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Abstract

The widespread usage of online Large Lan-001
guage Models (LLMs) inference services has002
raised significant privacy concerns about the po-003
tential exposure of private information in user004
inputs. Existing privacy protection methods005
for LLMs suffer from either insufficient pri-006
vacy protection with performance degradation,007
or large inference time overhead. To address008
these limitations, we propose PrivacyRestore, a009
plug-and-play method to protect the privacy of010
user inputs during LLM inference for the client-011
server scenario. The server first trains restora-012
tion vectors for each privacy span type offline013
and then releases them to the clients. During014
inference, the client aggregates restoration vec-015
tors of all privacy spans in the user query into a016
meta restoration vector which is later sent to the017
server to restore information. Before transmis-018
sion, the client removes all privacy spans in the019
user query and applies dχ-privacy mechanism020
to the meta vector for privacy protection. We021
prove that our method can inherently prevent022
the linear growth of the privacy budget. We023
conduct extensive experimental, covering the024
medical and legal domains, and demonstrate025
that PrivacyRestore effectively protects private026
information and maintains acceptable levels of027
performance and inference efficiency 1 .028

1 Introduction029

Large language models (LLMs) have emerged as030

powerful tools across various domains (Chen et al.,031

2023b; Wu et al., 2023). However, the widespread032

use of online LLM inference services has raised sig-033

nificant privacy concerns. When interacting with034

LLMs deployed on cloud platforms, users’ inputs035

may contain sensitive data, such as medical records036

and legal case details. Potential threats may arise037

when attackers intercept user queries during data038

1We provide an anonymous link to release our code
and dataset for reviewers: https://anonymous.4open.
science/r/PrivacyRestore_ARR12-788B

transmission, and some advanced adversaries can 039

even hack the cloud service provider. For exam- 040

ple, in sensitive domains like medical diagnosis, if 041

a user’s input containing the user’s personal pro- 042

tected health information (PHI), such as “I was pre- 043

viously diagnosed with HIV, and lately I’ve been 044

experiencing fever and diarrhea...” is disclosed to 045

malicious attackers, it may cause privacy concerns. 046

In this paper, we focus on protecting the private 047

information contained in user inputs during LLM 048

inference. In this setting, the client submits inputs 049

to the server (also known as the service provider) 050

and there is a risk that inputs might be disclosed 051

by attackers. Current methods for protecting user 052

inputs can be mainly divided into two categories: 053

Secure Multi-Party Computation (SMPC) and Dif- 054

ferential Privacy (DP). SMPC-based methods (Hao 055

et al., 2022a; Li et al., 2023a; Liang et al., 2024) 056

utilize encryption protocols and algorithms to en- 057

able collaborative computation without revealing 058

original data to others. However, SMPC methods 059

have large inference time overheads, making them 060

impractical for real-time applications (Hao et al., 061

2022b). DP based methods (Feyisetan et al., 2020, 062

2019; Xu et al., 2020; Bo et al., 2021) apply dχ- 063

privacy (Chatzikokolakis et al., 2013; Alvim et al., 064

2018) to words and achieve word-level text-to-text 065

privatization. Nevertheless, DP-based methods in- 066

evitably degrade the performance of downstream 067

tasks due to noise injection, which is known as 068

the privacy-utility trade-off. Additionally, as the 069

text length grows, word-level privatization will lead 070

to significant performance degradation. This phe- 071

nomenon is known as the linear growth of the pri- 072

vacy budget in word-level privatization (Mattern 073

et al., 2022b). Hence, there is a need to develop 074

privacy-preserving methods which can effectively 075

safeguard the privacy of user inputs while main- 076

taining high-quality outputs, without incurring pro- 077

hibitive computational costs. 078

We propose PrivacyRestore, which directly re- 079
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moves privacy spans in user inputs and restores080

private information via activation steering (Li et al.,081

2023c; Turner et al., 2023; Hernandez et al., 2023)082

during model inference. Our method is based on083

two key phenomena: (a) Users’ private informa-084

tion mostly consists of sensitive attributes and085

these attributes are commonly confined within086

specific contiguous token sequences, referred to087

as “privacy spans”. For eaxmple, in the context088

of healthcare domain, the private information may089

commonly refer to symptom descriptions. Consider090

a medical record which states “I was previously091

diagnosed with HIV, and lately I’ve been experienc-092

ing fever and diarrhea...”, “HIV" and "fever and093

diarrhea” should be protected as privacy spans. Di-094

rectly removing these privacy spans (symptom de-095

scriptions) can significantly hinder attackers from096

reconstructing or inferring private information and097

serves as an effective approach to preventing pri-098

vacy leakage. (b) Most privacy spans are concen-099

trated in a few majority categories, exhibiting a100

long-tailed distribution. For instance, in medical101

diagnosis applications, privacy spans typically re-102

late to symptoms and disease descriptions. Most of103

the symptoms and disease descriptions appearing104

in user inputs are concentrated on high-frequency105

types, such as “fever” and “cold”. We have con-106

ducted experiments to demonstrate the long-tailed107

distribution of privacy spans, as detailed in Ap-108

pendix K.109

PrivacyRestore operates in two stages: the prepa-110

ration stage and the inference stage. In the prepa-111

ration stage, the server first identifies the attention112

heads where the activation steering occurs. Sec-113

ond, each privacy span type is encoded to a vector,114

known as the restoration vector. This stage is per-115

formed entirely offline on the server side. Our116

method is plug-and-play, requiring only the restora-117

tion vectors to be trainable, while keeping the LLM118

frozen. Once training is complete, these restora-119

tion vectors will be released to the client side. In120

the inference stage, according to the principle of121

“Information Self-Determination Right” 2 (Jasper122

M C, 2009; Alsenoy et al., 2014) , the users are123

entitled to identify the privacy spans in their inputs124

by themselves. After identification, a meta vec-125

tor is constructed by estimating the importance of126

each privacy span and calculating a weighted sum127

of the corresponding restoration vectors. Then,128

2https://en.wikipedia.org/wiki/
Informational_self-determination

the user submits the incomplete input with the pri- 129

vacy spans removed, along with the meta vector, 130

to the server. The server uses the meta vector to 131

restore the removed privacy spans and generate 132

high-quality outputs. 133

To prevent the leakage of privacy spans via the 134

meta vector, dχ-privacy mechanisms are applied 135

to the meta vector before transmission at the client 136

side. By applying dχ-privacy to the meta vector in- 137

stead of words, our method inherently addresses 138

the linear growth issue of privacy budget en- 139

countered in word-level privatization (Mattern 140

et al., 2022a). To further prevent privacy leak- 141

age through generated outputs, the server should 142

employ sampling-based generation, enabling the 143

output to be protected by the Exponential Mecha- 144

nism (Utpala et al., 2023a; Mattern et al., 2022c; 145

McSherry and Talwar, 2007). Experimental results 146

demonstrate that our method can effectively pro- 147

tect private information and maintain satisfactory 148

performance and inference efficiency. The contri- 149

butions are summarized as follows: 150

• We propose a plug-and-play privacy protec- 151

tion method that removes privacy spans in the 152

input and restores private information via acti- 153

vation steering during inference. 154

• We propose Attention-aware Weighted Aggre- 155

gation to construct the meta vector and apply 156

the dχ-privacy mechanism to the meta vec- 157

tor, inherently addressing the problem of the 158

linear growth of privacy budget. 159

• We construct three datasets, covering the med- 160

ical and legal fields, to evaluate our method. 161

Experimental results demonstrate its capabil- 162

ities of privacy protection. It also maintains 163

acceptable performance and inference effi- 164

ciency. 165

2 Related Works 166

In this section, we introduce the related works on 167

user input protection methods, which are currently 168

divided into two categories: SMPC-based methods 169

and DP-based methods. 170

SMPC-based methods. Secure Multi-Party 171

Computation (SMPC) uses encryption algorithms 172

to enable secure collaborative computations 173

between the client and server, without revealing 174

the original user inputs to the server. However, 175

SMPC incurs significant inference time overhead, 176

rendering it impractical for real-time LLM 177
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applications (Li et al., 2023a; Liang et al., 2024;178

Hao et al., 2022a; Liu and Liu, 2023; Zheng et al.,179

2023b; Gupta et al., 2023; Lu et al., 2024).180

DP-based methods. dχ-privacy mechanisms, a181

variant of DP, protect user inputs by injecting noise.182

However, this approach can lead to performance183

degradation. Additionally, dχ-privacy becomes184

less effective as input length increases, due to the185

linear growth of the privacy budget (Feyisetan et al.,186

2019; Mattern et al., 2022b; Utpala et al., 2023b;187

Dwork et al., 2016; Duchi et al., 2013).188

Due to the limited space, a detailed introduction189

of the above works can be found in Appendix B.190

3 Threat Model191

We consider a threat model involving two parties:192

a server that holds the LLM weights and a client193

holds user inputs containing privacy spans. Privacy194

span is defined as a contiguous token sequence195

that contains private information in user inputs,196

and should be identified by the user itself according197

to the principle of “Information Self-Determination198

Right”. The server provides services through an199

API while maintaining the confidentiality of the200

LLM weights. Adversaries may intercept privacy201

spans when users submit their inputs via the API.202

Relying solely on encryption algorithms is insuffi-203

cient to prevent privacy leakage, as encrypted in-204

puts will be decrypted on the server and the server205

itself may be vulnerable. Some advanced adver-206

saries can even hack the server to steal those de-207

crypted user inputs easily (Abrams, 2024; Toulas,208

2024). Therefore, our goal is to protect the privacy209

spans that exist in user inputs from attackers who210

are capable of stealing user privacy during trans-211

mission or even hacking the server to steal user212

privacy.213

4 Methodology214

PrivacyRestore operates in two stages, i.e., the215

preparation stage and the inference stage, as shown216

in Figure 1:217

(1) Preparation stage: This stage takes place218

only on the server. Considering the long-tailed219

distribution of privacy spans, we predefine a core220

set of privacy span types that covers the majority221

of them. Next, we identify the edited attention222

heads required for activation steering during the223

inference stage. Finally, we train the restoration224

vector for each privacy span type in the prede-225

fined core set. After training, all these vectors are226

released to the clients. The preparation stage is 227

conducted offline, prior to the server beginning to 228

offer its services. 229

(2) Inference stage: This stage involves collabo- 230

ration between the client and server. According to 231

the principle of “Information Self-Determination 232

Right”, the users should identify all privacy spans 233

in their queries by themselves. Then, the client re- 234

moves all these privacy spans from the queries for 235

privacy protection. For restoration, the client con- 236

structs a meta vector according to the removed 237

privacy spans and applies dχ-privacy to the meta 238

vector to prevent privacy leakage. The meta vec- 239

tor, along with the incomplete queries with privacy 240

spans removed, are sent to the server. The server 241

performs inference on the incomplete input and re- 242

stores information using the meta vector through 243

activation steering. 244

The preparation and inference stages descrip- 245

tions are provided in §4.1 and §4.2, respectively. 246

All notation definitions are shown in Appendix A. 247

Backgrounds about the dχ-privacy mechanism and 248

activation steering are shown in Appendix C. 249

4.1 Preparation Stage 250

Edited Heads Identification. As indicated by 251

activation steering methods (Li et al., 2023c; Chen 252

et al., 2024), modifying all attention heads in LLMs 253

will degrade overall performance. Inspired by this, 254

we aim to identify the attention heads most relevant 255

to privacy spans. 256

As shown in the upper part of Figure 1, we 257

firstly utilize the probe technique (Alain and Ben- 258

gio, 2016; Tenney et al., 2019; Belinkov, 2022) to 259

identify the most relevant attention heads for each 260

privacy span type. We train a binary classifier for 261

each head, tailored to the privacy span type c, as 262

the probe. A probe with higher accuracy indicates 263

a stronger correlation between the head h and the 264

privacy span type c. Therefore, we select the top 265

K attention heads with the highest accuracies for 266

each privacy span type c in the predefined core set 267

C. 268

Using different top-K head sets for different pri- 269

vacy span types may suffer the risk of privacy leak- 270

age, as an attacker could infer the presence of a spe- 271

cific privacy span type based on the characteristics 272

of top-K head set. Hence, we propose a Common 273

Top-K Selector to combine all different top-K head 274

sets to construct a common top-K head set Hk as 275

the edited head set. To achieve this, we calculate 276

the average score of each head across all privacy 277
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I: The patient presents the 

symptoms of

…, pain, shortness of 

breath, fatigue, … .

Intact Input I:

The patient 

presents the 

symptoms of…, 

pain, shortness of 

breath, fatigue, … 

𝑰 : The patient presents the 

symptoms of

…, pain, shortness of 

breath, fatigue, … .
Remove 

Privacy

Spans

Probe Technique

Top-K heads sets

for each private span

Top-K heads Selector

Common top-K 

heads set

LLM

Intact Input (I)

+ Incomplete Input (𝑰) 

+ Output Given I (𝒂)

+ Output Given 𝑰 (ෝ𝒂 )

LLM
Frozen

Training

User Query q :
Lately,  My stools 

sometimes is black and I 

have abdominal pain, and 

pale skin. Additionally, 

I’ve even noticed blood 

in my stool. What is the 

likely diagnosis?

…
black 

stools

pale 

skin

blood 

in stool

diagnos

is?

𝑤1 𝑤3

𝑤2
Client Bert

𝑤2 𝑤1 𝑤3 

Attention-aware Weighted Aggregation
Meta 

Vector

User Query with 

Privacy Spans removed

Incomplete Query ෝ𝒒:

Lately,  stools sometimes 

is blaand I have abdominal 

pain, and pale skin. 

Additionally, I’ve even 

noticed blood in my .What 

is the likely diagnosis?

Restoration Vectors 

for each privacy span

(plug-and-play )
Trainable

shortness of breath

black stools

pale skin

black stools pale skin blood in stool

Edited heads Identification Restoration Vectors Training

Inference Stage

…

Meta Vector Construction Privacy Restoration

LLM

Server Server

Client Server

noise

Preparation Stage

LLM Output 𝑶:

According to the 

patient’s symptoms, 

the illness is Anemia. 

