
INFOGENT: An Agent-based Framework for
Web Information Aggregation

Revanth Gangi Reddy∗ Sagnik Mukherjee∗ Jeonghwan Kim∗ Zhenhailong Wang∗

Dilek Hakkani-Tur Heng Ji
University of Illinois Urbana-Champaign

{revanth3,sagnikm3,jk100,wangz3,dilek,hengji}@illinois.edu

Abstract

Despite seemingly performant web agents on the task-completion benchmarks,
most existing methods evaluate the agents based on a presupposition: the web
navigation task consists of linear sequence of actions with an end state that marks
task completion. In contrast, our work focuses on web navigation for information
aggregation, wherein the agent must explore different websites to gather infor-
mation for a complex query. We consider web information aggregation from two
different perspectives: (i) Direct API-driven Access relies on a text-only view of the
Web, leveraging external tools such as Google Search API to navigate the web and
a scraper to extract website contents. (ii) Interactive Visual Access uses screenshots
of the webpages and requires interaction with the browser to navigate and access
information. Motivated by these diverse information access settings, we introduce
INFOGENT2, a novel modular framework for web information aggregation involv-
ing three distinct components: Navigator, Extractor and Aggregator. Experiments
on different information access settings demonstrate INFOGENT beats an existing
SOTA multi-agent search framework by 7% under Direct API-Driven Access on
FRAMES, and improves over an existing information-seeking web agent by 4.3%
under Interactive Visual Access on AssistantBench.

1 Introduction

Despite the well-documented success of autonomous web agents Nakano et al. [2021], Yang et al.
[2023], Zhou et al. [2023], Deng et al. [2024], the proposed tasks usually perform goal-oriented
web-based tasks involving navigating within a website, interacting with elements like buttons and
executing complex workflows. (e.g., booking a flight or scheduling a meeting). However, a critical
aspect of web-based tasks, information aggregation has received relatively less attention. Tasks
involving gathering and presenting relevant data from diverse web sources are central to many real-
world applications. For instance, humans often visit multiple websites, using search engines to find
relevant content, and browsing articles, reviews, or forums.

Existing web navigation benchmarks and methods Zhou et al. [2023], Deng et al. [2024], Lù et al.
[2024], Zheng et al. [2024b], Koh et al. [2024] primarily focus on linear, goal-oriented tasks, such
as booking a flight from Chicago to London, where sequential actions lead directly to a predefined
outcome without significant backtracking or exploration. These approaches address tasks with clear,
predefined goals but overlook the challenge of aggregating information from multiple sources. In
contrast, open-ended information-seeking tasks, such as investigating why the Indian education
system lacks funding and infrastructure, require agents to explore multiple sources, consider diverse
viewpoints, and determine when sufficient information has been gathered for a comprehensive answer.

∗Equal Contribution.
2Code will be available at https://github.com/gangiswag/infogent.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/gangiswag/infogent


Building agents for information-seeking tasks shifts the focus from linearized action sequences
for goal completion to the quality and coverage of the aggregated information, highlighting a gap
in current methods that do not consider such exploratory behaviors. Specifically, we identify two
critical limitations in current web agents: (1) Lack of Information Aggregation: they cannot aggregate
information from multiple webpages; and (2) Inability to Backtrack: they are constrained to forward
navigation, unable to revisit previous pages or explore alternative search results. These constraints
hinder their effectiveness in information-seeking tasks that require iterative exploration.

Figure 1: Overview of INFOGENT under the
Direct API Access and Interactive Visual Ac-
cess settings: The Navigator uses a tool-based
LLM and a browser-controlling VLM as the
web agent respectively, with the Aggregator’s
textual feedback guiding further navigation.

Motivated by the challenges, we introduce INFO-
GENT, a novel framework for information aggrega-
tion on the web which accomplishes the task using
three specialized components: a Navigator respon-
sible for searching the web and identifying relevant
websites, an Extractor for identifying relevant infor-
mation from the selected web pages, and an Aggrega-
tor for selectively retaining the extracted information,
and deciding what to include in the final aggregated
output. To address the shortcomings of the current
web agents, INFOGENT augments a task-completion
agent with additional capabilities required to be an ef-
fective web navigator for information aggregation.
Specifically, we introduce two key modifications:
(1) Enhanced Action Set that enables the naviga-
tor to backtrack and transfer control to other com-
ponents when aggregation is to be performed; and
(2) Feedback-Driven Navigation, where navigator’s
decision-making process incorporates feedback from
aggregator, ensuring that navigation strategies are dy-
namically informed by both the input query and the
current state of information aggregation.

INFOGENT is modular, with a clear division of re-
sponsibilities between the three components, designed to operate effectively in real-world information
aggregation settings. Specifically, we address two scenarios for accessing information from websites:
Direct API-driven Access, where agents are enabled access only to the textual web data extracted
via APIs without visual interaction, and Interactive Visual Access, which requires agents to simulate
visually-dependent human browsing to access web information, which can often be obstructed by
paywalls, logins, or other necessary user interactions that can only be bypassed with visual context
understanding. By evaluating on realistic, multi-website aggregation tasks–AssistantBench Yoran
et al. [2024], FRAMES Krishna et al. [2024] and FanOutQA [Zhu et al., 2024]–we demonstrate INFO-
GENT’s ability to effectively handle both information access settings. In summary, our contributions
are as follows:

• We introduce INFOGENT, a novel modular and feedback-driven framework for web informa-
tion aggregation through the use of three distinct components: Navigator, Extractor, and
Aggregator (illustrated in Figure 1).

• We demonstrate that INFOGENT can be employed under both Direct API-Driven Access and
Interactive Visual Access settings.

• On various web aggregation tasks, we empirically show that INFOGENT outperforms existing
state-of-the-art multi-agent search frameworks and information-seeking web agents.

