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Abstract. Artificial Neural Networks (ANNs) are thinly based on bio-
logical neural pathways. In an ANN, each node computes its activation
by applying a non-linearity to a weighted sum of its inputs. While this
formulation has been wildly successful for a variety of tasks, it is still a
far cry from its biological counterpart, largely due to ANNs lack of phase
information during computation. In this paper, we adapt ANNs to op-
erate on complex values which naturally allows the inclusion of phase
information during the forward pass. We demonstrate that our complex-
valued architecture generally performs better compared to real-valued
and other complex-valued networks in similar conditions. Additionally,
we couple our model with a biologically inspired form of dimensionality
reduction and present our findings on the MNIST and MusicNet data
sets.

1 Introduction
Inspired by the brain, the first Artificial Neural Network (ANN), called the Per-
ceptron was developed in 1961 [14]. The Perceptron, like a real neuron, computes
its output as a function of its input. By studying real neurons, Rosenblatt de-
signed the Perceptron to compute its output (called its activation) as a weighted
sum of its inputs passed through a step function. Perceptrons were then trained
by fitting the coefficients of the weighted sum as well as the bias to data. While
Perceptrons performed well on simple tasks, they could not be stacked together
which limited their usefulness for more complex tasks.

Through relaxing the step function with differentiable counterparts, the first
modern ANN was created. The major benefit of using a differentiable nonlin-
earity was that ANN nodes were stack-able; solving the previous limitation of
the Perceptrion. In general, ANNs are formulated as a graph of nodes with the
weights and bias of each node as free parameters. The graph (often called a
computation graph) is traditionally organized into layers: the nodes of a layer
process the activations from nodes at the previous layer, while the first layer
processes the input data.



2 R. Yu et al.

ANNs have since risen in popularity and have produced state of the art results
for several problems [2, 12, 18, 25, 26]. However, while new ANN architectures
have been developed since the Perceptron, all architectures are still fundamen-
tally based on the original 1960s biological approximation. While there has been
work on updating ANNs with a more modern understanding of biology, one
important observation from biological neurons that does not see explicit repre-
sentation in their artificial counterparts is neural synchrony. Neural synchrony is
a biological phenomenon where neurons learn to fire near-simultaneously. Differ-
ent degrees of synchronization affect the output of the receiving neuron; highly
synchronized input neurons will elicit a stronger response in their target com-
pared to the same number of non-synchronized input neurons. Synchronization
of artificial neurons can be represented and trained using complex-valued neural
networks.

In this paper we extend the work of [13] and [20] and present a novel complex-
valued ANN architecture inspired by neural synchrony. We demonstrate that our
model performs better on two data sets, MNIST and MusicNet, compared to
real-valued ANNs. Furthermore, we combine our model with a cortical-stem in-
spired preprocessing technique called Geometric Multi-Scale Resolution Analysis
(GMRA) to improve performance by giving our model the underlying represen-
tation of data. We evaluate our performance on the MNIST [6] and MusicNet[19]
data sets.

2 Background and Motivation

2.1 Neural Synchrony and Biological Neural Networks

Timing plays a crucial role in Biological Neural Networks (BNNs). A biological
neuron accumulates positive charge in its body until it reaches an activation
threshold, at which point it will produce an output. The amount of positive
charge accumulated is a direct result of the input signals it receives from input
neurons. The charge of a neuron will always approach its negative value rest-
ing potential; if weak positive stimuli is received, but not enough to cross the
activation threshold, this positive charge is "leaked" out of the neuron over a
short time period. Therefore the output of the neuron does not only depend on
the intensity of the inputs, but also the degree of time-synchronization between
the inputs. Different degrees of synchronization in the input will illicit different
responses in the neuron [15]. An example can be seen in Figure 1.

The notion that groups of neurons fire together with respect to time, known as
neural synchrony, is not a novel concept [15, 16, 21]. The phenomenon is posited
to play a key role in biological information processing. Horn et al provides evi-
dence that without neural synchrony, the brain creates less stable representation
of audio stimulus. These fluctuations in representation may contribute to deficits
in auditory brain-stem function by negatively impacting how neurons represent
complex acoustic sounds. Furthermore, multiple studies found that the cells of
certain brain regions were more likely to produce an output if the inputs to it
were time synchronized rather than time dispersed [7, 17].
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Fig. 1. Taken from [13] displays the normalized output rate of a biological neuron
that is stimulated with two rhythmic spike trains as a function of the phase difference
between the two stimuli.

