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Abstract

Aptamers are emerging as robust recognition elements for diagnostics and thera-
peutics, yet computational discovery pipelines remain limited to proteins, leaving
small-molecule binding largely unexplored. To fill this gap, we present the first uni-
fied benchmark for aptamer—small molecule interactions, built from seven curated
sources and comprising 2,210 annotated pairs, 1,430 unique DNA- and RNA-based
aptamers, and 496 ligands spanning a broad chemical space. Over half of the
entries include quantitative binding affinities, enabling both classification and re-
gression tasks, while synthetic negatives generated via cross-pair sampling allow
to rationally balance the dataset. Using this dataset, we conducted a systematic
benchmarking study across multiple splitting and representation strategies for both
aptamers and ligands. Our experiments covered discrete encodings, pretrained
embeddings, and hybrid fusion schemes, evaluated with both shallow and deep
learning (DL) models. This analysis establishes stable baselines for binding predic-
tion and reveals the strengths and weaknesses of sequence- and embedding-based
features. Beyond classification, we also provide the first regression baselines iso-
lating the impact of aptamer-molecule compositional information on quantitative
binding affinity estimation. This framework represents the next step toward scal-
able, data-driven aptamer discovery beyond SELEX-based single target-centered
models and large scale computational screening using molecular docking.

1 Introduction

Aptamers are short single-stranded DNA or RNA oligonucleotides that can bind to ions, small
molecules, proteins, and even cellular surfaces with high affinity [1]]. Compared to antibodies, they
are easier to synthesize, more stable, and easily modified, making them attractive for diagnostics,
therapeutics, and detection [2].

Traditional discovery relies on target-specific SELEX (Systematic Evolution of Ligands by EXpo-
nential enrichment), a time- and resource-intensive experimental approach prone to biases such as
limited success rates and the loss of rare but functional sequences during selection stage [3]]. Despite
numerous variants of SELEX exist, the method remains laborious and limited in scalability [4} 5]].

In silico alternatives such as docking and molecular dynamics can model aptamer—target interactions,
but are computationally demanding and unsuitable for large-scale design. Unlike classical drug
discovery, the task here is inverse: identifying receptors (aptamers) for given targets, which greatly
expands the search space.

Deep learning (DL) offers a third option, enabling prediction and generation of aptamers from
accumulated data [6]]. Yet, most research to date targets proteins, while small-molecule binders
remain underexplored due to scarce datasets and limited generalization beyond specific case studies.
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In this work, we:

* construct the first benchmark for classification and regression of aptamer—small molecule
interactions across curated datasets;

* evaluate the impact of disjoint train—test splits and realistic class imbalance on model
performance;

e compare numerous sequence representations, from simple one-hot and k-mer encodings
to pretrained nucleotide embeddings with both shallow and DL models, highlighting their
respective strengths and limitations.

2 Related Works

Current in silico aptamer design approaches fall into three groups: (1) optimization-based methods
that pair predictive models with search algorithms, (2) target-specific generative models trained on
SELEX data, and (3) structure-based approaches using spatial information from complexes.

Optimization-based methods use predictors (e.g. random forest, multi-layer perceptrons, transformer-
based architectures) as scoring functions combined with Bayesian or evolutionary search [7]. Al-
though applied to proteins they suffer from low sample efficiency and highly discrete search space.

SELEX data-based generative models (variational autoencoders, diffusion- and transformer-based
models) have demonstrated the ability to capture the sequence distribution enriched during SELEX
and to generate novel candidate aptamers. Representative examples of such approaches are Ap-
taGPT [8]], RaptGen [6], and AptaDiff [7]. However, they rely on large SELEX datasets, focus on
RNA-protein systems, and rarely cover small molecules. Moreover, these strategies are tailored for a
specific single target and lack generalizability.

Structure-based methods (e.g., AiDTA [9], RhoDesign [10]]) attempt to guide sequence generation
via docking or shape-conditioned learning. These approaches remain protein-centric, limited to rare
well-characterized complexes, and not transferable to small molecules.

