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Abstract

The Abstraction and Reasoning Corpus (ARC-AGI) benchmark has emerged as
a key challenge in evaluating machine intelligence by emphasizing skill general-
ization on novel tasks. Recent advancements primarily utilize Test-Time Training
(TTT) to enhance reasoning ability of Large Language Models (LLMs). In this
project, we focus on TTT for transductive models (end-to-end transformer models
that directly generate the output grid) and develop our pipeline following the SOTA
methods, which consists of three steps: Base Model Training, TTT and Active
Inference. We have conducted detailed experiments to investigate on the effects
of different base models, TTT strategies, data and model sizes and the use of
negative training samples. Notably, a small transformer model trained from scratch
equipped with TTT achieves performance comparable to SOTA LLMs, revealing
the potentials of specialized models for certain reasoning tasks.

1 Introduction

The concept of Artificial General Intelligence (AGI) has diffused rapidly to the public after the
success of ChatGPT [1], but the quest for what is intelligence? has a much longer history. In 2019,
François Chollet published a paper called "On the Measure of Intelligence," in which he provided an
in-depth discussion of how we should define and measure intelligence in terms of the efficiency of
skill acquisition, rather than the level of skills [2]. Along with the paper, a new benchmark called the
Abstraction and Reasoning Corpus (ARC) dataset was released.

1.1 The ARC-AGI challenge

Through the lens of knowledge priors, experience (an agent/system’s exposure to the new task), and
generalization difficulty (of a task), Chollet carefully designed a series of pattern-finding geometric
tasks in the ARC dataset [2]. Each task is defined as a split of training examples and test input:

• Training examples: Te = {(x1, y1), (x2, y2), · · · , (xn, yn)} (typically n ∈ [2, 10]).

• Test input: Ti = {xtest1} or {xtest1, · · · , xtestk} (maybe more than 1 test input).

For each task, the goal is to infer the output grid ytesti of each test input xtesti after observing the set
of training examples Te, as illustrated in Fig. 1.
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Figure 1: An example of the ARC geometric task.

1.2 Challenges and Impacts

The average human performance on the ARC public test is above 60% accuracy [3]. On the contrary,
the most competent models can only achieve accuracy below 56% leveraging SOTA LLMs [4].
The gap between current AI and humans is more distinct when considering the vast amount of
pre-training data. The investigation of solutions to the ARC competition could bring us significant
insights into modeling both the intuition and reasoning process in the human mind, promoting the
construction of novel AI paradigms. Meanwhile, "[a]t minimum, solving ARC-AGI would result in a
new programming paradigm [5]," enabling program synthesis for people who do not have experience
in coding by simply showing a few input-output examples.

In this project, we employed a three-step approach consisting of Base Model Training, Test-Time
Training (TTT), and Active Inference to achieve promising results on the ARC task. We aim to analyze
the performance of Test-Time Training (TTT) on both pre-trained LLMs and custom Transformer [6]
models that performs transduction on the ARC-AGI challenge.

2 Related work

2.1 Induction vs. Transduction

There are different attempts to represent the logic chain in the problem solving process. Omni-ARC
[7] explores multiple ARC-related sub-tasks, including the generation of code from examples, the
generation of output from code and test input, etc. The variety of approaches are further generalized
into two main categories in BARC [8]: induction and transduction. Induction refers to the process that
learns to find an explicit explanation for the examples first and applies such intermediate functions
(e.g. program code) on the testing input, while transduction directly generates the output from
the given inputs. In our project, we focus on transductive models since we believe that without
confining the learning process in an intermediate bottleneck, transduction allows for more flexibility
in searching solutions in the latent space and less error in the extra translation process.

2.2 SOTA methods in ARC-AGI challenge

In the 2024 technical report [9], both program synthesis and transductive methods are more widely
explored with pretrained LLMs. Notably, Test-time Training (TTT) has emerged as a major technique
for enhancing the inference ability of fine-tuned LLMs [10, 11], as verifed by the 1st and 2nd place
winner of the 2024 challenge (the Architects and Akyürek et al. respectively) [4]. The main idea of
TTT is to temporarily update the model parameters in inference time to better adapt to novel tasks.