2.2 Complex-Valued Neural Networks

Current ANNs operating on real values have no method of internally representing
time. Time can be introduced to ANNs via complex numbers. A complex value
z, can be defined in two forms. First, 𭟋 = x+ iy where x, y ∈ R is the Cartesian
form. In the Cartesian form, the real component of z is x, and the imaginary
component of z is y. The polar form can be described as 𭟋 = (r, ϕ) where
r, ϕ ∈ R. In the polar form, r is known as the magnitude and ϕ is referred to
as the phase offset. By treating r as the output strength of the activation and ϕ
as the phase difference between neurons, Reichert et al created complex-valued
artificial neurons that can process timing information of their inputs similar to
biological cells. A visualization of the desired behavior which they were able to
mimic via an ANN can be seen in Figure 1.

Complex-valued neural networks replace some or all of the (originally real-
valued) model parameters with complex-valued ones. Fortunately, while there
are special considerations that need to be taken with regards to initialization
and normalization Trabelsi et al has shown that, with slight modifications, the
same learning algorithms can be used to train and test complex-valued networks.

Several studies have already demonstrated the effectiveness of complex-valued
neural networks [3, 4, 8, 20]. Gao et al demonstrate that complex-valued neural
networks performed better than the rest of the strategies implemented for en-
hancing radar imaging [4]. Reichert et al proposed a biologically plausible deep
network that constructs better data representations through complex values [13].
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2.3 Geometric Multi-Scale Resolution Analysis (GMRA)

GMRA is a dimensionality reduction technique that is inspired by the cortex. At
the microscale, neurons in the cell fire, which induces neural synchrony. Neural
synchrony at the macroscale produces patterns, which, when combined with
other firings, have been long believed to be the intermediary representation of
data [15, 16, 21, 5]. These patterns are described by not only which neurons are
firing (a subset of the population), but the activity of the firings as well, meaning
that macroscale neural synchrony is a lower-dimensional representation of the
data processed at the microscale. Therefore, it is believed that the cortex finds
a lower-dimensional representation of data by producing increasingly abstract
representations as a function of scale. GMRA mimics this behavior by processing
a point cloud at different scales to produce increasingly fine-grained manifolds.

The GMRA algorithm contains three steps to compute manifolds at different
scales:

1. It computes a leveled tree decomposition of the manifold into dyadic cells.
Dyadic cells have the following properties:

(a) Each dyadic cell contains a subset of the points that exist within a sphere
of fixed radius.

(b) The children of a dyadic cell contain disjoint subsets of the points con-
tained inside the parent.

(c) The children of a dyadic cell cover the points inside the parent.

2. It computes a d-dimensional affine approximation (i.e. linear approxima-
tions) for each dyadic cell. This approximation represents the basis of each
dyadic cell and is a linear piecewise approximation (i.e. the SVD decompo-
sition of the cell’s covariance).

3. It computes a sequence of low-dimensonal affine difference operators that
encode the difference between subsequent levels of the tree (i.e. scales). These
difference operators allow efficient querying of the points by scale as well as
projection of new points.

As seen in Figure 2, the linear approximation, called the scaling function fit
to each group can be queried by starting at scale 0 (the roughest scale), getting
the approximation for the query at that scale, and then applying the difference
operator (wavelet correction) to get the approximation at the next scale (finer
scale). Since each level of the tree represents the decomposition of the point
cloud at a scale, by walking from the root to the child at the appropriate level,
GMRA produces low-dimensional embeddings for each point at arbitrary scales.

By using GMRA as a preprocessing technique, we provide our complex-valued
ANNs with low-dimensional representations of the data which are tailored to the
embedded manifold.
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Fig. 2. A visualization of the linear approximation of a point using a basis function
at scale j, the approximation at a finer scale j+1 and difference operator (geometric
wavelet) from scale j to scale j + 1. This image was taken from [1].

3 Methodology
3.1 Complex-Valued Model

Our model builds on the work from Reichert et al ; they define the forward pass
of their complex-valued ANN layer using the following equations [13]:

t1 =(|X| ×W ) (1)
t2 =|X ×W | (2)
O =F(r1 ∗ t1 + r2 ∗ t2) (3)

Where X ∈ CN×M , W ∈ RM×P , N is the batch size, M is the dimensionality
of the data, and P is the dimensionality of the output of the layer. O is a N ×P
output of the layer and is derived via a weighted combination (with coefficients
r1, r2 typically set to 0.5 each) passed through non-linearity F .