Despite progress, existing methods lack generalizable target-conditioned design for small-molecule
binders. Our work addresses this gap by introducing the first comprehensive benchmark for ap-
tamer—small molecule interactions.

3 Benchmarking Aptamer-Ligand Prediction

3.1 Datasets

Our benchmark dataset integrates data from seven curated sources, namely, RSAPred [L1], Ap-
tamerBase [12]], Apta-Index database (AptaGen), UTexas [13]], RiboCentre, AptaDB [14], as well as
manually curated dataset described in detail in the Appendix (Tabled] Table [5)) which complements
existing resources by adding missing target classes and affinity annotations. These databases comprise
highly heterogeneous data with varying structural diversity of ligands, dominating type of aptamers
(DNA or RNA, depending on the source), aptamer complexity, and annotation completeness, which
complicates aptamer property modeling and conditional generation. Merge and unification of this
data yields a total of 2,210 pairs spanning 1,430 unique aptamers and 496 ligands, with 50% sample
coverage by dissociation constants K4 quantifying binding affinity, thereby forming a representative
corpus for evaluating model generalization.

Closer data examination reveals heterogeneity stated above. t-SNE projections of unique aptamers and
molecules (Figure|l) highlight distinct patterns of variability with some sources being conservative
(e.g., RSAPred, AptaGen) or diverse (Manual, AptaDB) in terms of aptamers, while molecules
from different sources largely overlap, reflecting shared chemical space with uneven coverage across
scaffolds.

Overall, the final dataset provides a robust testbed for evaluating model generalization, sensitivity to
sequence variability, and transferability across target types. Its diversity in molecular space, aptamer
length, annotation type, and experimental origin highlights both the richness and the challenges of
aptamer design for small molecule recognition.
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Figure 1: t-SNE projections of aptamer sequences (left) and target molecules (right), colored by origin.
Each point represents an individual aptamer or molecule, embedded in 2-dimensional space using
t-SNE from one-hot encoded sequences or Morgan molecular fingerprints, respectively. Coloring
indicates the dataset source, revealing overlap or separation between the datasets. Compact clusters
suggest internal redundancy, while dispersed patterns reflect broader diversity across sources.

3.2 Experiments

3.2.1 Negative sampling strategy

Negative samples were generated by cross-pairing aptamers and small molecules from the dataset
for which no confirmed interactions are known. For each positive interaction, n negative pairs were
created by pairing the aptamer with n different small molecules, effectively multiplying the dataset
size by a factor of n. This approach, previously applied in protein—aptamer interaction studies,
balances the training data by mixing entities to create presumed non-binding pairs [15]. However,
it does not guarantee true absence of interaction, as some cross-paired samples may still bind but
remain uncharacterized.

To explicitly assess the effect of negative sampling on model reliability, we evaluate multiple negative-
to-positive ratios, including the absence of augmentation. As shown in Figure [2] models trained
without negative augmentation exhibit low MCC, indicating limited robustness. Introducing synthetic
negatives leads to a substantial and consistent improvement in MCC across all descriptor combinations.
Performance peaks at moderate sampling ratios (2:1-3:1), while more aggressive augmentation yields
substantial MCC drop. Based on this analysis, we adopt a ratio of 3:1 negatives-to-positives in all
subsequent experiments.
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Figure 2: Effect of negative sampling strategies on MCC for different descriptor combinations using
a LightGBM model under grouped cross-validation.



3.2.2 Splitting Protocols

To support reproducible evaluation, we define three complementary splitting protocols: (i) stratified
group splits preserving label balance across folds, (ii) aptamer-disjoint splits, and (iii) molecule-
disjoint splits.

In stratified group splits (Figure[3] center), individual aptamer—molecule pairs are assigned to training
or test sets such that the overall distribution of binding affinities remains balanced. Importantly, this
scheme does not enforce exclusivity over entities: the same aptamer or the same molecule may occur
in both training and test sets, albeit in association with different partners. For example, an aptamer
tested against two ligands may contribute one pair to training and the other to testing.
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Figure 3: Illustration of the three data splitting strategies (stratified, aptamer-disjoint, and molecule-
disjoint) represented as graphs of interactions between aptamers and molecules.