This is potentially 

caused by conditions 

such as: …

Transmission to Server

Meta 

Vector

Users identify 

privacy spans

Training Set

Training Set

Figure 1: The PrivacyRestore consists of two stages. (1) Preparation Stage. This stage aims to identify the edited
heads and train the restoration vectors. We provide a more detailed training set example in Figure 4. (2) Inference
Stage. In this stage, the client constructs a meta vector. The server uses the meta vector to restore information
during inference on the incomplete query.

span types in C, selecting the highest K heads to278

construct the common set. A head receives a pos-279

itive score if it appears in the top-K head set of280

a privacy span type c. The score is related to the281

accuracy of the probe associated with the head.282

Restoration Vectors Training. After identifying283

the edited heads set Hk, the next step is to train the284

restoration vectors for each privacy span type in285

the predefined core set C.286

For each privacy span type c ∈ C, there is a287

trainable restoration vector rch for each head h in288

the common top-K heads set Hk. The restoration289

vectors constitute the only trainable parameters Θ290

in our method, while the LLM weights held by291

the server remain fixed. Therefore, our method is292

plug-and-play and parameter-efficient for training.293

We fine-tune the restoration vectors using the294

ORPO loss proposed by Hong et al. (2024), which295

integrates the supervised fine-tuning process and296

the preference alignment process. This loss func-297

tion can guide the model in generating better an-298

swers. In our method, we use ORPO loss to train299

the restoration vectors Θ, ensuring that the outputs300

generated from inputs without privacy spans and301

restored using the corresponding restoration vec-302

tors, can closely resemble those generated from the303

intact inputs.304

More details of the probe technique, the com-305

mon top-K head set construction and restoration 306

vectors training process are provided in Appendix 307

D, Appendix E and Appendix F, respectively. After 308

restoration vectors training, the server will release 309

all restoration vectors to clients. 310

4.2 Inference Stage 311

Meta Vector Construction. According to the 312

principle of “Information Self-Determination 313

Right”, users should identify the privacy spans in 314

their input by themselves, because the definition of 315

privacy varies from person to person. For each pri- 316

vacy span, the client employs a lightweight model 317

(e.g. BERT (Devlin et al., 2019)) to classify it into 318

a specific type within the predefined privacy span 319

type set C. For example, the privacy span “My 320

stools sometimes is black” will be classified into 321

the predefined privacy span type black stools. Due 322

to the long-tailed distribution of privacy spans, our 323

predefined type set can cover the majority of pri- 324

vacy spans. Even when encountering privacy spans 325

of out-of-set types, classifying these rare spans into 326

the types of the predefined set can still be effective, 327

as shown in §6.6. 328

Then the client should aggregate those restora- 329

tion vectors corresponding to the privacy spans 330

into a single meta vector. Transmitting a singular 331

meta vector enhances privacy protection compared 332
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to multiple vectors, as it prevents potential infor-333

mation leakage regarding the quantity of privacy-334

sensitive segments.335

However, Equal Weighted Aggregation (EWA)336

may weaken the influence of critical privacy spans337

and amplify the effect of irrelevant ones. There-338

fore, we propose a novel method called Attention-339

aware Weighted Aggregation (AWA) which es-340

timates a weight for each privacy span and then341

takes the weighted sum of corresponding restora-342

tion vectors as the meta vector. Given computa-343

tional constraints on client devices, we employ a344

lightweight BERT model to evaluate privacy span345

significance by calculating the mean attention score346

ws across all attention heads and tokens within the347

input query. This metric quantifies the relative im-348

portance of each privacy-related span.349

Considering that each privacy span type c will350

have multiple restoration vectors rch across all351

edited heads in Hk, we first concatenate these352

restoration vectors from multiple heads to form353

rc for privacy span type c. Then, we compute the354

meta vector R by calculating the weighted sum of355

the restoration vector rc, normalizing the summary,356

and adding noise N for privacy protection. The357

process is formulated as follows:358

rc = Concat(rc1, r
c
2, ..., r

c
h), (1)359

Z =

∑
s∈Sq

ws · rc

||
∑

s∈Sq
ws · rc||2

, (2)360

R = Z +N , (3)361

where s represents the privacy span of type c, Sq362

denotes all privacy spans in the user query q and Z363

represents the normalization of the weighted sum,364

which can also be viewed as the meta vector with-365

out protection. The injected noise N is sampling366

from the distribution p(N ) ∝ exp(−ϵ∥N∥), to367

achieve the dχ-privacy mechanism, where ϵ is the368

privacy hyperparameter (Feyisetan et al., 2020).369

After construction, the meta vector R and the370

incomplete query q̂ (with privacy spans removed)371

are transmitted to the server for inference.372

Privacy Restoration. We utilize the meta vector373

R to restore the information in the removed privacy374

spans during inference, as illustrated in the lower375

right part of Figure 1. This operation is conducted376

on the server side.377

Following activation steering methods (Li et al.,378

2023c; Chen et al., 2024), we apply the meta vec-379

tor to the outputs of the edited attention heads to380

achieve restoration. Let uh represent the hidden 381

state of the last token on head h given the incom- 382

plete user query q̂ and Rh denotes a part of the 383

meta vector R for head h. Then the hidden state of 384

the last token on head h after restoration, denoted 385

as ūh, can be computed by: 386

ūh = uh + ||uh||2 · Rh, ∀h ∈ Hk. (4) 387

During inference, if a head belongs to the common 388

top-K heads set Hk, its hidden state should be mod- 389

ified using Eq 4. To prevent privacy leakage from 390

the generated output, we employ sampling-based 391

generation, which is protected by the Exponential 392

Mechanism (Utpala et al., 2023a). 393

5 Privacy Guarantee Analysis 394

In this section, we analyze the privacy guarantees 395

and privacy budget of PrivacyRestore. 396

Our approach transmits only a privacy-free in- 397

complete query and a meta vector secured by dχ- 398

privacy mechanism. Therefore, even if attackers 399

steal both the incomplete user query and the meta 400

vector during transmission or even hack the server, 401

they still cannot infer any user privacy. Further- 402

more, the confidentiality of the server’s LLM pa- 403

rameters and edited head set Hk prevents attackers 404

from reconstructing the generation process using in- 405

tercepted elements, ensuring robust security against 406

privacy breaches. Then we analyze the privacy bud- 407

get of our method, as follows: 408

Theorem 5.1. PrivacyRestore fulfills dχ-privacy 409

and provides a privacy budget of 2ϵ, where ϵ de- 410

notes privacy hyperparameter. The privacy budget 411

of PrivacyRestore is independent of the length of 412

the protected text. 413

Pointed by Mattern et al. (2022b), directly ap- 414

plying dχ-privacy mechanism to all tokens in the 415

user query, for privacy protection, suffers from the 416

linear growth problem of privacy budget. In con- 417

trast, our method ensures that the privacy budget 418

remains constant at 2ϵ, independent of the length 419

of protected text. We also provide empirical evi- 420

dence to demonstrate that our approach effectively 421

addresses the linear growth problem of the privacy 422

budget encountered in dχ-privacy in Section 6.4. 423

Detailed proof of Theorem 5.1 is provided in Ap- 424

pendix H. 425
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6 Experiments426

6.1 Experiments Setup427

Datasets. To evaluate our method, we construct428

three privacy-preserving datasets covering the429

medical and legal domains: Pri-DDXPlus, Pri-430

NLICE, and Pri-SLJA. The detailed process of431

dataset construction and statistical information can432

be found in Appendix J.433

Metrics. The evaluation assesses both perfor-434

mance and inference efficiency. For performance435

evaluation, we use MC1/MC2 (Zhang et al., 2024),436

ROUGE-L (Lin, 2004), and LLM-Judge (LLM-J)437

(Zheng et al., 2023a) metrics. For inference effi-438

ciency, we use the Throughput (TP) metric. The439

details of these metrics and their corresponding cal-440

culation processes are provided in Appendix L.1.441

Compared Methods. To demonstrate the effec-442

tiveness of our method, we compare our model443

with the following baselines: No Protection, No444

Restoration, dχ-privacy (Feyisetan et al., 2020),445

dχ-privacy on privacy spans and Paraphrase446

(Mattern et al., 2022b; Utpala et al., 2023b). A447

detailed introduction to these baseline methods is448

provided in Appendix L.2.449

Settings of Privacy Hyperparameters. The hy-450

perparameters related to privacy protection strength451

are ϵ for dχ-privacy (on privacy spans) and Priva-452

cyRestore, and τ for paraphrase. For a fair com-453

parison, we ensure all methods are under the same454

privacy budget. We show the calculation process of455

determining values of ϵ and τ for different methods456

on different datasets in Appendix M.457

6.2 Main Results458

As shown in Table 1, we evaluate the perfor-459

mance and inference efficiency of PrivacyRestore460

and other compared methods across three privacy-461

preserving datasets. Compared to dχ-privacy and462

paraphrase, dχ-privacy on privacy spans solely ap-463

ply dχ-privacy mechanism to those privacy spans464

and achieves higher scores in MC1/2, ROUGE-L465

and LLM-J. The possible reason for this is that466

both dχ-privacy and paraphrase operate on the en-467

tire user input, instead of specific privacy spans.468

Injecting noise into the entire input creates larger469

disturbances during inference compared to only470

corrupting a limited number of privacy spans.471

PrivacyRestore achieves best scores in MC1/2472

and LLM-J compared to other privacy-preserving473

methods. In terms of the ROUGE-L evaluation474

metric, PrivacyRestore achieve the best result in 475

Pri-NLICE while ranking second in the other 476

two datasets. This discrepancy likely stems from 477

ROUGE-L’s dependence on n-gram overlap be- 478

tween the reference text and the generated output, 479

which does not fully reflect the quality of generated 480

outputs. As demonstrated by the examples in Fig- 481

ure 8 and Appendix V, PrivacyRestore often gener- 482

ates outputs with different sentence structures while 483

still providing accurate answers. Consequently, our 484

method achieves slightly lower ROUGE-L scores 485

but significantly higher LLM-J scores compared 486

to dχ-privacy on privacy spans. Furthermore, the 487

ROUGE-L metric displays larger variance than the 488

LLM-J metric, potentially due to its sensitivity to 489

expression rather than the underlying meaning of 490

the generated output. Shown in Table 1, No Protec- 491

tion servers as the performance upper bound for 492

all privacy-preserving methods while No Restora- 493

tion servers as the performance lower bound. Our 494

method significantly outperforms No Restoration 495

and is even comparable to No Protection, strongly 496

validating the effectiveness of our approach. 497

Although PrivacyRestore incurs slight latency 498

from client-side privacy span identification and 499

meta-vector construction, its throughtput attain 500

nearly 70% of the best results, which is accept- 501

able. 502

6.3 Empirical Privacy Protection Results 503

In this section, we implement attack methods to 504

empirically show that our approach offers superior 505

privacy protection compared to baselines, both for 506

user inputs and model outputs. 507

Privacy Protection Evaluation on Inputs. In 508

this section, we implement the embedding inverse 509

attack (Li et al., 2023b; Morris et al., 2023) and 510

attribute inference attack (Li et al., 2022) to at- 511

tack the inputs of our method and other baselines, 512

including the meta vector and the privacy-free in- 513

complete user query. As shown in Figure 2, as 514

the privacy budget increases, the privacy protec- 515

tion capability of all privacy-preserving methods 516

decreases. However, PrivacyRestore consistently 517

outperforms others across all privacy budgets, as 518

indicated by its lower ROUGE-L and F1 scores. 519

Privacy Protection Evaluation on Outputs. We 520

use the sampling-based method to generate the out- 521

puts on the server. As demonstrated by Utpala 522

et al. (2023a); Mattern et al. (2022b), sampling- 523

based generation satisfies the Exponential Mech- 524
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Datasets Methods MC1 ↑ MC2 ↑ ROUGE-L ↑ LLM-J ↑ TP ↑

Pri-DDXPlus

No Restoration (lower bound) 33.57±0.00 32.49±0.01 25.19±0.43 3.21±0.01 40.86±0.01

No Protection (upper bound) 64.88±0.01 61.48±0.03 100.00±0.00 5.58±0.03 41.08±0.09

dχ-privacy 28.79±0.02 30.26±0.01 17.97±0.00 1.17±0.00 37.45±0.01

dχ-privacy on privacy spans 44.71±0.29 42.36±0.00 29.17±0.04 3.31±0.00 33.21±0.00

Paraphrase 27.92±0.56 28.56±0.07 18.04±0.01 1.23±0.00 35.42±0.67

PrivacyRestore 62.97±0.00 60.19±0.00 27.24±0.26 4.47±0.00 26.09±0.08

Pri-NLICE

No Restoration (lower bound) 27.07±1.98 28.63±2.23 16.90±0.51 1.61±0.03 41.08±0.01

No Protection (upper bound) 80.30±0.38 77.60±1.23 100.00±0.00 5.90±0.04 41.44±0.04

dχ-privacy 29.08±0.00 29.72±0.00 15.68±0.02 1.41±0.00 38.30±0.00

dχ-privacy on privacy spans 30.00±0.09 31.46±0.00 22.97±0.00 3.01±0.00 35.73±0.57

Paraphrase 28.46±0.02 29.15±0.03 16.15±0.01 1.62±0.00 37.22±0.07

PrivacyRestore 62.23±1.70 57.94±0.09 24.42±0.81 3.67±0.01 32.33±0.01

Pri-SLJA

No Restoration (lower bound) 24.92±0.98 25.97±1.12 31.02±0.16 4.43±0.01 39.14±0.09

No Protection (upper bound) 69.57±0.61 67.58±0.43 100.00±0.00 5.44±0.03 39.49±0.13

dχ-privacy 16.66±0.37 17.57±0.04 23.35±0.00 2.08±0.00 36.83±0.03

dχ-privacy on privacy spans 24.23±1.69 26.63±0.67 40.10±0.00 4.54±0.00 36.16±0.00

Paraphrase 16.21±0.02 17.52±0.02 24.90±0.01 2.07±0.01 31.31±0.05

PrivacyRestore 35.47±1.48 35.41±0.64 37.56±0.06 5.25±0.00 30.73±0.04

Table 1: Comparison of the performance and the inference efficiency between PrivacyRestore and other baselines
across three privacy-preserving datasets. All experiments are conducted over 3 runs, with the average results and
variances reported. The best results are highlighted in bold.
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Figure 2: Results of embedding inverse attack and at-
tribute inference attack for all baselines under different
privacy hyperparameters ϵ on Pri-DDXPlus.

anism (McSherry and Talwar, 2007), which can525

effectively prevent privacy leakage from the gener-526

ated outputs. We implement the embedding inver-527

sion and attribute inference attacks for the gener-528

ated outputs under various generation temperatures529

and also count the occurrence of privacy spans in530

the outputs. As shown in Table 2, the attack per-531

formance remains consistently low, demonstrating532

that sampling-based generation effectively prevents533

privacy leakage from the generated outputs.534

Implementation details these attack methods can535

be found in Appendix O and Appendix Q.536

6.4 Privacy Protection for Long Text537

In this section, we implement attack methods for538

both the dχ-privacy baseline and our PrivacyRe-539

store approach under varying protected text lengths,540

Temperature 0.75 1.0 1.25 1.5 1.75

EIA(ROUGE-L) 0.037 0.038 0.035 0.035 0.037
AIA(F1) 0.096 0.097 0.092 0.092 0.097
Occurrence 0.031 0.030 0.030 0.029 0.031

Table 2: Analysis of output privacy leakage from out-
puts on Pri-DDXPlus dataset. EIA denotes embedding
inverse attack. AIA indicates attribute inference attack.
Occurrence metric directly counts the frequency of pri-
vacy spans in the generated output. We primarily use a
temperature of 1.0 during generation in the other experi-
ments.

illustrating robust privacy and addressing the linear 541

growth of the privacy budget in dχ-privacy. 542

For dχ-privacy, we randomly select a propor- 543

tion of tokens as dχ-privacy Percentage to pro- 544

tect—higher percentages yield longer protected 545

text. Shown in Figures 3(a) and 3(b), both prompt 546

injection and attribute inference attacks are imple- 547

mented with attack performance increases with 548

the percentage. It is caused by the linear growth 549

problem of the privacy budget encountered in dχ- 550

privacy, as raised by Mattern et al. (2022b). 551

For PrivacyRestore, a proportion of privacy 552

spans is selected for protection, defined by the Pri- 553

vacy Span Ratio α, with larger α indicating more 554

spans. Shown in Figures 3(c) and 3(d), aside from 555

the embedding inverse attack on the Pri-NLICE 556

dataset, attack performance remains stable across 557

different α values. These results confirm that our 558

method provides strong privacy protection, even as 559
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Figure 3: (a) and (b) present the results of dχ-privacy method under the prompt injection attack and attribute
inference attack under varying dχ-privacy percentages across three privacy-preserving datasets. (c) and (d) show the
results of PrivacyRestore for the embedding inverse attack and attribute inference attack under different privacy
span ratios α on the same three datasets.

text length increases.560

6.5 Ablation study561

Attention-Aware Weighted Aggregation. To562

assess the effectiveness of the Attention-Aware563

Weighted Aggregation (AWA) component, we564

compare its performance and inference efficiency565

against Equal Weighted Aggregation (EWA). Un-566

like AWA, EWA generates the meta vector by sum-567

ming all restoration vectors equally. As shown568

in Table 3, EWA results in lower MC1, MC2,569

ROUGE-L, and LLM-J scores compared to AWA,570

indicating that equal weighting will diminish per-571

formance by amplifying irrelevant privacy spans.