The order of the operations in Expression (1) produces values which are
invariant to any phase offsets between inputs and their respective weights; the
magnitude of values with opposing phase values are not cancelled, but summed.
Expression (2) is the opposite: by performing X×W , any vectors with opposing
phases conflict with each other in the multiplication, meaning that t2 contains
the timing information between inputs while t1 contains the magnitude of the
transformed inputs. By sharing weight matrices between the two operations,
Reichert et al ’s model learns how to process the timing between input firings as
well as the magnitude of the inputs firings. With this formulation, Reichert et
al were able to reproduce the observations in Figure 1 using their ANN.

Our model attempts to improve this idea. While Reichert et al define their
input to be complex-valued and their free parameters to be real-valued, we define
the opposite: X ∈ RN×M ,W ∈ CM×P , and a bias term b ∈ RP×1. Our forward
pass, while different, follows the same spirit:
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t1 =(X × |W |) (4)
t2 =|X ×W | (5)
O =F(r1 ∗ t1 + r2 ∗ t2 + b) (6)

In Reichert et al ’s model, each artificial neuron had a unique phase value
which is shared amongst all its connections. This models a biological setting
where a neuron sends a signal, and it is received by all recipients at the same
time. However, a stimulus from a neuron sent to multiple destination neurons si-
multaneously may not trigger simultaneous responses from the destination neu-
rons. This discrepancy can be caused by a variety of subtle differences, such
as difference in distance the signal must traverse or differences in connection
strength between sender and receiver. In our formulation, each edge is given the
potential for a unique phase value. We believe that this model more accurately
captures biology where synaptic processing is nontrivial. Our model is able to
express these realistic discrepancies while Reichert et al ’s mode cannot. The in-
dividual phase values for each artificial synapse is learnt separately via gradient
descent.

Additionally, we incorporated layer regularization in our complex-valued mod-
els. Regularization is the synthetic counterpart to the biological trait of thresh-
olding. After the neuron fires, it enters a refractory period, which makes it ex-
tremely difficult for the neuron to fire again for a short duration, thus limiting
the maximum number of times a neuron is able to fire over a period of time.
Both of these features can be replicated in an artificial setting by increasing the
threshold value of the activation function, and by using bounded activation func-
tions or activity regularizers. We tested with two forms of regularization: batch
normalization, and layer regularization. We found that while layer normalization
has a net positive effect on our complex ANN, batch normalization destabilizes
the model by almost certainly pushing the ANN into a state of either vanishing
or exploding gradient. Therefore, our models used layer normalization between
every feed forward layer in both complex and real-valued variants.

Lastly, by using real-valued layer outputs and complex-valued weights, we
can bypass some of the uncertainties when applying our model to naturally
real-valued data. Most complex-valued network studies find success on naturally
complex-valued data [2, 20], or mixed results on transforming naturally real-
valued data into the complex plane [9, 10].

3.2 Data sets

We used two data sets, MNIST [6] and MusicNet [19]. A breakdown of the data
sets (preprocessed and in original form) is shown Table 1.

Interestingly, we were able to reduce MNIST into a 11-dimensional repre-
sentation using GMRA. This is encouraging since there are only 10 labels in
MNIST. The 11-dimensional representation was chosen from the roughest scale,
which we selected after comparing recovered images against the original repre-
sentation, which we found to be subjectively adequate. MNIST served as our
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Table 1. A breakdown of the data sets, preprocessed (GMRA-*) and no tag to repre-
sent the original data sets.

Name # examples dimensionality # labels

MNIST 70k 784 10
GMRA-MNIST 70k 11 10

MusicNet > 6000000 4096 84
GMRA-MusicNet 327887 163 84

first proof of concept data set for both high dimensional input (MNIST) and low
dimensional input (GMRA-MNIST).

MusicNet is a data set created by [19]. The data set is composed of recordings
of classical music from a variety of instruments, such as piano and violin, and a
varying number of performers per recording (e.g. solo, duet, quartet, etc). There
are 330 musical excerpts each ranging from one to three minutes in length. All
audio files were re-sampled to 11khz. Three music files, with IDs [‘2303’, ‘2383’,
‘1819’] were reserved as the test subset, and all other files were randomly split
for training and validation during each experiment.