2 Related work

Web Navigation with LLMs: Web navigation agents were originally explored in simulated web
environments [Shi et al., 2017] and [Liu et al., 2018] which predominantly focused on completing
goal-oriented tasks. The simulated environments came equipped with a range of task primitives such
as selecting value from a drop down or entering text into an input box, which could be used to achieve
the end goal. Subsequent work has focused on extending to more realistic settings [Nakano et al.,
2021], such as WebShop [Yao et al., 2022] for e-commerce and RUSS [Xu et al., 2021] for web
support. However, these efforts are still limited to a narrow set of domains and websites. In contrast,

2



WebArena [Zhou et al., 2023] and Mind2Web [Deng et al., 2024] were introduced as benchmarks
for autonomous web agents that can generalize to a wide variety of tasks on real-world websites.
Nevertheless, these approaches were still limited to predominantly language-guided agents, that
solely relied on the text elements present within the website raw HTML. Follow-up works, such as
VisualWebArena [Koh et al., 2024], SeeACT [Zheng et al., 2024a] and WebVoyager [He et al., 2024],
use multimodal agents [Achiam et al., 2023, Team et al., 2023] that leverage screenshots of websites
as input for identifying the appropriate HTML elements to act upon. The motivation is that raw
HTML contents are too noisy, and context is often too long, while screenshots provide a less noisier
view of the webpage. While these methods involve an autonomous agent solving the task using an
initial instruction, more recently, WebLinx [Lù et al., 2024] introduces the problem of conversational
web navigation, wherein the agent controls a real-world web browser and follows user instructions to
solve tasks in a multi-turn dialogue fashion.

Web Information Aggregation: Recently, there has been a growing interest for more complex
information aggregation tasks, which have been studied independently within the Information Ex-
traction field [Reddy et al., 2023]. In the context of Web Agents, information aggregation requires
broader exploration and backtracking to effectively generate the answer. MindSearch [Chen et al.,
2024] explores this, modeling the task as an iterative graph construction. AssistantBench [Yoran
et al., 2024] enhances SeeAct with the go back action and a planning module, and tackles time
consuming tasks on the web. In this work, we propose INFOGENT, a modular framework featuring
specialized aggregation and feedback modules that achieves state-of-the-art performance in both
Direct API-driven Access and Interactive Visual Access scenarios.

3 Information Aggregation Task

We conceptualize information aggregation for a query as an iterative process involving identifying
relevant websites and gathering pertinent information within them, repeated until sufficient data
is collected. Actively tracking the aggregated information guides subsequent searches, ensuring
comprehensiveness while avoiding redundancy. The success of the process is dependent on the
quality and diversity of the collected information.

We note that accessibility of web information varies significantly. Some data is easily obtainable
through APIs or by scraping web pages (e.g., retrieving “Billboard Top 100 songs” from Wikipedia
). However, other information, such as salary data on Glassdoor, is not directly accessible due to
paywalls, or other restrictions. Therefore, we categorize information aggregation tasks into two
settings based on the type of access: Direct API-Driven Access and Interactive Visual Access.

The former involves retrieving data via APIs or automated tools without interacting with the website,
making it efficient when APIs are available. In contrast, Interactive Visual Access requires simulating
human browsing to retrieve information from screenshots of webpages that prohibit automatic
scraping. We hypothesize that these two approaches together encompass a wide range of practical
scenarios for information aggregation, and any comprehensive solution should handle both paradigms.
Moreover, while we primarily focus on web-based aggregation, the concept of Interactive Visual
Access extends to other desktop and mobile applications, such as Slack or iMessage, where API
access is restricted and visual interaction is necessary Ge et al. [2023], Kapoor et al. [2024].

4 INFOGENT

INFOGENT, as illustrated in Fig. 1, consists of three core components: A Navigator NG, an Extractor
ET , and an Aggregator AG. Given an information-seeking query, the Navigator NG initiates the
process by searching the web for relevant sources. Upon identifying a suitable webpage, the Extractor
ET takes over the control, which extracts relevant content and forwards it to the Aggregator AG.
AG evaluates this content with respect to the information aggregated so far and decides whether
to include it. Importantly, AG provides feedback to NG about gaps in the aggregated information,
guiding subsequent searches to address deficiencies. NG lacks direct access to the aggregated
information, thereby relies on AG’s feedback for directions in subsequent iterations. This iterative
process continues until AG determines that sufficient information has been gathered and instructs NG
to halt. Thus, INFOGENT employs a modular, feedback-driven approach to information aggregation,

3



Figure 2: A working example of INFOGENT. NG iteratively generates an updated query given
feedback from AG.

Alg. 1: Information Aggregation with INFOGENT

Input: T : User Task, K: Max websites to extract, N : Max time steps
Output: S: Aggregated information stack
W0 ← "Search Home" // Starting Webpage
S0 ← "Empty Stack" // Information Stack
F ← "None" // Aggregator Feedback
k ← 0; t← 0 // Iteration & Action Counter
while at! = TERMINATE and k < K and t < N do

at+1 = NG(Wt, T ,F ,{a1, a2, . . . , at})
if at+1 = AGGREGATE then
P ← ET (Wt, T ,F) // Extract Info.
Sk+1,F ← AG(Sk,P, T ) // Update Sk
k ← k + 1 // Update Counter
Wt+1 ←Wt

end
else
Wt+1 = Act(Wt, at+1) // Make Action

end
t← t+ 1 // Update Counter

end

making it suitable for complex queries requiring diverse sources. Fig. 2 illustrates the feedback-driven
navigation with example.

Let’s denote the action space of NG as A, the task at hand as T , the Aggregator feedback as F and
the current website under consideration as W . Further, there is a stack S of diverse information
aggregated in the form of a list of paragraphs, which is returned upon task completion. NG is
responsible for navigating the internet to identify relevant web pages. Formally, at time step t, for a
given website W , NG samples an action at ∈ A from its action space (shown in Table 1), which
varies depending on the information access setting.

at = NG(W, T ,F ,{a1, a2, . . . , at−1})

If the action at is AGGREGATE, ET extracts relevant information from W for the task T , to provide a
list of passages P = ET (W, T ,F). AG then evaluates the relevance of P according to the current
information stack S and the task T , updates S. and returns natural language feedback F , to guide
NG’s subsequent actions. Using F , AG can also instruct NG to finish the process once sufficient
information has been aggregated. Algo. 1 shows a schematic of INFOGENT’s working process.