Datasets Methods MC1 ↑ MC2 ↑ ROUGE-L ↑ LLM-J ↑ TP ↑

Pri-DDXPlus
EWA 53.84 51.12 26.32 4.29 26.35
AWA 62.97 60.19 27.24 4.47 26.09

Pri-NLICE
EWA 46.92 45.89 22.78 3.12 32.75
AWA 62.23 57.94 24.42 3.67 32.33

Pri-SLJA
EWA 30.88 30.70 30.96 4.10 31.00
AWA 35.47 35.41 37.56 5.25 30.73

Table 3: Comparison of the performance and the infer-
ence efficiency between Equal Weighted Aggregation
(EWA) and Attention-aware Weighted (AWA) Aggrega-
tion. The best results are highlighted in bold.

572573 Other Ablation Studies. Furthermore, we eval-574

uate PrivacyRestore’s performance with varying575

numbers of edited heads (K) and with an alterna-576

tive LLM backbone (Llama-13b-chat) in Appendix577

U. The results in Table 14 and Figure 7 clearly578

demonstrate the effectiveness of our method.579

6.6 Extension Analysis of PrivacyRestore580

In this section, we analyze the extension PrivacyRe-581

store to other more extreme scenarios.582

Encountering Out-of-Set Privacy Spans. Due583

to the long-tailed distribution of privacy spans584

shown in Appendix K, the core set covers most585

spans. We further evaluated our method when en- 586

countering out-of-set spans. Specifically, we in- 587

clude only a subset of privacy span types in our 588

core set. Table 10 shows that our method still 589

demonstrates superior performance, compared to 590

No Restoration baseline. More implementation 591

details are shown in Appendix S. 592

Users Unable to Determine Privacy Spans. Our 593

method follows the principle of “Information Self- 594

Determination Rights” allowing users to determine 595

their own privacy spans. Even when users cannot 596

or choose not to specify these spans, our method 597

remains effective by integrating with existing text 598

sanitization techniques (Kan et al., 2023; Chen 599

et al., 2023a). As shown in Table 13, our method 600

can maintains superior performance, and details of 601

implementation are provided in Appendix T. 602

7 Conclusion 603

We propose PrivacyRestore which protects the pri- 604

vacy within user inputs during inference in online 605

LLM inference services. PrivacyRestore achieves 606

privacy protection by directly removing privacy 607

spans in the user input and then restoring informa- 608

tion via activation steering. PrivacyRestore pro- 609

vides a practical and efficient solution for protect- 610

ing privacy while maintaining satisfactory perfor- 611

mance and inference efficiency. We demonstrate 612

that PrivacyRestore inherently addresses the lin- 613

ear growth problem of the privacy budget found 614

in dχ-privacy. We curate three privacy-preserving 615

datasets covering medical and legal fields, and Pri- 616

vacyRestore achieves strong performance and in- 617

ference efficiency across all datasets. Additionally, 618

we implemented various attack methods, and the 619

attack results demonstrate PrivacyRestore’s robust 620

privacy protection capabilities. 621

8



Limitations622

This section aims to highlight the limitations of our623

work and provide further insights into the research624

in this area.625

One limitation is that we only evaluate our626

method in the medical and legal domains and ad-627

ditional domains could be explored to validate its628

effectiveness.629

Another limitation is that more attack methods630

could be explored to assess the privacy protection631

of our approach. While we have implemented most632

of the current advanced attack methods, to the best633

of our knowledge, there may be others yet to be634

tested. Additionally, more advanced attack method-635

ologies may emerge in the future, which will also636

need to be evaluated.637

Ethics Statement638

We adhere to the ACL Ethics Policy and have con-639

ducted our research using publicly available repos-640

itories and datasets. In the PrivacyRestore frame-641

work, we have adhered to rigorous ethical standards642

to safeguard user privacy and uphold data secu-643

rity. All three datasets (Pri-SLJA, Pri-NLICE and644

Pri-DDXPlus) utilized in this research are sourced645

exclusively from publicly available repositories,646

ensuring that these datasets are devoid of any per-647

sonally identifiable information and minimizing648

potential privacy risks. Our methodology does not649

access or reconstruct the original identifiable data650

or its sources. This ensures that the research does651

not infringe upon individual privacy rights.652

However, due to the fact that we employed mul-653

tiple LLMs in this study, such as ChatGPT, Qwen654

and GPT-4. The findings may be influenced by655

the inherent assertiveness, linguistic patterns, and656

diverse biases characteristic of these LLMs.657
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Appendix Overview968

The appendix is divided into two parts: Ap-969

pendix A–I provide backup theoretical explana-970

tions of PrivacyRestore, while Appendix J–X971

present additional experimental results on Priva-972

cyRestore from different aspects.973

A Notations974

Here we present all notations used in our paper in975

Table 4.976

B Related Works977

In this section, we introduce the related works on978

user input protection methods, which are currently979

divided into two categories: SMPC-based methods980

and DP-based methods. Here, we provide a more981

detailed introduction to Secure Multi-Party Com-982

putation (SMPC) and Differential Privacy (DP).983

B.1 Secure Multi-Party Computation (SMPC)984

Secure multi-party computation (SMPC) methods985

utilize multi-party encryption algorithms to enable986

collaborative computation among multiple parties987

while protecting the privacy of their data. However,988

most nonlinear operations in LLMs cannot directly989

support secure multi-party computation. To ad-990

dress this challenge, current SMPC methods focus991

on two optimization directions: model structure-992

oriented optimization and protocol-oriented opti-993

mization.994

The model structure-oriented approach aims995

to replace SMPC-unfriendly nonlinear operations996

with SMPC-friendly alternatives. For instance,997

MPC-Former (Li et al., 2023a) approximates non-998

linear operations in Transformer using polynomials999

and maintains performance through model distil-1000

lation. MERGER (Liang et al., 2024) integrates1001

previous techniques to natural language genera-1002

tion (NLG) tasks by bypassing embedded compu-1003

tation and reorganizing linear operations in Trans-1004

former modules, further enhancing computational1005

efficiency and model performance. In contrast, the1006

protocol-oriented approach focuses on designing1007

efficient SMPC operators for nonlinear operations1008

in LLMs while preserving the original model struc-1009

ture. Recent works (Hao et al., 2022a; Liu and Liu,1010

2023; Zheng et al., 2023b; Gupta et al., 2023) have1011

improved the efficiency of nonlinear operations1012

in privacy-preserving LLMs inference by utilizing1013

various SMPC protocols, such as confusion circuit1014

and function secret sharing.1015

Although SMPC-based methods can be applied 1016

to protect user inputs during model inference, they 1017

still suffer from large inference time overhead. For 1018

example, inference on the RoBERTa-Base model 1019

takes 168.43 seconds (Hao et al., 2022b), making 1020

current SMPC methods impractical for online LLM 1021

inference services. 1022

B.2 Differential Privacy (DP) 1023

Differential Privacy (DP), as introduced by Dwork 1024

et al. (2016), is designed to protect individual pri- 1025

vacy by preventing attackers from identifying spe- 1026

cific participants in a dataset. Several variants of 1027

DP have been developed to enhance privacy pro- 1028

tection across various settings, adapting the core 1029

principles of DP to different types of data and threat 1030

models. Notable examples include Centralized Dif- 1031

ferential Privacy (CDP), Local Differential Privacy 1032

(LDP), and dχ-privacy. 1033

CDP (Dwork et al., 2016) operates under the 1034

assumption that all data has been stored in a cen- 1035

tral repository. It guarantees that attackers cannot 1036

distinguish between any two adjacent repositories 1037

based on query results. 1038

In contrast, LDP (Duchi et al., 2013) provides 1039

a stronger guarantee, ensuring that attackers can- 1040

not distinguish between any two adjacent inputs. 1041

Mattern et al. (2022b) and Utpala et al. (2023b) 1042

propose using paraphrasing techniques to achieve 1043

LDP on user inputs. 1044

dχ-privacy (Feyisetan et al., 2019), a relaxed ver- 1045

sion of LDP, incorporates metrics that measure the 1046

similarity between inputs, allowing for more flex- 1047

ible control over the privacy budget. The formal 1048

definition of dχ-privacy Mechanism is provided 1049

in Appendix C.1. As proposed by Mattern et al. 1050

(2022b), applying dχ-privacy to all tokens in user 1051

inputs, known as word-level privatization, suffers 1052

from the linear growth problem of the privacy bud- 1053

get. This means that as the length of the protected 1054

text increases, the privacy protection performance 1055

of dχ-privacy decreases. 1056

C Preliminaries for Methodology 1057

The dχ-privacy mechanism and activation steer- 1058

ing technique are two crucial components of our 1059

method. Here, we provide a more detailed illustra- 1060

tion of these techniques for a better understanding 1061

of our method. 1062
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Notations Definitions

c A privacy span type.
C All possible privacy span types.
s A single privacy span.
Sq All privacy spans in user query q.
h A single edited head.
Hk The common top-K heads set.
Ha The set of all heads.
Hc

k The top-K heads set of the privacy span type c.
Lh The score list of the head h across all privacy spans.
K The number of selected edited heads.
Fc
h The probe of privacy span type c on head h.

θch The parameters of the probe Fc
h.

uh The output hidden state on head h.
ūh The output hidden state after restoration on head h.
rch The restoration vector for privacy span type c on head h.
Θ All restoration vectors for all privacy spans on all edited heads.
λ The tradeoff hyperparameter of ORPO loss.
ws The weight of privacy span s.
n The number of tokens in the user query.
nh The number of heads in the lightweight model.
Attnh(x, y) The attention score of y attending to x on head h.
Zh, Z ′

h Any two normalized weighted sums of restoration vectors on head h.
R The meta vector.
Rh The part of the meta vector for head h.
N The added noise on the normalized weighted sums for meta vector construction.
I The user inputs in the training set.
Iall = {I1, ..., Im} All user inputs in the training set.
Yc = {y1, ..., ym} The labels indicating whether the corresponding input contains the privacy span of type c.
m The size of training set.
I , I ′ Any two user inputs.
{i1, ..., in} The tokens of the input I .
{e1, ..., en} Corresponding token embeddings of the input I .
O = {o1, ..., on} The possible output sets for I , with each one representing a single output.
Î The incomplete user input with all privacy spans removed in the training set.
Îall = {Î1, ..., Îm} All user inputs with privacy spans removed in the training set.
a The output given the complete input I .
â The output given the incomplete input Î .
q The user query during inference.
q̂ The incomplete user query with all privacy spans removed during inference.
ϵ The privacy hyperparameter.
τ The generation temperature.
δ The privacy hyperparameter.
nps The number of tokens associated with the privacy spans in the user query.
α The proportion of privacy spans selected for protection.
dχ Any distance function used by dχ-privacy.
de The distance between token embeddings.
dz The distance between normalized weighted sums.

Table 4: Definitions of all notations used in our paper.
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C.1 dχ-privacy Mechanism1063

dχ-privacy mechanism (Feyisetan et al., 2019) is1064

a variant of the differential privacy mechanism de-1065

signed to protect the privacy and incorporate a dis-1066

tance measure into the privacy budget. The detailed1067

definition of dχ-privacy is as follows:1068

Definition C.1. (dχ-privacy mechanism). A ran-1069

domized mechanism M : I → O fulfills ϵ-dχ-1070

privacy if for all adjacent inputs I, I ′ ∈ I and all1071

possible outputs O ⊂ O, the following condition1072

holds:1073

P (M(I) ∈ O) ≤ exp(ϵdχ(I, I
′))P

(
M(I ′) ∈ O

)
,1074

where dχ is a distance function defined on I.1075

Numerous prior works have applied the dχ-1076

privacy mechanism (Chatzikokolakis et al., 2013;1077

Alvim et al., 2018) to word embeddings to achieve1078

word-level privatization (Feyisetan et al., 2020,1079

2019; Xu et al., 2020; Bo et al., 2021). In our1080

approach, we employ the dχ-privacy mechanism to1081

protect the meta vector, preventing privacy leakage1082

from the meta vector.1083

To implement the dχ-privacy mechanism on the1084

meta vector/token embeddings, noise must typi-1085

cally be added to it, as shown below:1086

R = Z +N , (5)1087

P(N ) ∝ exp(−ϵ||N ||), (6)1088

where Z is the unprotected meta vector/token em-1089

beddings, N is the added noise, R is the protected1090

meta vector/token embeddings and ϵ is the privacy1091

parameter of the mechanism. According to Feyise-1092

tan et al. (2019), to sample the noise N from its1093

distribution, we can compute it as follows:1094

v ∈ {v ∈ Rn : ||v|| = 1} (7)1095

P(l) ∝ ln−1e−ϵl

Γ(n)ϵ−n
, (8)1096

N = l · v, (9)1097

where n is the size of the meta vector and ϵ is the1098

privacy parameter.1099

C.2 Activation Steering Technique1100

Activation steering methods (Li et al., 2023c;1101

Turner et al., 2023; Hernandez et al., 2023) control1102

the behavior of LLM by modifying their activations1103

during the inference stage. It serves as a crucial1104

part of our methodology to restore information con-1105

tained within the removed privacy spans during1106

LLM inference. Typically, the attention mecha- 1107

nism (Vaswani et al., 2017) in LLM is responsible 1108

for capturing contextual information, and it can be 1109

expressed as: 1110

q = Wq · i, (10) 1111

u = Softmax(
q ·KT

√
dk

) · V, (11) 1112

where i is the input hidden state, u is the output 1113

hidden state, Wq is the query weight matrix, K is 1114

the key of the context and V is the value of the 1115

context and dk is the dimension of the key. Acti- 1116

vation steering methods add some steering vectors 1117

into the output hidden state and, in our methods, 1118

we add the meta vector into the output hidden state 1119

to restore information, which can be expressed as: 1120

u = u +R, (12) 1121

where R is the meta vector. 1122

D Selecting the Most Relevant Heads 1123

In this section, we provide the implementation de- 1124

tails of the probe technique (Alain and Bengio, 1125

2016; Tenney et al., 2019; Belinkov, 2022) to iden- 1126

tify the most relevant attention heads for each type 1127

of privacy span. 1128

Let Iall = I1, ..., Im represent the user inputs 1129

in the training set, where m is the size of the 1130

training set. For a given privacy span type c, let 1131

Yc = y1, ..., ym represent the corresponding labels, 1132

where yi = 1 if and only if the input Ii contains a 1133

privacy span of type c. 1134

For each user input Ii, we record the hidden state 1135

of the last token on each attention head. We then 1136

train a binary classifier for each head, tailored to 1137

the privacy span type c, as the probe. The probe 1138

takes the hidden state of the last token as input 1139

and predicts whether the input contains the privacy 1140

span of type c. The probe is formulated as: 1141

Fc
h(uh) = σ(θch · uh), (13) 1142

where Fc
h(·) is the probe of privacy span type c on 1143

head h, uh is the hidden state of the last token on 1144

head h, θch are the parameters of the probe, and σ(·) 1145

indicates the sigmoid function. 1146

A probe Fc
h(·) with higher accuracy indicates 1147

a stronger correlation between the head h and the 1148

privacy span type c. Therefore, we only select the 1149

top K attention heads, with the highest accuracies, 1150

as the most relevant heads for the privacy span type 1151

c. 1152
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E The Algorithm of Common Top-K1153

