 1.32
Split-CIFAR100 15.79± 1.16 21.62± 0.69 21.56± 0.58 20.01± 1.81

D.2 ABLATION INTER AND INTRA-CLASS VARIANCE TERMS PPP-LOSS

In this section, the importance is scrutinized of the two loss components to enhance inter and intra-
class variance in the PPP-loss. Table 4 compares using only positive pairs from the batch in the
attractor (Lpos) or only negative pairs in the repellor (Lneg) to the full-fledged PPP-loss (L). The
attractor term shows competitive performance to the full PPP-loss for Split-MNIST, but deteriorates
as the data streams become harder for the CIFAR setups. The repellor term is on par with the full
PPP-loss for Split-MNIST and Split-CIFAR10, but collapses for Split-CIFAR100. The latter is
challenging due to the high number of classes with only a batch size of 10, which impedes having
pseudo-prototypes of all classes in the same batch. The PPP-loss incorporates both reduction of
intra-class variance with the attractor term and increases inter-class variance with the repellor term,
attaining state-of-the-art performance.

Besides isolating the attractor and repellor terms of the PPP-loss in the ablation study, we further
investigate the weighing of the two terms during the lifetime of the learner in Figure 7. We average
results over 5 runs for balanced Split-MNIST, finding the repellor to dominate. This trend is to be
expected as the repellor term in Eq.(5) has per instance a summation over all other class instances.
The attractor term has minimal influence especially for data presented for the first task. This indicates
the samples in the binary latent space (having observed only two classes) majorly repelling rather
than attracting samples. The embedding network is still learning the initial features, and overlap in
the two latent class distributions summed over the other class samples results in a prevailing repellor
term.

15

Under review as a conference paper at ICLR 2021

Table 4: Ablation using solely the attractor (Lpos) or repellor (Lneg) compared to using both terms in
the PPP-loss (L).

PPP-loss
L Lpos Lneg

Split-MNIST 93.94± 0.20 93.25± 0.22 93.84± 0.48
Split-CIFAR10 48.92± 1.32 30.96± 3.58 49.30± 3.57
Split-CIFAR100 21.62± 0.69 15.85± 0.34 9.43± 0.94

10k 20k 30k 40k 50k 60k
S Split-MNIST

0

25

50

L p
os
/
L

(%
)

Figure 7: Weighing (%) between the positive loss term Lpos compared to the full PPP-loss L,
averaged over 5 runs of balanced Split-MNIST with standard deviation in blue.

D.3 PSEUDO-PROTOTYPE ABLATION VISUALIZATION

In the main paper we find in an ablation study that using pseudo-prototypes p̂ as proxy for the
class-mean has significant improvements for the PPP-loss. Additionally, Figure 8 shows this in a
2-dimensional t-SNE space for the first seed of the balanced Split-MNIST experiment. Including the
pseudo-prototypes (incl. p̂) illustrates a striking degree of inter-class variance in Figure 8a, whereas
more interference occurs when excluding the pseudo-prototypes in Figure 8b. This is reflected in the
performance, as including prototypes results in 94.52% accuracy, whereas excluding them has only
90.86% for the first seed.

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

(a) PPP-loss − incl. p̂

p0

p1

p2

p3

p4

p5

p6

p7

p8
p9

(b) PPP-loss − excl. p̂

Figure 8: Split-MNIST first seed t-SNE representation of the test data Seval, including (a) and
excluding (b) the pseudo-prototypes p̂ in the PPP-loss.

E ADDITIONAL EXPERIMENTS

E.1 BALANCED DATA STREAMS WITH LOW CAPACITY

In these experiments we scrutinize performance of CoPE with less capacity in the memory and model,
and with shorter data streams. All methods are allowed multiple iterations (maximal 5) as in (Aljundi

16

Under review as a conference paper at ICLR 2021

et al., 2019b). Results are averaged over 5 seeds. Similar to the setup of GSS (Aljundi et al., 2019b),
we adopt two data sequences with truncated data per task:

• Split-MNIST-mini is similar to the Split-MNIST data stream with 5 tasks, but each task is
confined to 1k training samples. Evaluation considers the full test subset. The network is an
MLP with two hidden layers of 100 units, with total memory size of 0.3k exemplars. Latent
dimensionality d is selected 32 from [16, 32, 64].
• Split-CIFAR10-mini is similar to the Split-CIFAR10 data stream with 5 tasks, but each task

comprises 2k training samples, with a total subset of 10k samples out of the 50k available.
The full test subset is used for evaluation. The network used is the same ResNet18 as in the
main paper, with total memory size of 1k exemplars. Latent dimensionality d is selected
128 from [128, 256].

Analysis. Table 5 shows the results for Split-MNIST-mini and Split-CIFAR10-mini, with GSS and
DN-CPM results reported from their original works in a corresponding setup. In Split-MNIST-mini
our method approaches the iid-online baseline up to 1%, and outperforms its closest competitors
GEM and MIR with at least 1.45%. In Split-CIFAR10-mini CoPE saliently surpasses the iid-online
baseline with 2.25%, hence outperforming online training over an iid datastream. Moreover, CoPE
surpasses CN-DPM by 3%. Reservoir proves a strong baseline, with in this case the additional MIR
loss-based retrieval decreasing performance. Similar to our findings in the main paper and Aljundi
et al. (2019a;b), GEM encounters difficulties in a CIFAR10 based setup, for which we find the bias
hyperparameter γ ≥ 0 in the gradient projection to have insignificant influence. These results confirm
CoPE outperforming both GSS and CN-DPM in this low capacity setting established in their original
work.