INFOGENT’s modular architecture is optimized for information aggregation and enhances adaptability
across diverse scenarios by dividing responsibilities among distinct components. NG and ET can
utilize either language-only or multimodal models, depending on the nature of web information
access discussed in §3. Given our primary focus on textual information aggregation, both access
types employ the same aggregator component. Further details on NG, ET , and AG follow.

4



4.1 Navigator NG

(a) Direct API-Driven Access

Action Description

SEARCH (query) Return top-5 (url, snippet) pairs
AGGREGATE (W) calls ET and AG in sequence
TERMINATE Terminate navigation

(b) Interactive Visual Access

Action Description

CLICK (element) element.click()
SELECT (element) element.select()
TYPE (element, text) Type text in selected element
PRESS ENTER Press enter
GO BACK Go back to previous page
AGGREGATE (W) calls ET and AG in sequence
TERMINATE Terminate navigation

Table 1: Action space A of the Navigator.

Recent studies Yang et al. [2023], Wang et al. [2024]
have demonstrated the capabilities of LLMs and
LMMs to autonomously plan and execute sequences
of thoughts and actions Yao et al. [2023] based on a
high-level directive. Building on this capability, we
conceptualize the navigator as an autonomous agent
tasked with exploring the web to identify relevant web-
sites. The action space available to the navigator agent,
shown in Table 1, depends on the information access
setting. Specifically, under the Direct API-Driven Ac-
cess setting, INFOGENT employs a tool-based LLM
agent Yang et al. [2023] as the Navigator, which lever-
ages a search API as a tool. Conversely, in the Interac-
tive Visual Access setting, a multimodal web navigation
agent Zheng et al. [2024b] is utilized to interact with a
real-world browser and access relevant content within
the webpages. The Navigator here simulates human-
like browsing behavior, allowing the agent to navigate
through web interfaces that may not be accessible via APIs alone.

4.1.1 Direct API-Driven Access

In this setting, web information can be accessed by querying a search API, which returns a list of
relevant urls; the corresponding website content can be retrieved using automated scraping tools. In
this context, NG is an autonomous agent Yang et al. [2023], based on the ReACT framework Yao
et al. [2023], which combines chain-of-thought [Wei et al., 2022] with tool calls to generate sequence
of thought and actions.

The action space A of NG under this setting (shown in Table 1a), consists of two tools, namely
SEARCH and AGGREGATE. Given the user task, NG employs SEARCH with an appropriate query,
resulting in a set of URLs accompanied by brief descriptive snippets. NG then chooses a relevant
URL from this set to invoke the AGGREGATE tool, which encompasses both ET and AG. ET first
scrapes the URL and extracts relevant content P . Next, AG updates S using P , and returns textual
feedback F . Based on F , NG adjusts its strategy accordingly: if the extracted content is affirmed as
relevant and useful, it continues to explore additional websites from the initial search results; if the
content is deemed irrelevant or redundant, it initiates a new search informed by AG’s feedback.

4.1.2 Interactive Visual Access

Under this setting, information cannot be directly scraped, meaning NG needs to explore the web
in a manner similar to human interactions with a browser. Recent work [He et al., 2024, Zheng
et al., 2024a] has demonstrated promising results in leveraging powerful Large Multimodal Models
(LMMs) [OpenAI, 2023] for web navigation. The navigator here is based on SeeAct Zheng et al.
[2024a], a task-completion agent, capable of finishing web tasks by planning and executing interactive
actions on webpages by utilizing screenshots and candidate HTML elements. SeeAct first performs
Action Generation to create natural language descriptions of the necessary actions to accomplish a task
(e.g., “Click on search button”). Subsequently, it engages in Action Grounding to identify appropriate
HTML elements (e.g., “[input] Departure City”) and determines the corresponding operations (such
as CLICK, TYPE etc.) to execute. For more details on SeeAct, please refer to Zheng et al. [2024a].

We augment SeeAct with additional capabilities required to be an effective web navigator for
information aggregation. We add GO BACK and AGGREGATE actions, enabling the agent to perform
backtracking and to transfer control to ET respectively. The full list of actions is provided in Table
1b. Further, we modify the Action Generation procedure to also condition on the textual feedback
F from AG. The navigation begins from the search engine home page, with NG leveraging the
CLICK, SELECT, TYPE, and PRESS ENTER actions to get the search results and explore the web pages
further. The AGGREGATE action is used to invoke ET and AG when the webpage is deemed relevant.
Subsequently, based on the feedback F , NG leverages the GO BACK action to retrace its steps to
explore other search results, or instead perform another search using a different revised query.

5



4.2 Extractor ET

Once NG selects a relevant website, ET identifies and extracts up to k relevant paragraphs for the
task. Since webpages are often lengthy, using a smaller, cost-efficient model for content processing
is more practical. Extraction is favored over summarization for two key reasons: smaller models
tend to produce low-quality summaries due to limited capacity, and they are prone to hallucination,
introducing information not present in the source. Direct extraction ensures accurate attribution and
maintains reliability of the aggregated data.

In the Direct API-Driven Access setting, given a website URL, ET scrapes the content and feeds
it into an LLM, which is prompted to identify the relevant paragraphs based on the user’s task. In
contrast, under the Interactive Visual Access setting, where website content cannot be directly scraped
due to access restrictions, ET navigates the webpage by scrolling from top to bottom, capturing
multiple screenshots. These screenshots are then processed by a multimodal model OpenAI [2023],
which identifies and extracts the relevant paragraphs. This approach facilitates extraction from
web interfaces that are otherwise inaccessible through traditional scraping techniques. For detailed
prompts, refer to Table 8 in the Appendix.

