
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Grasp the Key Takeaways from Source Domain for Few Shot
Graph Domain Adaptation

Anonymous Author(s)∗

Abstract
Graph Neural Networks (GNNs) have achieved remarkable success
in node classification tasks on individual graphs. However, exist-
ing GNNs trained within a specific domain (a.k.a., source domain)
frequently exhibit unsatisfied performance when transferred to an-
other domain (a.k.a., target domain), due to the domain gap. To
tackle this issue, Few Shot Graph Domain Adaptation (FSGDA) is
introduced to the node classification task, facilitating knowledge
transfer from a fully labeled source graph to a target graph with
minimal annotations for each class. An intuitive solution is di-
rectly training the GNN with labeled source and target samples
together. Nevertheless, there are two issues in this procedure: (1)
When the annotations on the target domain used for training are
extremely sparse, the GNN performance may significantly be dam-
aged by nodes with the source-domain bias not aligning with the
target-domain distribution. (2) Apart from the biased nodes, the
low-value nodes among the remaining nodes impede the GNN
learning for the core nodes, like the limited target training nodes.
To address the above issues, we propose a new method for FS-
GDA, named GraphInflu, whose core idea is to grasp the key take-
aways from the source domain to facilitate the adaptation pro-
cess. It contains two characteristic modules, including the Sup-
portive Node Selector and the Soft Logic-Inspired Node Reweight-
ing. The former aims to identify the most influential set of source
nodes based on their contribution to improving performance on
target nodes. The latter further focuses more on the core nodes
in the selected influential set, which closely align with the target
nodes especially those presenting challenging predictions. Exten-
sive experiments validate the efficacy of GraphInflu by overcom-
ing the current state-of-the-art methods. Our code is available at
https://anonymous.4open.science/r/GraphInflu-E8E7.

CCS Concepts
• Computing methodologies→ Machine learning.

Keywords
Graph Domain Adaptation, Few-shot Learning

1 Introduction
Node classification using Graph Neural Networks (GNNs) is a fun-
damental yet challenging task in a multitude of applications, such
as citation networks [14], social networks [7], and webpage net-
works [15]. While GNNs have demonstrated significant success in
domain-specific tasks (a.k.a., source domain), their performance
often degrades when applied to a different domain (a.k.a., target
domain) due to the domain gap—a divergence in data distribu-
tions across domains [22, 23, 33, 34]. This gap is particularly pro-
nounced in scenarios like cross-domain citation networks, where
structural and feature differences between networks limit the di-
rect transferability of GNN models [4, 14, 30].

!"labeled nodes !"#$labeled nodes

Model Training

!"#$%&'()*+

,-.*/%&&"'()*+

0*1*"#$2

G
s

G
t

,-.$)/0/($.&"1*02()+" 3-.425$6#"78#-+9

!"#$selected nodes

3*(*42

Model Training

Figure 1: Top: Differences between our method and tradi-
tional methods to address Few-shot Graph Domain Adapta-
tion (FSGDA). Our key point is not all source-domain nodes
facilitate model training on FSGDA and we may just need
to utilize the necessary ones. Bottom: Performance of GCN
in the cross-graph node classification scenario: ACMv9 ⇒
DBLPv7.

A straightforward solution for Graph Domain Adaptation
(GDA)would be to manually annotate a large number of target do-
main nodes and fine-tune the GNN. However, this approach is im-
practical due to the time and effort required for large-scale node an-
notation. To overcome this bottleneck, Few-Shot Learning (FSL)
has emerged as a promising alternative, aiming to transfer knowl-
edge from the source domain to the target domain using only a
few labeled nodes in each class [32, 40]. Prior methods [5, 35] typ-
ically train GNNs on both the source and target domains, lever-
aging available annotations. However, the extreme sparsity of la-
beled nodes in the target domain introduces two major challenges:
(1) Adverse Node Interference. If we keep the number of the
target-domain training samples and increment the training rate of
the source network from zero, we find that the GNN performance
on the target domain rapidly saturates and then subsequently sta-
bilizes. Taking ACMv9 [27] (source network) and DBLPv7 [27] (tar-
get network) as an example, the performance of the Graph Convo-
lutional Network (GCN) [14] trained on them are shown in Fig-
ure 1. This rapid stabilization may stem from the mutual coun-
terbalance between “beneficial” and “harmful” samples within the

1

https://anonymous.4open.science/r/GraphInflu-E8E7

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

training dataset. Specifically, part of source-domain samples (ad-
verse node) carry biases that deviate from the target domain dis-
tribution, such as differences in feature distributions and neigh-
borhood structures. As training progresses, the GNN adeptly ac-
quires these source-domain biases by the neighbor-node aggrega-
tion, leading to significant damage in model accuracy. Such neg-
ative impact is balanced by the positive impact brought by the
supportive nodes, consisting of the remaining source-domain sam-
ples and the extremely limited target-domain labeled samples.This
balance results in the stagnation of model performance. Given
the constraint of not being able to access more target-domain la-
beled samples, the key challenge to disrupt this balance and fur-
ther enhance the model lies in how to filter out adverse nodes.
(2) Core Nodes Inundated. Even effectively removing adverse
nodes, the remaining subset may only contain a small number of
high-value core samples, including extremely limited annotated
target-domain nodes, a few source-domain nodes closely aligned
with the target domain distribution, and high-quality nodes con-
taining richer classification knowledge. However, these limited
core nodes are susceptible to being overwhelmed by more low-
value supportive nodes, hindering the GNN’s thorough learning of
underlying patterns. Given the limitation in extending annotations
for target-domain nodes, identifying and elevating the importance
of core nodes in the source domain becomes a pertinent issue wor-
thy of consideration.

To tackle the above issues, we propose the GraphInflu model
for few-shot graph domain adaptation by grasping the key take-
aways from the source domain, as shown in Figure 2. Our method
is specifically designed with two phases to address the correspond-
ing challenges. Phase 1: We aim to establish a supportive node se-
lector that scores the source nodes according to their contribution
to reducing loss on labeled target nodes. To efficiently compute
the contribution score, we approximate loss reduction by compre-
hensively analyzing gradients of the GNN model on the source
nodes and the target nodes. In this way, we develop a contribu-
tion score function to identify supportive source nodes. Given the
score matrix obtained from the score function, we further incor-
porate a class-balanced sampling strategy to avoid selection bias
toward certain classes. Phase 2: We delve into assessing the signif-
icance of each selected supportive source domain data. Specifically,
on the one hand, we introduce perturbations through adversarial
learning to gauge the stability of GNNmodel predictions for target
nodes; on the other hand, we calculate entropy to evaluate the cer-
tainty of GNN predictions for target nodes. By computing the dis-
tances between node-centric subgraphs, we evaluate the proximity
of source-domain nodes to target-domain nodes that exhibit unsta-
ble or uncertain predictions. We posit that source-domain nodes
resembling these challenging target-domain nodes possess greater
learning value.

Our contributions are summarized as follows:

• We study the Few Shot Graph Domain Adaptation (FSGDA) and
uncover the substantial negative impact of adverse source nodes
when the annotated target nodes are scarce. To the best of our
knowledge, we delve into early exploration from the view of the
key source-node retrieval for the FSGDA.

• We propose a novel method named GraphInflu. We filter out
adverse source nodes based on backward gradients and subse-
quently enhance the importance of the high-value nodes via the
graph similarity calculation and the stability estimation based
on a FOL framework.