Selector1154

In this section, we present the detailed implemen-1155

tation of Common Top-K Selector algorithm, as1156

shown in Algorithm 1.1157

Firstly, we initialize an empty score list Lh for1158

each head. Secondly, each privacy span type c has1159

its corresponding top-K heads set Hc
k. For each1160

head h in Hc
k, we append Score(h,Hc

k) into its1161

score list Lh. Score(h,Hc
k) is defined as the rank1162

of head h among Hc
k in ascending order based on1163

the accuracy of the probe associated with the head1164

h and privacy span type c. Thirdly, we calculate1165

the average value of each score list Lh as the score1166

of the corresponding head h. Finally, we sort all1167

heads in the LLM by the scores and pick up top-K1168

heads as the common top-K head set Hk.1169

Algorithm 1 Common Top-K Selector
Input: S is the set of privacy spans; Ha is the set
of all heads; Hc

k denotes the set of top-K heads
corresponding to the privacy span type c;
Score(h,Hc

k) return the rank of head h among Hc
k

in ascending order based on the accuracy of the
probe associated with the head h and privacy span
type c. The score of the head with lowest accuracy
is 1. The score of the head with highest accuracy
is K.

1: Initialize an empty score list Lh = [ ] for each
head h in Ha.

2: for c in C do
3: for h in Hc

k do
4: Append Score(h,Hc

k) into Lh.
5: end for
6: end for
7: for h in Ha do
7: scoreh = average(Lh)
8: end for
9: Sort Ha according to scoreh and select top K

heads to obtain common top-K head set Hk.
Output: Hk is the common top-K head set.

F Details of the Training Process1170

In our method, we use the ORPO loss (Hong et al.,1171

2024) to train the restoration vectors, which are1172

employed to restore information in the removed1173

privacy spans. The training objective is to ensure1174

that, despite receiving incomplete inputs with all1175

privacy spans removed, the model can still generate1176

high-quality outputs similar to those produced from 1177

intact inputs by utilizing these restoration vectors. 1178

Assuming that Θ is the trainable restoration vec- 1179

tors, Î denotes the input with privacy spans re- 1180

moved, Îall = {Î1, · · · , Îm} represents the train- 1181

ing set of incomplete inputs, a is the initial output 1182

give the complete input, â is the output given the 1183

incomplete input with privacy spans removed, then 1184

the training loss of our method can be express as: 1185

ratio(a|Î; Θ) =
P(a|Î; Θ)

1− P(a|Î; Θ)
,

LORPO =
∑
Î∈Îall

− logP(a|Î; Θ)

− λ log σ

(
log

ratio(a|Î; Θ)

ratio(â|Î; Θ)

)
,

(14) 1186

where λ is the hyperparameter that controls the 1187

weight of the loss term and the P(a|Î; Θ) is the 1188

probability of the model generating the initial out- 1189

put a given the intact input after being restored by 1190

Θ, and P(â|Î; Θ) is the probability of generating 1191

â. After training the restoration vectors using the 1192

above loss, these vectors can effectively restore the 1193

information in the missing privacy spans and guide 1194

the model to generate outputs similar to those pro- 1195

duced from intact inputs, even though no privacy 1196

spans are present in the input indeed. 1197

We also provide a training example for better 1198

understanding of our training process. As shown 1199

in the loss function in Equation 14, each training 1200

sample will contain the incomplete input without 1201

privacy spans Î , the intact input I , the output a 1202

given intact input I and the output given the incom- 1203

plete input Î . An example of a training sample is 1204

presented in Figure 4. 1205

G Usage of the Lightweight Model on the 1206

Client Side 1207

As shown in Section 4.2, our method utilizes the 1208

lightweight model (e.g. Bert-based-uncased (De- 1209

vlin et al., 2019)) to classify the privacy spans in 1210

the user query and compute the importance score 1211

of these privacy spans for conducting the following 1212

Attention-aware Aggregation (AWA). The detailed 1213

implementations are as follows: 1214

G.1 For Classifying Privacy Span Types 1215

Each privacy span type can be expressed in various 1216

forms within the user query, for example,“fever” 1217
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Complete input 𝑰	: I have a history of chronic pancreatitis, 
diabetes, and obesity. My family has a history of pancreatic 
cancer. I experienced a persistent cough, frequent diarrhea, 
nausea, abdominal pain, pale stools, dark urine, and I've 
noticed that I've been losing weight unintentionally. I'm 
concerned about these symptoms and wondering if they could 
be related to my existing medical conditions or if there might 
be something else going on. What is the likely diagnosis?

Incomplete input without privacy spans 𝑰#: I experienced the 
symptoms of cough, nausea. I'm concerned about these 
symptoms and wondering if they could be related to my 
existing medical conditions or if there might be something 
else going on. What is the likely diagnosis?

The output 𝒂 given complete input 𝑰: Based on the 
symptoms and medical history provided, the likely diagnosis 
for the patient is pancreatic cancer.\n\nPancreatic cancer is a 
common cause of abdominal pain, weight loss, and 
gastrointestinal symptoms, including cough, diarrhea, nausea, 
and pale or dark urine. ... 

The output 𝒂%	 give incomplete input 𝑰#: Thank you for the 
question. Based on the symptoms provided, the likely 
diagnosis for a person presenting with cough and nausea is a 
respiratory tract infection, such as bronchitis or 
pneumonia.\n\nBronchitis is an inflammation of the bronchial 
tubes .... 

Figure 4: A training sample in our framework. Text
highlighted with a yellow background represents the
privacy spans in user inputs. Text highlighted with a
green background indicates the correct diagnosis. Text
highlighted with a red background denotes the incorrect
diagnosis.

may be represented as“elevated body temperature”.1218

After the user identifies the privacy spans in the1219

query, we should classify these spans into those1220

predefined types from the set C.1221

Firstly, we use a lightweight Bert-based-uncased1222

model on the client side to first extract the vector1223

representation of the privacy span. Specifically, we1224

compute the mean of the hidden states from the1225

last layer across all tokens within the privacy span1226

to obtain the vector representation. We construct1227

a multi-layer perceptron (MLP) classifier, consist-1228

ing of an input layer, two hidden layers, and an1229

output layer. The MLP classifier takes the vector1230

representation of the privacy span as input, and the1231

output label corresponds to the privacy span type.1232

During the training process, we will fix the Bert-1233

based uncased model while only training the MLP1234

classifier.1235

G.2 For Computing the Importance Score of1236

Privacy Spans1237

Each privacy span in the user query should have a1238

distinct importance weight and we also utilized the1239

Bert-base-uncased model to assess the importance1240

weights for the privacy spans. To be specific, we1241

compute the average received attention of privacy 1242

span s across all attention heads and all tokens in 1243

the user query as the importance score ws. Assume 1244

s is the privacy span s, q is the user query, and then 1245

the importance weight of the privacy span ws is 1246

calculated as: 1247

ws =
1

n

1

nh

n∑
t=1

nh∑
h=1

Attnh(s, qt), (15) 1248

where n is the number of tokens in the query, nh 1249

is the number of attention heads in the lightweight 1250

model, qt is the t-th token of q, and Attnh(s, qt) 1251

denotes the attention score of qt attending to the 1252

privacy span s. Higher ws indicates that privacy 1253

span s receives more attention from other tokens in 1254

the user query q, reflecting greater importance. 1255

H Proof of Theorem 5.1 1256

As shown in Figure 1, during the inference stage, 1257

only the meta vector and the incomplete query with 1258

privacy spans removed are transmitted from the 1259

client to the server. The incomplete query does not 1260

contain any privacy-sensitive information and is 1261

secure for the user. The meta vector contains infor- 1262

mation about all privacy spans and could be vulner- 1263

able to adversaries attempting to reverse-engineer 1264

these spans, requiring privacy protection. 1265

PrivacyRestore protects the meta vector by 1266

adding noise N which is sampling from the dis- 1267

tribution p(N ) ∝ exp(−ϵ∥N∥), before transmis- 1268

sion, as shown in Eq 3. Next, we will demonstrate 1269

that injecting noise in this manner adheres to the 1270

definition of dχ-privacy and effectively protects 1271

the user privacy contained in the meta vector. 1272

Assume Z represents the meta vector before 1273

adding noise, R denotes the meta vector after 1274

adding noise, as shown in Eq 2 and 3. The process 1275

of adding noise can be represented by M. Then, 1276

the possibility that Z becomes R after adding noise 1277

N is 1278

P(M(Z) = R) = P(Z +N = R)

= P(N = R− Z)

= exp(−ϵ||R − Z||).
(16) 1279

Then for any two meta vectors before adding noise, 1280

Z and Z ′, we have: 1281

P[M(Z) = R]

P[M(Z ′) = R]
=

exp(−ϵ||R − Z||)
exp(−ϵ||R − Z ′||)

= exp(ϵ(||R − Z ′||
− ||R − Z||))

≤ exp(ϵ||Z ′ − Z||).

(17) 1282
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According to the definition of dχ-privacy in Ap-1283

pendix C.1, the mechanism M satisfies dχ-privacy.1284

In other words, by adding noise N , adversaries can-1285

not infer the initial meta vector Z from the meta1286

vector after adding noise R, even if R is inter-1287

cepted. Moreover, the privacy budget of our meth-1288

ods is ϵ||Z ′ − Z||. And considering that Z is the1289

normalization of the weighted sum of restoration1290

vectors, as shown in Eq. 2, then we have:1291

P[M(Z) = R]

P[M(Z ′) = R]
≤ exp(ϵ||Z ′ − Z||)

≤ exp(2ϵ)

(18)1292

Thus, the privacy budget of our method is 2ϵ, inde-1293

pendent of the input length n and solely depends on1294

the hyperparameter ϵ. In summary, PrivacyRestore1295

fulfills dχ-privacy and provides a privacy budget1296

2ϵ which is independent of the input length and in-1297

herently addresses the problem of the linear growth1298

of privacy budget.1299

I Brief Proof of Output Protection1300

It has been proved by Appendix A of Utpala et al.1301

(2023a) and Section 4.2 of Mattern et al. (2022c)1302

that sampling-based generation can prevent the pri-1303

vacy leakage via the generated output via the Ex-1304

ponential Mechanism. Here, we provide a brief1305

proof that sampling-based generation adheres to1306

the Exponential Mechanism (McSherry and Talwar,1307

2007), ensuring security for the generated output.1308

Assume that Q is the user query, V is the whole1309

token vocabulary, u ∈ R|V| is the output logit, ut1310

is the logit for the token t in V and M denotes1311

the sampling based generation. Recall that, during1312

sampling-based generation, the logit u should be1313

processed by the softmax layer and then be sampled1314

to obtain the output. If T is the sampling tempera-1315

ture and Pr[M(Q) = t] indicates the probability1316

of generating the token t, then the softmax layer1317

can be expressed by:1318

Pr[M(Q) = t] =
exp(ut/T )∑|V|
j=1 exp(uj/T )

(19)1319

Let recall the Exponential Mechanism (McSherry1320

and Talwar, 2007), assuming u is the utility func-1321

tion and ∆u is the sensitivity of u, then M satisfy1322

the Exponential Mechanism if and only if1323

Pr[M(Q) = t] =
exp(ϵu(Q, t)/2∆u)∑|V|
j=1 exp(ϵu(Q, j)/2∆u)

∝ exp(ϵu(Q, t)/2∆u)
(20)1324

By Comparing 19 and 20, we can find that the 1325

sampling from softmax layer follows the defini- 1326

tion of Exponential Mechanism, where u(Q, t) 1327

and ut are different expressions of the same thing. 1328

Furthermore, according to the fact that the privacy 1329

budget of Exponential Mechanism is ϵ, we can 1330

conclude that the privacy budget of sampling- 1331

based generation is 2∆u/T . The privacy budget 1332

decreases with the increasing temperature, indi- 1333

cating that higher temperatures will bring better 1334

privacy protection. 1335

J Datasets 1336

Based on the existing benchmarks, such as DDX- 1337

Plus (Tchango et al., 2022) and NLICE (Al-Ars 1338

et al., 2023) for medical diagnosis, and SLJA 1339

(Deng et al., 2023) for legal judgment, we construct 1340

three privacy-preserving datasets, Pri-DDXPlus, 1341

Pri-NLICE and Pri-SLJA, to evaluate the perfor- 1342

mance of various privacy-preserving methods. In 1343

this section, we will introduce the detailed con- 1344

struction process of these three privacy-preserving 1345

datasets and provide some statistical information 1346

about them. 1347

J.1 Construction Process 1348

The total construction process of these privacy- 1349

preserving datasets consists of four stages: Ex- 1350

traction of Privacy Spans, Rewriting Queries 1351

for Diversity, Assigning Options and Filtering 1352

Dataset. The details of these four stage are as 1353

follows: 1354

Extraction of Privacy Spans: We used GPT- 1355

4 (Achiam et al., 2023) to classify symptoms in 1356

DDXPlus and NLICE, as well as case details in 1357

SLJA, into five levels ranging from non-sensitive 1358

to highly sensitive. The assessment prompt tem- 1359

plate is shown in Appendix X.1. A higher level 1360

indicates that the symptom or case detail is more 1361

sensitive. We define all symptoms and case details 1362

with a sensitivity level greater than 3 as privacy 1363

spans. 1364

Rewriting Queries for Diversity: The symptom 1365

descriptions and case details in the original DDX- 1366

Plus, NLICE, and SLJA datasets are highly fixed. 1367

However, in real-world scenarios, these descrip- 1368

tions are typically more diverse. To address this 1369

gap, we utilized GPT-4 (Achiam et al., 2023) to 1370

rewrite the user queries in these datasets, ensur- 1371

ing more varied descriptions and differing question 1372

18



formats while preserving the original meaning of1373

the queries. The rewrite prompt template is pro-1374

vided in Appendix X.2. Here, we provide a rewrite1375

example that demonstrates how rewriting the user1376

query significantly increases the diversity of query1377

descriptions, as shown in Figure 5.1378

[Queries Before Rewriting]
I have a history of antipsychotic medication usage, nausea, 
stimulant drug use. I presents the symptoms of involuntary 
eye movement, jaw pain, muscle spasms, muscle spasms in 
neck, ptosis, shortness of breath. What is the likely diagnosis?

