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Abstract

A major goal of neuroscience is to understand brain computations during visual pro-
cessing in naturalistic settings. A dominant approach is to use image-computable
deep neural networks trained with different task objectives as a basis for linear
encoding models. However, in addition to requiring estimation of a large number of
linear encoding parameters, this approach ignores the structure of the feature maps
both in the brain and the models. Recently proposed alternatives factor the linear
mapping into separate sets of spatial and feature weights, thus finding static recep-
tive fields for units, which is appropriate only for early visual areas. In this work,
we employ the attention mechanism used in the transformer architecture to study
how retinotopic visual features can be dynamically routed to category-selective
areas in high-level visual processing. We show that this computational motif is
significantly more powerful than alternative methods in predicting brain activity
during natural scene viewing, across different feature basis models and modalities.
We also show that this approach is inherently more interpretable as the attention-
routing signals for different high-level categorical areas can be easily visualized for
any input image. Given its high performance at predicting brain responses to novel
images, the model deserves consideration as a candidate mechanistic model of how
visual information from retinotopic maps is routed in the human brain based on the
relevance of the input content to different category-selective regions. Our code is
available at https://github.com/Hosseinadeli/transformer_brain_encoder/.

1 Introduction

An influential approach to study plausible neural computations in the brain is to train Deep Neural
Network (DNN) models on different tasks [44} 28] and compare their learned representation to brain
activity [52}[23]]. There has been a great deal of discussion and research on best ways to compare the
learned representations to the ones recorded from the brain (across models and across models and
brains). One main approach is to build encoding models— learn a mapping function from one feature
domain to another and measure the accuracy of the prediction in held-out sets [[14]|36]. An alternative
approach is to characterize the geometry or topology of the representation in each model or in the
brain and then compare them (e.g. RSA; [29]). In this work, we focus on the learned encoding
functions, as we believe that it can give us further insight into the computations in the brain.
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The visual system uses structured retinotopic maps as it processes visual information in the cortex.
Not surprisingly, models, such as Convolutional and transformer neural networks, that also maintain
retinotopic maps of the space perform best on different visual tasks (e.g. recognition and segmentation)
and consistently outperform other models in different brain activation prediction benchmarks [46 [17]].
However the retinotopic feature maps from deep networks presents typically have a very large
number of units posing us with a challenge when mapped unto the responses in the brain. Linear
encoding models, although theoretically the simplest choice, can become very high-dimensional
in that case (the number of parameters equals the product of the number of model units and the
number of units/voxels to be predicted) and require strong regularization (L2 penalty) given the size
of typical neuroimaging datasets [36]]. To address these limitations, approaches have been proposed
that learn spatial receptive fields (RF) for different units or voxels in the brain data, using which
the representation is first aggregated across space and then the lower dimensional representation is
linearly mapped to the brain responses [26} 49, [35]]. These models have been shown to perform on
par with linear regression models despite having a fraction of the number of parameters and are also
more plausible mechanisms of how information can route to different units. However, they can only
capture fixed routing where input to a unit comes from a specific area in space regardless of the input
content.

Transformer architectures have been extremely successful in many domains, including vision [12]]
and language [51]. Their success can be attributed to a general and simple (therefore scalable)
computational motif where information is routed based on the content. In these models, each token
(be a representation of a word in a sentence or a patch in an image) queries other tokens to find how
relevant they are to updating its representation. The selective nature of this mixing has motivated
naming this process "attention" in Transformers [51]]. Then the new representation of this token
becomes the average of the representation of all tokens, weighted by their degree of relevance (i.e.
attention scores). We hypothesize that the optimal way for the routing of information from the
retinotopic visual maps to category selective areas is to use the same computational motif where brain
areas only attend to parts of the visual maps with the content relevant to what the area is selective for
(Fig.[I). For example if there is face in the image, it could appear anywhere, but the FFA (fuisform
face area) can learn to route only the information from the patches where the face-like stimuli are
and then expand this lower dimensional representation in the area. Note that this approach is in a
way a generalization of the aforementioned RF based methods going from fixed receptive fields to a
dynamic content-based receptive fields.

2 Related works

Brain encoding models: Predicting brain activity is an important objective, both as an engineering
challenge and also as a means of studying brain computations, reflected in the number of community-
driven benchmarks such as Algonauts [17]], Brain-score [46], and Sensorium [S0]. The availability
of large-scale neural datasets has necessitated innovation in new encoding models [21]. Spatial-
feature decomposition models have shown that considering the retinotopic maps and the receptive
field organization can lead to more efficient encoding models [26] 49, 35| 45]]. Generalizing these
approaches to high-level visual areas would require considering more dynamic routing motifs.