• We conduct extensive experiments to demonstrate the effective-
ness of our proposed method, and our framework achieves a
new state-of-the-art result.

2 Related Work
Graph domain adaptation (GDA) extends traditional domain adap-
tation (DA) to graph-structured data [19, 21, 24, 34, 42], where fea-
tures and labels are interconnected due to the graph structure. Re-
cent studies aim to combine graph models with domain adapta-
tion techniques to learn domain-invariant representations. These
methods often use adversarial learning or minimize the distance
between representations in the source and target domains. ACDNE
[22] applies adversarial domain adaptation to make node repre-
sentations invariant across networks. UDAGCN [33] further intro-
duces an inter-graph attention mechanism combined with adver-
sarial training. MFFReg [39], a more recent approach, uses graph
spectral regularization to improve the transferability of GraphNeu-
ral Networks (GNNs).

In addition to the existing unsupervised graph domain adapta-
tion (UGDA) methods, AdaGCN [5] and SemiGCL [35] address sce-
narios with limited labeled nodes in the target graph, closely align-
ing with our research focus. AdaGCN minimizes domain discrep-
ancy using the Wasserstein distance, while SemiGCL combines
graph contrastive learning with minimax entropy training to gen-
erate discriminative node representations. However, to the best
of our knowledge, these methods primarily train the model us-
ing source nodes and a few labeled target nodes with a standard
cross-entropy loss.These approaches treat all source nodes equally,
overlooking the unique characteristics of individual source nodes.
Another related approach in graph domain adaptation is test-time
graph adaptation [3, 31], which adjusts graph data during the test-
ing phase. In contrast, our method focuses on the training phase,
where we identify influential source nodes and reweight them.

Recently, few-shot learning on graphs has been proposed to
tackle the issue of limited labeled data in real-world scenarios
[26, 41]. Existing studies on few-shot node classification can be di-
vided into two categories: (1) metric-basedmethods [25, 38], which
primarily classify new nodes by calculating the Euclidean distance
between node embeddings and class prototypes; (2) optimization-
based methods [8, 43], which aim to learn a better initialization of
model parameters that can be updated by a few gradient steps for
new tasks.

3 Preliminaries
3.1 Notations
Let 𝐺 = (𝑉 , 𝐸,𝐴,𝑋,𝑌) represent a graph, where 𝑉 is the node set,
𝐸 is the edge set, and 𝐴 is the adjacency matrix. The number of
nodes and edges are denoted by 𝑛 and 𝑚, respectively. 𝑋 is the
node feature matrix, and 𝑌 represents the node labels.

In the Few Shot Graph Domain Adaptation (FSGDA) scenario,
we have a fully labeled source graph 𝐺𝑠 = (𝑉 𝑠 , 𝐸𝑠 , 𝐴𝑠 , 𝑋𝑠 , 𝑌 𝑠)

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Grasp the Key Takeaways from Source Domain for Few Shot Graph Domain Adaptation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

GNN
Model

Training on

Target Gradient Store

Contribution Score Estimate

Score Matrix

…….

Class-balanced
Selection

Training on

GNN
Model

Ego-graph based Distance

Logic Rules

Reweighting

Legend

: labeled nodes

: unlabeled nodes

: unselected nodes
: gradient
: central nodes

: add edge
: delete edge
: ego graph

Phase 1
Phase 2

<latexit sha1_base64="qNE4SXItwvsuFJ4GSYC33SUyGmg=">AAACEXicbVA9SwNBEN3zM8avqKXNYhAiSLgTv0rBRsEigtFALoa5zZ5Zsrd37M4J4chfsPGv2FgoYmtn579xk1yhxgcDj/dmmJkXJFIYdN0vZ2p6ZnZuvrBQXFxaXlktra1fmzjVjNdZLGPdCMBwKRSvo0DJG4nmEAWS3wS906F/c8+1EbG6wn7CWxHcKREKBmildqniKwgktDMfuxxhQP0IsMtAZheDyv0t7tKxsdMuld2qOwKdJF5OyiRHrV369DsxSyOukEkwpum5CbYy0CiY5IOinxqeAOvBHW9aqiDippWNPhrQbat0aBhrWwrpSP05kUFkTD8KbOfwXvPXG4r/ec0Uw+NWJlSSIldsvChMJcWYDuOhHaE5Q9m3BJgW9lbKuqCBoQ2xaEPw/r48Sa73qt5h9eByv3xynsdRIJtki1SIR47ICTkjNVInjDyQJ/JCXp1H59l5c97HrVNOPrNBfsH5+AZg/51g</latexit>

r✓L(vt, ✓)

Source Gradient Store
<latexit sha1_base64="D2UYjUYDtiYXDts4mpH96VD0hbg=">AAACEXicbVA9SwNBEN3zM8avqKXNYhAiSLgTv0rBRsEigtFALoa5zZ5Zsrd37M4J4chfsPGv2FgoYmtn579xk1yhxgcDj/dmmJkXJFIYdN0vZ2p6ZnZuvrBQXFxaXlktra1fmzjVjNdZLGPdCMBwKRSvo0DJG4nmEAWS3wS906F/c8+1EbG6wn7CWxHcKREKBmildqniKwgktDMfuxxhQP0IsMtAZheDyv2t2aVjY6ddKrtVdwQ6SbyclEmOWrv06XdilkZcIZNgTNNzE2xloFEwyQdFPzU8AdaDO960VEHETSsbfTSg21bp0DDWthTSkfpzIoPImH4U2M7hveavNxT/85ophsetTKgkRa7YeFGYSooxHcZDO0JzhrJvCTAt7K2UdUEDQxti0Ybg/X15klzvVb3D6sHlfvnkPI+jQDbJFqkQjxyRE3JGaqROGHkgT+SFvDqPzrPz5ryPW6ecfGaD/ILz8Q1fcp1f</latexit>

r✓L(vs, ✓)
<latexit sha1_base64="bUQHEcRSXwknHadrvJf+tWgKalY=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKewKPm4GPKi3iOYByRpmJ5NkyOzsMtMrhCWf4MWDIl79IPHm3zjZeNDEgoaiqpvuriCWwqDrfjm5hcWl5ZX8amFtfWNzq7i9UzdRohmvsUhGuhlQw6VQvIYCJW/GmtMwkLwRDC8mfuOBayMidYejmPsh7SvRE4yilW4v702nWHLLbgYyT7wfUjr/gAzVTvGz3Y1YEnKFTFJjWp4bo59SjYJJPi60E8Njyoa0z1uWKhpy46fZqWNyYJUu6UXalkKSqb8nUhoaMwoD2xlSHJhZbyL+57US7J35qVBxglyx6aJeIglGZPI36QrNGcqRJZRpYW8lbEA1ZWjTKdgQvNmX50n9qOydlI9v3FLlepoG5GEP9uEQPDiFClxBFWrAoA+P8AwvjnSenFfnbdqac35mduEPnPdvl0uOzA==</latexit>