On the other hand, despite the widespread success of LLMs, the emergence of larger ARC-related
training datasets such as Re-ARC [12] and Concept-ARC [13] and the popularization of TTT have
encouraged the exploration of smaller task-specific Transformer models trained from scratch. Among
them is the notable work LPN [14], which probe into the possibility of discarding large-scale pre-
training and synthetic data. One evident advantage of custom models compared with LLMs is the
freedom to design architectural components specialized for visual reasoning, exemplified by the 2D
nGPT model [15] which employs a small-sized Transformer with 2D attention.

2



3 Method

Our representation of the ARC task can be formulated as follows:

ytest = Fmodel(x1, y1, · · · , xn, yn, xtest), (1)

where Fmodel is a transductive transformer model to autoregressively generate one cell at a time
(assuming only one test output). We summarize our method into three processes: Base Model
Training, Test-Time Training, and Active Inference. The overall pipeline is shown in Fig. 2. The
details of each process are described in the following sub-sections.

Scratch Model/
Pretrained LLM Base Model

Train/
Finetune Test Time Model

Test Time 
Training

Active 
Inference

Test 
Samples

Figure 2: The basic pipeline of our method includes 3 consecutive components: Base Model Training,
Test-Time Training, and Active Inference.

3.1 Base Model

3.1.1 Base Model Training Datasets

Data Generation The original ARC Prize competition provides three datasets: public training
set, public evaluation set, and private evaluation set. Both the public training and public evaluation
sets include 400 task files, while the private evaluation set consists of 100 task files. Each task has
2 to 10 pairs (typically 3) of training examples and 1 to 3 pairs (typically 1) of tests [2, 16]. This
is insufficient for base model training. To address this, several previous efforts have focused on
expanding the ARC dataset, and we incorporate their work for training:

1. BARC [8] extracts problem seeds and uses GPT-4/GPT-4o-mini to synthetically generate
variations of different ARC problems. It also collects Python programs that solve ARC
training tasks to train neural models, resulting in a dataset of 400k samples.

2. Re-ARC [12] employs a DSL (domain-specific language) method to represent each task as
a combination of the pre-defined primitive functions. For each task, a procedural generator
is hand-crafted, and an unlimited number of samples can be generated by randomizing the
parameters of the primitives. Following BARC, we utilize 100k data samples from Re-ARC.

Data Augmentation In the training of the custom Transformer model, we further perform data
augmentation to enrich the dataset. Specifically, the augmentation process involves two main
operations: shuffle and transform. Fig. 3 is an example of data augmentation.

Example1 Example2 Example3 Test Pair

Shuffle

Origin

Transform
(Rotate 90)

Figure 3: An example of the training data augmentation.
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1. Shuffle: First, a new test pair (x∗
test, y

∗
test) is randomly selected from (xi, yi), i =

1, 2, · · · , n, test. Next, the order of the remaining pairs is shuffled, and the modified
sample is composed as: D∗ = {(x∗

1, y
∗
1), (x

∗
2, y

∗
2), · · · , (x∗

n, y
∗
n), (x

∗
test, y

∗
test)}.

2. Transform: We apply three transformation strategies: rotate, flip, and color permute. 1)
Rotate: Rotate all grids in D randomly by 0, 90, 180, or 270 degrees. 2) Flip: Flip all
grids in D either horizontally or vertically. 3) Color Permute: Randomly define a color
displacement map and transform the colors of all grids in D based on this map.

3.1.2 Base Model Architecture

In our project, all the base models we use are the decoder-only transformer with causal masks. We
mainly use two categories of model: open-sourced pre-trained LLMs and custom transformer trained
from scratch.

Open-sourced Pre-trained LLMs. In our project, we use Llama-3.1-8B-Instruct [17] as the
foundation LLM. This model is pre-trained on a dataset containing over 15 trillion tokens derived
from publicly available sources, explicitly excluding any meta user data. The instruction-tuned variant
is further refined using curated datasets comprising millions of human-annotated examples.

In order to make better use of the knowledge of the pre-trained model, we convert the ARC number
grids into text prompt. Specifically, we represent each grid cell with its corresponding color word and
then prepend and append prompt words. A concrete example is shown in Appendix B (copied from
BARC [8]).