Self-supervised Vision Transformers: Transformers have been shown to outperform convolutional
and recurrent neural networks (CNNs) on a variety of visual tasks including object recognition [12].
More recent studies have explored training these models on self-supervised objectives, yielding
some intriguing object-centric properties [1] that are not as prominent in the models trained for
classification. When trained with self-distillation loss (DINO, [6] and DINOv2 [38]]), the attention
values contain explicit information about the semantic segmentation of the foreground objects and
their parts, reflecting that these models can capture object-centric representations without labels [[1].
These findings show that features from these models can be a good basis for predicting neural activity
in the brain. Recent work has also shown that networks trained using self-supervised contrastive
losses (such as SimCLR; [9]) match the predictive power of supervised models for high-level ventral-
stream visual representations in the brain [27, |8]. These works argue for self-supervised learning
methods as a more plausible objective function for learning brain like visual representations.

Encoder-decoder Vision Transformers: Transformer-based encoder-decoder models provide a
general framework that has achieved great performance in many domains [51] including domains
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Figure 1: A. Brain encoder architecture. The input patches are first encoded using a frozen backbone
model. The features are then mapped using a transformer decoder to brain responses. B. The cross
attention mechanism showing how learned queries for each ROI can route only the relevant tokens to
predict the vertices in the corresponding ROI.

where one modality (e.g. image) is mapped onto another one (e.g. language) [41]]. A related
pioneering work to our approach is the DETR model [35] applied to the problem of object detection
and grouping in images. The encoder in this model converts the image to rich object-centric features.
The decoder uses learnable embeddings, called queries, corresponding to different potential objects,
that gather information from the encoder features using cross-attention over several layers. After the
decoding process, each object query can then be linearly mapped into to the category and bounding
box for an object. The model is trained end-to-end and can detect many objects in one feedforward
pass. We also employ this general framework here.

3 Methods

3.1 Dataset

We run our experiments on the Natural Scene Dataset (NSD; [3]) where the fMRI (functional
magnetic resonance imaging) responses were collected from 8 subjects, each seeing up to 10,000
images. The reported results are from subjects 1, 2, 5, and 7 who completed all recording sessions.
The surface-based fMRI responses across the three repetitions of each image were averaged for model
training and testing. We use the train/test split that was introduced in the Algonauts benchmark [[17]]
where the last three sessions for each subject were held out to ensure that no test data were accessed
during the model development and to make the prediction task as natural as possible (predicting
the future responses). Our analyzes also focused on the most visually responsive part of the brain,
approximately 15k vertices E] for each left and right hemispheres (LH and RH) in the visual cortex,
shown in Figure [2JA on a surface map. ROI level labels were provided for all the selected vertices
based on visual and categorical properties (using auxiliary experiment; refer to [3]] for details). The
labels are for early visual areas CV1v’,’V1d’,’V2v’,’V2d’, ’V3v’, ’V3d’, and ’hV4’), body selective
areas CEBA’, ’FBA-1’, "FBA-2’, and 'mTL-bodies’), face selective areas ("OFA’, ’FFA-1’, "FFA-2’,
'mTL-faces’, and *aTL-faces’), place selective areas (COPA’, ’PPA’, 'RSC’), and word selective areas
COWFA’, "VWFA-1’, "VWFA-2’, *mfs-words’, and’mTL-words’).

3.2 Transformer brain encoder

We apply the general transformer encoder-decoder framework to map images to fMRI responses.
Figure[TJA shows the architecture of our model. The input image is first divided into patches (31 x 31

'In fMRI, a vertex refers to a point on the surface mesh of the cortex used in surface-based analysis. It is
analogous to a "voxel" (volumetric pixel) in volumetric fMRI data, but defined in the 2D cortical surface space.
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Figure 2: A. The general region of interest for highly visually responsive vertices in the back of
the brain shown on different surface maps. B. Encoding accuracy (fraction of explained variance)
shown for Subject 1 for all the vertices for the transformer model using ROIs for decoder queries.
C. Encoding accuracy for individual ROIs and for ROI clusters based on category selectivity for the
two hemispheres. D. The differences in encoding accuracy between the transformer and the ridge
regression models showing that improvement in the former is driven by better prediction of higher
visual areas.

in our dataset) of size 14 x 14 pixels. These image patches are input to the backbone model which is
a 12-layer vision transformer and frozen to be used as a feature backbone.