Table 5: Split-MNIST-mini and Split-CIFAR10-mini results, with respectively only 1k and 2k samples
per task. GSS and DN-CPM results reported from original work in these setups.

Split-MNIST-mini Split-CIFAR10-mini
iid-offline 94.58± 0.17 67.41± 1.37
iid-online 87.57± 3.54 42.50± 2.15

finetune 21.74± 3.38 16.65± 0.24
GEM 85.09± 0.52 22.31± 1.37
iCaRL 83.23± 0.92 26.54± 2.73
DN-CPM (Lee et al., 2020) − 41.78
reservoir 82.73± 2.39 38.21± 3.39
MIR 84.40± 0.91 37.20± 2.74
GSS (Aljundi et al., 2019b) 82.60± 2.90 33.56± 1.70
CoPE 86.54± 1.41 44.75± 2.68

E.2 BUFFER SIZE ANALYSIS: SPLIT-CIFAR100

The results for Split-CIFAR10 and Split-MNIST are reported in the main paper, whereas Split-
CIFAR100 results are added here in Figure 9 due to lack of space. We observe the same trend, where
CoPE prevails over other replay methods by high margin from low to high-capacity regimes. The
performance of the learner in CoPE scales with the size ofMr.

E.3 UNABALANCED BENCHMARK RESULTS

The graphs in the main paper visualize the numbers in Table 6, which we fully report here as a
reference for future work. Each S(Ti) data stream performance is averaged over five different initial
seeds. The ’Avg.’ results average over all mean performances of the dataset variants S(Ti).

17

Under review as a conference paper at ICLR 2021

1k 2k 3k 4k 5k
Memory size

10

20
A

cc
u

ra
cy

(%
)

CoPE: 16.8± 4.3
CoPE-CE: 14.0± 4.1
GEM*: 9.4± 1.6

iCaRL*: 10.6± 0.4
GSS: 11.1± 2.3

MIR: 14.9± 4.4
Reservoir: 14.1± 4.6

Figure 9: Accuracies over buffer sizes |M| for balanced Split-CIFAR100 sequence.

Table 6: Numeric results for imbalanced Split-MNIST, Split-CIFAR10 and Split-CIFAR100 se-
quences.

Dataset Imbalanced
Sequence CoPE CoPE-CE GSS MIR Reservoir

Split-MNIST S(T1) 83.4± 2.0 81.8± 1.2 75.9± 3.2 64.8± 5.1 64.2± 2.3
S(T2) 84.5± 1.6 80.1± 1.9 78.5± 2.7 67.4± 3.2 65.5± 4.6
S(T3) 85.1± 0.6 79.6± 2.0 81.5± 2.3 72.4± 3.0 72.1± 4.0
S(T4) 84.8± 1.0 80.0± 3.1 79.5± 0.6 72.6± 3.1 73.6± 2.4
S(T5) 84.0± 1.3 80.7± 1.8 79.1± 0.7 77.2± 3.4 73.2± 4.0

Avg. 84.4± 0.7 80.4± 0.9 78.9± 2.0 70.9± 4.9 69.7± 4.5

Split-CIFAR10 S(T1) 39.0± 1.3 36.4± 3.0 32.3± 3.0 32.6± 3.6 35.5± 3.4
S(T2) 35.3± 2.6 34.1± 2.8 28.3± 0.4 27.2± 1.8 29.3± 2.8
S(T3) 36.2± 2.5 34.6± 2.5 29.5± 1.5 29.6± 2.1 31.4± 2.1
S(T4) 39.1± 2.4 33.5± 4.2 34.6± 1.3 31.0± 2.3 32.1± 0.6
S(T5) 37.3± 3.3 33.9± 2.9 28.3± 2.4 27.6± 2.7 28.8± 1.9

Avg. 37.4± 1.7 34.5± 1.1 30.6± 2.8 29.6± 2.3 31.4± 2.7

Split-CIFAR100 S(T1) 18.2± 0.6 11.7± 0.6 10.2± 0.8 18.4± 0.9 11.1± 0.6
S(T5) 18.5± 1.3 12.6± 1.2 10.7± 0.5 17.6± 0.9 11.5± 1.4
S(T10) 19.2± 0.9 11.1± 0.7 11.1± 0.3 17.8± 0.7 11.9± 0.7
S(T15) 18.7± 0.6 11.2± 0.8 11.1± 0.9 17.8± 0.9 12.1± 0.8
S(T20) 18.5± 1.5 12.8± 1.3 11.1± 0.4 17.6± 0.4 12.5± 1.1

Avg. 18.6± 0.4 11.9± 0.8 10.8± 0.4 17.8± 0.3 11.8± 0.5

18

	Introduction
	The learner-evaluator framework
	Prior work
	Continual Prototype Evolution
	Evolving representations
	Balanced replay
	Pseudo-Prototypical Proxy loss
	Optimal prototypes

	Experiments
	Results and discussion
	Balanced data streams
	Imbalanced data streams
	PPP-loss analysis

	Conclusion
	Algorithm
	Setup
	Resource analysis task-free replay methods
	Extended ablation study
	Ablation prototype momentum
	Ablation inter and intra-class variance terms PPP-loss
	Pseudo-prototype ablation visualization

	Additional experiments
	Balanced data streams with low capacity
	Buffer size analysis: Split-CIFAR100
	Unabalanced Benchmark Results