4.3 Aggregator AG

Given the content extracted by ET , presented as a list of paragraphs P , AG’s task is to determine
whether to incorporate any of the paragraphs into the aggregated information stack S. For each
passage pi in P , AG can choose to either add pi as a new item (ADD(pi)), replace an existing item
sj in St with pi (REPLACE(sj, pi)) or just ignore pi if it is irrelevant or redundant. This decision-
making process is achieved by prompting an LLM, with detailed prompts in Table 8 in the Appendix.
Furthermore, AG provides textual feedback F to NG regarding what information to seek next,
which guides the NG’s subsequent actions by highlighting information gaps in S . By incorporating
a feedback-driven interaction between AG and NG, INFOGENT ensures the information-seeking
process is adaptive to the aggregated information.

5 Experiments

We test INFOGENT’s ability to address complex queries that require accumulating information over
multiple webpages. Evaluation is based on the final answer generated by the downstream LLM,
leveraging the information aggregated by INFOGENT. We consider evaluation separately for Direct
API-Driven access and Interactive Visual Access.

5.1 Direct API-Driven Access

Here, we employ a tool-based LLM as NG, built upon AutoGPT. To mitigate issues arising from
the dynamic and potentially conflicting information on the web, we restrict our search to Wikipedia
pages, following prior work Zhu et al. [2024].

5.1.1 Setup

Datasets and Metrics: We evaluate our method on the FanOutQA Zhu et al. [2024] and
FRAMES Krishna et al. [2024] datasets, both comprising complex queries that require accumulating
information from multiple webpages. FanOutQA includes 310 multi-hop questions involving multiple
entities (for e.g. What is the population of the five smallest countries by GDP in Europe?). FRAMES
contains complex questions requiring various reasoning types: numerical (counting, comparisons,
calculations), tabular (using statistics from tables or infoboxes), constraints (multiple conditions
leading to a unique answer), temporal (timeline reasoning) and post-processing (specific steps after
gathering all necessary facts). Excluding numerical questions–whose performance depended signifi-
cantly on the final answering LLM rather than the aggregation approach–we retained 531 examples.
We use the official evaluation metrics for both datasets: FanOutQA employs string accuracy and
ROUGE Chin-Yew [2004], while FRAMES uses language model to assess whether the generated
output matches the gold answer, utilizing the prompt shown in Table 6 in the Appendix.

6



Approach All Tabular Temporal Constr. Process

Closed-Book 23.5 16.4 19.9 22.7 11.6
MindSearch 46.3 41.4 46.6 47.5 30.0

INFOGENT 53.3 45.7 43.8 55.2 46.5

Table 2: Results (in %) on the Frames dataset for queries with different reasoning types under Direct
API-Driven Access setting. Constr. corresponds to Constraints.

Approach Acc. R-1 R-2 R-L

Closed-Book 46.6 44.5 24.2 38.2
MindSearch 47.3 49.3 28.4 44.2

INFOGENT 51.1 53.3 33.0 48.5

Table 3: Results (in %) on the FanoutQA dev set under the Direct API-Driven Access setting.

Baselines: We compare INFOGENT with MindSearch Chen et al. [2024], a multi-agent search
framework involving a planner and a searcher. MindSearch models information seeking as a dynamic
graph construction process via code-driven decomposition of the user query into atomic sub-questions
represented as nodes. It then iteratively builds the graph for the subsequent steps, based on answers to
the sub-questions. The output is then passed to a downstream LLM for answer generation, similar to
INFOGENT. We also include a closed-book model as a baseline. All approaches employ GPT-4o-mini
as the underlying LLM.

5.1.2 Results

Table 2 reports results on FRAMES across different reasoning types. Low performance of the closed-
book approach highlights the complexity and recency of the questions. INFOGENT significantly
outperforms MindSearch on most reasoning types; however, on temporal reasoning, MindSearch
performs better, likely due to its code-driven planning in graph construction. Table 3 presents results
on FanOutQA. Both INFOGENT and MindSearch outperform the closed-book method, demonstrating
the benefit of web search, with INFOGENT consistently surpassing MindSearch. The relatively high
performance of the closed-book model may be due to the dataset’s release date (Nov 2023) being
close to the LLM’s knowledge cutoff (Oct 2023), suggesting that the LLM’s parametric knowledge
might already contain the required facts.

5.2 Interactive Visual Access

Our Navigator NG in this setting uses the same web browser simulation tool as in SEEACT Zheng
et al. [2024b], built on top of Playwright. The navigator initiates search from the Google homepage.

5.2.1 Setup

Datasets and Metrics: We use AssistantBench Yoran et al. [2024], a dataset for evaluating web
agents on time-consuming online information-seeking tasks, such as monitoring real estate markets or
locating relevant nearby businesses. It comprises 214 realistic tasks (33 dev and 181 test) that require
interacting with multiple websites. To assess performance on information-dense websites (Wikipedia)
under the interactive visual access setting, we use a human-curated subset of FanOutQA released
by Yoran et al. [2024], containing 31 queries with updated answers where closed-book models fail.
Following Yoran et al. [2024], answer accuracy is the eval metric for both datasets.

Baselines: Baselines are same as in in Yoran et al. [2024]. RALM-Inst and RALM-1S are zero and
one-shot versions of a retrieval-augmented LM that is prompted to use Google Search as a tool Yao
et al. [2023]. For web-agent baselines, we consider SEEACT [Zheng et al., 2024a], designed for web
task-completion. Our primary comparison is with SPA (See-Plan-Act) Yoran et al. [2024], which
extends SEEACT for information-seeking tasks by incorporating planning and memory modules for
information transfer between steps.