[Queries After Rewriting] (Varying Format)
I've been taking antipsychotic medication for a while now. I've 
been feeling really nauseous, and I also used a stimulant drug 
recently. Lately, I've been having these strange symptoms like 
my eyes moving involuntarily, and my jaw hurts a lot. I've 
also been getting muscle spasms in my neck and elsewhere, 
and my eyelids droop sometimes. On top of that, I've been 
feeling short of breath. What could be causing all of these 
symptoms?

Figure 5: A rewrite example displays the diversity en-
hancement in medical queries. Text highlighted with
green background indicates medical history, while yel-
low background denotes symptoms.

Assigning Options: To evaluate the performance1379

of different privacy-preserving methods, we assign1380

each sample a correct answer along with three ran-1381

domly selected incorrect options. For DDXPlus1382

and NLICE, we randomly select three diagnosis1383

results to combine with the correct diagnosis as the1384

choices. In the SLJA dataset, we randomly select1385

three legal judgments to pair with the correct one1386

as the options.1387

Filtering Dataset: The initial dataset is exten-1388

sive, and we observed that for most samples, remov-1389

ing all privacy spans often yields outputs similar1390

to those obtained when privacy spans are provided.1391

Privacy preserving for these samples is meaning-1392

less because users can directly hide those privacy1393

spans and obtain approximate result outputs. In1394

real-world scenarios, sensitive privacy spans often1395

play a crucial role in medical diagnoses and le-1396

gal judgments, making privacy preservation highly1397

valuable. Our dataset is designed to benchmark1398

various privacy-preserving methods and must in-1399

clude samples where privacy spans are crucial for1400

generating outputs. We utilize the KL divergences1401

to measure the importance scores of samples. We1402

calculate the KL divergence between the model1403

output distributions with and without the privacy1404

symptoms included. A higher KL divergence in-1405

dicates that the absence of sensitive privacy spans1406

may lead to different or incorrect outputs. We se- 1407

lected only samples with high KL divergence to 1408

construct the privacy-preserving datasets. As a re- 1409

sult, we curated three privacy-preserving datasets: 1410

Pri-DDXPlus and Pri-NLICE for medical diagno- 1411

sis, and Pri-SLJA for legal judgment. 1412

J.2 Statistical Information 1413

We show the statistics of the obtained Pri-DDXPlus, 1414

Pri-NLICE and Pri-SLJA datasets in Table 5. We 1415

tally the number of user queries, privacy span types, 1416

and privacy spans count. In Pri-DDXPlus and Pri- 1417

NLICE, the privacy spans are the symptoms, and 1418

the answers are the diagnoses. In Pri-SLJA, the 1419

privacy spans are the case details, and the answers 1420

are the legal judgments. 1421

Pri-DDXPlus commonly contains more sample 1422

instances and more privacy span types compared 1423

to Pri-NLICE and Pri-SLJA. 1424

K Long-Tailed Distribution of Privacy 1425

Spans 1426

In this section, we present the long-tail distribu- 1427

tion of privacy spans, where most privacy spans 1428

are concentrated in the majority categories. Here, 1429

a privacy span refers to a specific description of a 1430

user’s private information, such as the description 1431

of symptoms, e.g., “I’ve been having a persistent 1432

cough”. The corresponding privacy span type in- 1433

dicates the category of the private information, 1434

such as the symptom type, e.g., “cough”. 1435

Considering that we have three privacy- 1436

preserving datasets covering the medical and legal 1437

domains, we analyze the frequency of each pri- 1438

vacy span type separately for each domain. For 1439

the medical domain, we plot the distribution of 1440

medical privacy spans in the Pri-DDXPlus and Pri- 1441

NLICE medical dataset, as shown in Figure 6(a). 1442

We observe that most medical privacy spans are 1443

concentrated on the top types, such as “pain” and 1444

“fever”. For the legal domain, we plot the dis- 1445

tribution of legal privacy spans in Pri-SLJA legal 1446

dataset, as shown in Figure 6(b). We also observe 1447

that most legal privacy spans are concentrated on 1448

the top types, such as “a person with full criminal 1449

responsibility”. 1450

Therefore, the privacy spans in both the medical 1451

and legal domains exhibit a long-tailed distribution, 1452

indicating that most privacy spans are concentrated 1453

in the majority types. 1454
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Datasets Dataset Split User inputs Privacy Span Type Privacy Spans Count

Pri-DDXPlus

All 7759 149 46179
Train 5901 149 35583
Dev 309 60 1659
Test 1549 78 8937

Pri-NLICE

All 4062 64 18241
Train 3282 64 14933
Dev 130 58 552
Test 650 64 2756

Pri-SLJA

All 3901 142 10418
Train 3117 142 7980
Dev 130 95 417
Test 654 142 2021

Table 5: The statistics of Pri-DDXPlus, Pri-NLICE and Pri-SLJA. Average privacy symptoms indicate the average
privacy spans occur in one query.

pain, 
fever, 
fatigue, 
skin 
lesions, 
underweight
…

diabetes,
chest pain,
numbness,
tenderness,
eruption,
palpitation
…

itchy nose, 
loss of 
smell, 
confusion, 
dialysis,
decrease in 
appetite …

Top Types Medium Types Tail Types

(a) Medical Privacy Spans Distribution

a person 
with full 
criminal 
responsibili
ty, to seek 
illegal 
benefits …

seized by 
the police,
defrauding 
property, 
to illegally 
possess 
property …

to sell 
drugs,
fabricating 
facts,
taking the 
victim by 
force …

Top Types Medium Types Tail Types

(b) Legal Privacy Spans Distribution

Figure 6: Frequency distribution of privacy spans, highlighting the long-tail distribution where a small number of
categories dominate the majority of occurrences.

L Experimental Setup Details1455

L.1 Evaluation Metrics1456

To fully evaluate the performance of different1457

privacy-preserving methods, we focus on two as-1458

pects: inference performance and inference effi-1459

ciency. We use MC1, MC2, ROUGE-L, and1460

LLM-J to assess inference performance, and1461

Throughput (TP) to evaluate inference efficiency.1462

The details of these metrics and their calculation1463

methods are introduced as follows:1464

MC1/MC2: We employ MC1 and MC2 3 (Zhang1465

et al., 2024) to measure the model’s accuracy in1466

selecting the correct answer among 4 options. We1467

assign each sample in Pri-DDXPlus, Pri-NLICE,1468

and Pri-SLJA with four options, including one cor-1469

rect answer and three incorrect ones. The details of1470

the calculation process are as follows:1471

As for calculating MC1: For each user input,1472

we select the option with the highest probability as1473

3The code is available at https://github.com/
sylinrl/TruthfulQA

the model’s choice. MC1 is defined as the model’s 1474

accuracy, which is calculated as the proportion of 1475

correctly answered inputs. 1476

As for calculating MC2: For each user input, we 1477

compute the normalized probability of the correct 1478

answer among the four options. The average of 1479

these normalized probabilities across all inputs is 1480

calculated as the MC2 score. 1481

ROUGE-L: We utilize ROUGE-L (Lin, 2004) to 1482

assess the generation ability of different privacy- 1483

preserving methods. ROUGE-L primarily mea- 1484

sures the n-gram overlap between the reference 1485

text and the generated text. To evaluate the per- 1486

formance of these privacy-preserving methods, the 1487

reference text is the initial output without any pri- 1488

vacy protection from the backbone LLM, while the 1489

generated text is the output with privacy protection. 1490

LLM-Judge (LLM-J): As ROUGE-L primarily 1491

focuses on n-gram overlap between generated text 1492

and reference texts, which may not fully capture the 1493

semantic meaning or overall quality of the gener- 1494

20

https://github.com/sylinrl/TruthfulQA
https://github.com/sylinrl/TruthfulQA


ated content, we further use the LLM-Judge (LLM-1495

J)(Zheng et al., 2023a) metric to assess the gen-1496

eration ability. Specifically, we use the advanced1497

LLM (i.e., GPT-4 (OpenAI, 2023)) to assess the1498

quality of outputs considering relevance, clarity,1499

and accuracy. The assessment prompt is shown in1500

Appendix X.4. The LLM-J score ranges from 1 to1501

10, with higher scores indicating better quality.1502

Throughput (TP): For inference efficiency, we1503

use Throughput (TP), defined as the number of to-1504

kens generated per second, to evaluate the inference1505

efficiency. To ensure a fair comparison between dif-1506

ferent methods, we uniformly use sampling-based1507

generation, as it effectively prevents privacy leak-1508

age from the generated outputs, as shown in Ap-1509

pendix I. We set the sampling temperature to 1.01510

and the maximum generation length to 1024.1511

L.2 Compared Methods1512

Here, we provide a more detailed introduction to all1513

the compared methods, used to protect user privacy1514

during LLM inference, including No Restoration,1515

No Protection, dχ-privacy (Feyisetan et al., 2020),1516

dχ-privacy on privacy spans, and Paraphrase (Mat-1517

tern et al., 2022b; Utpala et al., 2023b). The details1518

are as follows:1519

No Restoration (lower bound): This method1520

involves transmitting user queries with privacy-1521

sensitive spans removed, without attempting to re-1522

store the missing content on the server. As a result,1523

this method serves as the performance lower bound1524

among all privacy-preserving approaches. The de-1525

graded quality of the responses highlights the need1526

for effective restoration techniques to bridge the1527

gap between privacy protection and utility.1528

No Protection (upper bound): In this method,1529

user queries are transmitted directly to the server1530

without any privacy protection or modifications.1531

Since no information is removed or altered, the1532

model operates on fully intact queries, achieving1533

the best possible performance. Consequently, this1534

method establishes the upper bound for all privacy-1535

preserving techniques. The ROUGE-L score for1536

No Protection is always 100.00, as the reference1537

outputs for evaluation are from this method.1538

dχ-privacy: As proposed by Feyisetan et al.1539

(2020), we can directly apply dχ-privacy mech-1540

anism to all tokens in the user query by injecting1541

noise into the tokens’ embeddings and replacing1542

the initial tokens with their nearest counterparts.1543

This prevents attackers from recovering the origi- 1544

nal tokens, thereby protecting privacy. 1545

dχ-privacy on privacy spans: Instead of apply- 1546

ing dχ-privacy mechanism to the entire input, the 1547

client can only employ dχ-privacy only to the pri- 1548

vacy spans in the user query, as the other parts of 1549

the query contain no privacy-sensitive information. 1550

This approach allows for a more appropriate and 1551

concise allocation of the privacy budget. 1552

Paraphrase: According to Mattern et al. 1553

(2022b); Utpala et al. (2023b), the above methods, 1554

both applying dχ-privacy mechanism to tokens 1555

and achieving word-level privatization, suffer 1556

from the linear growth problem of the privacy 1557

budget. They proposed to use generative models 1558

to paraphrase original inputs and achieve privacy 1559

protection similar to dχ-privacy. Due to the client’s 1560

computational resource limitations and to ensure 1561

a fair comparison with our method, we use the 1562

FLAN-T5-Base model (Chung et al., 2024) on 1563

the client side for paraphrasing in the Paraphrase 1564

baseline, as its model size is comparable to that of 1565

BERT-Base, which is used in our method. 1566

L.3 Implementation Details 1567

We use Llama2-chat-7b (Touvron et al., 2023) as 1568

the LLM backbone on the server side, and BERT- 1569

base (Devlin et al., 2019) on the client side for 1570

weight estimation, as described in Section 4.2. 1571

During restoration vector training, the LLM pa- 1572

rameters remain fixed, and we train the restoration 1573

vectors for 5 epochs with a batch size of 1. The 1574

optimal number of edited heads K is 175 for Pri- 1575

DDXPlus/Pri-SLJA and 125 for Pri-NLICE. The 1576

search process is shown in Section U.1. 1577

During generation, we use a sampling-based de- 1578

coding strategy with a temperature of 1.0 and a 1579

maximum generation length of 1024. This is be- 1580

cause sampling-based generation can effectively 1581

prevent privacy leakage from the generated outputs, 1582

as shown in Appendix I. To evaluate the genera- 1583

tion capabilities, we utilize GPT-4 (OpenAI, 2023) 1584

to assess the generated outputs. The prompts are 1585

detailed in Appendix X.3. 1586

For the paraphrase baseline method, we employ 1587

the flan-t5-base model (Chung et al., 2024) on the 1588

client side, as its model size is comparable to BERT- 1589

base. Following Mattern et al. (2022b), we clip the 1590

final output logits between 0 and 1 during para- 1591

phrasing. As a result, the privacy budget for para- 1592

phrasing becomes 2n/τ , where n represents the 1593
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Datasets dχ-privacy dχ-privacy on privacy spans Paraphrase PrivacyRestore Privacy
Budgetn de ϵ nsp de ϵ n τ ϵ

Pri-DDXPlus 106.00 1.64 0.86 49.00 1.64 1.86 106.00 1.41 75.00 150

Pri-NLICE 72.00 1.39 1.50 38.00 1.39 2.84 72.00 2.08 75.00 150

Pri-SLJA 193.00 1.45 0.54 42.00 1.45 2.46 193.00 0.78 75.00 150

Table 6: The settings of privacy hyperparameters for different baselines across all privacy-preserving datasets.