Gs

<latexit sha1_base64="bUQHEcRSXwknHadrvJf+tWgKalY=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKewKPm4GPKi3iOYByRpmJ5NkyOzsMtMrhCWf4MWDIl79IPHm3zjZeNDEgoaiqpvuriCWwqDrfjm5hcWl5ZX8amFtfWNzq7i9UzdRohmvsUhGuhlQw6VQvIYCJW/GmtMwkLwRDC8mfuOBayMidYejmPsh7SvRE4yilW4v702nWHLLbgYyT7wfUjr/gAzVTvGz3Y1YEnKFTFJjWp4bo59SjYJJPi60E8Njyoa0z1uWKhpy46fZqWNyYJUu6UXalkKSqb8nUhoaMwoD2xlSHJhZbyL+57US7J35qVBxglyx6aJeIglGZPI36QrNGcqRJZRpYW8lbEA1ZWjTKdgQvNmX50n9qOydlI9v3FLlepoG5GEP9uEQPDiFClxBFWrAoA+P8AwvjnSenFfnbdqac35mduEPnPdvl0uOzA==</latexit>

Gs

<latexit sha1_base64="GEb8rKmehQQd0ldSSxUE2mHlmUg=">AAACQXicbVC7SgNBFJ31bXxFLbUYFEFFwq7goxRsFCwUTAxk43J3MkmGzM4uM3eFsOTXbPwDOysLbSwUsbVx8kA0emDgcM653DsnTKQw6LoPzsjo2PjE5NR0bmZ2bn4hv7hUMnGqGS+yWMa6HILhUiheRIGSlxPNIQolvwpbx13/6oZrI2J1ie2EVyNoKFEXDNBKQb7sKwglBJmPTY4QtDrUjwCbDGR21tm8uTY7tG9tXfsYJ/R3fjiN3+kgv+4W3B7oX+INyPrR9mrj8Wl74jzI3/u1mKURV8gkGFPx3ASrGWgUTPJOzk8NT4C1oMErliqIuKlmvQY6dMMqNVqPtX0KaU/9OZFBZEw7Cm2ye68Z9rrif14lxfphNRMqSZEr1l9UTyXFmHbrpDWhOUPZtgSYFvZWypqggaEtPWdL8Ia//JeUdgvefmHvwrZxSvqYIitkjWwSjxyQI3JCzkmRMHJLnskreXPunBfn3fnoR0ecwcwy+QXn8wsks7Ql</latexit>

r✓kL(vs, ✓)>r✓L(vt, ✓)
<latexit sha1_base64="2nKxxc/4n5/oPVAOf7dqOz2UD0c=">AAAB6nicbVDJSgNBEK2JW4xb1KOXxiB4CjPidgx4UG8RzQLJGHo6PUmTnp6hu0YIQz7BiwdFvPpF3vwbO8tBEx8UPN6roqpekEhh0HW/ndzS8srqWn69sLG5tb1T3N2rmzjVjNdYLGPdDKjhUiheQ4GSNxPNaRRI3ggGV2O/8cS1EbF6wGHC/Yj2lAgFo2il++tH7BRLbtmdgCwSb0ZKMEO1U/xqd2OWRlwhk9SYlucm6GdUo2CSjwrt1PCEsgHt8Zalikbc+Nnk1BE5skqXhLG2pZBM1N8TGY2MGUaB7Ywo9s28Nxb/81ophpd+JlSSIldsuihMJcGYjP8mXaE5Qzm0hDIt7K2E9ammDG06BRuCN//yIqmflL3z8tndaalyO4sjDwdwCMfgwQVU4AaqUAMGPXiGV3hzpPPivDsf09acM5vZhz9wPn8AKmyNwg==</latexit>

Gt

<latexit sha1_base64="Px+E0yfiI40fC/16kWV6U4Cah4o=">AAAB7HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQwI4jGCmwSSNcxOJsmY2dllpjcQloB/4MWDIl79IG/+jZPHQRMLGoqqbrq7wkQKg6777Swtr6yurec28ptb2zu7hb39qolTzbjPYhnrekgNl0JxHwVKXk80p1EoeS3sX4/92oBrI2J1j8OEBxHtKtERjKKV/MEDth5bhaJbcicgi8SbkSLMUGkVvprtmKURV8gkNabhuQkGGdUomOSjfDM1PKGsT7u8YamiETdBNjl2RI6t0iadWNtSSCbq74mMRsYMo9B2RhR7Zt4bi/95jRQ7V0EmVJIiV2y6qJNKgjEZf07aQnOGcmgJZVrYWwnrUU0Z2nzyNgRv/uVFUj0teRel87uzYvnmaRpHDg7hCE7Ag0sowy1UwAcGAp7hFd4c5bw4787HtHXJmUV4AH/gfP4AFKKPSw==</latexit>

vtj

<latexit sha1_base64="6h4zbXAWYvHX0GJo4KtJmf+xkZo=">AAAB7HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2NAEI8R3CSQrGF2MpsMmZ1dZnoDIQT8Ay8eFPHqB3nzb5w8DppY0FBUddPdFaZSGHTdbye3srq2vpHfLGxt7+zuFfcPaibJNOM+S2SiGyE1XArFfRQoeSPVnMah5PWwfzPx6wOujUjUAw5THsS0q0QkGEUr+YNH0xbtYsktu1OQZeLNSQnmqLaLX61OwrKYK2SSGtP03BSDEdUomOTjQiszPKWsT7u8aamiMTfBaHrsmJxYpUOiRNtSSKbq74kRjY0ZxqHtjCn2zKI3Ef/zmhlG18FIqDRDrthsUZRJggmZfE46QnOGcmgJZVrYWwnrUU0Z2nwKNgRv8eVlUjsre5fli/vzUuX2aRZHHo7gGE7BgyuowB1UwQcGAp7hFd4c5bw4787HrDXnzCM8hD9wPn8AEZiPSQ==</latexit>

vsi <latexit sha1_base64="jaFL84zHWdGtRZEZQLpQhu6PFGI=">AAAB8nicbVDJSgNBEK2JW4xb1KOXxiB4CjOCy82AB/UWwSyQjKGn05M06VnorhHCMJ/hxYMiXv0Y8ebf2JnkoIkPCh7vVVFVz4ul0Gjb31ZhaXllda24XtrY3NreKe/uNXWUKMYbLJKRantUcylC3kCBkrdjxWngSd7yRlcTv/XIlRZReI/jmLsBHYTCF4yikTrXD2l3SDHVWdYrV+yqnYMsEmdGKpefkKPeK391+xFLAh4ik1TrjmPH6KZUoWCSZ6VuonlM2YgOeMfQkAZcu2l+ckaOjNInfqRMhUhy9fdESgOtx4FnOgOKQz3vTcT/vE6C/oWbijBOkIdsushPJMGITP4nfaE4Qzk2hDIlzK2EDamiDE1KJROCM//yImmeVJ2z6umdXandTtOAIhzAIRyDA+dQgxuoQwMYRPAEL/BqofVsvVnv09aCNZvZhz+wPn4AL02SpQ==</latexit>