The task associated with this data set is automatic music transcription: the
transcription of audio to musical score. To accomplish this, the learning model
does not process the entire audio file at once, but instead processes overlapping
windows of size 4096. The output of the model is a binary vector of length 84,
where a 1 indicates at index k indicates that note k was present at the midpoint
of the 4096 length audio clip.

To obtain the GMRA coefficients of MusicNet, we converted the MusicNet
data set into a point cloud using the approach mentioned above; however we had
trouble deciding an appropriate setting for the stride. With a stride of 1 we gen-
erated over 6 million 4096 floating point vectors and quickly ran into a hardware
bottleneck. We therefore used the technique of Wood et al who implemented the
GMRA algorithm with a new python package called PyMM [24, 23]. PyMM,
short for Python Micro MCAS is a python wrapper for a larger library called
MCAS (Memory Centric Active Storage) [22]; middleware that provides an in-
terface between applications and Non-Volatile Memory. Non-Volatile Memory is
new hardware which occupies memory slots (instead of RAM) and boasts orders
of magnitude higher capacity than RAM while running at a third of the speed.
As explained by Wood et al, by combining GMRA with PyMM, we can process
point clouds significantly larger than with ordinary machines at the cost of run
time. For this reason, we settled on a stride of 4096 and generated 327,887 non-
overlapping points. These 327,887 points represent approximately a 5% subset
of the original data.

In total, the GMRA algorithm took 8 days to process this point cloud and
consumed in excess of 500GB of Non-Volatile Memory. GMRA produced rep-
resentations at 36 different scales, of which we used the roughest scale as it
produced an acceptable reconstruction error, and was also one of the only scales
which all the points share the same dimensionality (i.e. different dyadic cells can
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have different dimensionalities). At the roughest scale, the MusicNet data was
reduced from 4096 dimensions to 163 dimensions, a 25x reduction.

3.3 Experiments

Our experiments consisted of training real-valued and complex-valued ANNs on
each data set using a cross validation training scheme, and compared their per-
formance averaged over the cross validation splitting. The data set is randomly
shuffled and split between training, testing, and validation with percentages of
80%, 10%, and 10% respectively. For MNIST our uniform shuffling procedure
roughly preserves the class balancing of the splits, we measured the performance
of each model via its accuracy. For MusicNet there were predetermined data
points deliberately set aside for validation and testing, as was done in [19, 20].
When training a model, we used the Early Stopping [11] mechanism. Our early
stopping window was set to three.

MNIST In our experiments on MNIST, we varied the number of nodes inside
a hidden layer. For the MNIST data set, we trained fully connected shallow
real-valued ANNs in parallel with complex-valued network counterparts. Our
MNIST experiments serve as a proof of concept for both high dimensional data
(MNIST) and very low dimensional data (GMRA-MNIST). The data set was
selected due to its accessibility, and training speed.

From these experiments we discovered the following limitation of our model:
not all operations with complex values are yet supported on the GPU during
back propagation. As a result, the training time increases drastically as you scale
the network in terms of depth and size per layer. While the limits on the size
of our network prevent it from being used in lieu of deep real-valued neural
networks, we wanted to compare the performance of our architecture to real-
valued architectures of the same size in the context of smaller networks and
dimensionality reduction.

MusicNet There are three main goals for our experiments in MusicNet. First
is to explore the performance of our complex-valued layers compared to real-
valued layers in a setting that is not single class classification. In MusicNet,
multiple notes may be played at the same time, compared to MNIST in which
every image belongs only to one class. Second, to explore performance on an
inputs other than images. Lastly, to assess our models in conjunction with a
dimensionality reduction technique (GMRA) applied to a challenging data set.

To these ends, two sets of experiments were repeated. The first set of ex-
periments used the original MusicNet data points with each input point as a
length 4096 vector. Four networks were trained on the original MusicNet files. A
complex-valued, shallow classifier with a single hidden layer of dimension 2048
and a real-valued shallow classifier of the same dimensions were trained in parallel
and assessed. Then, a network with a single real-valued convolutional layer and
complex-valued classifier was trained in parallel with a completely real-valued
network of the same specifications.
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Our second set of experiments looked at very small shallow networks in con-
junction with GMRA reduction on MusicNet. Each network, real-valued and
complex-valued, was comprised of a single hidden layer of only 200 nodes. These
experiments used a 5% subset of the MusicNet that was converted into GMRA
coefficients. As previously stated, the decision to use a small fraction of the
original data set was made in order to accommodate for the time constraint
associated with GMRA processing.