7



Type Approach Model AssistantBench FanOutQA
Dev Test Curated

RAG RALM-Inst GPT-4T 15.5 11.7 9.6
RALM-1S GPT-4T 13.6 10.6 27.3

Web Agent SEEACT GPT-4T 0.0 4.2 7.5
SPA GPT-4T 12.7 11.0 40.0

Web Agent INFOGENT
GPT-4o 19.2 15.3 38.6
GPT-4T 22.0 – 49.0

Table 4: Accuracy (in %) on AssistantBench Yoran et al. [2024] and FanOutQA Zhu et al. [2024] in
Interactive Visual Access Setting. Baseline numbers are taken from Yoran et al. [2024].

NG ET AG Acc. %

GPT-4o GPT-4o GPT-4o 19.2
GPT-4o mini GPT-4o GPT-4o 0.0 (↓19.2)

GPT-4o GPT-4o mini GPT-4o 16.5 (↓2.7)
GPT-4o GPT-4o GPT-4o mini 17.1 (↓2.1)

Table 5: Performance impact of using different models for NG, ET , and AG under the Interactive
Visual Access setting evaluated on AssistantBench dev split.

5.2.2 Results

Table 4 presents results for AssistantBench and human-curated subset of FanOutQA. On Assis-
tantBench, we see that INFOGENT outperforms SPA by 6.5% and 4.5% on the dev and test sets
respectively, even when using the smaller GPT-4o as backbone. Due to cost considerations, we report
results on dev set with GPT-4T, observing a performance gain of 9.3% over SPA. The poor perfor-
mance of SEEACT confirms that task-completion web agents struggle with web information-seeking
tasks. For FanOutQA, INFOGENT improves upon the SPA baseline by 19%. Since Navigator is
often the point of failure in web tasks, Extractor and Aggregator in INFOGENT lower the burden
on the Navigator, unlike in SPA, where a single agent handles navigation, planning and memory
management. Thus, INFOGENT’s modular approach, with a clear division of tasks between the
components, contributes to its superior performance.

5.3 Analysis

5.3.1 Different Models for NG, ET and AG

We conduct ablation experiments on INFOGENT under the interactive visual access setting to investi-
gate which component, NG, ET or AG, is most dependent on the underlying model’s capabilities.
For this study, we evaluate the performance when using GPT-4o mini instead of GPT-4o for each
component separately. Table 5 shows the results on the AssistantBench dev set. We see that the
navigator is most reliant on the underlying model, with final accuracy dropping to zero when GPT-4o
mini is used for NG. In comparison, using GPT-4o mini for both ET and AG results in relatively
smaller performance drops of 2.7% and 2.1% respectively.

5.3.2 Distribution of Actions Taken by NG

Analyzing the action frequencies of NG in the Interactive Visual Setting on the AssistantBench test
set, we found that 61% instances successfully terminated navigation, while the remainder resulted
in timeouts/failures. The top five actions per task, with their average usage, were CLICK (3.40),
AGGREGATE (3.02), GO BACK (2.25), TYPE (2.01), and PRESS ENTER (1.32).

In the Direct API-Driven setting, SEARCH initiates a new query, and AGGREGATE involves website
scraping for extraction and aggregation. For FanOutQA, SEARCH and AGGREGATE were used an
average of 7.44 and 5.65 times per task, respectively; for FRAMES, these actions averaged 10.4
and 5 times per task, respectively. The higher frequency of SEARCH over AGGREGATE indicates that

8



Figure 3: An illustrative example of INFOGENT in the Interactive Visual Access setting for a query
from AssistantBench. In steps 1→4, AG accurately the identifies the IPO year (2020) and searches
for the management team from that year. In step 5, while ET correctly identifies Gina DiGioia, it
incorrectly extrapolates that John Janedia joined in 2020, even though his past affiliations were only
mentioned up to that year. However, AG’s feedback to “look for other members” improves the answer
coverage by discovering Mike Berkley, whose name was not listed on Fubo’s current web page, in an
external news article (in step 7) noting his appointment as Chief Product Officer in 2020.

the navigator more often updates its search query,due to irrelevant results or because the required
information is directly available in snippets, rather than extracting information.

5.3.3 Qualitative Analysis

Manual inspection of ten navigation traces in the Interactive Visual Access setting revealed some
failure modes in the three components in INFOGENT. NG failed to predict correct actions in 6 out
of 10 instances, exhibiting issues such as invalid assumptions during Google searches, ignoring
aggregator feedback, and repeatedly triggering identical actions (see Appendices A.1 and A.2). ET
incorrectly judges information in web page screenshots as task-relevant for 3 out of 10 examples,
particularly on information-dense pages with distractions (see Figure 3 for a detailed walkthrough for
one such example). AG often provides open-ended feedback, complicating further navigation; in 3
out of 10 cases, it gave incorrect feedback or omitted relevant information from memory. Conversely,
Figure 3 illustrates how effective aggregator feedback (between steps 5 and 6) can improve answer
coverage by appropriately directing the navigator.

6 Conclusion and Next Steps

In this work, we introduce INFOGENT, a novel modular framework for web information aggregation.
Through the use of separate Navigator, Extractor and Aggregator components, our approach can
incorporate both tool-based LLMs and interactive web agents to handle different information access
settings. Experiments demonstrate INFOGENT’s superior performance over a state-of-the-art multi-
agent search framework under Direct API-Driven Access and existing information-seeking web
agents under Interactive Visual Access settings. Future work will incorporate evaluation on a wider
variety of web information aggregation tasks. We also plan to explore measuring the diversity
and coverage of aggregated information, and to assess “information sufficiency” as a criterion for
terminating the information-seeking process.

9



Acknowledgement

We would like to thank members of the BlenderNLP group for valuable feedback and comments. We
are grateful to Ori Yoran for helping with making the submission to AssistantBench leaderboard. This
work is supported in part by a Strategic Research Initiative (SRI) grant from the Grainger College of
Engineering at the University of Illinois at Urbana-Champaign. This research is based upon work
supported by DARPA ITM Program No. FA8650-23-C-7316 and DARPA SemaFor Program No.
HR001120C0123. The views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies, either expressed or implied, of
DARPA, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute
reprints for governmental purposes notwithstanding any copyright annotation therein.