Gŝ

<latexit sha1_base64="2nKxxc/4n5/oPVAOf7dqOz2UD0c=">AAAB6nicbVDJSgNBEK2JW4xb1KOXxiB4CjPidgx4UG8RzQLJGHo6PUmTnp6hu0YIQz7BiwdFvPpF3vwbO8tBEx8UPN6roqpekEhh0HW/ndzS8srqWn69sLG5tb1T3N2rmzjVjNdYLGPdDKjhUiheQ4GSNxPNaRRI3ggGV2O/8cS1EbF6wGHC/Yj2lAgFo2il++tH7BRLbtmdgCwSb0ZKMEO1U/xqd2OWRlwhk9SYlucm6GdUo2CSjwrt1PCEsgHt8Zalikbc+Nnk1BE5skqXhLG2pZBM1N8TGY2MGUaB7Ywo9s28Nxb/81ophpd+JlSSIldsuihMJcGYjP8mXaE5Qzm0hDIt7K2E9ammDG06BRuCN//yIqmflL3z8tndaalyO4sjDwdwCMfgwQVU4AaqUAMGPXiGV3hzpPPivDsf09acM5vZhz9wPn8AKmyNwg==</latexit>

Gt

<latexit sha1_base64="2nKxxc/4n5/oPVAOf7dqOz2UD0c=">AAAB6nicbVDJSgNBEK2JW4xb1KOXxiB4CjPidgx4UG8RzQLJGHo6PUmTnp6hu0YIQz7BiwdFvPpF3vwbO8tBEx8UPN6roqpekEhh0HW/ndzS8srqWn69sLG5tb1T3N2rmzjVjNdYLGPdDKjhUiheQ4GSNxPNaRRI3ggGV2O/8cS1EbF6wGHC/Yj2lAgFo2il++tH7BRLbtmdgCwSb0ZKMEO1U/xqd2OWRlwhk9SYlucm6GdUo2CSjwrt1PCEsgHt8Zalikbc+Nnk1BE5skqXhLG2pZBM1N8TGY2MGUaB7Ywo9s28Nxb/81ophpd+JlSSIldsuihMJcGYjP8mXaE5Qzm0hDIt7K2E9ammDG06BRuCN//yIqmflL3z8tndaalyO4sjDwdwCMfgwQVU4AaqUAMGPXiGV3hzpPPivDsf09acM5vZhz9wPn8AKmyNwg==</latexit>

Gt

<latexit sha1_base64="jaFL84zHWdGtRZEZQLpQhu6PFGI=">AAAB8nicbVDJSgNBEK2JW4xb1KOXxiB4CjOCy82AB/UWwSyQjKGn05M06VnorhHCMJ/hxYMiXv0Y8ebf2JnkoIkPCh7vVVFVz4ul0Gjb31ZhaXllda24XtrY3NreKe/uNXWUKMYbLJKRantUcylC3kCBkrdjxWngSd7yRlcTv/XIlRZReI/jmLsBHYTCF4yikTrXD2l3SDHVWdYrV+yqnYMsEmdGKpefkKPeK391+xFLAh4ik1TrjmPH6KZUoWCSZ6VuonlM2YgOeMfQkAZcu2l+ckaOjNInfqRMhUhy9fdESgOtx4FnOgOKQz3vTcT/vE6C/oWbijBOkIdsushPJMGITP4nfaE4Qzk2hDIlzK2EDamiDE1KJROCM//yImmeVJ2z6umdXandTtOAIhzAIRyDA+dQgxuoQwMYRPAEL/BqofVsvVnv09aCNZvZhz+wPn4AL02SpQ==</latexit>

Gŝ

<latexit sha1_base64="jaFL84zHWdGtRZEZQLpQhu6PFGI=">AAAB8nicbVDJSgNBEK2JW4xb1KOXxiB4CjOCy82AB/UWwSyQjKGn05M06VnorhHCMJ/hxYMiXv0Y8ebf2JnkoIkPCh7vVVFVz4ul0Gjb31ZhaXllda24XtrY3NreKe/uNXWUKMYbLJKRantUcylC3kCBkrdjxWngSd7yRlcTv/XIlRZReI/jmLsBHYTCF4yikTrXD2l3SDHVWdYrV+yqnYMsEmdGKpefkKPeK391+xFLAh4ik1TrjmPH6KZUoWCSZ6VuonlM2YgOeMfQkAZcu2l+ckaOjNInfqRMhUhy9fdESgOtx4FnOgOKQz3vTcT/vE6C/oWbijBOkIdsushPJMGITP4nfaE4Qzk2hDIlzK2EDamiDE1KJROCM//yImmeVJ2z6umdXandTtOAIhzAIRyDA+dQgxuoQwMYRPAEL/BqofVsvVnv09aCNZvZhz+wPn4AL02SpQ==</latexit>

Gŝ

<latexit sha1_base64="gD63Busp+0saUNNF4o3Y5k3H9lM=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4Kon4dSx40VsF0xbaWDbbSbt0swm7m0Ip/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAqujet+Oyura+sbm4Wt4vbO7t5+6eCwrpNMMfRZIhLVDKlGwSX6hhuBzVQhjUOBjXBwO/UbQ1SaJ/LRjFIMYtqTPOKMGiv5wyfd4Z1S2a24M5Bl4uWkDDlqndJXu5uwLEZpmKBatzw3NcGYKsOZwEmxnWlMKRvQHrYslTRGHYxnx07IqVW6JEqULWnITP09Maax1qM4tJ0xNX296E3F/7xWZqKbYMxlmhmUbL4oygQxCZl+TrpcITNiZAllittbCetTRZmx+RRtCN7iy8ukfl7xriqXDxfl6n0eRwGO4QTOwINrqMId1MAHBhye4RXeHOm8OO/Ox7x1xclnjuAPnM8f7HCOzA==</latexit>

vsi

<latexit sha1_base64="k7I5Vhal+E9WkfqAoGVdUb6cHkg=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSTi17HgRW8VTFtoY9lsN+3azSbsTgol9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5QSK4Rsf5tgorq2vrG8XN0tb2zu5eef+goeNUUebRWMSqFRDNBJfMQ46CtRLFSBQI1gyGN1O/OWJK81g+4DhhfkT6koecEjSSN3rE7lO3XHGqzgz2MnFzUoEc9W75q9OLaRoxiVQQrduuk6CfEYWcCjYpdVLNEkKHpM/ahkoSMe1ns2Mn9olRenYYK1MS7Zn6eyIjkdbjKDCdEcGBXvSm4n9eO8Xw2s+4TFJkks4XhamwMbann9s9rhhFMTaEUMXNrTYdEEUomnxKJgR38eVl0jirupfVi/vzSu0uj6MIR3AMp+DCFdTgFurgAQUOz/AKb5a0Xqx362PeWrDymUP4A+vzB+96js4=</latexit>

vtj

<latexit sha1_base64="gD63Busp+0saUNNF4o3Y5k3H9lM=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4Kon4dSx40VsF0xbaWDbbSbt0swm7m0Ip/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAqujet+Oyura+sbm4Wt4vbO7t5+6eCwrpNMMfRZIhLVDKlGwSX6hhuBzVQhjUOBjXBwO/UbQ1SaJ/LRjFIMYtqTPOKMGiv5wyfd4Z1S2a24M5Bl4uWkDDlqndJXu5uwLEZpmKBatzw3NcGYKsOZwEmxnWlMKRvQHrYslTRGHYxnx07IqVW6JEqULWnITP09Maax1qM4tJ0xNX296E3F/7xWZqKbYMxlmhmUbL4oygQxCZl+TrpcITNiZAllittbCetTRZmx+RRtCN7iy8ukfl7xriqXDxfl6n0eRwGO4QTOwINrqMId1MAHBhye4RXeHOm8OO/Ox7x1xclnjuAPnM8f7HCOzA==</latexit>