The decoder uses input queries corresponding to different brain ROISs in different hemispheres to
gather relevant information from the backbone outputs for predicting neural activity in each ROI. Note
that these queries are learnable embeddings for each ROI trained as part of the model training. We
use a single-layer transformer for the decoder with one cross-attention and a feedforward projection
operation. Figure[I]B shows the cross-attention process. The positional encoding is added to the
image token representation to create the keys. This allows the ROI query to attend either to the
location or the content of the input tokens through scaled dot-product attention. The attention scores
are then used to aggregate all the image tokens that are relevant to predict the brain activity in that
ROI. The output decoder tokens are then mapped using a single linear layer to fMRI responses of
the corresponding ROI. In our implementation, decoder output for each ROI is linearly mapped
to a vector with the size equal to the number of vertices in that hemisphere. The response is then
multiplied by a mask that is zero everywhere except for the vertices belonging to that ROI. This
masking operation ensures that the gradient signal feeding back from the loss will only train linear
mappings to the vertices of the queried ROI. The responses from different ROI readouts will then be
combined using the same masks to generate the prediction for each hemisphere. The ROI queries,
transformer decoder layer and the linear mappings are trained with the Adam optimizer [23]] using
mean-squared-error loss between the prediction and the ground truth fMRI activity for each image.
We train and test the models separately for each subject.



4 Experiments

For all models including all the baselines, we did 10-fold cross validation using the training set
for each subject and averaged the model predictions across all folds. The model predictions were
evaluated first using Pearson correlation between the predictions and the ground truth test data. The
squared correlation coefficient were then divided by the noise ceiling (see [3] Methods, Noise ceiling
estimation) to calculate the encoding accuracy as the fraction of the explained variance.

We present results using multiple different feature backbones namely, DINOv2 base model [38]],
ResNet50 [20], and CLIP large model [41]. For the DINOv2 backbone, inspired by prior work on
human attention prediction [[1], we did some preliminary analyses and found the patch level query
representations (instead of values) to have slightly more predictive power and chose to use them in
all our experiment. For ResNet50, the feature maps from the last layer were extracted and reshaped
to create the visual tokens comparable to transformers. For CLIP, we chose the large model to have
the same image patch size (14) and transformer token dimension (768) to the DINOv2 base model.
Unless otherwise stated, the features from the last layer of the backbone models are used as the input
representation to the decoder.

We consider multiple different mapping functions to compare to our proposed method. The Ridge
regression model flattens the feature representation across space and feature dimensions and learns
one linear mapping to the fMRI responses. We used a grid search to select the best ridge penalty
to maximize performance on the validation data. The CLS + regression model linearly maps only
the CLS token from the transformer backbone to the vertex responses. This is a common practice
in many neuroscience studies to make the number of parameters more tractable. Another common
model is to first reduce the dimensionality of the features using Principle Component Analyses (PCA)
and then learn the linear mapping to the brain responses (PCA + regression).

For the spatial-feature factorized method, the model learns a (H x W) spatial map and applies that
to the input feature similar to the attention map in Figure[T[B. The scores however are only learned
for a given ROI or a vertex and are not dependent on the content of the image. The spatial map then
aggregates the features to be linearly mapped to the brain responses. The Saliency based integration
method uses saliency map of the image, instead of a learned spatial map, to integrate the tokens
across space [24]. To implement this baseline, we used DeepGaze [30], a state of the art saliency
model, to generate bottom-up saliency maps for each image and then resized the maps and used the
resulting attention values (weights) to combine the token representations to create a single token. A
linear regression was then trained to map these compressed representations to vertex activations.

For the transformer brain encoder, we used 24 queries per hemisphere corresponding to the 24 ROIs.
Note that not all ROIs were present in all the subjects, therefore we present results and figures for
subjects individually. If an ROI is not mapped in a subject the decoder output is not mapped to any
vertices. The figures in the main text are generated using the results from subject 1, but the figures for
the remaining three subjects are presented in the supplementary section [A.T]

Table 1: Encoding accuracy using DINOv2 backbone

Encoder Subjects Model size (M)
S1 S2 S5 S7
Ridge regression 0.56 0.52 0.50 0.37 ~1200
CLS + regression 0.38 0.37 045 0.33 ~30
PCA + regression 0.52 047 046 0.34 ~30
Spatial-feature factorized (rois) 0.49 046 048 0.37 ~31
Saliency based integration 038 0.37 044 0.32 ~30
Transformer (rois) 0.60 056 0.56 042 ~37

Table [I]shows the encoding accuracy of the encoding models using the DINOv2 backbone. Ridge
regression requires tuning a larger number of parameters compared to the other approaches (all model
sizes reported as multiples of millions of parameters).