In contrast, in molecule-disjoint splits (Figure 3] right), exclusivity is applied to ligands rather than
sequences. All binding interactions of a given molecule are confined to one partition, such that the
model is forced to generalize across unseen ligands even if the training set contains overlapping
aptamers. This configuration highlights the ability of the model to predict binding outcomes for
entirely new molecular scaffolds.

Finally, aptamer-disjoint splits (Figure 3] left) group all ligand interactions associated with a given
sequence together. If an aptamer binds to multiple molecules, all resulting pairs are assigned either
entirely to training or entirely to testing. This ensures that no sequence representation seen during
training reappears in validation or test evaluation, better reflecting the challenge of predicting binding
for completely novel aptamers.

These distinct splitting strategies correspond to different practical scenarios and task complexities.
Stratified splits simulate performance in settings where both aptamers and molecules are partially
known but new interactions are being discovered. Aptamer-disjoint splits address the challenge of
screening entirely novel sequences, such as in de novo aptamer design. Molecule-disjoint splits
are probably the most indicative, since they evaluate generalization to new ligands, relevant for
applications in biosensors design where predicting binding for novel molecular targets is critical.
Together, these approaches provide a comprehensive framework for assessing model robustness
across varied real-world tasks.

3.2.3 Aptamers and Molecules encoding

Aptamers were encoded as k-mers, one-hot encodings, or pretrained oligonucleotide embeddings [[16]]
, while ligands were encoded by fingerprints (Morgan, MACCS), RDK:it descriptors, or ChemBERTa
embeddings [17]] depending on specific setup. All shallow and DL models were compared with tuned
hyperparameters, reporting ROC-AUC, F}, and MCC for classification and RMSE, MAE, R?, Tps
and r; for regression.

3.2.4 Baseline Models

We benchmark shallow models (LightGBM, Random Forest, and MLP) by concatenating aptamer
and ligand descriptors. Given the pronounced class imbalance in the dataset (1922 positive vs. 288
negative pairs), we evaluate all models under the fixed negative sampling regime selected in the
previous analysis, based on cross-pairing aptamers and small molecules with no reported interactions.



A sanity check with randomized features under grouped cross-validation confirms that precision-
oriented metrics such as PR-AUC and F1-score remain artificially inflated under imbalance, whereas
ROC-AUC and MCC collapse to chance-level values. This sanity check was restricted to grouped
splits, as it targets metric behavior rather than generalization.

Table [1| summarizes the performance of LightGBM baselines across different representation choices
and evaluation splits under a fixed negative sampling ratio. Under grouped cross-validation,
ChemBERTa-based ligand representations achieve higher ROC-AUC and MCC compared to classical
fingerprints, while simple k-mer encodings outperform both one-hot and pretrained oligonucleotide
embeddings. We attribute this behavior to the short length of aptamer sequences: pretrained models
such as GENA-LM are optimized for substantially longer genomic contexts, whereas local k-mer
statistics remain effective and robust in short-sequence regimes.

Across all evaluated settings, LightGBM achieves performance comparable to Random Forest
baselines while offering improved training stability and substantially lower computational cost,
making it a practical and reliable choice for large-scale benchmarking. Detailed comparisons with
additional shallow models are reported in Appendix [A]

To probe generalization beyond interpolation, we further evaluate the best-performing configurations
under identity-disjoint splitting protocols. While holding out unseen aptamers results in a moderate
degradation in performance, generalization to unseen molecules proves substantially more challenging,
with MCC dropping sharply across all representations.

Table 1: Performance of LightGBM baselines across different representations and evaluation splits
using a fixed negative sampling ratio of 3:1. Metrics are reported as mean values over 5-fold cross-
validation.