vsi
<latexit sha1_base64="k7I5Vhal+E9WkfqAoGVdUb6cHkg=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSTi17HgRW8VTFtoY9lsN+3azSbsTgol9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5QSK4Rsf5tgorq2vrG8XN0tb2zu5eef+goeNUUebRWMSqFRDNBJfMQ46CtRLFSBQI1gyGN1O/OWJK81g+4DhhfkT6koecEjSSN3rE7lO3XHGqzgz2MnFzUoEc9W75q9OLaRoxiVQQrduuk6CfEYWcCjYpdVLNEkKHpM/ahkoSMe1ns2Mn9olRenYYK1MS7Zn6eyIjkdbjKDCdEcGBXvSm4n9eO8Xw2s+4TFJkks4XhamwMbann9s9rhhFMTaEUMXNrTYdEEUomnxKJgR38eVl0jirupfVi/vzSu0uj6MIR3AMp+DCFdTgFurgAQUOz/AKb5a0Xqx362PeWrDymUP4A+vzB+96js4=</latexit>

vtj

Node-wise Distance

Edge-wise Distance

<latexit sha1_base64="IQ/keTvHbN3tsJRaQECf61RvZKk=">AAAChnicbZHbSiNBEIZ7RteN8RTXS28ag6CshBlddW+EgEa9WlwwUUji0NNTia09B7prxDAM+CK+lHe+jZ1M0EQtaPjrr/qo7mo/kUKj47xa9szsj7mfpfnywuLS8kpl9VdLx6ni0OSxjNW1zzRIEUETBUq4ThSw0Jdw5d8fD+tXD6C0iKNLHCTQDVk/Ej3BGRrLqzx3EB4xOzGT8q0OChlAdpbfaE/s0I8UvbttekQnem+yIvkXB5C/k61psjUmf39HNoL+BNmYJhsF6VWqTs0ZBf0q3LGoknFceJWXThDzNIQIuWRat10nwW7GFAouIS93Ug0J4/esD20jIxaC7majNeZ00zgB7cXKnAjpyJ0kMhZqPQh90xkyvNWfa0Pzu1o7xd7fbiaiJEWIeDGol0qKMR3+CQ2EAo5yYATjSpi7Un7LFONofq5sluB+fvJX0dqtuQe1/f9/qvXTp2IdJbJONsgWcckhqZNzckGahFsz1ra1a+3ZJbtm79uHRattjVe4RqbCrr8BggHGxw==</latexit>

Dist(G̃s
i , G̃

t
j) = DistNode(Ṽ s

i , Ṽ
t
j) + DistEdge(Ẽs

i , Ẽ
t
j)

<latexit sha1_base64="1hsCALRmQJHNYPbz5tS7rSyFVJ0=">AAACLHicbVDLSiNBFL2tjo+MOlGXbgplxAEJ3SM+loJoXCqYKKRjqK7cmMLqh1W3hdA0+Dtu/BVBXBjErT/gD1jpZOHoHCjqnHPvpeqeIFHSkOv2nbHxiR+TU9MzpZ+zc/O/yguLdROnWmBNxCrW5wE3qGSENZKk8DzRyMNA4VlwtT+on92gNjKOTqmXYDPkl5HsSMHJWq3yvk9StTGr5hemJdn6SNYLucFG8qCQf5hv0sAg4TVj1YvM73LKTJ63yqtuxS3AvhNvRFb31t43BzhulR/9dizSECMSihvT8NyEmhnXJIXCvOSnBhMurvglNiyNeIimmRXL5uy3ddqsE2t7ImKF+3ki46ExvTCwnSGnrvlaG5j/qzVS6uw2MxklKWEkhg91UsUoZoPkWFtqFKR6lnChpf0rE12uuSCbb8mG4H1d+Tup/61425WtE5vG4S0UmIZlWIF18GAH9uAIjqEGAu7gAZ6h79w7T86L8zpsHXOGNyzBP3DePgBXGquQ</latexit>

G̃s
i (Ṽ

s
i , Ẽ

s
i) ✓ Gŝ

Spectral Perturbation Unstability

Edge perturbation

<latexit sha1_base64="k7I5Vhal+E9WkfqAoGVdUb6cHkg=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSTi17HgRW8VTFtoY9lsN+3azSbsTgol9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5QSK4Rsf5tgorq2vrG8XN0tb2zu5eef+goeNUUebRWMSqFRDNBJfMQ46CtRLFSBQI1gyGN1O/OWJK81g+4DhhfkT6koecEjSSN3rE7lO3XHGqzgz2MnFzUoEc9W75q9OLaRoxiVQQrduuk6CfEYWcCjYpdVLNEkKHpM/ahkoSMe1ns2Mn9olRenYYK1MS7Zn6eyIjkdbjKDCdEcGBXvSm4n9eO8Xw2s+4TFJkks4XhamwMbann9s9rhhFMTaEUMXNrTYdEEUomnxKJgR38eVl0jirupfVi/vzSu0uj6MIR3AMp+DCFdTgFurgAQUOz/AKb5a0Xqx362PeWrDymUP4A+vzB+96js4=</latexit>

vtj

<latexit sha1_base64="cYZHPuO1+TeRDsl58jk/+GOEq2U=">AAACNXicbVBNSxxBEK0xJjFrPjbx6KVRhA2EZUbQ5BIQAirowYCrws666emtdVt7eobuGskwDnjyB3nxf+SkBw8G9Zq/kN5ZD349KOrxXjVd9aJUSUu+f+GNvRh/+er1xJva5Nt37z/UP37asklmBLZEohKzE3GLSmpskSSFO6lBHkcKt6ODH0N/+xCNlYnepDzFTsz3tOxLwclJ3fp6SPibipa2xCOpJOVl43CXuvuf2Xc28tbWy0Z6FJJUPSxWysr8wsIBpyItj6p+p3brs37Tr8CekuCOzC4F+Ym3+Otmo1v/E/YSkcWoSShubTvwU+oU3JAUCstamFlMuTjge9h2VPMYbaeori7ZnFN6rJ8YV5pYpd5/UfDY2jyO3GTMaWAfe0PxOa+dUf9bp5A6zQi1GH3UzxSjhA0jZD1pUJDKHeHCSLcrEwNuuCAXdM2FEDw++SnZmm8Gi82Fny6N5WOoMAHTMAMNCOArLMEqbEALBJzCOVzBX+/Mu/SuvdvR6Jg36jAFD+D9+w8xH7BD</latexit>

Unstability(vtj) = KL(p|G̃t
j), p̂|Ĝt

j)