maximum length of the user query and τ is the1594

generation temperature.1595

M Settings of Privacy Hyperparameter ϵ1596

According to Feyisetan et al. (2019) and the defi-1597

nition of dχ-privacy in Appendix C.1, when apply-1598

ing the dχ-privacy mechanism to protect a single1599

token, the privacy budget is ϵde and de is the maxi-1600

mum distance between any two token embeddings.1601

As proposed by Mattern et al. (2022b), with the1602

length of input text increases, the privacy budget of1603

dχ-privacy mechanism also grows linearly. Then,1604

assuming that the the maximum length of the user1605

query is n and the maximum length of privacy1606

spans in the user query is nsp, the privacy bud-1607

get of dχ-privacy is nϵ and the privacy budget1608

of dχ-privacy on privacy spans is nspϵ. In addi-1609

tion, as pointed by Mattern et al. (2022b); Utpala1610

et al. (2023b), the privacy budget of paraphrase1611

method is 2n/τ , where τ is the generation temper-1612

ature used during paraphrasing, and n represents1613

the maximum length of user queries.1614

The privacy budget of PrivacyRestore is 2ϵ,1615

according to Theorem 5.1. To ensure the same1616

privacy budget for a fair comparison, we need to1617

determine the values of different hyperparameters1618

for different methods on different datasets, such as1619

ϵ for dχ-privacy (on privacy spans), PrivacyRestore1620

and τ for paraphrase.1621

Firstly, We set the privacy hyperparameter ϵ to1622

75.00 for PrivacyRestore. Next, we compute the1623

maximum of the users’ inputs lengths n, privacy1624

spans lengths nps, and distances between word1625

embeddings de across three privacy-preserving1626

datasets. Then, we calculate the corresponding1627

ϵ for dχ-privacy (on privacy spans) and τ for para-1628

phrase to control the overall privacy budget at1629

150, as detailed in Table 6.1630

N Additional Baselines1631

In addressing the challenge of safeguarding user1632

privacy during LLM inference, recent studies have1633

explored innovative approaches that leverage small1634

Methods MC1 ↑ MC2 ↑ ROUGE-L ↑ LLM-J ↑

LLM-anonymization 52.09(↓10.88) 49.94(↓10.25) 25.22(↓2.02) 2.61(↓1.86)
IncogniText 55.26(↓7.71) 53.73(↓6.46) 25.94(↓1.30) 3.85(↓0.62)
PrivacyRestore 62.97 60.19 27.24 4.47

Table 7: Comparison of the performance and the
inference efficiency between PrivacyRestore, LLM-
anonymization and IncogniText methods across Pri-
DDXPlus dataset. The downward arrow in the table
indicates the performance gap of two baseline methods
compared with PrivacyRestore.

language models to either anonymize or substitute 1635

private information within user queries. To evaluate 1636

the efficacy of our approach, we implemented two 1637

baselines from recent studies on the Pri-DDXPlus 1638

dataset. (a). LLM-anonymization, proposed by 1639

Staab et al. (2024), which uses a language model 1640

to anonymize text by repeatedly removing personal 1641

attributes identified by an adversarial inference 1642

model. (b). IncogniText, introduced by Frikha 1643

et al. (2024), which anonymizes text by iteratively 1644

using an adversarial model to identify private at- 1645

tribute inferences and an anonymization model to 1646

rewrite the text, misleading potential attackers into 1647

predicting incorrect private attribute values while 1648

preserving text utility. 1649

As shown in Table 7, our method significantly 1650

outperforms LLM-anonymization and IncogniText 1651

on Pri-DDXPlus dataset, strongly validating the 1652

effectiveness of our approach. 1653

O Details of Privacy Protection 1654

Evaluation 1655

In this section, we provide more details on our 1656

implementation of embedding inverse attack (Li 1657

et al., 2023b; Morris et al., 2023) and attribute 1658

inference attack (Li et al., 2022) to evaluate the 1659

privacy protection performance of different privacy- 1660

preserving baselines and our method. Lower attack 1661

performance indicates stronger privacy protection 1662

provided by these methods. 1663

Embedding Inverse Attack: As proposed by Li 1664

et al. (2023b); Morris et al. (2023), embedding in- 1665

version attacks aim to recover user privacy from 1666
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the embeddings of user inputs. Specifically, a gen-1667

erative model (e.g., GPT-2 model (Radford et al.,1668

2019)) is used to generate the user’s private infor-1669

mation based on the given embedding. We imple-1670

ment embedding inversion attacks for the privacy-1671

preserving baselines and our method to evaluate1672

their privacy protection performance. The imple-1673

mentation details are as follows:1674

We use the gpt2-medium model (Radford et al.,1675

2019) as the generative model, employing greedy1676

search during generation and setting the maximum1677

generation length to 256. For PrivacyRestore, the1678

client transmits the incomplete user query and the1679

meta vector. The incomplete user query does not1680

contain any user privacy after removing the privacy1681

spans and is secure for the user. The meta vector1682

contains the information of privacy spans and we1683

perform embedding inverse attack on the meta vec-1684

tor. We use a fully-connected layer to transform the1685

meta vector’s dimension to the dimension of hidden1686

state of GPT-2 model. Then we directly input the1687

transformed meta vector as the input embedding.1688

We fine-tune the GPT-2 model and the fully con-1689

nected layer simultaneously, on the training set for1690

20 epochs, using a learning rate of 1e-5. For dχ-1691

privacy (on privacy spans) and paraphrase, the1692

client only transmits the garbled user query after ap-1693

plying the dχ-privacy mechanism or paraphrasing.1694

We then perform the embedding inverse attack on1695

the garbled user query to recover the privacy spans.1696

Here, we do not need to transform the dimension1697

and can directly input the garbled user query as the1698

input context for the GPT-2 attack model. Then at-1699

tack model can recover the privacy spans according1700

to the garble user query. We finetune the GPT-21701

model on the training set for 20 epochs using the1702

learning rate of 1e-5.1703

To evaluate the attack’s performance, we com-1704

pute the ROUGE-L score between the generated1705

output of the attack model and ground true privacy1706

spans in the user query, where higher scores indi-1707

cate better attack effectiveness.1708

Attribute Inference Attack: According to Li1709

et al. (2022), attribute inference attack attempts to1710

infer user’s private attribute even when the user1711

query is protected by some privacy-preserving1712

methods. In our scenario, we use attribute infer-1713

ence attacks to infer the privacy spans in the user1714

query. The implementation details are as follows:1715

Following Li et al. (2022), we construct a multi-1716

layer perceptron (MLP) as the classifier, with the1717

output dimension corresponding to the entire vo- 1718

cabulary size. We use the classifier to predict the 1719

token IDs of the privacy spans in the user query. 1720

Since the query contains multiple privacy spans, 1721

and each span consists of multiple tokens, this clas- 1722

sification task is a multi-label classification. For 1723

PrivacyRestore, we also perform attribute infer- 1724

ence attacks on the meta vector, so the input dimen- 1725

sion of the classifier corresponds to the dimension 1726

of the meta vector. We finetune the classifier on 1727

the training set for 20 epochs using the learning 1728

rate of 1e-5. For dχ-privacy (on privacy spans) 1729

and paraphrase, we perform attribute inference 1730

attack on the garbled user query. We utilize GPT-2 1731

model (Radford et al., 2019) to process the query 1732

and obtain the last token’s hidden state as the vec- 1733

tor representation. Classification is then performed 1734

on this hidden state. We finetune the classifier and 1735

the GPT-2 model jointly, on the training set for 20 1736

epochs using the learning rate of 1e-5. 1737

To evaluate the attack’s performance, we cal- 1738

culate the F1 score of the classification, where a 1739

higher F1 score indicates a more successful attack. 1740

P More Privacy Protection Evaluation 1741

Results 1742

P.1 Concatenated Text Attack 1743

In Section 6.3, the implementation of embedding 1744

inverse attack follows previous work (Li et al., 1745

2023b), which merely takes meta vectors derived 1746

from privacy spans as input. This approach, how- 1747

ever, may overlook the contextual information in 1748

the incomplete user query. Therefore, we propose 1749

the Concatenated Text Attack by firstly using em- 1750

bedding inverse attack to transform the meta vec- 1751

tor to the text format and then concatenate it with 1752

the incomplete user query to add more contextual 1753

information for recovering privacy spans. The im- 1754

plementation details are as follows: 1755

We finetune two attack models: one to transform 1756

the meta vector into text format, and the other to 1757

recover privacy spans from the concatenated text. 1758

For the first model, we finetune a GPT-2 model, 1759

where the input is the meta vector and the output is 1760

the privacy spans, similar to the embedding inverse 1761

attack process. Then we concatenate the generated 1762

output from the first model with the incomplete 1763

user query as the input to the second model. As 1764

for the second model, we also finetune a GPT-2 1765

model which aims to utilized the incomplete user 1766

query to improve the quality of the generated output 1767
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from the first attack model. For both attack models,1768

we finetune them on the train set for 20 epochs1769

using the learning rate of 1e-5. We also utilized the1770

ROUGE-L scores between the recovered results1771

and the privacy spans as the evaluation metric.1772

The experimental evaluation of the Concatenated1773

Text Attack is presented in Table 8. The experiment1774

results show that, although unifying the vector for-1775

mat of the meta vector and the text format of in-1776

complete user query, the attack performance for1777

our method is still poor, demonstrating the effec-1778

tiveness of our method.1779

ϵ values 1 20 40 75 125 175

Pri-DDXplus 0.0112 0.0107 0.0130 0.0093 0.0115 0.0024

Pri-NLICE 0.0566 0.0486 0.0427 0.0467 0.0423 0.0350

Pri-SLJA 0.0027 0.0011 0.0022 0.0024 0.0021 0.0028

Table 8: ROUGE-L Scores for Concatenated Text At-
tack Across Different ϵ Values

P.2 Simulating Activation Steering Attack1780

We assume the attacker is aware that the meta vec-1781

tor will be used for activation steering on the server1782

for information restoration. The attacker can also1783

simulate activation steering while recovering the1784

privacy spans in the user query. Considering the1785

LLM weights on the server are kept secret, the at-1786

tack only can conduct the activation steering on the1787

other generative model, such as GPT-2 (Radford1788

et al., 2019) model. The implementation details are1789

as follows:1790

First, due to the heterogeneity between the at-1791

tack model (GPT-2) and the LLM on the server1792

(Llama-2-7b), we use a fully connected layer to1793

transform the meta vector’s dimension to fit in the1794

attack model. Specifically, since the meta vector is1795

applied to the head output and its initial dimension1796

matches the head output of the LLM, the fully con-1797

nected layer adjusts it to the head output dimension1798

of the attack model (GPT-2). Next, we input the1799

incomplete user query into the attack model and1800

use the adjusted meta vector to perform activation1801

steering, prompting the model to generate the pri-1802

vacy spans in the query. We fine-tune the GPT-21803

model and the fully connected layer jointly for 201804

epochs with a learning rate of 1e-4. We utilized the1805

ROUGE-L scores between the recovered results1806

and the privacy spans as the evaluation metric.1807

As shown in Table 9, the Simulating Activation1808

Steering Attack demonstrated limited performance1809

across various ϵ values on all three datasets. This 1810

weakness may be attributed to that the meta vector 1811

are trained offline for the server’s LLMs. Although 1812

we have used fully connected layer to transform the 1813

dimension of the meta vector, applying the meta 1814

vector to the attack model still leads to incompati- 1815

bility. 1816

ϵ values 1 20 40 75 125 175

Pri-DDXplus 0.0023 0.0329 0.0321 0.0329 0.0310 0.0365

Pri-NLICE 0.0165 0.0123 0.0118 0.0170 0.0283 0.0315

Pri-SLJA 0.0161 0.0818 0.0862 0.0861 0.1048 0.1059

Table 9: ROUGE-L Scores for Simulating Activation
Steering Attack Across Different ϵ Values