Aptamer Ligand Grouped CV Identity-disjoint MCC
ROC-AUC MCC FlI  PR-AUC Aptamer Molecule
k-mer (k=4)  ChemBERTa 0.90 0.70 0.77 0.86 0.63 0.34
k-mer (k=4) Morgan 0.88 0.66 0.74 0.83 0.61 0.35
GENA-LM ChemBERTa 0.87 0.63 0.72 0.82 0.59 0.31
GENA-LM Morgan 0.84 0.57  0.69 0.78 0.54 0.29
Random feat. Random feat. 0.45 0.00 0.67 0.75 - -

Feature analysis showed that aptamer k-mer and ChemBERTa features contribute nearly equally
to the LGBM decision function (59% vs. 41%), confirming that both feature spaces are equally
important for classification.

Having established robust tabular baselines, we next compare a set of deep learning architectures to
assess whether end-to-end training on pretrained encoders can better capture cross-entity interaction
patterns.

3.2.5 Pre-Trained Architectures

As shown in the previous section, tabular baselines based on k-mer and molecular fingerprints with
LGBM already achieve strong and stable performance, but they rely on shallow concatenation and
struggle with molecule-disjoint generalization. Motivated by prior success of pretrained encoders
in aptamer-protein interaction modeling [18], we assess whether a similar paradigm can improve
generalization for aptamer-small molecule prediction. Rather than proposing a new architecture, our
goal is to systematically evaluate whether end-to-end deep learning models can close the performance
gap observed for tabular baselines.

Setup. We employed GENA-LM as the aptamer encoder and ChemBERTa as the molecular
encoder. We focus on GENA-LM as it supports variable-length oligonucleotides and has been shown
to perform robustly across diverse regulatory DNA/RNA tasks; evaluation of alternative nucleotide
language models is left for future work as well as testing of other molecular encoders. On top of
frozen or partially fine-tuned embeddings, several architectural variants were evaluated, namely,
Identity (direct projection with optional linear mapping), CNN (1D convolutions with global pooling),



LSTM (bidirectional LSTM with attention pooling), and Transformer blocks. For all configurations
we used gated fusion to integrate aptamer and molecule embeddings, followed by an MLP head with
dropout and normalization. Evaluation covered stratified group splits and identity disjoint protocols
(aptamer-identity disjoint and molecule-identity disjoint).

Gated fusion. To combine aptamer and small-molecule representations, we use a gated fusion
mechanism applied to the concatenation of the two embeddings. Given aptamer and ligand embed-
dings, they are first concatenated and passed through a lightweight gating network consisting of two
linear layers with a ReLU nonlinearity and a sigmoid output. The resulting scalar gate is used as a
stabilizing factor during fusion, allowing gradients to propagate through the gating network while
preserving the original concatenated representation.

Results. Table 2| summarizes the top-performing configurations. Under stratified group splits, the
three best models (Identity-LSTM, Identity-Transformer, Identity-CNN) achieve nearly identical
performance (MCC ~ (0.41), suggesting that once pretrained embeddings are available, the specific
choice of top-layer encoder has only a secondary effect. All strong models relied on gated fusion,
and partial unfreezing of the last two layers consistently yielded higher stability than full freeze.

Despite this consistency, deep learning models underperform compared to the tabular LightGBM
baseline (MCC =~ 0.70), indicating that end-to-end training with pretrained encoders does not yet
close the performance gap in this setting. Notably, performance under aptamer-identity disjoint splits
remains statistically comparable to that observed under grouped cross-validation (MCC =~ 0.41),
suggesting that GENA-LM representations generalize reliably to unseen aptamer sequences.

In contrast, molecule-identity disjoint evaluation reveals a pronounced degradation in performance,
with MCC dropping to approximately 0.18. We attribute this behavior primarily to the limited
coverage coupled with a high chemical diversity of small molecules in the current dataset, which
constrains the ability of molecular encoders to extrapolate to unseen ligands. This result highlights
data sparsity and limited coverage of chemical space, as well as the limited amount of training
data available for deep learning, rather than architectural limitations, as the dominant bottleneck for
generalization in aptamer-small molecule prediction.

Table 2: Top DL configurations across split types. Metrics are mean4-std over 5 folds. All use gated
fusion; aptamer encoder = GENA-LM, molecule encoder = ChemBERTa.