Entropy based Uncertainty

Class
Pr

ob
ab

ilit
y

<latexit sha1_base64="vWZ9B49dn7Vz/eFofLYhkl7YJmE=">AAAB8HicbVDJSgNBEK2JW4xb1KOXxiB4kDAjbseAIB4jmEWSMfR0Okmbnp6hu0YIQ8B/8OJBEa9+jjf/xs5y0MQHBY/3qqiqF8RSGHTdbyezsLi0vJJdza2tb2xu5bd3qiZKNOMVFslI1wNquBSKV1Cg5PVYcxoGkteC/uXIrz1ybUSkbnEQcz+kXSU6glG00l18j6304YgNW/mCW3THIPPEm5ICTFFu5b+a7YglIVfIJDWm4bkx+inVKJjkw1wzMTymrE+7vGGpoiE3fjo+eEgOrNImnUjbUkjG6u+JlIbGDMLAdoYUe2bWG4n/eY0EOxd+KlScIFdssqiTSIIRGX1P2kJzhnJgCWVa2FsJ61FNGdqMcjYEb/bleVI9LnpnxdObk0Lp6mkSRxb2YB8OwYNzKME1lKECDEJ4hld4c7Tz4rw7H5PWjDONcBf+wPn8AfpRkPQ=</latexit>

ptj,c

<latexit sha1_base64="diZeymICFnG91noVhRGK26kHKEE=">AAACFHicbZDLSgNBEEV7fMb4irp000QERQgzig9cBQVxIRjFJEImDD2dStLY86C7RgxDPkIQf8WNC0XcunCXv7GTuNDohYbDrSqq6/qxFBptu2eNjU9MTk1nZrKzc/MLi7ml5YqOEsWhzCMZqWufaZAihDIKlHAdK2CBL6Hq3xz369VbUFpE4RV2YqgHrBWKpuAMjeXltlyEO0xPzs/oZSJBH9IurXoOdTmL6UbV2zaUxMba2cx6uTW7YA9E/4LzDWvFvLv10Ct2Sl7u021EPAkgRC6Z1jXHjrGeMoWCS+hm3URDzPgNa0HNYMgC0PV0cFSXrhunQZuRMi9EOnB/TqQs0LoT+KYzYNjWo7W++V+tlmDzoJ6KME4QQj5c1EwkxYj2E6INoYCj7BhgXAnzV8rbTDGOJsd+CM7oyX+hsl1w9gq7FyaNIzJUhqySPNkgDtknRXJKSqRMOLknT+SFvFqP1rP1Zr0PW8es75kV8kvWxxde257U</latexit>

FOL Rules: W1 \ (W2 [W3)

<latexit sha1_base64="qNK9uxzyMNxcmR7m5NfXk0eOxr4=">AAACqXicbZHbitswEIZl97R1D5u2l70RDV1KCyHO0gO9Wuhe9KIXu1AnoVEIY2XsiJVlI41Lg/G79Rl617epnGRp9jAg+Pl/fWg0k1ZaORoO/wbhnbv37j84eBg9evzk6WHv2fOxK2srMZGlLu00BYdaGUxIkcZpZRGKVOMkvfjS5ZOfaJ0qzXdaVzgvIDcqUxLIW4veb5FirkyTadAqN2/biB/xySLmgvAXNZ9PfQtgJLacc6GRC9DVCrrclKYuUrRciC0zumQS45lUaUXrlosc+SU1uoU6/k9JtATKdNQV7HgPiwSa5V630aLXHw6Gm+I3RbwTfbars0Xvj1iWsi7QkNTg3CweVjRvwJKSGttI1A4rkBeQ48xLAwW6ebOZdMtfe2fJs9L6Y4hv3H2igcK5dZH6mwXQyl3POvO2bFZT9mneKFPVhEZuH8pqzank3dr4UlmUpNdegLTK98rlCixI8svthhBf//JNMR4N4g+D9+ej/snpbhwH7CV7xd6wmH1kJ+wrO2MJk8FR8C1IgnH4LjwPp+GP7dUw2DEv2JUK5T81E800</latexit>

W1:Distance  ↵1

W2:Unstability � ↵2

W3:Uncertainty � ↵3

<latexit sha1_base64="lv6psc/G1APVEC+304Ixu2WHBZw=">AAACD3icbVDJSgNBEO1xN25Rj14agxJBwoy4XQTBg3qLYDSQZejpVExr98zQXRMMQ/7Ai7/ixYMiXr1682/sLAeNPih4vFdFVb0glsKg6345Y+MTk1PTM7OZufmFxaXs8sqViRLNocQjGelywAxIEUIJBUooxxqYCiRcB3cnPf+6DdqIKLzETgw1xW5C0RScoZX87Gb1lCnF/FTcdo+qCPeYGh5p6ObbdeOLbdquo3+75WdzbsHtg/4l3pDkyBBFP/tZbUQ8URAil8yYiufGWEuZRsEldDPVxEDM+B27gYqlIVNgamn/ny7dsEqDNiNtK0TaV39OpEwZ01GB7VQMW2bU64n/eZUEm4e1VIRxghDywaJmIilGtBcObQgNHGXHEsa1sLdS3mKacbQRZmwI3ujLf8nVTsHbL+xd7OaOz4dxzJA1sk7yxCMH5JickSIpEU4eyBN5Ia/Oo/PsvDnvg9YxZzizSn7B+fgGQHuc0A==</latexit>

�ij = score(vsi , v
t
j)

<latexit sha1_base64="0iD3SCCkDWTPYatVoWUKs60hDdM=">AAACI3icbVDJSgNBEK1xN25Rj14aRVCQMCO44EkQl6OCiUISY0+nYlp7FrtrhDAEPPkdXvwVLx4U8eLBo/9hZ5KD24Om33tVRXc9P1bSkOu+O339A4NDwyOjubHxicmp/PRMyUSJFlgUkYr0qc8NKhlikSQpPI018sBXeOJf7XTqJzeojYzCY2rFWA34RSgbUnCyVi2/VSGp6pjut8+odsmWerKUyRXWk7uZXGYVk/gGCa/ZvjXyC27BzcD+Eq9HFra91p2zfv55WMu/VuqRSAIMSShuTNlzY6qmXJMUCtu5SmIw5uKKX2DZ0pAHaKpptmObLVqnzhqRticklrnfJ1IeGNMKfNsZcGqa37WO+V+tnFBjs5rKME4IQ9F9qJEoRhHrBMbqUqMg1bKECy3tX5locs0F2VhzNgTv98p/SWm14K0X1o5sGnu3kGEE5mAelsCDDdiGAziEIgi4h0d4hhfnwXlyXp23bmuf071hFn7A+fgCeMqoKA==</latexit>

G̃t
j(Ṽ

t
j , Ẽ

t
j) ✓ Gt

<latexit sha1_base64="j3erOmx5hdC6FxwOgcNdMDVtdZY=">AAACKXicbZDLSgMxFIYz3q23qks3wSIoaJkRbxuhIIhLBatCpw6Z9LRGM5khOSOWYcCnceOruFFQ1K0vYnoRvP0Q+PKfc0jOHyZSGHTdN2dgcGh4ZHRsvDAxOTU9U5ydOzFxqjlUeSxjfRYyA1IoqKJACWeJBhaFEk7Dq71O/fQatBGxOsZ2AvWItZRoCs7QWkGx4iPcYFZVHDQyobCdL1+fY3C5QnfpGvVNGgUZz2livexy1ZIv49bXlfI8KJbcstsV/QteH0qkr8Og+OQ3Yp5GoJBLZkzNcxOsZ0yj4BLygp8aSBi/Yi2oWVQsAlPPupvmdMk6DdqMtT0Kadf9PpGxyJh2FNrOiOGF+V3rmP/Vaik2d+qZUEmKoHjvoWYqKca0ExttCA0cZdsC41rYv1J+wTTjaMMt2BC83yv/hZP1srdV3jzaKFX2b3txjJEFskiWiUe2SYUckENSJZzckQfyTF6ce+fReXXee60DTj/CefJDzscnowKnQQ==</latexit>