Custom Transformer from Scratch. We follow the approach of Nikola Hu [18] to design a
decoder-only Transformer trained from scratch, with two notable design features [18]:

1. Tokenizer: The tokenizer contains only 19 tokens in total. Tokens 0–9 correspond to
different colors, while tokens 11–19 represent special symbols, such as [start], [end] and
[padding]. This design significantly reduces the number of prediction classes for the
classification head, improving training efficiency.

2. Grid Positional Embedding: A specialized grid encoding method is introduced, out-
performing traditional NLP positional encodings. This encoding is better suited for the
grid-based inputs of ARC tasks.

The detail of the tokenizer and embedding can be found in Appendix C. There is also a data example
for the custom transformer training (following Nikola Hu [18]) in the appendix.

3.1.3 Training Methods

Supervised Fine-Tuning (SFT). We use cross-entropy loss to predict the next token:

LSFT = − 1

N

N∑
i=1

Ti∑
t=1

logPθ(y
i
t | yi<t, x

i), (2)

where N is the number of training samples, Ti is the sequence length of the i-th sample, xi is the
input sequence, yit is the ground truth token at time step t, and Pθ represents the model’s predicted
probability for the next token given the previous context.

Direct Preference Optimization (DPO). We also experiment Direct Preference Optimization
(DPO) [19] on model after SFT trainig. In ARC tasks, we create incorrect test outputs (rejected
samples) by randomly changing 10% the color of the ground truth test output grid (with at least one
cell modified). The DPO optimization method can then be applied using the following loss function:

LDPO = − 1

N

N∑
i=1

log σ (rθ(ytrue,i)− rθ(yrejected,i)) . (3)

where N is the number of preference pairs, σ(x) is the sigmoid function, rθ is the reward model
parameterized by θ, ytrue,i represents the true output for the i-th example, and yrejected,i represents the
corresponding perturbed (rejected) output. However, in our experiments, we find that the incorporation
of DPO does not provide extra benefits, more detailed results can be referred to Appendix A.
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3.2 Test-Time Training

Traditional LLM inference methods such as in-context learning (ICL) quickly adapt to the sample
data with frozen model weights. In contrast, we employ a test-time training (TTT) [11] approach to
fine-tune the model parameters via back-propagation before performing inference.

3.2.1 Test-Time Training Data

We obtain the test-time training dataset solely from the evaluation set. Recall that each task in
the evaluation set is in the format: D = {(x1, y1), (x2, y2), · · · , (xn, yn), xtest}. We obtain the
augmented training dataset following [11]. As illustrated in Fig. 4, it includes two steps:

1. Select pseudo-test pair: We randomly select a test pair (x∗
test, y

∗
test) from {(x1, y1), (x2, y2),

· · · , (xn, yn)}. Then, together with the remaining pairs as examples, we can construct a
pseudo-problem.

2. Random data augmentation: After constructing the pseudo-problem, we apply the same
data augmentation strategies as in the base model training stage (shuffle and transform).

Example1 Example2 Example3 Test Pair

Example1 Example2 Test Pair Remove the original 
test pair, and select one 
from examples as the 

pseudo test pair.

Example1 Example2 Test Pair

Shuffle and Transform 
(Flip and Color Permute)

Figure 4: An example of TTT training data.

3.2.2 Training Methods

We use the same training methods as in the base model training step: SFT and DPO. DPO is applied
after the SFT step. We primarily consider two categories of test-time training: single-TTT and
multi-TTT. Specifically, single-TTT means separately training one model for each evaluation task,
using only the dataset from that task. In contrast, multi-TTT involves using a mixed dataset from all
evaluation tasks to train one model for all evaluation tasks.

3.2.3 Meta Learning in Base Model Training Step

We also explore meta-learning methods [20, 21] to further enhance performance. First, we collect a
test-training dataset from the entire evaluation set. During the base model training, we alternately
train one step on the original training data and one step on the test-training data. After completing
the base model training, we apply the single-TTT method for test-time training. Meta-learning
enables the model to observe an appropriate number of TTT examples during the base model training
phase, theoretically facilitating better convergence of TTT. In our experiments, however, we find that
employing such Meta Learning algorithm does not lead to more advantages as expected (more results
and analysis can be seen in Appendix A).