The CLS token takes a weighted average of all the salient image tokens to create a compact repre-
sentation of the image and the linear mapping of this token performs similarly to the Saliency based
integration model. Both serve as useful comparisons to highlight the benefit of transformer attention



versus generic feature reweighting. The PCA based model performs similarly to the Spatial-feature
factorized but both perform worse than the full ridge regression model. Our model, leveraging the
attention mechanism to flexibly route information [2, 4} |40], consistently outperforms all the baseline
models across all subjects. The important difference to note is that our model allows each ROI to
dynamically route the tokens that have relevant content for that ROI so in other words each learn to
create their own "CLS" token dynamically based on the content of the image and the ROI selectivity.

Figure[2B shows the encoding accuracy of our model for subject 1 for the areas of interest projected
onto the cortical surface using Pycortex [15]. Figure 2IC shows the encoding accuracy divided over
all the individual ROIs and also clusters of ROIs. When we compare the transformer encoder to the
ridge regression model (Fig.[2D), we see that our model achieves higher encoding accuracies through
better performance for categorical areas. This suggests that content based routing can be part of the
brain computation for higher level visual areas.

We further tested whether the transformer based mapping requires a larger number of training images
to be effective. Table [2|shows that the model can be trained using as little as a few hundred samples
making it suitable for smaller scale experiments as well. Also encouraging is to see that our model
can achieve accuracy on par with the baseline models with a fraction of the training data.

Table 2: Encoding accuracy for different training set sizes

Encoder Training set size Subjects

S1 S2 S5 S7
Transformer (rois) 550 041 045 045 0.34
Transformer (rois) 1100 046 048 049 0.36
Transformer (rois) 2200 0.51 052 0.51 0.39
Transformer (rois) 4400 056 054 054 040
Transformer (rois) 8800 0.60 0.56 056 0.42

To examine whether our results depend on the specific choice of the transformer backbone architecture,
we tested all the encoding models on the ResNet50 backbone features (a fully convolutional network).
Table [3]shows that we replicate the exact same pattern of accuracy as the DINOv2 backbone, where
the transformer encoder outperforms the other two alternatives across all subjects. This shows that
the transformer encoder can map differently learned features (transformer vs convolution) well to the
brain data.

Table 3: Encoding accuracy using ResNet50 backbone

Encoder Subjects Model size (M)
S1 S2 S5 S7

Ridge regression 049 048 047 0.37 ~1200

Spatial-feature factorized (rois) 0.42 042 0.43 0.33 ~80

Transformer (rois) 0.52 050 0.50 0.38 ~37

4.1 Vertex-based routing

So far the presented transformer encoding models used ROIs as units of routing. But the routing
could be made more granular by learning a decoder query for each vertex where the gathered features
from the decoder would be mapped linearly to the corresponding vertex value. This approach can
also be applied in the spatial-feature encoding models where a spatial map is learned per vertex.
Table @] shows model accuracies for these two approaches using the vertex-based routing, indicating
improvements for both models across all the subjects. Examining the encoding accuracy for individual
ROIs (Fig.[3), we can see that the performance boost came almost entirely from early visuals areas
for the transformer based model. The fact that shifting from ROI-based to vertex-bases routing does
not improve encoding accuracy for higher visual areas indicates that ROIs may be the right level
of routing for those regions, however the early visual areas requires more granular routing because
the receptive fields of the vertices are smaller, more heterogeneous, and less content dependent.
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Figure 3: A. The encoding accuracy for subject 1 shown on the brain surface for the transformer
model with vertices as decoder queries. B. The difference in encoding accuracies going from ROIs to
vertices as the decoder queries shows the improvement is almost entirely from the early visual areas.
C. The vertex-based transformer model outperforms the ridge regression model for almost all the
ROIs.

Comparing the vertex-based transformer model to the ridge regression model (Fig.[3]B) shows that
the former now outperforms the latter in almost all the ROIs.

Table 4: Encoding accuracy for different decoder queries

Encoder Subjects Model size (M)
S1 S2 S5 S7

Spatial-feature factorized (rois) 049 046 048 0.37 ~31

Spatial-feature factorized (vertices) 052 048 048 0.37 ~68

Transformer (rois) 0.60 0.56 0.56 042 ~37

Transformer (vertices) 0.63 059 0.57 044 ~67

Transformer (vertices) backbone layers ensemble 0.65 0.62 0.59 0.45 ~400

Motivated by previous encoding models of the brain having used CLIP embeddings to represent
images [32], we tested the different mapping functions using this feature backbone. Table 5] shows
while the performance is generally not as good as the DINOv2 backbone, it yields the same exact
pattern of results. The Transformer-based models outperform other alternatives with the vertex-based
routing reaching higher performance overall. Taken together with also the lower performance we saw
with ResNet50 backbone, the DINOvV2 features, a self-supervised trained vision transformer, deserve
consideration as models of human visual brain representations.