Uncertainty(vtj) = �
X

c

ptj,c log p
t
j,c

<latexit sha1_base64="k7I5Vhal+E9WkfqAoGVdUb6cHkg=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSTi17HgRW8VTFtoY9lsN+3azSbsTgol9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5QSK4Rsf5tgorq2vrG8XN0tb2zu5eef+goeNUUebRWMSqFRDNBJfMQ46CtRLFSBQI1gyGN1O/OWJK81g+4DhhfkT6koecEjSSN3rE7lO3XHGqzgz2MnFzUoEc9W75q9OLaRoxiVQQrduuk6CfEYWcCjYpdVLNEkKHpM/ahkoSMe1ns2Mn9olRenYYK1MS7Zn6eyIjkdbjKDCdEcGBXvSm4n9eO8Xw2s+4TFJkks4XhamwMbann9s9rhhFMTaEUMXNrTYdEEUomnxKJgR38eVl0jirupfVi/vzSu0uj6MIR3AMp+DCFdTgFurgAQUOz/AKb5a0Xqx362PeWrDymUP4A+vzB+96js4=</latexit>

vtj

<latexit sha1_base64="f9lWOPO2ycpujYuEtSFHkWTNa+E=">AAAB/XicbVDJSgNBEK1xjXGLy81Lo4gKEmYEo8eIoB4jmAWScezpdExrz0J3jRCHoCe/w4sHRbz6H978AP/DTuLB7UFRj/eq6Ornx1JotO13a2h4ZHRsPDORnZyanpnNzc1XdJQoxssskpGq+VRzKUJeRoGS12LFaeBLXvUv93t+9YorLaLwBDsxdwN6HoqWYBSN5OUWG22K6WH3FL0Lsl7bJHtrG8TLrdh5uw/ylzhfZKXodO6swtlHycu9NZoRSwIeIpNU67pjx+imVKFgknezjUTzmLJLes7rhoY04NpN+9d3yapRmqQVKVMhkr76fSOlgdadwDeTAcW2/u31xP+8eoKtXTcVYZwgD9ngoVYiCUakFwVpCsUZyo4hlClhbiWsTRVlaALLmhCc31/+SypbeaeQ3z42aRzcQh8ZWIJlWAcHdqAIR1CCMjC4hnt4hCfrxnqwnq2XweiQNeiwAD9gvX4C8qyW+Q==</latexit>

Ĝt
j(X,A0)

<latexit sha1_base64="inh0R+NvH2JQIN6oojh8GJzJ1JA=">AAACDnicbVC7SkNBEJ3r2/iKWtosiqAg4V7BR6kIaqlgHpDEuHcz0dW9D3fnCuESsLKx8VdsLBSxtbbzA/wPN4mFJh4Y5nDODLtz/FhJQ6776QwMDg2PjI6NZyYmp6ZnsrNzBRMlWmBeRCrSJZ8bVDLEPElSWIo18sBXWPSv9tp+8Qa1kVF4Qs0YqwE/D2VDCk5WqmWXKyRVHdOD1inVLtlKaY3trrKKSXyDhNeMHZym1Kpll9yc2wHrJ94PWdrxmnfO5tnXUS37UalHIgkwJKG4MWXPjamack1SKGxlKonBmIsrfo5lS0MeoKmmnXNabNkqddaItK2QWEf9vZHywJhm4NvJgNOF6fXa4n9eOaHGdjWVYZwQhqL7UCNRjCLWzobVpUZBqmkJF1ravzJxwTUXZBPM2BC83pP7SWE9523mNo5tGvu30MEYLMAirIAHW7ADh3AEeRBwD4/wDC/Og/PkvDpv3dEBp9thHv7Aef8GVoueag==</latexit>

G̃t
j(X,A) ✓ Gt

Figure 2: The architecture of GraphInflu consists of two phases: (a) Supportive Node Selector via Gradients identifies the most
influential source nodes through gradientmatching between gradient information of source nodes and few-shot labeled target
nodes; and (b) Soft Logic-Inspired Node Reweighting further assigns greater importance to selected source nodes that closely
align with the target domain, particularly where challenging target nodes exist. It estimates the ego-graph based distance to
ensure that reweighted source nodes are sufficiently close to certain target nodes. The unstability of target nodes is evalu-
ated using the KL divergence between the original ego graphs and their corresponding adversarially perturbed versions. The
uncertainty of target nodes is estimated through entropy calculation. Subsequently, a First-Order Logic (FOL) framework is
incorporated to balance these metrics, facilitating the reweighting of source nodes.

with 𝑛𝑠 nodes, and a partially labeled target graph 𝐺𝑡 =
(𝑉 𝑡 , 𝐸𝑡 , 𝐴𝑡 , 𝑋 𝑡 , 𝑌 𝑡) with 𝑛𝑡 nodes. The source graph 𝐺𝑠 contains
a fully labeled node set 𝑉 𝑠,𝑙 , where 𝑛𝑠,𝑙 = 𝑛𝑠 . In the target graph
𝐺𝑡 , the nodes are divided into labeled nodes 𝑉 𝑡,𝑙 and unlabeled
nodes 𝑉 𝑡,𝑢 , such that 𝑛𝑡,𝑙 + 𝑛𝑡,𝑢 = 𝑛𝑡 , with 𝑛𝑡,𝑢 is significantly
larger than 𝑛𝑡,𝑙 . Typically, there are only a few labeled nodes per
class in the target graph, for instance, five labels per class (5-shot).
We assume the label space is shared between the source and target
domains, with 𝐶 denoting the number of classes. The objective of
FSGDA is to train a model𝑔 that performs well on the target graph,
leveraging the labeled source nodes and the limited labeled target
nodes.

3.2 General Objective Function of FSGDA
The general objective function of FSGDA can be formulated as fol-
lows:

LFSGDA = Lcls + Lalign [+Lother] (1)
where Lcls denotes the cross-entropy loss function for the node

classification task using labeled nodes. This term can be further di-
vided into two parts based on the origin of nodes: Lcls = L𝑠cls +
L𝑡cls. And the Lalign term represents the domain alignment loss,
which can be implemented using techniques such as maximum
mean discrepancy (MMD) [11, 37] or adversarial training mech-
anisms [1, 9]. The last term, Lother, is optional and usually denotes
self-supervised methods, such as graph contrastive learning tech-
niques employed in both source and target graphs [28, 35].

4 Method
In this section, we introduce a novel method GraphInflu, which
aims to identify the most influential source nodes that better align
with the target domain and further enhance the importance of
these high-value nodes. To address this, as shown in Figure 2, our
method is divided into two phases: (1) supportive node selector
via gradients, and (2) soft logic-inspired node reweighting.

In phase 1, we train a GNN model on the source graph and
compute the loss for all labeled nodes during the training process.
By performing backpropagation, we obtain the gradient stores for
both the source and target nodes. Furthermore, we deduce that
the change in loss for labeled target nodes can be measured by
the inner product of the gradient features from the two networks.
Based on this, we construct a contribution score function for
the source nodes using these two sets of gradient features. Finally,
we apply a class-balanced sampling strategy based on the contri-
bution score to select supportive data. In phase 2, we train a new
GNN model on both the source and target graphs. During train-
ing, we place greater emphasis on source nodes whose distribu-
tion closely aligns with the target nodes, particularly the challeng-
ing target ones. The representativeness metric is evaluated based
on the distance between ego graphs centered specific nodes from
both domains, consisting of both node-wise and edge-wise dis-
tances. The difficulty metric consists of two components: unsta-
bility and uncertainty of specific target nodes. For unstability, we
construct an adversarially perturbed ego graph by maximizing the

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

spectral distance. The unstability metric is computed using the KL
divergence between the original prediction (based on the original
ego graph) and the perturbed prediction (based on the perturbed
graph). For uncertainty, we estimate the model’s uncertainty via
the entropy of its predictions. These three metrics are then inte-
grated into a First-Order Logic (FOL) framework to compute an
importance weight for each source node.