Limitations

Navigation Challenges: Navigation plays a pivotal role in the success of INFOGENT. As high-
lighted in Table 5, replacing GPT-4o with GPT-4o-mini led to a complete drop in accuracy, empha-
sizing the need for more effective navigation models. Existing models also struggle with diverse
bottlenecks that arise during web navigation, such as solving captchas, indicating room for improve-
ment in their robustness.

Dependency on GPT-4: While INFOGENT demonstrates effective collaboration between agents
when leveraging high-performing models like GPT-4, the significant performance decline with
GPT-4o-mini reveals an over-reliance on GPT-4’s capabilities. This underscores the importance of
developing open-source models capable of replicating such web navigation proficiency.

Dataset Limitations: Although INFOGENT operates as a fully automated framework, the process
of information aggregation on the web remains inherently subjective. In our work, we had to rely on
multi-hop QA datasets due to the absence of real-world datasets that capture the nuances of subjective
information aggregation. Designing appropriate evaluation metrics for such tasks remains a complex
challenge, warranting further exploration.

Web’s Dynamic Nature: The constantly evolving nature of the web adds another layer of com-
plexity to information aggregation. Time-sensitive information is prone to changes, and documents
are often not updated in a timely manner. Without good SEO practices, outdated content can surface
frequently. For large language models (LLMs) to aggregate reliable information, they must account
for the relevance and recency of the content they encounter.

Ethics Statement:

Automating web navigation introduces several ethical and security challenges. Agents interacting
with websites may unintentionally breach terms of service or activate security measures, such as
captchas, as previously mentioned. Additionally, there is a risk of accessing or utilizing sensitive
or restricted information inadvertently, underscoring the need for stronger ethical guidelines and
security protocols within the INFOGENT framework.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,

Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Zehui Chen, Kuikun Liu, Qiuchen Wang, Jiangning Liu, Wenwei Zhang, Kai Chen, and Feng Zhao.
Mindsearch: Mimicking human minds elicits deep ai searcher, 2024. URL https://arxiv.org/
abs/2407.20183.

Lin Chin-Yew. Rouge: A package for automatic evaluation of summaries. In Proceedings of the
Workshop on Text Summarization Branches Out, 2004, 2004.

10

https://arxiv.org/abs/2407.20183
https://arxiv.org/abs/2407.20183


Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. Advances in Neural Information Processing
Systems, 36, 2024.

Yingqiang Ge, Yujie Ren, Wenyue Hua, Shuyuan Xu, Juntao Tan, and Yongfeng Zhang. Llm as
os, agents as apps: Envisioning aios, agents and the aios-agent ecosystem. arXiv e-prints, pages
arXiv–2312, 2023.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models.
arXiv preprint arXiv:2401.13919, 2024.

Raghav Kapoor, Yash Parag Butala, Melisa Russak, Jing Yu Koh, Kiran Kamble, Waseem Alshikh,
and Ruslan Salakhutdinov. Omniact: A dataset and benchmark for enabling multimodal generalist
autonomous agents for desktop and web. arXiv preprint arXiv:2402.17553, 2024.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating
multimodal agents on realistic visual web tasks. arXiv preprint arXiv:2401.13649, 2024.

Satyapriya Krishna, Kalpesh Krishna, Anhad Mohananey, Steven Schwarcz, Adam Stambler, Shyam
Upadhyay, and Manaal Faruqui. Fact, fetch, and reason: A unified evaluation of retrieval-
augmented generation. arXiv preprint arXiv:2409.12941, 2024.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement
learning on web interfaces using workflow-guided exploration. In International Conference on
Learning Representations, 2018.

Xing Han Lù, Zdeněk Kasner, and Siva Reddy. Weblinx: Real-world website navigation with
multi-turn dialogue. arXiv preprint arXiv:2402.05930, 2024.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

OpenAI. GPT-4V(ision) System Card, 2023. URL https://cdn.openai.com/papers/GPTV_
System_Card.pdf.

Revanth Gangi Reddy, Yi R Fung, Qi Zeng, Manling Li, Ziqi Wang, Paul Sullivan, and Heng Ji.
Smartbook: Ai-assisted situation report generation. arXiv preprint arXiv:2303.14337, 2023.

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of bits: An
open-domain platform for web-based agents. In International Conference on Machine Learning,
pages 3135–3144. PMLR, 2017.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):186345, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Nancy Xu, Sam Masling, Michael Du, Giovanni Campagna, Larry Heck, James Landay, and Monica
Lam. Grounding open-domain instructions to automate web support tasks. In Proceedings of the
2021 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 1022–1032, 2021.

Hui Yang, Sifu Yue, and Yunzhong He. Auto-gpt for online decision making: Benchmarks and
additional opinions. arXiv preprint arXiv:2306.02224, 2023.

11

https://cdn.openai.com/papers/GPTV_System_Card.pdf
https://cdn.openai.com/papers/GPTV_System_Card.pdf


Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information
Processing Systems, 35:20744–20757, 2022.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Ori Yoran, Samuel Joseph Amouyal, Chaitanya Malaviya, Ben Bogin, Ofir Press, and Jonathan
Berant. Assistantbench: Can web agents solve realistic and time-consuming tasks?, 2024. URL
https://arxiv.org/abs/2407.15711.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v (ision) is a generalist web
agent, if grounded. arXiv preprint arXiv:2401.01614, 2024a.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v(ision) is a generalist web
agent, if grounded. In Forty-first International Conference on Machine Learning, 2024b. URL
https://openreview.net/forum?id=piecKJ2DlB.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Yonatan Bisk, Daniel Fried, Uri Alon, et al. Webarena: A realistic web environment for building
autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

Andrew Zhu, Alyssa Hwang, Liam Dugan, and Chris Callison-Burch. FanOutQA: A multi-hop,
multi-document question answering benchmark for large language models. In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar, editors, Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers), pages 18–37, Bangkok, Thailand, August
2024. Association for Computational Linguistics. URL https://aclanthology.org/2024.
acl-short.2.