Split Model Partial Unfreeze MCC ROC-AUC

Grouped Identity-LSTM Last 2 layers 0.412+0.034 0.726 £ 0.028
Grouped Identity-Transformer Last 2 layers 0.413 £0.029 0.722 4+0.029
Grouped Identity-CNN Last 2 layers 0.408 £ 0.028 0.731 £0.021
Aptamer-disjoint  Identity-LSTM Last 2 layers 0.407 £0.025 0.721 £0.023
Molecule-disjoint  Identity-LSTM Last 2 layers 0.186 £0.051  0.585 £ 0.040

In summary, our results indicate that deep learning architectures, even when combined with strong
pretrained encoders, do not yet outperform optimized LightGBM baselines in the considered setting.
While aptamer representations derived from GENA-LM exhibit stable behavior under identity-disjoint
evaluation, generalization across small molecules remains substantially more challenging. This effect
is primarily driven by the higher structural diversity of chemical space, compounded by the limited
number and coverage of small molecules available in the current dataset. Within this regime, the
choice of top-layer architecture has only a minor influence on performance, with CNN, LSTM, and
Transformer heads converging to similar results. All evaluated models employed gated fusion as a
stabilizing integration mechanism, and partial unfreezing of encoder layers consistently improved
training stability. Taken together, these findings suggest that in realistic discovery scenarios dominated
by chemically diverse ligands, data coverage and representation of chemical space play a more critical
role than architectural complexity. Interestingly, a similar pattern has been reported for aptamer-
protein prediction, where APIPred [19]], based on XGBoost and handcrafted features, outperformed
more complex deep learning approaches.



3.2.6 Regression Task

In addition to binary binding prediction, we explore a regression setting aimed at estimating quantita-
tive binding affinities. Following the classification results, we adopt the same representation—aptamer
k-mer(k = 4) descriptors combined with Morgan fingerprints for small molecules. An Optuna-tuned
LightGBM regressor was trained and evaluated using cross-validation on samples with available
affinity annotations.

Table 3: Cross-validation metrics for LightGBM regression with aptamer k-mer(k = 4) and Morgan
fingerprints (mean =+ std over folds).

Model RMSE | MAE | R?1 rp 1 re 1

LGBMRegressor 2.424+0.13 1.51+£0.10 0.458 £0.034 0.678 £0.025 0.624 4+ 0.029

We emphasize that quantitative affinity prediction remains intrinsically challenging in this domain.
Reported dissociation constants (K ) are highly sensitive to experimental conditions, including
buffer composition, ionic strength, pH, temperature, and the presence of cofactors, which introduces
substantial heterogeneity into aggregated datasets. We therefore position these experiments as
baseline estimates achievable from sequence- and structure-derived descriptors alone, rather than as
precise predictors of absolute binding constants.

Despite these limitations, the obtained correlations indicate that even coarse regression models capture
meaningful trends in binding strength. In particular, predicted affinities are sufficient to distinguish
broad activity regimes—such as nano-, micro-, and millimolar binders—which is practically useful
for prioritizing candidates and guiding experimental optimization. Feature importance analysis
further shows that aptamer descriptors account for the majority of the predictive signal (71% of
total gain), with molecular fingerprints contributing the remaining 29%, reflecting a combination
of sequence-level motifs and chemical substructures. Overall, these results suggest that regression
models can complement classification by enabling ranked screening under realistic data constraints,
even when precise affinity estimation remains out of reach.

3.2.7 Future Directions

Our results highlight two main bottlenecks. First, generalization to unseen ligands remains a key
challenge, driven by the high diversity of chemical space and the limited coverage of small molecules
in current datasets. Future work will explore more explicit representations (e.g. GNN encoders)
as more faithful descriptors of chemical structure. Second, our current gated fusion is limited;
richer cross-entity integration, such as cross-attention layers, may better capture sequence-ligand
dependencies. Finally, both classification and regression models are planned to be integrated into a
reinforcement learning pipeline, where they will act as reward functions guiding sequence generation
toward higher binding likelihood and affinity. This closes the loop from predictive modeling to
generative design, paving the way for practical aptamer discovery workflows.