3.3 Active Inference (AI)

In the inference stage, we apply a two-stage pipeline following the design of Nikola Hu [18], which
simply extends the data augmentation strategy in the previous training stages. As illustrated in Fig. 5,
we do the following:
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1. Augment each testing data to n samples (we use n = 19).

2. Perform inference on the n augmented samples individually.

3. Perform reverse transformation on each inference output.

4. Conduct majority vote on the n reversely transformed output (select the top two submissions
with the most appearances).

x1

Augment

Infer Sample 1

Infer Sample n

.

.

.
Single 

Infer

Candidate nInfer Output n

.

.

.
Reverse 

Augment

Infer Output 1 Candidate 1

Majority 

Vote

Top 2 Submissions
y1 xtest

Evaluation Data

.

.

.

Figure 5: The active inference pipeline. Infer Sample 1 to n are randomly augmented using method
mentioned in data generation.

4 Experiment

In order to save experimental time, we select 80 tasks from the evaluation set following [11]. This
subset includes 20 easy, 20 medium, 20 hard and 20 expert level tasks from the difficulty classification
of H-ARC [22]. The detail of task id we selected can be found in Appendix D.

For evaluation metrics, we use correct rate — whether or not the inferred output exactly matches the
test output in terms of shape, color, and position. If a task has n > 2 test inputs, each test input is
counted as 1

n questions.

4.1 Comparison with Former Works

We compare our model with two recent works, focusing only on the transductive setting. Overall,
our model achieved a best score of 38/80 using the fine-tuned Llama-3.1-8B-Instruct [17] with single
TTT and Active Inference. This performance slightly exceeds the 36/80 reported by the Surprising
TTT method [11]. Furthermore, compared to the original BARC method [8], which achieved a
score of 31/80 using multi-TTT, our combination of single TTT and Active Inference demonstrates a
significant improvement in performance.

Table 1: Transductive results comparison over baselines

Ours Best Surprising TTT [11] BARC [8]
38/80 36/80 31/80

4.2 Custom vs Pretrained Base Model

We compare the performance of different base models in Table 2. Without TTT and active inference,
the small-sized Transformer model trained from scratch exhibits much poorer performance compared
with fine-tuned LLM. However, coupled with the same single-task TTT and active inference (AI)
strategy, the dedicated Transformer model can reach comparable results as the fine-tuned LLM (37/80
vs 38/80). This remarkable improvement reveals the effectiveness of small and specialized models
coupled with TTT.
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Table 2: Performance comparison of custom transformer vs pretrained LLM

Test-time components Custom Transformer Finetuned LLM
w/o TTT, w/o AI 8/80 22.5/80
single TTT, w/ AI 37/80 38/80

4.3 Test-Time Training and Active Inference

We further investigate the impacts of different TTT methods and the active inference strategy on the
fine-tuned LLM, as summarized in Fig. 6.

Figure 6: LLM performance across different TTT methods and inference setups.

We find complex relationships between test-time training (TTT) and active inference (AI). In terms
of TTT applied individually, both multi-TTT and single-TTT largely boost performance, with the
latter one exhibiting a superior enhancement (an increase of 12 correct tasks). This observation is
consistent with the major findings by Ekin et al. [11]. On the other hand, active inference also brings
moderate increase in inference results when no TTT or single-TTT is applied (an increase in 7.5
and 3.5 number of correct tasks respectively). However, the combined use of multi-TTT and active
inference does not show composite positive influence as expected (31/80 vs 30/80). The reason
behind such phenomenon is still unknown and is much worth investigating.

4.4 Data Size and Model Size Scaling

Data Size. We compare model performance with different data sizes. The model used in this section
is the same custom model trained with SFT and single-TTT.

Table 3: Performance comparison across data sizes

Data Size No TTT (Score/80) With TTT (Score/80)
100k 8/80 33.5/80
500k 8/80 37/80

We notice that with TTT, increasing the data size from 100k to 500k leads to a modest improvement
in performance (from 33.5/80 to 37/80). This demonstrates that scaling up the data size can enhance
performance on the ARC task.