12

https://arxiv.org/abs/2407.15711
https://openreview.net/forum?id=piecKJ2DlB
https://aclanthology.org/2024.acl-short.2
https://aclanthology.org/2024.acl-short.2


A Appendix

A.1 Navigation Failures

Navigation Failure Examples

Pop-up windows Unusual widgets

Figure 4: INFOGENT navigation error examples.
The navigator falls in loops upon encountering
unusual web elements, such as pop-up windows
asking for location (left) or “answer cards” appear-
ing at the top of Google search results (right).

The Navigator is a critical component of IN-
FOGENT. The dynamic nature of the web, es-
pecially with its constant updates and varying
structures, makes this a particularly challenging
task. Navigation failures manifest in multiple
forms, including but not limited to pop-ups, AI-
generated overviews, captchas, and other inter-
active elements. While these features are de-
signed to enhance user experience, they also
introduce significant barriers for a web agent at-
tempting to navigate efficiently. These obstacles
can disrupt the flow of information gathering,
making it difficult to access or retrieve data ac-
curately. Samples of web navigation failures are
shown in Figure 4.

A.2 Geo-Navigational Queries

We particularly observed that INFOGENT struggles with handling geo-navigational queries in As-
sistantBench. These queries often require precise spatial awareness and the ability to interact with
dynamic map interfaces like Google Maps. For example, a query such as “Which gyms near Tomp-
kins Square Park (within 200m) offer fitness classes before 7am?” demands not only the retrieval of
location-based data but also filtering of relevant details based on distance and time constraints.

In such cases, the model must effectively parse geographic information and interact with Google
Maps to identify specific venues within the given parameters. However, this task relies heavily on the
Navigator to accurately traverse and manipulate the map interface, which proves to be a significant
challenge for current models. Google Maps’ dynamic and interactive nature makes it difficult for web
agents like INFOGENT to seamlessly navigate and extract relevant data without human-like intuition.
Consequently, handling geo-navigational queries requires sophisticated mechanisms for interpreting
spatial data and overcoming the navigational hurdles posed by interactive web platforms. Particularly
these queries cause pop-ups like the left one in Figure 4.

Task
I need your help in evaluating an answer provided by an LLM against a ground truth answer for a given question.
Your task is to determine if the ground truth answer is present in the LLM’s response. Please analyze the
provided data and make a decision.

Instructions
1. Carefully compare the “Predicted Answer” with the “Ground Truth Answer.”
2. Consider the substance of the answers - look for equivalent information or correct answers. Do not focus on
exact wording unless the exact wording is crucial to the meaning.
3. Your final decision should be based on whether the meaning and the vital facts of the “Ground Truth Answer”
are present in the “Predicted Answer.”

Input Data
- Question: {question}
- Predicted Answer: {predicted}
- Ground Truth Answer: {answer}

Output Format
You should only respond in JSON format as described below and ensure the response can be parsed by Python
json.loads.
Response Format:
{{
“Explanation”: “(How you made the decision?)”,
“Decision”: “TRUE” or “FALSE”
}}

Table 6: Evaluation task for comparing an LLM’s predicted answer with a ground truth answer.

13



Navigator

You are an assistant aiding an information aggregation process designed to gather relevant information from the web given a
user task. You are provided access to a search tool that you can use to access the web. Your goal is to ensure diversity in
the gathered information, so you might want to look at multiple websites in the search results.

You will work in conjunction with an aggregator assistant (which runs as part of the “extract” tool) that keeps track of
information aggregated and will give feedback to you. It will also let you know how many iterations of calling “extract” are
left and how many passages it has aggregated so far. You should only visit websites that you think will contain information
relevant to user task. If a website does not contain any relevant information, you can skip it. DO NOT visit a website that
you have already visited before.

You can leverage the web search multiple times, so that information can be aggregated information over multiple queries.
You can decide to stop if aggregator assistant tells you so or if you keep running into a loop. You can simply terminate at
the end with a message saying aggregation is done.

Below is the user task.
Task: {user_task}

Extractor

Website Data: {data}

From the above text, extract relevant information for the following task: {user_task}.

You must return the extracted information in the form of a list of paragraphs. Each paragraph should NOT be longer than
8 sentences. Only include the information that is relevant to the provided task. You can extract upto 2 paragraphs ONLY. If
the text does not contain any relevant information, you can just return an empty list.

You should only respond in JSON format as described below and ensure the response can be parsed by Python json.loads.
Response Format:
{{
“paragraphs”: [list of paragraphs relevant to the task]
}}

Aggregator

You are an information aggregation assistant designed to aggregate information relevant to the given user task. Your
goal is to ensure diversity in the gathered information while ensuring they are ALL relevant to the user task. Make sure
to not gather duplicate information, i.e. do not add redundant information to what you have already aggregated. You can
decide to stop aggregating when you decide you have information to address the user task. Also, you can aggregate only
{num_to_aggregate} items in the list and should signal to stop when you have aggregated {num_to_aggregate} items.

From the above text, extract relevant information for the following task: {user_task}.

You will be provided with a set of passages collected from a website by a navigator assistant. You need to decide whether
any of the provided information should be added to the aggregated information list. You have the option to ignore and not
add any of the provided passages to the aggregated information list. Also, you should provide feedback to the navigator
assistant on how to proceed next. The navigator assistant cannot see the information aggregated, so be clear and specific in
your feedback. You should instruct the navigator to terminate if enough information has been aggregated. You have a maximum
of {num_iterations} iterations overall, after which the information aggregated will be automatically returned.