4 Conclusion

In this work we presented a comprehensive benchmark for aptamer—small molecule recognition,
integrating seven curated datasets into a unified corpus with both classification and regression
labels. Through systematic evaluation across shallow and deep models, we found that simple tabular
approaches currently outperform end-to-end deep learning architectures, largely due to the high
diversity of chemical space and limited ligand coverage in current datasets. These results establish
strong baselines and highlight representation bottlenecks that must be addressed for further progress.

Taken together, this benchmark provides a standardized testbed for evaluating algorithms, clarifies cur-
rent limitations of aptamer—ligand prediction, and suggests directions toward data-driven generative
pipelines that may extend beyond SELEX and docking.
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A Appendix

A.1 Dataset Descriptions

RSAPred. RSAPred contains 513 aptamer—molecule pairs, dominated by RNA sequences. It
includes 139 unique aptamers and 195 unique small molecules, with relatively short sequences on
average (33.1 &= 21.7 nt). All entries are annotated with quantitative binding constants, making this
dataset a cornerstone for regression tasks. Its molecules are of moderate size (517.3 £ 227.1 Da),
and activity labels are well balanced (455 positives vs 58 negatives).

AptamerBase. AptamerBase comprises 356 entries, with a stronger DNA representation. It includes
331 unique aptamers and 61 small molecules, featuring sequences of medium length (54.8 £ 24.1
nt). Out of all records, 164 carry pK 4 annotations, making it partially suitable for regression. The
ligands tend to be heavier and more variable (766.1 4= 1123.1 Da), and class labels are skewed toward
positives (344 vs 12 negatives).

AptaGen. AptaGen is the smallest dataset, with only 44 rows and 43 unique aptamers. Despite its
size, it offers dense quantitative annotation: 36 of its 44 entries have pK; values. The sequences are
short (38.3 +17.8 nt), while the 33 ligands show high variability in molecular weight (759.3 +1276.0
Da). Positives dominate the set (41 vs 3 negatives), making it useful for regression baselines but less
diverse for classification.

UTexas. UTexas contains 188 entries with 181 unique aptamers, showing strong sequence diversity.
It is moderately balanced between DNA and RNA and has long sequences (79.0 £ 27.0 nt). The
dataset includes 63 unique small molecules of intermediate weight (647.6 £ 792.0 Da). A large
fraction of entries (139) include quantitative p/; values. The activity distribution is skewed toward
negatives (49 positives vs 139 negatives).

RiboCentre. RiboCentre consists of 113 RNA-only entries, covering 112 unique aptamers and 48
distinct small molecules. Its sequences are among the longest in the benchmark (76.6 4 36.4 nt), and
molecules have moderate size (540.0 £ 549.7 Da). No quantitative binding constants are provided,
making the dataset limited to classification. All sequences are labeled as active binders.

AptaDB. AptaDB contains 393 entries and contributes 341 unique aptamers and 126 ligands. DNA
dominates this dataset. The sequences are moderately long (57.1 4+ 23.1 nt), and molecules are
chemically diverse (480.2 £ 664.4 Da). No regression labels are available, and all entries are labeled
positive, restricting its use to binary classification or structure-based analysis.

Manual Curation. The manually curated dataset is the largest single source, with 680 rows. It
contains 518 unique aptamers and 160 distinct molecules, with shorter average sequence lengths
(45.0 £ 20.3 nt). Its molecules are lighter than in other datasets (368.8 & 221.6 Da). More than half
of its entries (373) include p K annotations, and it provides a relatively balanced class distribution
(600 positives vs 80 negatives).