Model Size. We adjust the model size by removing some transformer layers. The model used in
this section is a custom model trained with SFT, utilizing all 500k training data, and single-TTT.
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Table 4: Performance comparison across model sizes

Layer Number No TTT (Score/80) With TTT (Score/80)
6 Layers 5/80 24.5/80

12 Layers 12/80 34.5/80
18 Layers 8/80 37/80

We observe the following: 1) Increasing the number of layers improves performance, as seen in
scores for 6 layers (24.5/80), 12 layers (34.5/80), and 18 layers (37/80) with TTT. This clearly
demonstrates that scaling up the model size can lead to better performance. 2) However, for the
18-layer model, performance without TTT is worse than the 12-layer model (8/80 vs. 12/80), likely
due to optimization challenges or overfitting.

4.5 Grid Encoding in Scratch Model

We compare the model performance across grid encoding in the specially-designed transformer model
from scratch. The model used in this section is a custom model trained with Supervised Fine-Tuning
(SFT), utilizing all 500k training data, and Single-TTT. The following table summarizes the results.

Table 5: Performance comparison across grid encoding

Method No TTT (Score/80) With TTT (Score/80)
Grid Positional Encoding 8/80 37/80

Sinusoidal Positional Encoding 2/80 14/80

We observe that the grid encoding method significantly outperforms the traditional sinusoidal en-
coding method. Without TTT, grid encoding achieves a score of 8/80 compared to only 2/80 for
sinusoidal encoding. The performance improves further with the application of TTT, where grid
encoding achieves 37/80, while the correct rate of sinusoidal encoding is only 14/80. This result
demonstrates the potential of custom models that can be tailored to better align with the specific
reasoning task.

5 Conclusion

In this project, we employ a three-step approach consisting of Base Model Training, Test-Time
Training (TTT), and Active Inference to achieve promising results on the ARC task. Our results
highlight the significant role of TTT in improving the reasoning performance, with single-TTT
outperforming multi-TTT. More importantly, we reveal that a small custom model that allows for
specialized architectural designs can achieve comparable results with pre-trained LLMs when utilizing
single-TTT and active inference.

However, due to time limitations, we have not tested some concurrent works, such as those released
in December that have achieved top scores on the ARC competition 2024 [10, 7]. Besides, some
methods, such as Meta learning and DPO, don’t lead to performance improvements in some cases.
Their underlying mechanisms are not fully understood yet.

Future work will aim to address these limitations and further refine the model configurations. Addi-
tionally, the inference phase could benefit from incorporating Chain of Thought (CoT) reasoning [23],
which may help identify relationships and contradictions among the outputs, potentially correcting
errors and improving accuracy.
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A Additional Experiment Results

Here we present performance results of DPO and Meta-learning methods, both of which do not
produce positive influences as expected.

A.1 SFT vs DPO

We compare the model performance across DPO. Here, we finetune the pre-trained LLM Llama-3.1-
8B-Instruct [17] with multi-TTT.

Table 6: Performance comparison across DPO

Method With TTT (Score/80)
SFT 31/80

SFT+DPO 28/80

As presented in Tab. 6, the DPO method is less effective (28/80) than SFT (31/80), suggesting that
while DPO might have theoretical advantages, it does not provide a significant improvement in this
task. This could be due to the complexity of DPO potentially leading to overfitting.

A.2 Meta Base Model Learning

We compare the model performance across meta learning. The model used in this section is a custom
model trained with SFT, utilizing all 500k training data, and single-TTT.

Table 7: Performance comparison across meta learning

Method No TTT (Score/80) With TTT (Score/80)
Meta Learning 13/80 26/80

Non-Meta Learning 8/80 37/80

The results reveal an interesting trade-off between the two methods: 1) Non-Meta Learning achieves a
higher success rate (37/80) compared to Meta Learning (26/80) with test-time training. This suggests
that Non-Meta Learning benefits significantly from task-specific training. In contrast, the performance
of Meta Learning is significantly worse in this scenario probably due to overfitting. 2) Meta Learning
performs better without test-time training. This indicates that Meta Learning provides more robust
performance across tasks, especially when test-time training is limited or not feasible.

B Prompt Example for Finetune Open-sourced Pretrained LLMs

Example1 Example2 Example3 Test Pair

Figure 7: An example of the dataset for training Lama-3.1-8B-Instruct.