Table 5: Encoding accuracy using CLIP vision backbone

Encoder Subjects Model size (M)
S1 S2 S5 S7

Ridge regression 0.51 048 047 0.38 ~650

Spatial-feature factorized (rois) 038 0.35 040 0.31 ~30

Spatial-feature factorized (vertices) 0.44 040 0.42 0.32 ~40

Transformer (rois) 0.53 049 0.50 0.38 ~37

Transformer (vertices) 055 052 052 040 ~67
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Figure 4: A. Encoding accuracy of the transformer encoding model with vertex-based queries
ensembled across backbone layers. B. Showing the backbone layer from which each vertex was best
predicted. C. The improved performance of ensembling is almost entirely from better prediction of
early visual areas.

4.2 Ensemble

A concern with using complex encoding models for neural system identification is that the non-
linear mapping may obscure the differences in the underlying representations [21]. However, our
results with different feature backbones show that the ones that perform better using the linear
model consistently perform better using our transformer encoding model as well, just with the latter
achieving higher accuracies.

To address this concern further, we consider a robust phenomenon shown consistently using linear
encoding with convolutional neural network backbones, where the earlier layers of the network
are better features for predicting the earlier visual areas [52, 19} 137, 23 |53]]. We trained different
transformer decoders with image tokens coming from different layers of the DINOv2 backbone. We
then use a softmax operation across the ensemble of models to get the final prediction for each voxel.
The softmax weights are based on goodness of the prediction for each model for that vertex in the
validation set. Figure.[JA shows the accuracy of the overall model on the brain surface for subject 1.
The layers that had the highest weights in the ensemble for predicting for each given voxel is shown
in AB; higher visual areas were better predicted by later backbone layers, indicating that backbone
layers capture similar feature abstractions as the brain.

Comparing the ensemble model to the model trained using only the final backbone layer features
(Fig.[C), we can see that the performance increase is entirely driven by better prediction of earlier
visual areas. These results show that our encoding model does not obscure the differences in the
underlying representation pointing further to its plausibility.

4.3 Attention maps

Different methods have been developed to interpret linear encoding models to make claims about the
the selectivity learned for each ROI. Some methods tend to retrieve or generate images that highly
activate the ROI vertices [33, 134} (7], and others focus on creating importance maps to show which
parts of the input images are important for predicting the activity of an ROI [43]].

The difference in our approach is that the cross-attention scores (Fig. [IB) can be examined to reveal
the selectivity for each ROI, making our model inherently more interpretable. We visualize the
attention maps for 3 different ROIs in Figure 5 for the transformer encoder trained with ROI decoder
queries with DINOv2 backbone. First is an early visual area, V2d (dorsal) in the left hemisphere.
Since the visual field is flipped around both horizontal and vertical meridians in the cortex (starting
from the retina), we expect the brain activity in this area to represent visual information from the
bottom-right of the input (given that the subjects were instructed to hold fixation at the center of the
screen for the presentation duration). We see this exact pattern emerge in the attention maps. Recall
that the decoder queries can learn to attend to both patch locations or their content (since the key
value is the sum of backbone image patches and positional encoding). In this case, the attention
seems to be completely driven by the location, similarly for all the images, ignoring the content. This
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Figure 5: Attention maps. Transformer decoder cross attention scores for three ROIs overlaid
on the images (with brighter colors indicating higher attention weights). The selected ROIs show
different ways in which the learned ROI queries can route information— based on location (V2d),
content (FBA), or a combination of the two (OFA) depending on the location of the ROI in the brain
processing hierarchy.

is exactly what we would expect from an early visual area. The fact that all the vertices in this ROI
have to share the same attention map hurts accuracy as we saw in Figure 2D, since the vertices do
have smaller RFs in this area than a quadrant, however this can be addressed by vertex level routing.