Table 4: Overview of curated aptamer-small molecule datasets. For each dataset we report: number
of rows, DNA:RNA ratio, number of unique aptamers, mean aptamer length with standard deviation
(Ien [nt]), number of unique target molecules, mean target molecular weight with standard deviation
(MW [Da]), number of entries with quantitative binding constants (with pKd), and active vs inactive
counts (pos:neg).

dataset rows DNA:RNA  uniq apt len [nt] uniq SM MW [Da] with pKd  pos:neg
RSAPred 513 22:491 139 33.14£21.7 195 517.3 £227.1 513 455:58
AptamerBase 356 217:139 331 54.8+24.1 61 766.1+1123.1 164 344:12
AptaGen 44 23:21 43 38.3+17.8 33 759.34+1276.0 36 41:3
UTexas 188 120:68 181 79.0+27.0 63 647.6 £792.0 139 49:139
Ribocentre 113 0:113 112 76.6+£36.4 48 540.0 £ 549.7 0 113:0
AptaDB 393 293:100 341 57.1£23.1 126 480.2 £ 664.4 0 393:0
Manual 680 541:139 518 45.0£20.3 160 368.8 £221.6 373 600:80
Combined 2210  1173:1037 1430 49.8+26.9 496 525.1 £649.1 1217 1922:288

Combined Dataset. Merging all sources yields 2,210 entries, covering 1,430 unique aptamers
and 496 unique ligands. The average sequence length is 49.8 & 26.9 nt, and molecules span a wide
chemical space (525.1 £ 649.1 Da). Overall, 1,217 entries carry regression labels, while binary
activity is annotated for 2,210 entries (1,922 positives vs 288 negatives). This combined dataset forms
the basis of our benchmark, offering both breadth and diversity across sequence and chemical spaces.

Table 5: Pairwise overlap between datasets. Each cell shows “unique aptamer—SM pairs / unique
aptamers / unique SM”. Diagonal entries correspond to dataset totals.

RSAPred AptamerBase AptaGen UTexas Ribocentre AptaDB Manual Combined
RSAPred 487/139/195 0/0/7 0/1/5 0/1/6 2/4/15 1/2/17 9/2/20 487/139/195
AptamerBase 0/0/7 331/331/61 4/4/11 26/28/24 4/5/12 19/20/27 3/16/11 331/331/61
AptaGen 0/1/5 4/4/11 44/43/33 3/3/12 5/6/8 21/22/23 5/6/11 44/43/33
UTexas 0/1/6 26/28/24 3/3/12 186/181/63 40/44/16 13/13/35 3/9/18 186/181/63
Ribocentre 2/4/15 4/5/12 5/6/8 40/44/16 113/112/48 10/10/23 1/3/11 113/112/48
AptaDB 1/2/17 19/20/27 21/22/23 13/13/35 10/10/23 385/341/126 27/76/21 385/341/126
Manual 9/2/20 3/16/11 5/6/11 3/9/18 1/3/11 27176/21 646/518/160 646/518/160
Combined 487/139/195 331/331/61 44/43/33 186/181/63 113/112/48  385/341/126  646/518/160  2210/1430/496

A Experimental setup

A.1 Data splits

We implemented three complementary cross-validation protocols: (i) stratified group splits on
aptamer—ligand pairs to preserve label proportions while preventing pair leakage, (ii) disjoint-aptamer
splits (GroupKFold by sequence identity), (iii) disjoint-molecule splits (GroupKFold by canonical
SMILES). Each used 5 folds and a fixed random seed.

A.2 Negative sampling

To mitigate class imbalance, we generated synthetic negatives by cross-pairing each unique aptamer
with ligands it was never observed to bind. Each sequence was paired with up to n such ligands per
positive pair, excluding known positives or duplicates. Synthetic rows were flagged and labeled as
non-binders.

A.3 Feature representations

» Aptamers: k-mer frequency vectors (k =4, 6) with DNA/RNA indicator; one-hot encodings
truncated to a fixed length; embeddings from pretrained nucleotide transformer (GENA-LM).

 Ligands: Morgan fingerprints, MACCS keys with physicochemical RDKit descriptors, and
ChemBERTa embeddings.

Continuous features were standardized within each fold.
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A.4 Model training

We compared multilayer perceptrons and LightGBM classifiers. Feature selection was performed
using LightGBM gain, and hyperparameters (e.g., num_leaves, learning rate, subsample) were tuned
with Optuna on training folds.