Q Analysis of Output Privacy Protection 1817

In this section, we evaluate the privacy leakage 1818

in the generated output of our method by imple- 1819

menting Embedding Inversion Attacks (EIA) and 1820

Attribute Inference Attacks (AIA). We also directly 1821

count the frequency of privacy span occurrences in 1822

the generated outputs. The details of these attack 1823

methods are as follows: 1824

Embedding Inverse Attack for the generated 1825

output. Embedding inversion attacks (Li et al., 1826

2023b; Morris et al., 2023) directly utilize the gen- 1827

erative model (e.g., GPT-2) to generate privacy 1828

spans in the user query based on the attacked em- 1829

bedding. Although the generated output is in text 1830

format rather than embedding format, we still in- 1831

put it into the GPT-2 model to generate the privacy 1832

spans from the user query. 1833

To be specific, we utilize the GPT-2 model (Rad- 1834

ford et al., 2019) as the generative model and set 1835

the maximum generation length to 256. The input 1836

of the GPT-2 attack model is the generated output 1837

and the target output is the privacy spans in the 1838

user query. We finetune the GPT-2 model on the 1839

training set for 20 epochs using the learning rate of 1840

1e-5. To evaluate attack performance, we compute 1841

the ROUGE-L score between the output generated 1842

by the attack model and the ground truth privacy 1843

spans in the user query. 1844

Attribute Inference Attack for the generated 1845

output. Attribute inference attack (Li et al., 2022) 1846

attempts to steal user privacy by performing classi- 1847

fication on the generated output, where the target 1848

labels corresponding to the token IDs of those pri- 1849

vacy spans. Since each user query contains multi- 1850

24



ple privacy spans and each privacy span contains1851

multiple tokens, this classification task is naturally1852

a multi-label classification task.1853

First, we use the GPT-2 model (Radford et al.,1854

2019) to process the text input and obtain the hid-1855

den state of the last token as its vector represen-1856

tation. Next, following Li et al. (2022), we con-1857

struct a multi-layer perceptron (MLP) model as the1858

classifier. The classifier’s input is the vector rep-1859

resentation, and the output dimension corresponds1860

to the vocabulary size. We finetune the GPT-21861

model along with the MLP on the training set for1862

20 epochs, using a learning rate of 1e-5. To eval-1863

uate the attack performance, we compute the F11864

score of the classification results, where a higher1865

F1 score indicates a more successful attack.1866

R Details of Privacy Protection1867

Robustness for Long Queries1868

In this section, we will provide more implementa-1869

tion details and experiment results analysis when1870

evaluating the privacy protection robustness of dχ-1871

privacy and our method.1872

R.1 Different Protected Text Length for1873

dχ-privacy1874

As shown in Section 6.4, we randomly select a pro-1875

portion of token in user query to simulate the pro-1876

tected text and larger proportion indicates longer1877

protect text. The proportion of selected token is de-1878

noted as the dχ-privacy Percentage. As presented1879

by Feyisetan et al. (2019, 2020), the dχ-privacy1880

mechanism protects input by injecting noise into1881

the token embeddings and replacing the original1882

tokens with their nearest neighbors. To attack the1883

garbled query, we implement two types of attacks:1884

prompt injection attack (Suo, 2024) and attribute1885

inference attack (Li et al., 2022), both commonly1886

used for attacking text inputs. The details of im-1887

plementation of these two attack methods are as1888

follows:1889

For prompt injection attack, following Suo1890

(2024), we add extra instructions before and after1891

the garbled query, to prompt the LLM in the server1892

to output the protected text instead of following the1893

initial user query. And then we intercept the output1894

returned by the LLM on the server for user pri-1895

vacy. The template for the additional instructions is1896

provided in Appendix X.5. To evaluate the attack1897

performance, we calculate the ROUGE-L score be-1898

tween the returned output and the protected text.1899

A higher ROUGE-L score indicates greater over- 1900

lap between the returned output and the protected 1901

text, signifying more successful attack results. For 1902

attribute inference attack, inspiring by Li et al. 1903

(2022), We firstly utilize GPT-2 model (Radford 1904

et al., 2019) to process the garbled query and obtain 1905

the last token’s hidden state. Next, we construct 1906

a multi-layer perceptron (MLP) as the classifier 1907

to classify the hidden states, with the target labels 1908

being the token IDs of the protected text. This is 1909

a multi-label classification task. We finetune the 1910

classifier and the GPT-2 model on the training set 1911

for 20 epochs using the learning rate of 1e-5. The 1912

attack performance is evaluated using the classifi- 1913

cation F1 score. 1914

As shown in Figure 3(a) and Figure 3(b), the 1915

attack performance of prompt injection attack and 1916

attribute inference attack across all three datasets 1917

are all grows with the larger dχ-privacy percentage. 1918

These experiment results reflect the linear growth 1919

problem of privacy budget in dχ-privacy. 1920

R.2 Different Protected Text Length for 1921

PrivacyRestore 1922

For PrivacyRestore, we randomly choose a propor- 1923

tion of privacy spans in the user query as the pro- 1924

tected text and the proportion is denoted as the Pri- 1925

vacy Span Ratio α. Larger α indicate the longer 1926

protected text. Considering that, in our method, 1927

the client only transmits the incomplete query with 1928

the meta vector and the incomplete query contains 1929

no privacy information, then we implement em- 1930

bedding inverse attack (Li et al., 2023b; Morris 1931

et al., 2023) and attribute inference attack (Li et al., 1932

2022) on the meta vector across different α values. 1933

The details of implementation of these two attack 1934

methods are as follows: 1935

For embedding inverse attack, we firstly fully- 1936

connected layer to transform the meta vector’s di- 1937

mension to the dimension of hidden state of GPT-2 1938

attack model. Then we directly input the trans- 1939

formed meta vector as the input embedding to the 1940

attack model, prompting it to generate the privacy 1941

spans in the user query. We finetune the fully- 1942

connected layer with the GPT-2 attack model on 1943

the training set for 20 epochs using the learning 1944

rate of 1e-5. The attack performance is assess by 1945

the ROUGE-L score between the generated output 1946

from the attack model and the protected text. For 1947

attribute inference attack, we construct a multi- 1948

layer perceptron (MLP) as the classifier to classify 1949

the meta vector, with the target labels being the 1950
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token IDs of the protected text. This is also a multi-1951

label classification task. We finetune the classifier1952

on the training set for 20 epochs using the learning1953

rate of 1e-5. The attack performance is evaluated1954

using the classification F1 score.1955

As shown in Figure 3(c) and 3(d), the ROUGE-1956

L score for the embedding inverse attack remains1957

nearly stable across different α values in the Pri-1958

SLJA and Pri-DDXPlus datasets. What’s a little1959

strange is the ROUGE-L score in the Pri-NLICE1960

dataset shows a slight increase. The possible rea-1961

son is that higher ratio indicating more privacy1962

spans and resulting longer reference string when1963

compute the ROUGE-L score. Since ROUGE-L1964

measures the overlap between the generated output1965

and the reference string, a longer reference string1966

may slightly boost the score. The F1 score for1967

the attribute inference attack remains stable across1968

all three datasets. The stable performance in both1969

attack scenarios provides empirical support for The-1970

orem 5.1. Our method effectively and inherently1971

solves the linear growth problem of the privacy1972

budget, achieving robust and stable privacy protec-1973

tion performance regardless of the length of the1974

protected text, even with long protected text.1975

S Details of Evaluation of Handling1976

Out-of-Set Privacy Spans1977

In this section, we will evaluate out method when1978

handling those out-of-set privacy spans. As shown1979

in Figure 6, most of privacy spans focus on the ma-1980

jority categories. Our core set of predefined privacy1981

spans easily covers the majority of categories, even1982

though it cannot cover all privacy span types. To1983

evaluate the performance of our method when the1984

core set cannot cover all privacy span types, we1985

assume that the core set contains only the top 5, 40,1986

80, 100, or 120 privacy span types and assess our1987

method. Additionally, we provide results when the1988

core set covers all 149 privacy span types in the1989

Pri-DDXPlus dataset.1990

As shown in Table 10, our approach outperforms1991

the No Restoration baseline, with performance1992

gains increasing as the predefined span set expands.1993

Notably, even when limited to the top 100 types,1994

our method achieves significant improvements1995

across multiple metrics. These findings highlight1996

the robustness and efficiency of our method in han-1997

dling those out-of-set privacy spans when our pre-1998

defined cores set cannot cover all privacy spans.1999

T Details of Extension for Users Unable 2000

to Determine Privacy Spans 2001

In this section, we evaluate the performance of 2002

combining PrivacyRestore with existing text sani- 2003

tization techniques (Kan et al., 2023; Chen et al., 2004

2023a) to address the situation where users cannot 2005

or are unwilling to determine privacy spans them- 2006

selves. In our main setting, we follow the principle 2007

of “Information Self-Determination Right” and as- 2008

sume that the user should determine the privacy 2009

spans in their queries by themselves. However, we 2010

also consider the situation when the user cannot or 2011

is unwilling to identify the privacy spans. Thanks 2012

to our method is totally orthogonal to the exist- 2013

ing Text Sanitization techniques (Kan et al., 2023; 2014

Chen et al., 2023a), we can use text sanitization 2015

technique to identify and remove privacy spans au- 2016

tomatically and restore information during LLM 2017

inference by our method. 2018

Specifically, the pipeline of combining text sani- 2019

tization technique and our method consists of three 2020

stages: Privacy Spans Identification, User Query 2021

Sanitization and PrivacyRestore. The details of 2022

these three stages are as follows: 2023

Privacy Spans Identification: Following Kan 2024

et al. (2023); Chen et al. (2023a), we construct a 2025

classifier based on the BERT-base-uncased model 2026

(Devlin et al., 2019). The input to the classifier is 2027

the user query, and the target labels are the types of 2028

privacy spans in the query. Considering that each 2029

query contain multiple privacy spans and this is a 2030

multi-label classification task. We use the classifier 2031

to identify the types of privacy spans present in 2032

the user query. We finetune the classifier on the 2033

training set for 10 epochs using the learning rate 2034

of 1e-4. To evaluate the identification performance, 2035

we compute the precision, recall and F1 score of 2036

the classification. 2037

As shown in Table 11, the classification results 2038

of our classifier are superior, achieving an F1 score 2039

of 99.66. 2040

Precision Recall F1

Privacy Spans Identification 99.16±0.21 98.78±0.31 99.66±0.27

Table 11: Privacy Spans Identification accuracy. The
results of the three experiments are presented, with the
variance displayed in subscript.

User Query Sanitization: After identifying all 2041

privacy spans in the user query, we need to re- 2042
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Methods↑ MC1↑ MC2↑ RL↑ LLM-J↑
No Restoration (lower bound) 33.57 32.49 25.19 3.21
Predefine only top 5 38.21 36.17 25.82 3.57
Predefine only top 40 44.28 42.00 25.89 3.83
Predefine only top 80 45.83 43.53 26.59 3.95
Predefine only top 100 54.93(↑ 21.36) 52.15(↑ 19.66) 26.37(↑ 1.18) 4.19(↑ 0.98)

Predefine only top 120 58.42 55.40 26.87 4.27
Predefine only all (top 149) 62.97(↑ 29.40) 60.19(↑ 27.70) 27.24(↑ 2.05) 4.47(↑ 1.26)

Table 10: Performance comparison across different predefined privacy span type sets C in Pri-DDXPlus

move all these privacy spans from the user query to2043

achieve sanitization. Inspiring by Kan et al. (2023);2044

Chen et al. (2023a), we finetune a Qwen-2.5-0.5B2045

model (Yang et al., 2024) to conduct the text saniti-2046

zation. Specifically, the model takes the user query2047

and the identified privacy span types as input and2048

outputs a sanitized version of the user query with2049

the privacy spans removed. We finetune the Qwen-2050

2.5-0.5B model on the train set for 15 epochs using2051

the learning rate of 1e-5.2052

To evaluate the efficacy of the text sanitiza-2053

tion, we conducted both Attribute Inference At-2054

tacks(AIA) and Embedding Inversion Attacks(EIA)2055

on the sanitized queries. As shown in Table 12, the2056

performance of both attack methods are very low,2057

demonstrating that our sanitization method can ef-2058

fectively protect the user privacy.2059

EIA (ROUGE-L) AIA (F1)
No Protection 0.40 0.70
Sanitized Results 0.06(↓ 0.34) 0.07(↓ 0.63)

Table 12: Attack results on sanitized queries. EIA refers
to the embedding inverse attack, with the evaluation
metric being ROUGE-L. AIA denotes the attribute in-
ference attack, evaluated using the F1 score.

PrivacyRestore: Following the text sanitization,2060

we use PrivacyRestore to restore the information2061

during LLM inference on the server. We present the2062

performance results of our method when user can2063

determine privacy spans (PR+PR), combining our2064

method with text sanitization (PR+TS), only using2065

text sanitization (TS only) and the No Restoration2066

baseline in Table 13.2067

As the experiment results show, even in scenar-2068

ios where users are unable to identify privacy spans,2069

the combination of our method with text sanitiza-2070

tion (PR+TS) results in a significant enhancement2071

in performance compared to the No restoration2072

baseline (lower bound) and only using text sanitiza-2073

tion (only TS). The utility performance achieved is2074

notably superior, suggesting that our method is ef-2075

MC1↑ MC2↑ RL↑ LLM-J↑

No Restoration 33.57 32.49 25.19 3.21

TS only 29.63(↓ 3.94) 30.85(↓ 1.64) 25.45(↑ 0.26) 3.46(↑ 0.25)

PR+PS 62.97(↑ 29.40) 60.19(↑ 27.70) 27.24(↑ 2.05) 4.47(↑ 1.26)

PR+TS 62.87(↑ 29.30) 59.97(↑ 27.48) 26.47(↑ 1.28) 4.28(↑ 1.07)

Table 13: The performance of combining our method
with text sanitization technique. TS only indicates only
use sanitization methods without combining PrivacyRe-
store. PR+PS indicates PrivacyRestore when the user
can determine privacy spans by themselves. PR+TS
denotes combining PrivacyRestore and text sanitization
to address the situation when the user cannot identify
privacy spans by themselves. Three methods are com-
pared with No Restoration baseline (lower bound).

fective in preserving privacy while simultaneously 2076

optimizing utility. Moreover, the performance met- 2077

rics of combining our method with text sanitiza- 2078

tion are comparable to those when the user can 2079

determine privacy spans themselves (PR+PS). This 2080

comparison further underscores the robustness of 2081

combining our method with text sanitization and 2082

validates the efficacy of our approach in real-world 2083

applications, even when users cannot determine 2084

privacy spans themselves. 2085

U Details to Ablation Study 2086

In this section, we conduct additional experiments 2087

to analyze the impact of the number of edited heads 2088

and evaluate the performance of our method across 2089

varying LLM backbones. 2090

U.1 Hyperparameter Analysis of the Number 2091

of Edited Heads 2092

We evaluate the performance of our methods us- 2093

ing different numbers of edited heads, K, across 2094

the development sets of three privacy-preserving 2095

datasets. For simplicity, we compute MC2 to repre- 2096

sent classification performance, LLM-J to measure 2097

generation performance, and TP to indicate infer- 2098

ence efficiency. 2099

As shown in Table 14, according to the MC2 2100
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Datasets Metrics K = 75 K = 100 K = 125 K = 150 K = 175 K = 200

Pri-DDXplus
MC2 ↑ 52.20 56.17 59.39 58.96 62.95 62.64
LLM-J ↑ 4.51 4.38 4.45 4.33 4.71 4.55
TP ↑ 24.31 21.51 19.72 20.07 22.68 21.91

Pri-NLICE
MC2 ↑ 37.15 51.01 58.97 51.89 58.11 58.45
LLM-J ↑ 3.27 3.66 3.80 3.44 3.40 3.62
TP ↑ 20.05 19.14 18.23 16.08 15.89 15.48

Pri-SLJA
MC2 ↑ 28.75 30.65 35.07 32.41 35.13 32.08
LLM-J ↑ 5.21 5.41 5.00 5.33 5.15 5.28
TP ↑ 36.28 35.25 34.62 32.97 30.51 29.87

Table 14: The performance of PrivacyRestore on the development set using various numbers of edited heads K.
MC2 reflects classification capability, while LLM-J indicates generation performance. The TP assesses inference
efficiency. We report results across three datasets to identify the optimal K for each datasets. The best results are
highlighted in bold.

score, the optimal value of K is 175 for the Pri-2101

DDXPlus and Pri-SLJA datasets, and 125 for the2102

Pri-NLICE dataset. The performance degradation2103

as K increases can be attributed to the cumulative2104

effect of multiple edited heads. As more heads2105

are modified, the activations progressively deviate2106

from their initial values, potentially compromising2107

the LLM’s general capabilities. Moreover, through-2108

put increases with larger K because we need to2109

inject the meta vector for each head in Hk using Eq2110

4 on the server. Consequently, more heads indicate2111

more injections, which increases the inference time2112

on the server.2113

U.2 Varying LLM Backbone2114

We evaluate the performance of PrivacyRestore2115

and other privacy-preserving baselines on a larger2116

model, Llama-13b-chat.2117

As shown in Figure 7, PrivacyRestore outper-2118

forms the other baselines in terms of both MC2 and2119

LLM-J values across all three privacy-preserving2120

datasets. Notably, the performance of all privacy-2121

preserving methods on the larger model, Llama-2122

13b-chat, is worse than on the smaller model,2123

Llama-7b-chat. This suggests that as model size2124

increases, the model becomes more sensitive to the2125

injected disturbances introduced by these privacy-2126

preserving methods, leading to performance degra-2127

dation.2128

V Example Outputs of PrivacyRestore2129

We provide some example outputs of our method2130

in Figure 8. As shown in these examples, applying2131

dχ-privacy to privacy spans results in outputs with2132

higher ROUGE-L scores but lower LLM-J scores2133

compared to our method. After analyzing these2134

outputs in detail, the high ROUGE-L scores from 2135

dχ-privacy on privacy spans likely result from a 2136

greater overlap with the initial output. However, the 2137

overlapping sections consist mainly of meaningless 2138

sentence structures and lack diagnostic information. 2139

Moreover, the final diagnosis is incorrect, leading 2140

to lower LLM-J scores. In contrast, PrivacyRestore 2141

generates outputs with a different structure but pro- 2142

vides the same, correct diagnosis. As a result, our 2143

method achieves slightly lower ROUGE-L scores 2144

but significantly higher LLM-J scores compared to 2145

dχ-privacy on privacy spans. 2146

W Privacy Spans Over-Removal 2147

To highlight the efficiency of PrivacyRestore in 2148

mitigating the impact of user errors during privacy 2149

span removal, we conducted a series of experiments 2150

to evaluate its robustness under adverse conditions. 2151

Recognizing that users may inadvertently remove 2152

longer spans than necessary, our study simulated 2153

scenarios where, in addition to the essential privacy 2154

spans, an extra 1%, 5%, 10%, 20%, 30%, and even 2155

50% of non-privacy text was removed from the 2156

Pri-DDXPlus dataset. 2157

Shown in Table 15, although removing longer 2158

spans than necessary can impact performance, the 2159

degradation is minimal. Even with an extra 30% 2160

of spans removed, our method still achieves robust 2161

scores—50.87 in MC1, 48.43 in MC2, 25.42 in 2162

ROUGE-L, and 3.65 in LLM-J. 2163
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Figure 7: The MC2 and LLM-J results of PrivacyRestore and other privacy-preserving baselines on larger model,
Llama-13b-chat, across three datasets.