The second ROI is OFA in the right hemisphere, a mid-level face selective area [16]. The attention
maps is this area consistently focus on faces. Since this area is in the right hemisphere it also has a
preference for visual input in the left visual field. We can see this for cases with multiple faces where
the faces in the right visual field are not strongly attended. The decoder query therefore makes use
of both the positional encoding and the content component of the key to attend to the most relevant
part of the image to predict vertices in this ROI. The attention could also be spread across multiple
faces in different locations. This is the important dynamic aspect of the receptive field in higher
visual areas that can be captured using the transformer attention mechanism. The third area is FBA
in the right hemisphere, a high level body selective area [39]. The attention maps are more spread
across bodies for this ROI and not just faces. Supplementary section [A.2] includes a quantitative
analyses of the category selectivity of the attention maps. In the Supplementary section[A.3] we
provide an analyses of the similarity between the learned queries for different ROIs (capturing visual
and semantic similarity between them) and also show how our model can be used in a pipeline using
diffusion models [32]] to generate stimuli that maximally activate different ROIs (section [A.4).

Table 6: Encoding accuracy using BERT backbone

Encoder Subjects Model size (M)
S1 S2 S5 S7

Ridge regression 0.19 0.21 025 0.19 ~1200

Transformer (rois) 0.27 0.27 0.33 0.27 ~37

4.4 Text modality

So far we have tested the transformer encoding model on a few vision backbones but is this approach
generalizable to other modalities? To test this, we first used the BLIP model to generate short
captions for all the images in the dataset. Using BERT [[10] as the feature backbone, the decoder
works exactly as before, using ROI queries to map backbone features to fMRI responses. Table
shows how the transformer model outperforms the regression model across all subjects (with a
fraction of the parameters). Given only semantic information available in the captions, the model can
only predict the high level visual areas as shown in Figures [6JA and [GB.
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Figure 6: A. Transformer encoder accuracy using image caption as input B. Only high-level visual
areas are predicted by semantic information in a caption.

5 Discussion

Linear encoding models have been the dominant method used for learning the mapping from model
features to brain activity [14]. The reasons for this (see [21] for a review of these points) include
theoretical simplicity, allowing comparison among backbone features, biological plausibility, and the
ability to interpret the learned weights. However, this approach is parameter inefficient for a typical
number of voxels and image features, ignores the organization of the features, and does not capture
nonlinear computations between brain areas such as ubiquitous normalizations [48]]. Our proposed
routing based method not only reaches state of the art accuracy, it also achieves the aforementioned
desiderata for encoding models, as we have shown in our results.

Foundation vision models (e.g. DONOvV2 or CLIP) trained with self-supervised objectives can serve
as general visual representation backbones. However these task agnostic models do not capture all
the computations in the brain and between brain areas, which needs to be addressed by learning
better encoding models. Our work suggests a mechanism for how different brain areas dynamically
gate their input based on the input content and the area selectivity. A flexible routing mechanism
is reflected in deviation from the classical RF characterization of responses, so content-dependent
RF shifts provide evidence for a more flexible mechanism [42, [18]. Our results showing that the
encoding accuracy for high-level areas cannot be improved beyond ROI-based routing also agrees
with prior work on between area interactions using communication subspaces [47] which can also
be modulated by attention. The routed information that is relevant to an area can then get expanded
more in-depth. This process allows for cutting down on wiring cost in the brain by not connecting all
the units in one area to another area but rather only a subset of relevant information getting routed
with more local connections expanding the representation.

Limitations: We performed our experiments on NSD [3]], the largest image viewing fMRI dataset
to date. It will be important to test the generality of our approach on other datasets using different
recording techniques (Neurophysiology, EEG, etc) [13]] and on different input modalities (such as
video and audio). We used vertex-wise routing to capture the responses in early visual areas but while
the computations for smaller receptive fields can be learned by this approach, the way the RFs are
implemented in the brain are through different anatomical and wiring constraints. Also we chose
for the model to read out the brain responses from a backbone for both early and high-level visual
areas. Future work will seek to explore the connectivity between early and high-level visual areas in
a more integrated system and test whether making the model further aligned with known anatomy of
the visual cortex will improve performance.
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A Supplementary Material

A.1 Encoding accuracies for Subjects 2, 3 and 7
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Figure S1: Encoding accuracy (fraction of explained variance) shown for Subjects 2, 5, and 7 for
individual ROIs and for ROI clusters for the two hemispheres. The transformer model uses ROIs for

decoder queries and features from the last layer of the DINOv2 backbone.
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Figure S2: The differences in encoding accuracy between the transformer and the ridge regression
models shows that the transformer encoder better predicts especially higher visual areas.
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Figure S3: Encoding accuracy (fraction of explained variance) shown for Subjects 2, 5, and 7 for
individual ROIs and for ROI clusters for the two hemispheres. The transformer model uses vertices
for decoder queries and features from the last layer of the DINOv2 backbone.