Prompt Example

Role: system
You are a world-class puzzle solver with exceptional pattern recognition skills. Your task is
to analyze puzzles, spot patterns, and provide direct solutions.
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Role: user
Given input-output grid pairs as reference examples, carefully observe the patterns to predict
the output grid for new test input. Each pair follows the same transformation rule. Grids
are 2D arrays represented as strings, with cells (colors) separated by spaces and rows by
newlines.
Here are the input and output grids for the reference examples:

Example 1
Input:
Black Gray Black
Gray Gray Gray
Black Gray Black

Output:
Black Black Blue Red Black Black
Black Black Red Blue Black Black
Blue Red Blue Red Blue Red
Red Blue Red Blue Red Blue
Black Black Blue Red Black Black
Black Black Red Blue Black Black

Example 2
Input:
Gray Black Black
Black Gray Black
Black Black Gray

Output:
Blue Red Black Black Black Black
Red Blue Black Black Black Black
Black Black Blue Red Black Black
Black Black Red Blue Black Black
Black Black Black Black Blue Red
Black Black Black Black Red Blue

Example 3
Input:
Black Gray Black
Black Gray Gray
Gray Gray Black

Output:
Black Black Blue Red Black Black
Black Black Red Blue Black Black
Black Black Blue Red Blue Red
Black Black Red Blue Red Blue
Blue Red Blue Red Black Black
Red Blue Red Blue Black Black

Test Input:
Black Black Black
Black Gray Black
Gray Gray Gray

Role: assistant
The output grid for the test input grid is:
Black Black Black Black Black Black
Black Black Black Black Black Black
Black Black Blue Red Black Black
Black Black Red Blue Black Black
Blue Red Blue Red Blue Red
Red Blue Red Blue Red Blue
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C Details of Training Specially Designed Transformer from Scratch

The following codes are copied from Nikola Hu’s repo [18].

For the tokenizer design:

Tokenizer Design

class SpecialToken(Enum):
CELL_TOKEN_SIZE = 10
PAD = auto() # 11
START = auto() # 12
START_INPUT = auto() # 13
END_INPUT = auto() # 14
START_OUTPUT = auto() # 15
END_OUTPUT = auto() # 16
END = auto() # 17
ROW_SEPARATOR = auto() # 18
COUNT_OF_TOKENS = auto() # 19

VOCAB_SIZE = SpecialToken.COUNT_OF_TOKENS.value

For the grid positional encoding:

Grid Positional Encoding

def combine_encoding(x: torch.Tensor , batch_size: int ,
use_grid_encoder: bool ,

seq_length: int , max_grid_size: int ,
grid_scale: torch.Tensor ,

grid_encoding: torch.Tensor ,
positional_encoding: torch.Tensor):

if use_grid_encoder:
# Validate input ranges
assert torch.all(x[:, :, 1:] >= -1), "Indices out of

range"
assert torch.all(x[:, :, 1:] < max_grid_size), "Indices

out of range"

# Extract positional encodings
row_encodings = grid_encoding [:, x[:, :, 1], :]
col_encodings = grid_encoding [:, x[:, :, 2], :]
top_encodings = grid_encoding [:, x[:, :, 3], :] #

Topology/chart information
sample_encoding = grid_encoding [:, x[:, :, 4], :] #

Grid index

# Combine encodings with scaling
grid_encodings = torch.cat([

row_encodings * grid_scale [0],
col_encodings * grid_scale [1],
top_encodings * grid_scale [2],
sample_encoding

], dim=-1) # Shape: (N, seq_length , embed_size // 2)

return grid_encodings.squeeze (0)

return positional_encoding [:, :seq_length , :]

Then, we provide an example using this special tokenizer:
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Example1 Example2 Example3 Test Pair

Figure 8: An example of the dataset for training specially designed transformer from scratch.