4 Results and Discussion

4.1 MNIST

Two conclusions can be drawn from our experiments on MNIST. First, our
complex-valued model has the potential to out perform real-valued models of
the same size. As can be seen in Figure 3, our complex ANN significantly out-
performed its real-valued counterpart for every configuration of a three-layer
ANN on both MNIST data sets.

Second, GMRA in conjunction with shallow models can lead to very strong
performance with the added benefit of a significantly smaller number of parame-
ters, and a significantly faster training speed. As was stated in 1, GMRA-MNIST
reduced each point from a 784 length vector, to an 11 point vector. Despite this,
both real and complex-valued networks are still able to perform at a high level,
as shown in Figure 3.

Note that performance on GMRA-MNIST is around 10% worse than that of
MNIST. We believe that this is an artifact of using the roughest scale embed-
dings from GMRA. While these embeddings, when recovered into the original
image space, were satisfactory to our subjective evaluation, GMRA does induce
signal degradation. By using the roughest scale, we invite the accompanying sig-
nal loss to influence model performance. Despite using the roughest scale, both
models are able to achieve around 90% accuracy with a short early stopping
window. On MNIST, our model is statistically better than the corresponding
real-valued ANN with 99.9% confidence, and overlaps significantly with its real-
valued counterpart on GMRA-MNIST.

4.2 MusicNet

Original MusicNet We began our experiments for the original MusicNet data
set by first training two shallow classifiers using the same training methods
(including data split) laid out by [20] and [19]. We found that for the original
data set, our shallow complex-valued classifier achieved a significantly higher AP
over repeated trials (Table 2.

In order to compare our method with previous shallow networks on MusicNet
[19, 20], we added a single real-valued convolutional layer to our model. We found
that the addition of a single convolutional layer improved Average Precision
(AP) for both real and complex-valued classifiers. It remained consistent that
the complex-valued classifier out performed the real-valued classifier with the
addition of a single convolutional layer (Table 2).
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Fig. 3. Expected accuracy averaged over the trials for a given hidden layer size on both
MNIST data sets. Note that this image actually includes error bars to show variances,
however the variances are on the order of 1e−6; they cannot be seen without extreme
magnification.

We also found that our shallow complex-valued network preformed signifi-
cantly better than the shallow complex-valued and shallow real-valued network
reported in [20]. Our shallow complex-valued classifier with a convolutional layer
achieved a 67.5% AP compared to the 66.0 % AP from a complex-valued model
of the same dimensions previously reported (Table 2).

A sample reconstruction from our best model (“Shallow Complex w Conv"
on Table 2) is presented in Figure 4 as well as the original ground truth data.
By comparing the two figures, we can visually match every note in the ground
truth to a counterpart in the reconstruction. The main discrepancies appear to
be that the presence of small note artifacts in the reconstruction, where there

Table 2. The breakdown of our experiments and testing Average Precision (AP) for
each network architecture on both original and GMRA MusicNet data sets. All fully
connected classifiers had two layers: a hidden layer of size 2048 and an output layer
of size 84. The results cited from [20] use the same network dimensions as "Conv +
Fully Connected". For GMRA MusicNet experiments, the hidden layer used 200 nodes
instead of 2048.

Real-Valued Complex-Valued

Original Data, Fully Connected 56 AP % 64.0 AP %
Original Data, Conv + Fully Connected 65.8 AP % 67.5 AP %
Original Data, [20] 66.1 AP % 66.0 AP %
GMRA Data, Fully Connected 42.2 AP % 46.1 AP %
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Fig. 4. A sample transcription from our complex-valued shallow model with a convo-
lutional layer compared to the true transcription. (Above) The output of our model for
frames 0 to 200, and note IDs 10 to 65. (Below) The actual transcript corresponding
to the same frame and notes as above.

should be silence, and increased note duration in the reconstruction compared
to the truth.