16



Transformer (vertices) - Transformer (rois)

Subject 2
0.4
- B |eft Hemisphere
% Right Hemisphere
o
3 0.2
1%
<
o
<
'-go_ollllll- [ T | | - - . B - -
v
c
w
-0.2
S T > T > B¢ I N g 7w < O T 7 N @ o v v u u “u
S99 20290: &g Sgg 8§&80 Sxggf ggggcsr 3
I & & S§£8° g & 29 5
. s Q9 Q =
S s 4 =
'g <
ROIs
0.4
- Bl Left Hemisphere
x Right Hemisphere
e
3 0.2
Q
<
g
- - - — — — - - — - — — W - —
80'0. = -- - =
Qo
<
w
-0.2
S > T > OO T ~ T ~ N < < O L ~ N v L v v un v %)
§98393F 83s §75 &8¢ S478 78888 §
ge £ & SS§§S 25288 s
7 s o Q =
S S5 =
"g <
ROIs
Subject 7
0.4
. B Left Hemisphere
z Right Hemisphere
o
2 02
O
<
o
%0_0-. ol m mEom - e e - _ LB Jw e B o B -
8
c
w
-0.2
S T > T > OO < N L~ o < < O < N~ N L ov L v v un v %)
§98393F 83 S48 §§f¢ L7788 78888 §
& & & Ss§s§8s 25888 =
S S &= S o Q =
& = <
S

ROIs

Figure S4: The differences in encoding accuracy between the transformer model using vertices and
the model using ROIs as decoder queries. The figure shows that any potential improvement in the

former is driven by better prediction of early visual areas.
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A.2 Category selectivity of attention maps

To quantify the category selectivity of attention maps, we classified each pixel of the test set images using
YOLOVS [22] and YOLOv8-face [11]] into five categories: background, face, body (pixels classified as person
but not as face), animal, and food. For each ROI, we calculated and resized its attention maps to 434 x 434 for
these images, and reported the categories of the 2k pixels with top attention values. We found that the category
selectivity is consistent with ROI labels, with EBA most selective for body, FFA most selective for face, and
OPA/PPA/RSC most selective for background.

Table 7: Category selectivity of ROI attention for subject 1.

background face body animal food

EBA 0.03 0.36  0.61 0.00  0.00
FFA-1 0.00 079 0.16 0.05 0.00
FFA-2 0.00 0.83 0.17 0.00  0.00
OPA 0.54 0.12 0.14 005 0.15
PPA 0.44 0.25 0.11 0.10  0.10
RSC 0.66 0.23 0.11 0.00  0.00

Table 8: Category selectivity of ROI attention for subject 2.

background face body animal food

EBA 0.03 0.25 0.72 0.00  0.00
FFA-1 0.05 0.57 0.19 0.18  0.00
FFA-2 0.05 0.53 0.27 0.15  0.00
OPA 0.74 0.15 0.06 0.05  0.00
PPA 0.78 0.11  0.08 0.03  0.00
RSC 0.71 0.19 0.09 0.00  0.00

Table 9: Category selectivity of ROI attention for subject 5.

background face body animal food

EBA 0.29 026 040 0.05 0.00
FFA-1 0.12 0.67 0.13 0.08  0.00
FFA-2 0.10 0.59 0.28 0.03  0.00
OPA 0.31 033 020 0.16 0.00
PPA 0.36 029 020 0.15 0.00
RSC 0.08 037 050 0.00 0.06
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Table 10: Category selectivity of ROI attention for subject 7.

background face body animal food

EBA 0.38 0.05 043 0.09  0.05
FFA-1 0.00 0.88 0.02 0.10  0.00
FFA-2 0.17 0.20 0.38 0.20  0.05
OPA 0.40 0.18 0.14 028 0.00
PPA 0.51 029 0.16 0.05 0.00
RSC 0.56 0.25 0.17 0.02  0.00

A.3 Analyzing learned ROI queries

We analyzed the representational similarity of learned ROI queries, and report the average cosine similarity
between each pair of ROIs across 20 models trained using five different random seeds and four different DINOV2
backbone layers in Figures[S3] [S6] [S7] [S8] These figures show the visual and semantic similarity between the
ROIs as reflected in the learned queries for the subjects. We observed that ROIs with shared category selectivity
form clusters (faces, places, bodies, or words) in the similarity matrix, exhibiting greater representational
similarity within each category type.