Tokenize Example

[[12, -1, -1, -1, 0], # Begin sequence
[13, -1, -1, -1, 1], # Begin input
[ 0, 0, 0, 3, 1],
[ 2, 0, 1, 1, 1],
[ 1, 0, 2, 2, 1],
[18, 0, 3, -1, 1], # Row seperate symbol
[ 2, 1, 0, 1, 1],
[ 7, 1, 1, 0, 1],
[ 1, 1, 2, 2, 1],
[18, 1, 3, -1, 1],
[ 3, 2, 0, 4, 1],
[ 7, 2, 1, 0, 1],
[ 7, 2, 2, 0, 1],
[18, 2, 3, -1, 1],
[14, -1, -1, -1, 1], # End input
[15, -1, -1, -1, 2], # Begin output
[ 7, 0, 0, 0, 2],
[ 7, 0, 1, 0, 2],
[ 7, 0, 2, 0, 2],
[18, 0, 3, -1, 2],
[ 7, 1, 0, 0, 2],
[ 7, 1, 1, 0, 2],
[ 7, 1, 2, 0, 2],
[18, 1, 3, -1, 2],
[ 7, 2, 0, 0, 2],
[ 7, 2, 1, 0, 2],
[ 7, 2, 2, 0, 2],
[18, 2, 3, -1, 2],
[16, -1, -1, -1, 2], # End output
[13, -1, -1, -1, 3],
[ 0, 0, 0, 2, 3],
[ 2, 0, 1, 3, 3],
[ 3, 0, 2, 4, 3],
[18, 0, 3, -1, 3],
[ 9, 1, 0, 5, 3],
[ 1, 1, 1, 0, 3],
[ 7, 1, 2, 6, 3],
[18, 1, 3, -1, 3],
[ 1, 2, 0, 0, 3],
[ 3, 2, 1, 1, 3],
[ 3, 2, 2, 1, 3],
[18, 2, 3, -1, 3],
[14, -1, -1, -1, 3],
[15, -1, -1, -1, 4],
[ 3, 0, 0, 0, 4],
[ 3, 0, 1, 0, 4],
[ 3, 0, 2, 0, 4],
[18, 0, 3, -1, 4],
[ 3, 1, 0, 0, 4],
[ 3, 1, 1, 0, 4],
[ 3, 1, 2, 0, 4],
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[18, 1, 3, -1, 4],
[ 3, 2, 0, 0, 4],
[ 3, 2, 1, 0, 4],
[ 3, 2, 2, 0, 4],
[18, 2, 3, -1, 4],
[16, -1, -1, -1, 4],
[13, -1, -1, -1, 5],
[ 9, 0, 0, 1, 5],
[ 7, 0, 1, 2, 5],
[ 9, 0, 2, 3, 5],
[18, 0, 3, -1, 5],
[ 4, 1, 0, 4, 5],
[ 3, 1, 1, 0, 5],
[ 4, 1, 2, 5, 5],
[18, 1, 3, -1, 5],
[ 9, 2, 0, 6, 5],
[ 3, 2, 1, 0, 5],
[ 1, 2, 2, 7, 5],
[18, 2, 3, -1, 5],
[14, -1, -1, -1, 5],
[15, -1, -1, -1, 6],
[ 9, 0, 0, 0, 6],
[ 9, 0, 1, 0, 6],
[ 9, 0, 2, 0, 6],
[18, 0, 3, -1, 6],
[ 9, 1, 0, 0, 6],
[ 9, 1, 1, 0, 6],
[ 9, 1, 2, 0, 6],
[18, 1, 3, -1, 6],
[ 9, 2, 0, 0, 6],
[ 9, 2, 1, 0, 6],
[ 9, 2, 2, 0, 6],
[18, 2, 3, -1, 6],
[16, -1, -1, -1, 6],
[13, -1, -1, -1, 7],
[ 1, 0, 0, 3, 7],
[ 3, 0, 1, 0, 7],
[ 3, 0, 2, 0, 7],
[18, 0, 3, -1, 7],
[ 4, 1, 0, 4, 7],
[ 7, 1, 1, 1, 7],
[ 1, 1, 2, 2, 7],
[18, 1, 3, -1, 7],
[ 9, 2, 0, 5, 7],
[ 1, 2, 1, 2, 7],
[ 7, 2, 2, 1, 7],
[18, 2, 3, -1, 7],
[14, -1, -1, -1, 7],
[15, -1, -1, -1, -1], # Test output
[ 1, 0, 0, -1, -1],
[ 1, 0, 1, -1, -1],
[ 1, 0, 2, -1, -1],
[18, 0, 3, -1, -1],
[ 1, 1, 0, -1, -1],
[ 1, 1, 1, -1, -1],
[ 1, 1, 2, -1, -1],
[18, 1, 3, -1, -1],
[ 1, 2, 0, -1, -1],
[ 1, 2, 1, -1, -1],
[ 1, 2, 2, -1, -1],
[18, 2, 3, -1, -1],
[16, -1, -1, -1, -1],
[17, -1, -1, -1, -1]])
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D Subset of Evaluation Set Used in this Project