GMRA MusicNet Our second set of MusicNet experiments use the GMRA
coefficients of the subset of MusicNet. For both real-valued and complex-valued
classifiers, the AP of real-valued and complex-valued networks decreased by 14
and 18, respectively, when compared to the same architecture trained on the
original data points. The decrease in performance can be attributed to two fac-
tors. First, using GMRA can result in some information loss; this is seen clearly
by the experiments on GMRA-MNIST. The second factor is the difference in
training set size. Due to the computational costs of GMRA, this study uses a
subset of the MusicNet data set for both raw and GMRA experiments. The sub-
set is comprised of over 327,000 data points and labels. It is approximately 5%
of the total number of data points. Despite the large decrease in the number
of data points and the dimension reduction of each point from a 4096 length
vector to a 163 length vector, both real and complex-valued networks trained on
GMRA MusicNet were able to reach over 40 AP%.

Comparing performance between real-valued and complex-valued networks,
it remains consistent that complex-valued networks performed significantly bet-
ter. An interesting observation was found during our experiments: there were
multiple instances where the real-valued classifier failed to converge to a mean-
ingful solution. The AP reported in Table 2 for real-valued networks trained on
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GMRA coefficients was computed for instances where the real-valued network
did not fail. Failure to converge was determined by observing the validation AP
over several epochs. Instances where validation AP was significantly lower, less
than a third, of other experiments, and the validation AP did not improve after
10 epochs, were deemed a failure. Because all validation AP that were catego-
rized as normal did not express high variance, identifying failure experiments was
straight-forward. Complex-valued networks on the same data set never failed to
converge. This could suggest increased robustness for complex-valued models in
terms of their application to dimension reduction problems.

5 Threats to Validity
While our experiments show an improvement between complex and real-valued
neural networks, there are a few limiting factors. We recognize that our early
stopping window is small, and that with a larger window, real-valued networks
might improve. However, there are a few reasons as to why we do not expect a
larger window to change the trend.

First, complex ANNs have twice the number of parameters as real-valued
ANNs with the same number of nodes. Therefore, we expect that be increasing
the window, complex ANNs would benefit more than real-valued networks due
to saturating the larger number of parameters. We confirmed this behavior by
performing preliminary experiments with a larger window. With an early stop-
ping window size of 10, we observed complex ANNs achieve an expected boost
of 5% accuracy on GMRA-MNIST, and 5% on MNIST. On the same data sets
with the same increased window, we observed that real-valued ANNs did not
improve on average.

Second, since our complex ANNs have twice the number of parameters as
real-valued ANNs, our experiments might be viewed as an apples to oranges
comparison. However, our complex ANN, despite having twice the number of
parameters, first can only express half of the parameter values as its real-valued
counterparts, since complex numbers take up the same number of bytes as real
values but split those bytes between real and imaginary components. Second,
we ran preliminary experiments where we doubled the precision in a real-valued
ANN (from 32 to 64 bits per value) and found that this model still performed
worse than our complex-valued ANN of the same precision.

6 Conclusion and Future Work
In conclusion, we introduce a novel complex-valued network architecture that has
complex-valued weights but has real-valued layer outputs. In order to demon-
strate how well our complex-valued models performed, we assessed its metrics
on two data sets, MNIST and MusicNet. In addition, we tested the dimension
reduction technique, GMRA, used in conjunction with real and complex-valued
networks. GMRA was able to greatly reduce the input space, from 784 to 11 in
MNIST and 4096 to 163 in MusicNet. This significantly reduced training time
and model size. In both raw and GMRA MNIST and MusicNet, our shallow
complex-valued network significantly outperformed a shallow real-valued net-
work of the same parameter count.
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Finally, we offer a few extensions to improve our proposed model. The first ex-
tension is the application our complex-valued dense architecture to any existing
neural network and any data set by replacing the existing network’s real-valued
classification layer(s) . Currently this is not practical for all deep networks. Be-
cause certain operations in our implementation lack GPU support, training large
networks with the proposed dense layer incurs a large time penalty. An imple-
mentation of our architecture which uses multiple real valued weight matrices
and GPU supported functions to simulate the behaviour of a complex weight
matrix is ideal.

The second extension is to study the results of making complex-valued archi-
tecture more similar to our current understanding of biological networks. Biolog-
ical neurons function in an all-or-nothing manner. If it receives an input above its
activation threshold, the neurons fire, otherwise it will not. Artificial neurons will
output the sum of its inputs assuming the sum is positive. An implementation of
activation thresholding such that a neuron would produce positive output only
if it receives multiple strong positive inputs would bring artificial neurons more
in line with our current understanding of biology. It would be interesting to ob-
serve such an implementation in conjunction with our proposed complex-valued
architecture.
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