Percentage of Spans Removal MC1 MC2 LLM-J
No More Spans Removed 62.97 60.19 27.24
1% More Spans Removed 62.13 59.51 27.21
5% More Spans Removed 59.13 55.05 27.16
10% More Spans Removed 57.45 54.85 26.51
30% More Spans Removed 50.87 48.43 25.42
50% More Spans Removed 42.47 41.73 23.90

Table 15: Performance of PrivacyRestore under varying
percentages of additional span removal. The table dis-
plays the MC1, MC2, and LLM-J scores across varying
percentages of removed non-privacy spans.
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The patient experiences a history of active cancer, deep vein thrombosis, hormone intake, immobility for 
>3 days, surgery within last month who also presents the symptoms of coughing up blood, loss of 
consciousness, pain, shortness of breath, swelling. What is the likely diagnosis?

Based on the information provided, I will provide the most likely diagnosis and possible 
causes.

Likely diagnosis: Pulmonary embolism

The patient's symptoms of shortness of breath, chest pain, and swelling are consistent 
with a pulmonary embolism …

Initial Output

+ 𝑑!-privacy on 
privacy spans

Thank you for the question. Based on the symptom of swelling in the patient, there are 
several possible diagnoses that I would consider. However, I will provide the most likely 
diagnosis based on current medical knowledge and standard practices.

The most likely diagnosis for this patient who presenting with swelling is edema. …

+ PrivacyRestore

LLM-J: 2
ROUGE-L: 

24.33

LLM-J: 8
ROUGE-L: 

21.33

As a medical doctor, considering the symptoms presented by this patient, the most likely 
diagnosis is pulmonary embolism (PE).

PE is a life-threatening condition that occurs when a blood clot (thrombus) forms in the 
lungs, …

A person with a history of antipsychotic medication usage, nausea, stimulant drug use presents with the 
symptoms including involuntary eye movements, jaw pain, muscle spasms, muscle spasms in neck, ptosis, 
shortness of breath. What is the most likely diagnosis?

Thank you for the question. The symptoms of muscle spasms can be caused by a variety 
of conditions. Based on the symptoms provided, the likely diagnosis for this person with 
a history of nausea and muscle, including:

1. Dystonia: A movement disorder characterized by …

Initial Output

+ 𝑑!-privacy on 
privacy spans

As a medical doctor, I must first acknowledge that I cannot provide a definitive diagnosis 
without conducting a thorough medical examination and reviewing the patient's 
complete medical history. However, based on the symptoms you have provided, here are 
some possible diagnoses that could be considered:

1. Hypothyroidism: The patient's symptoms of fatigue, weight gain, …

+ PrivacyRestore

As a medical doctor, I must emphasize that a definitive diagnosis requires a 
comprehensive physical examination and a detailed review of the patient’s medical 
history. However, based on the symptoms described, here are some potential diagnoses to 
consider:

1. Dystonia: Dystonia is a movement disorder characterized …

LLM-J: 2
ROUGE-L: 

43.37

LLM-J: 8
ROUGE-L: 

21.71

Figure 8: Example Outputs of PrivacyRestore and dχ on privacy spans in Pri-DDXPlus dataset. Text highlighted
with a yellow background represents the privacy spans in user inputs. Text highlighted with a green background
indicates the correct diagnosis. Text highlighted with a red background denotes the incorrect diagnosis. Underscored
text marks sections that overlap with the initial output.
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X Prompt Template Details2164

X.1 Classification of Privacy Spans.2165

X.1.1 Medical Datasets2166

(Pri-DDXPlus/Pri-NLICE).2167

Prompt template shown in Figure 9 is for GPT and2168

is used to classify symptoms in Pri-DDXPlus/Pri-2169

NLICE dataset into sensitive and non-sensitive cat-2170

egories. GPT grades the symptoms on a scale2171

of one to five based on sensitivity, with levels2172

greater than three considered private spans in the2173

Pri-DDXPlus/Pri-NLICE dataset.2174

X.1.2 Legal Dataset (Pri-SLJA).2175

Prompt template shown in Figure 10 is for GPT2176

and is used to classify the case details in Pri-SLJA2177

dataset into sensitive and non-sensitive categories.2178

GPT grades the symptoms on a scale of one to five2179

based on sensitivity, with levels greater than three2180

considered private spans in the Pri-SLJA dataset.2181

X.2 Rewriting of User Queries.2182

X.2.1 Medical Datasets2183

(Pri-DDXPlus/Pri-NLICE).2184

The prompt template shown in Figure 11 is de-2185

signed for GPT and is utilized to rewrite medi-2186

cal queries in the Pri-DDXPlus and Pri-NLICE2187

datasets.2188

X.2.2 Legal Dataset (Pri-SLJA).2189

The prompt template shown in Figure 12 is de-2190

signed for GPT and is utilized to rewrite medical2191

queries in the Pri-SLJA dataset.2192

X.3 Generation Prompts.2193

X.3.1 Medical Datasets2194

(Pri-DDXPlus/Pri-NLICE).2195

Prompt template shown in Figure 13 is for Llama2196

model and is used during model generation for the2197

Pri-DDXPlus/Pri-NLICE datasets.2198

X.3.2 Legal Dataset (Pri-SLJA).2199

Prompt template shown in Figure 14 is for Llama2200

model and is used during model generation for the2201

Pri-SLJA datasets.2202

X.4 Evaluation of Generated Output.2203

X.4.1 Medical Datasets2204

(Pri-DDXPlus/Pri-NLICE).2205

Prompt template shown in Figure 15 is for GPT2206

and evaluates the quality of generated output2207

based on relevance, clarity, and accuracy, for Pri- 2208

DDXPlus/Pri-NLICE dataset. Scores range from 1 2209

to 10, with higher values indicating better output. 2210

X.4.2 Legal Dataset (Pri-SLJA). 2211

Prompt template shown in Figure 16 is for GPT 2212

and evaluates the quality of generated output based 2213

on relevance, clarity, and accuracy, for Pri-SLJA 2214

dataset. Scores range from 1 to 10, with higher 2215

values indicating better output. 2216

X.5 Prompt Injection Attack. 2217

Prompt template shown in Figure 17 is for Llama 2218

model and is used to carry out a prompt injection 2219

attack, translating the garbled text back into the 2220

original text. 2221
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You are a privacy expert with extensive medical knowledge. Given a potential symptom or antecedent, please categorize 

symptom or antecedent into five grades based on the level of privacy they entail.

Utilize the classification guidelines provided below to categorize the symptom or antecedent:

Degrade 1: public information, symptoms that are common, widely known, and do not reveal any personal or sensitive 

information. Examples include sneezing, headache, or minor injuries.

Degrade 2: non-sensitive personal information, symptoms that may be personal but not necessarily sensitive or revealing. 

These may include common illnesses like cold or flu, allergies, or minor digestive issues.

Degrade 3: potentially sensitive information, symptoms that could be indicative of underlying health conditions but are not 

immediately sensitive or stigmatizing. Examples include chronic conditions like diabetes, hypertension, or asthma.

Degrade 4: sensitive personal information, symptoms that may be stigmatizing or have social implications if disclosed 

publicly. This could include mental health issues like depression or anxiety, reproductive health concerns, or substance abuse.

Degrade 5: highly sensitive information, symptoms that are highly personal, stigmatizing, or potentially life-altering if 

disclosed publicly. This category includes sexually transmitted infections, HIV/AIDS, certain types of cancer, or rare and 

serious medical condition.

Output your evaluation in the following format:

#thereason: your analysis here [note: this should be step-by-step analysis following the steps: (a) Give an overview of the given 

symptom or antecedent. (b) Evaluate the degree of the given symptom or antecedent according to classification guidelines.]

#thescore: your degrade here. [note: provide your degrade in based on your analysis and the classification criteria. Please note 

that only the degrade is required to be written in here]

Symptom: [INSERT YOUR SYMPTOMS HERE].

Figure 9: Prompt template for classifying symptoms

You are a privacy expert with extensive legal knowledge, please categorize the given case element into five levels based on the 

degree of privacy involved.

Utilize the classification guidelines provided below to categorize the case element:

Degrade 1: public legal information: Information that is publicly available and does not reveal personal or sensitive legal 

details. Examples include general legal concepts, publicly available case laws, or minor regulatory matters.

Degrade 2: non-sensitive personal legal information: Legal information that may involve a specific individual but is not 

particularly sensitive or revealing. Examples include minor legal infractions like parking tickets, common civil disputes, or

routine contracts such as lease agreements.

Degrade 3: potentially sensitive legal information: Legal information that could imply more personal aspects but is not 

immediately sensitive or damaging. Examples include employment disputes, divorce filings, or personal injury claims without 

reputational impact.

Degrade 4: sensitive personal legal information: Information that could be stigmatizing or have significant social, financial, or 

reputational consequences. Examples include legal matters involving bankruptcy, criminal records (misdemeanors), or family 

law issues like child custody disputes.

Degrade 5: highly sensitive legal information: Legal details that are highly personal, stigmatizing, or potentially life-altering 

if disclosed. This includes serious criminal cases (e.g., felonies, sexual offenses), immigration status disputes, or legal 

proceedings involving whistleblowing or confidential corporate matters.

Output your evaluation in the following format:

#thereason: your analysis here [note: this should be step-by-step analysis following the steps: (a) Give an overview of the given 

case element. (b) Evaluate the degree of the given case element according to classification guidelines.]

#thescore: your degrade here. [note: provide your degrade in based on your analysis and the classification criteria. Please note 

that only the degrade is required to be written in here]

Case element: [INSERT CASE ELEMENTS HERE].

Figure 10: Prompt template for classifying case details
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[INST] <<SYS>>
You are a language model specialized in the medical domain. You will be given a simple, fixed-format description of a patient's 
symptoms or medical query. Your task is to rephrase this description into a more detailed, realistic, and complex version that 
reflects how patients typically describe their conditions to healthcare professionals. Feel free to add any relevant details that 
may be implied or missing, such as symptom duration, severity, or additional context that could aid in a more accurate 
assessment. Additionally, ensure that the transformed query is presented in a variety of formats, using different phrasing, 
structures, and levels of specificity to reflect natural variations in how patients might express their concerns. The output should 
sound realistic and diverse, while staying true to the initial medical context.
<</SYS>>

[INSERT USER INPUT HERE] [/INST]

Figure 11: Prompt template for rewriting queries in medical datasets

[INST] <<SYS>>
You are a language model specialized in the legal domain. You will be given a simple, fixed-format description of a legal fact 
pattern or query. Your task is to rephrase this description into a more detailed, realistic, and nuanced version that reflects how 
individuals or legal professionals typically articulate such situations in legal consultations or documents. Feel free to add any 
relevant details that may be implied or missing, such as background context, the sequence of events, or potential legal 
implications that could provide a more comprehensive understanding. Additionally, ensure that the transformed query is 
presented in a variety of formats, using different phrasing, structures, and levels of specificity to reflect natural variations in 
how legal issues might be expressed. The output should sound realistic and diverse while staying true to the initial legal context.
<</SYS>>

[INSERT USER INPUT HERE] [/INST]

Figure 12: Prompt template for rewriting queries in legal datasets

[INST] <<SYS>>

You are a medical doctor answering real-world medical entrance exam questions. Based on your understanding of basic and 

clinical science, medical knowledge, and mechanisms underlying health, disease, patient care, and modes of therapy, answer 

the following diagnosis question. Base your answer on the current and standard practices referenced in medical guidelines.

<</SYS>>

[INSERT USER INPUT HERE] [/INST]

Figure 13: Pri-DDXPlus/Pri-NLICE prompt template for model generation

[INST] <<SYS>>

You are the world’s best legal judgment machine, tasked with rendering a verdict in a legal case. Below are four paragraphs 

describing the case, though some information may be missing.

Subject refers to the individual with criminal responsibility who committed the crime;

Subjective Element consists of intention and negligence, representing the psychological state of the subject concerning the 

criminal behavior and its outcomes;

Object refers to the social relationships protected by criminal law that have been infringed upon by the criminal acts;

Objective Elements include the specific details of the crime, such as time, location, actions, and consequences.

Using these four components, generate a judgment to sentence the subject of the crime.

<</SYS>>

[INSERT USER INPUT HERE] [/INST]

Figure 14: Pri-SLJA prompt template for model generation
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You are a neutral legal evaluator. You will be provided with a legal question containing the description of a case and the AI assistant's 

judgment of the case. 

Your task is to assess whether the AI assistant's judgment is useful and accurately points out the crime. Consider factors such as the relevance, 

clarity, and accuracy of the judgment. 

Rate the response on a scale from 1 to 10, where 1 indicates poor quality and 10 indicates excellent quality. 

Start your answer with the rating score by strictly following the format: `[[rating]]`. After assigning a rating, provide a brief explanation for 

your score, justifying your evaluation.

[User Question]

[INSERT QUESTION HERE].

[The Start of Assistant Response]

[INSERT GENERATED OUTPUT HERE].

[The End of Assistant Response]

Rating: 

Figure 15: Pri-DDXPlus/Pri-NLICE evaluation prompt template

You are a neutral medical evaluator. You will be provided with a medical question from a patient and the AI assistant's response to the question.

Your task is to assess whether the AI assistant's response is useful and accurately addresses the diagnosis. Consider factors such as the 

relevance, clarity, and accuracy of the information provided.

Rate the response on a scale from 1 to 10, where 1 indicates poor quality and 10 indicates excellent quality.

Start your answer with the rating score by strictly following the format: `[[rating]]`. After assigning a rating, provide a brief explanation for 

your score, justifying your evaluation.“

[User Question]

[INSERT QUESTION HERE].

[The Start of Assistant Response]

[INSERT GENERATED OUTPUT HERE].

[The End of Assistant Response]

Rating: 

Figure 16: Pri-SLJA evaluation prompt template

INST]<<SYS>>

You are a text generating machine. Given input with garbled characters, output normal text without garbled characters. ONLY 

generate translated normal text.

<</SYS>>

[INSERT USER INPUT HERE]

Translated normal text:[/INST]

Figure 17: Prompt injection attack template
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