Task Levels

Easy Medium Hard Expert
0a1d4ef5 762cd429 e5c44e8f e99362f0
692cd3b6 e7639916 604001fa 1acc24af
1da012fc e1d2900e 4364c1c4 f9a67cb5
66e6c45b aee291af 506d28a5 ad7e01d0
3194b014 e95e3d8e 2037f2c7 ea9794b1
963f59bc e0fb7511 d5c634a2 58e15b12
d37a1ef5 ae58858e ac605cbb 891232d6
358ba94e 93c31fbe 27f8ce4f 5833af48
f3cdc58f 27a77e38 66f2d22f 4ff4c9da
55059096 9bebae7a 3ed85e70 5b692c0f
c7d4e6ad 9ddd00f0 8b28cd80 e2092e0c
4b6b68e5 fe9372f3 d19f7514 47996f11
00576224 69889d6e dc2aa30b 34b99a2b
a04b2602 15663ba9 f5c89df1 1c56ad9f
e9c9d9a1 17b80ad2 50f325b5 e6de6e8f
ef26cbf6 16b78196 08573cc6 fea12743
7ee1c6ea 5b6cbef5 3d31c5b3 31d5ba1a
e9ac8c9e 40f6cd08 94133066 79fb03f4
1a2e2828 505fff84 136b0064 8719f442
770cc55f d017b73f 90347967 a8610ef7

E Hyper-parameters in Pre-trained LLMs

E.1 Base Model Training

E.1.1 SFT

Table 9: SFT training configuration in base model training (full finetune)

Parameter Name Value
torch_dtype bfloat16

learning_rate 1× 10−5

max_seq_length 8192
num_train_epochs 3

gradient_accumulation_steps 2
per_device_train_batch_size 8

weight_decay 0.01
lr_scheduler_type cosine

warmup_ratio 0.1
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E.2 Test-Time Training

E.2.1 SFT

Table 10: SFT training configuration in test-time training (full finetune)

Parameter Name Value
torch_dtype bfloat16

gradient_accumulation_steps 2
learning_rate 1.0× 10−5

lr_scheduler_type cosine
max_seq_length 8192

num_train_epochs 3
per_device_train_batch_size 8

warmup_ratio 0.1
use_liger_kernel true

weight_decay 0.01

E.2.2 DPO

In our experiments, we use DPO after SFT only in test-time training step.

Table 11: DPO training configuration in test-time training (LoRA finetune)

Parameter Name Value
torch_dtype bfloat16

lora_r 64
lora_alpha 64

lora_dropout 0.00

lora_target_modules [q_proj, k_proj, v_proj, o_proj,
gate_proj, up_proj, down_proj]

bf16 true
gradient_accumulation_steps 2

learning_rate 1.0× 10−6

lr_scheduler_type cosine
max_length 8192

num_train_epochs 1
warmup_ratio 0.1
weight_decay 0.01
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F Hyper-parameters in Specially Designed Transformer from Scratch

F.1 Base Model Training

F.1.1 SFT

Table 12: SFT training configuration in base model training (full training)

Parameter Name Value
epochs 50000

max_seq_length 6000
samples_per_epoch 80

seed 0
learning_rate 1.0× 10−4

warmup_epochs 50
heads 4

base_lr 1.0× 10−8

num_layers 18
batch_size 4
schedular cosine
embed_size 888

accumulation_steps 20
progressive_head 1

The hyper-parameters in meta-learning is the same.

F.2 Test-Time Training

F.2.1 SFT

Table 13: SFT training configuration in test-time training (full finetune)

Parameter Name Value
epochs 16

batch_multiplier 15
max_seq_length 6000

samples_per_epoch 80
seed 0

learning_rate 1.0× 10−5

base_lr 1.0× 10−8

num_layers 18
batch_size 4
schedular cosine
embed_size 888

accumulation_steps 20
progressive_head 1
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