Current Iteration Counter: {counter}
User Task: {user_task}
Information Aggregated so far: {aggregated_list}
Provided information: {provided_list}

You should only respond in JSON format as described below and ensure the response can be parsed by Python json.loads
Response Format:
{{
“thoughts”: Your step-by-step reasoning for what actions to perform based on the provided information,
“actions”: [list of actions (generated as a string) to perform. Allowed actions are: REPLACE(existing_id, provided_id)
if passage existing_id in aggregated information should be replaced by passage provided_id from provided information and
ADD(provided_id) if passage provided_id should be added to aggregated information],
“feedback”: Feedback to return to the navigator assistant on how to proceed next. Also, let the navigator assist know how
many more iterations are left.
}}

Table 7: Input prompts for the Navigator (top), Extractor (middle), and Aggregator (bottom) compo-
nents for the Direct API-Driven Access setting.

14



Navigator

The screenshot below shows the webpage you see. Follow the following guidance to think step by step before outlining
the next action step at the current stage:

(Current Webpage Identification)
Firstly, think about what the current webpage is.

(Previous Response and Feedback Analysis)
Secondly, if provided, consider the current response generated for the task along with the feedback. If the response is
insufficient, you may need to provide more details to complete the task. For instance, consider revisiting previous search
results and exploring other websites to gather additional information.

(Previous Action Analysis)
Then, combined with the screenshot, analyze each step of the previous action history and their intention one by one. Pay
more attention to the last step, which may be more related to what you should do next. If the last action involved a TYPE,
always evaluate whether it necessitates a confirmation step.

(Screenshot Details Analysis)
Closely examine the screenshot to check the status of every part of the webpage to understand what you can operate with and
what has been set or completed. Evaluate the status of every part of the webpage.

(Next Action Based on Webpage and Analysis)
Then, based on your analysis, in conjunction with human web browsing habits and the logic of web design, decide on the
following action. Clearly outline which element in the webpage users will operate with as the first next target element, its
detailed location, and the corresponding operation.

To be successful, it is important to follow the following rules:
1. You should only issue a valid action given the current observation.
2. If the current webpage has relevant information for the task, trigger AGGREGATE INFORMATION.
3. AGGREGATE INFORMATION is to be used when you think there is factual information that might be useful.
4. You should only issue one action at a time.
5. Press enter after typing a query if needed.
6. Prioritize visiting Wikipedia links over others.
7. Scroll is strictly not an allowed action.
8. Replan if taking the same action repeatedly.

Extractor

INSTRUCTION: Based on the website’s screenshots provided, extract relevant information for the following task: “task".
motivation for aggregating information from this page: “search_motivation"
Tasks could be multi-hop and information is to be collected over multiple iterations. And the aggregated information from
this step will be used for aggregating more detailed information in future steps.
Hence even if the information in the screenshots dont directly answer the query but can help find the answer in future (or
has partial information), extract them.
Even if the search motivation has information present, you should extract them from the screenshots.
You should only respond in JSON format as described below and ensure the response can be parsed by Python json.loads.
Response Format:
{{
“thoughts": “details on what the screenshots contain and reason behind the paragraphs aggregated or discarded",
“paragraphs": [list of paragraphs extracted from the screenshots relevant to the task. Each paragraph should be detailed
(and in string format). For each entity (name) denote in bracket who they are in context of the task at hand and the
motivation for aggregating information (this helps further information aggregation). If there is no relevant information,
you can just return an empty list. Don’t put your own knowledge into it.],
}}

Aggregator

You are an information aggregation assistant designed to aggregate information relevant to the given user task. Your
goal is to ensure diversity in the gathered information while ensuring they are ALL relevant to the user task. Make sure
to not gather duplicate information, i.e. do not add redundant information to what you have already aggregated. You can
decide to stop aggregating when you decide you have enough information to address the user task. Also, you can aggregate
only {num_to_aggregate} items in the list and should signal to stop when you have aggregated {num_to_aggregate} items.

From the above text, extract relevant information for the following task: {user_task}.

You will be provided with a set of passages collected from a website by a navigator assistant. You need to decide whether
any of the provided information should be added to the aggregated information list. You have the option to ignore and not
add any of the provided passages to the aggregated information list. Also, you should provide feedback to the navigator
assistant on how to proceed next. The navigator assistant cannot see the information aggregated, so be clear and specific in
your feedback. You should instruct the navigator to terminate if enough information has been aggregated. You have a maximum
of {num_iterations} iterations overall, after which the information aggregated will be automatically returned.

Current Iteration Counter: {counter}
User Task: {user_task}
Information Aggregated so far: {aggregated_list}
Provided information: {provided_list}

You should only respond in JSON format as described below and ensure the response can be parsed by Python json.loads
Response Format:
{{
“thoughts”: Your step-by-step reasoning for what actions to perform based on the provided information,
“actions”: [list of actions (generated as a string) to perform. Allowed actions are: REPLACE(existing_id, provided_id)
if passage existing_id in aggregated information should be replaced by passage provided_id from provided information and
ADD(provided_id) if passage provided_id should be added to aggregated information],
“feedback”: Feedback to return to the navigator assistant on how to proceed next. Also, let the navigator assist know how
many more iterations are left.
}}

Table 8: Input prompts for the Navigator (top), Extractor (middle), and Aggregator (bottom) compo-
nents for the Interactive Visual Access setting.

15


	Introduction
	Related work
	Information Aggregation Task
	Infogent
	Navigator NG
	Direct API-Driven Access
	Interactive Visual Access

	Extractor ET
	Aggregator AG

	Experiments
	Direct API-Driven Access
	Setup
	Results

	Interactive Visual Access
	Setup
	Results

	Analysis
	Different Models for NG, ET and AG
	Distribution of Actions Taken by NG
	Qualitative Analysis


	Conclusion and Next Steps
	Appendix
	Navigation Failures
	Geo-Navigational Queries