A Evaluation metrics
For a binary classifier returning scores s; for samples with labels y; € {0,1}:
ROC-AUC. The area under the ROC curve is
AUC = / 1 TPR(FPR '(z))dx,
0

where TPR = 755 and FPR = 7.

F score. The harmonic mean of precision and recall:

2-TP

F = .
' 2. TP+ FP+FN

Matthews correlation coefficient (MCC). A balanced measure accounting for all four entries of
the confusion matrix:

TP-TN —-FP-FN

MCC = .
/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

PR-AUC. The area under the precision-recall curve (PR-AUC) summarizes the trade-off between
precision and recall across decision thresholds. It is defined as

PR-AUC = /0 1 P(R™Y(z)) da,

L. o TP _ TP
where Precision = 7hirp and Recall = TPIFN -

For regression models predicting continuous affinities gy, for targets y;:

Root Mean Squared Error (RMSE).

RMSE =

Mean Absolute Error (MAE).

1

MAE = - ; i — 9il-
Coefficient of Determination (R2).
RZ—1_ Z?:l(yi - ?31‘)2.

> i (i — 9)?

Pearson correlation (rp). The linear correlation between predictions and targets:
G- D@8

i1 (Wi — )2 2 (G — 9)?

rp =
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Spearman correlation (rg). The rank correlation between predictions and targets:

_ 6 Z?:l d22

=1
"s n(n? —1)’

where d; is the difference between the ranks of y; and ¥;.

All metrics were computed per fold and are reported as mean across cross-validation runs.

A Additional baseline tables

Table 6: MCC (mean = std) on the original dataset (no negative augmentation) under grouped CV.
Results are reported for three models (LGBM, MLP, RF) across aptamer encodings and molecular
descriptors.

LGBM
Aptamer Morgan FP (1024)  Morgan FP (2048)  MACCS keys ~ RDKit descriptors ChemBERTa
kmer(k=3) 0.462+0.035 0.474+0.035 0.379+0.058 0.471£0.054 0.482+0.038
kmer(k=4) 0.469+0.038 0.455+0.039 0.37240.067 0.47940.026 0.49240.048
kmer(k=5) 0.487+0.046 0.48010.048 0.42440.051 0.496+0.053 0.507+0.052
onehot(L=216) 0.478+0.039 0.47240.045 0.438+0.054 0.51940.021 0.536+0.037
gena(mean,last) 0.417+0.055 0.38240.041 0.28640.050 0.388+0.038 0.477+0.035
MLP
Aptamer Morgan FP (1024) Morgan FP (2048) MACCS keys RDKit descriptors ChemBERTa
kmer(k=3) 0.401+0.070 0.42740.073 0.17340.092 0.15610.145 0.388+0.036
kmer(k=4) 0.353+0.106 0.27340.100 0.16810.044 0.20040.133 0.261+0.133
kmer(k=5) 0.288+0.107 0.288+0.122 0.21640.134 0.18610.050 0.181+0.147
onehot(L=216) 0.421+0.079 0.46410.045 0.17740.071 0.12940.133 0.351+0.039
gena(mean,last) 0.154+0.069 0.42840.069 0.24040.082 0.21140.053 0.2954+0.120
Random Forest
Aptamer Morgan FP (1024) Morgan FP (2048) MACCS keys RDKit descriptors ChemBERTa
kmer(k=3) 0.471+0.033 0.47110.034 0.35340.058 0.47010.031 0.493+0.033
kmer(k=4) 0.468+0.035 0.468+0.037 0.36440.049 0.466+0.037 0.488+0.032
kmer(k=5) 0.476+0.032 0.478+0.034 0.37840.058 0.48140.029 0.496+0.031
onehot(L=216) 0.471+£0.034 0.4731+0.034 0.38140.056 0.48240.032 0.499+0.030
gena(mean,last) 0.348+0.056 0.34840.058 0.27340.043 0.33540.059 0.40240.044
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