We also see a clear divide between categorical and non-categorical areas. Additionally, ROIs within the ventral
early visual areas (V1v, V2v, V3v) are more similar to one another than to their dorsal counterparts (V1d, V2d,
V3d), and vice versa (the checkerboard patterns), reflecting the anatomical and functional organization of the
visual cortex, and that the attention will be mostly driven by spatial information.
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Figure S5: Cosine similarity between learned ROI queries for subject 1. Each entry in the matrix
represents the average cosine similarity between the query for the ROI indicated by the row label
and that indicated by the column label. ROIs from the left hemisphere are labeled with ‘lh’, and
those from the right hemisphere with ‘rh’. Results are averaged across 20 models, trained using five
random seeds and four different backbone layers.
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Figure S6: Cosine similarity between learned ROI queries for subject 2.
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subject 5
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Figure S7: Cosine similarity between learned ROI queries for subject 5.
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subject 7
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Figure S8: Cosine similarity between learned ROI queries for subject 7.

A.4 Generating maximally activating images for ROIs

BrainDiVE is a generative framework for synthesizing images predicted to activate specific regions of the
human visual cortex. It guides the denoising steps of a diffusion model using gradients derived from a brain
encoding model. Given the strong performance of our encoding model in predicting brain activity, we tested
whether it could also effectively guide image generation within the BrainDiVE framework. We generated 200
images optimized to maximally activate the average predicted response of a specific ROI cluster, and display
the top five in Figure[S9] [ST0] The categories of the generated images are consistent with the reported category
selectivity of each ROI cluster in the literature.
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subject 1: Body selective areas (EBA, FBA-1, FBA-2)
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subject 1: Face selective areas (OFA, FFA-1, FFA-2)

R &

subject1 Word selective areas (OWFA, VWFA-1, VWFA-2)

i I e

subject 2: Body selective areas (EBA, FBA-1, FBA-2)

7] Bt el

subject 2: Face selective areas (OFA FFA-1 FFA-2)

Figure S9: Images generated to maximally activate different ROI clusters for subjects 1 and 2.
Using our encoding model within the BrainDiVE framework, we generated 200 images predicted to
maximally activate a specific ROI cluster for a given subject (indicated by the row titles). For each
cluster, we display the top five images with the highest predicted activation, as determined by our
encoding model.
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subject 7: Word selective areas (OWFA, VWFA-1, VWFA-2)

Figure S10: Images generated to maximally activate different ROI clusters for subjects 5 and 7
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B Compute used

We used GPUs (NVIDIA L40s), memory, and storage resources from an internal cluster. Storage for the
entire project totals roughly 3TB. Training the model used roughly 4,000 GPU hours. Running the remaining
experiments used roughly 1,000 GPU hours. The full project required more compute than these estimates due to
failed experiments, experiments not included in the paper, and model iteration.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]
Justification: All our claims are directly backed by presented results.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made in the
paper.

 The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

« It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations on page 9.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

¢ The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA]
Justification: Our paper does not include theoretical results.
Guidelines:
* The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
¢ All assumptions should be clearly stated or referenced in the statement of any theorems.
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* The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We include all the experimental details.
Guidelines:

¢ The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

« If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be
a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]
Justification: We will upload the code as part of the supplementary materials.
Guidelines:

¢ The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

¢ While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

¢ The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
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* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

¢ The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

¢ At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).
* Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]
Justification: We do provide the training/testing details.
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [NA]

Justification: We provide the results for all the subjects in our dataset separately. The reason as
described in the text, is that different subjects have slightly different number of vertices and ROI
boundaries, so we felt it was more appropriate to not average over subjects and to just transparently
report the data for all of them.

Guidelines:

* The answer NA means that the paper does not include experiments.

¢ The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

¢ The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably report
a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]
Justification: We are including all the details about computing resources in the supplementary files.
Guidelines:

¢ The answer NA means that the paper does not include experiments.
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* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: answerYes
Justification: Our work conforms with the code of Ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]
Justification: We discuss the societal impacts of our work in the supplementary section.
Guidelines:

¢ The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

¢ The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA|
Justification: We used publicly available datasets. The encoding models do not have a high risk of
misuse to our knowledge.
Guidelines:
¢ The answer NA means that the paper poses no such risks.

¢ Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.
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13.

14.

15.

» Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]
Justification: We used publicly available fMRI datasets that we credit. We own the other assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

» The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.
¢ The name of the license (e.g., CC-BY 4.0) should be included for each asset.

» For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes]
Justification: All the assets are well documented and the documentation is provided.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

* At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: We use publicly available datasets and the original papers can be consulted for all the
details. We provide the relevant information in our paper.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

¢ Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects
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16.

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]
Justification: We used public available datasets.
Guidelines:
¢ The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

¢ For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA]
Justification: We did not use LLMs in any significant way.
Guidelines:

* The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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