4.1 Supportive Node Selector via Gradients
As mentioned in introduction, a certain proportion of source do-
main nodes (referred to as adverse data) introduce biases that devi-
ate from the target domain distribution. As the model trains, these
biases are enhanced and thus the degrades model performance on
the target domain. With limited labeled data in the target domain,
here we aim to identify the influential source nodes and filter out
adverse ones to improve model performance.

Here we emphasize the effective utilization of the few labeled
target nodes. We offer a unique perspective by viewing source
graph nodes as training data and correspondingly labeled target
nodes as validation data. This allows the performance on these
“validation” data (labeled target nodes) to provide insights into
model’s generalization ability on the target distribution. Conse-
quently, the problem can be transformed into selecting the most
influential source nodes to achieve better performance on these
limited labeled target ones.
Contribution score function. We consider using gradient fea-
tures from both labeled source nodes and target nodes to con-
struct our contribution score function. Consider a node classifica-
tion model 𝑔 = ℎ ◦ 𝑓 trained on the loss L. Here 𝑓 denotes the
feature extractor and ℎ is the node classification head. The overall
parameters are represented by 𝜃 . Notably, the training process re-
lies exclusively on the source graph, while the few labeled target
nodes are solely used for evaluation. In this way, we can estimate
first-order Taylor expansion of loss on the labeled target node 𝑣𝑡𝑗
at the (𝑘 + 1)-th update of the model.:

L(𝑣𝑡𝑗 , 𝜃𝑘+1) ≈ L(𝑣𝑡𝑗 , 𝜃𝑘) − 𝜂𝑘∇𝜃𝑘L(𝑣𝑡𝑗 , 𝜃𝑘)
⊤∇𝜃𝑘L(𝑣𝑠𝑖 , 𝜃𝑘) (2)

where 𝑣𝑠𝑖 ∈ 𝑉 𝑠,𝑙 and 𝑣𝑡𝑗 ∈ 𝑉
𝑡,𝑙 represent the source node and target

node, respectively. 𝜂𝑘 denotes the learning rate at step 𝑘 . ∇𝜃𝑘 (·)
signifies the gradient of the loss function with respect to the model
weights 𝜃𝑘 . Furthermore, we can formulate the following loss re-
duction extent at step 𝑘 :

L(𝑣𝑡𝑗 , 𝜃𝑘) − L(𝑣𝑡𝑗 , 𝜃𝑘+1) ≈ 𝜂𝑡∇𝜃𝑘L(𝑣𝑡𝑗 , 𝜃𝑘)
⊤∇𝜃𝑘L(𝑣𝑠𝑖 , 𝜃𝑘) (3)

We can observe that the inner product of gradient features
∇𝜃𝑘L(𝑣𝑡𝑗 , 𝜃𝑘)

⊤∇𝜃𝑘L(𝑣𝑠𝑖 , 𝜃𝑘) measures the change in the loss on la-
beled target nodes.Themagnitude of the change in loss reflects the
extent to which the source node contributes to the performance
on the corresponding target node. Therefore, we can utilize this
item to define the following contribution score function score(·, ·)
through aggregating multiple learning steps:

score(𝑣𝑠𝑖 , 𝑣
𝑡
𝑗) =

∑
𝑘

𝜂𝑘∇𝜃𝑘L(𝑣𝑡𝑗 , 𝜃𝑘)
⊤∇𝜃𝑘L(𝑣𝑠𝑖 , 𝜃𝑘) (4)

The above formulation illustrates the contribution score of a source
node in relation to a specific target node. Furthermore, we can

derive the contribution score matrix Γ ∈ R𝑛
𝑠,𝑙×𝑛𝑡,𝑙 , where Γ𝑖 𝑗 =

score(𝑣𝑠𝑖 , 𝑣
𝑡
𝑗).

Class-balanced selection strategy. In practice, relying solely on
the highest score for selection from Eq. (4) tends to construct a
class biased source node set. One possible reason is that the se-
mantic representations of certain classes have a smaller domain
gap, leading to higher scores for source nodes from those classes.

To address this issue, we employ a class-balanced selection strat-
egy. For a given source node 𝑣𝑠𝑖 , we aggregate the contribution
score based on the label of few-shot target nodes. In this way, we
can obtain a class-wise contribution score matrix Γ̂ ∈ R𝑛

𝑠,𝑙×𝐶 :

Γ̂𝑖 𝑗 =

∑
𝑣𝑡𝑚∈𝑉 𝑡,𝑙 I(𝑦𝑡𝑚 = 𝑐 𝑗) · Γ𝑖 𝑗∑
𝑣𝑡𝑚∈𝑉 𝑡,𝑙 I(𝑦𝑡𝑚 = 𝑐 𝑗)

(5)

where I is an indicator function that returns 1 when the condi-
tion is satisfied and 0 otherwise. Here Γ̂𝑖 𝑗 denotes the contribu-
tion score of source node 𝑣𝑠𝑖 belonging to class 𝑐 𝑗 . Assume we
select a total of 𝑄 source nodes from 𝑉 𝑠 . For a specific class 𝑐𝑖 ,
we choose (1+𝛽)𝑄

𝐶 samples with the highest scores under class 𝑐𝑖 ,
where 𝛽 > 0 facilitates the selection of additional candidates. This
adjustment addresses the potential overlap among class-wise can-
didates; for example, a single node may exhibit high contribution
score in both class 𝑐𝑖 and class 𝑐 𝑗 . Finally, we can obtain a class-
balanced supportive source node set 𝑉 𝑠 via employing Γ and our
sampling strategy.

4.2 Soft Logic-Inspired Node Reweighting
Even with supportive nodes identified by the above score function,
the core source nodes can easily be overshadowed by low-value
nodes, limiting the GNN’s ability to fully capture the underlying
patterns. Given the limited availability of target domain labels, we
further emphasize the importance and uniqueness of core source
nodes closely aligned with the target nodes, especially the chal-
lenging target ones.

The previous section primarily emphasizes the use of labeled tar-
get nodes to identify the supportive source nodes. However, the
abundant unlabeled target nodes also provide valuable informa-
tion for domain adaptation. In this section, we explore the role of
source nodes in the domain adaptation process by effectively utiliz-
ing these numerous unlabeled target nodes. Here, we consider two
kinds of challenging nodes: unstable and uncertain target nodes,
as they contribute more to domain adaptation when properly ad-
dressed.

Given a source node 𝑣𝑠𝑖 , we first find its 𝐾 nearest target nodes
A𝑖 = {𝑣𝑡𝑗 }

𝐾
𝑗=1 in the representation space. The unstability and un-

certainty of these𝐾 target nodes are then estimated to dynamically
adjust the importance of the corresponding source node 𝑣𝑠𝑖 .
Ego-graph based distance.Given the structural nature of graphs,
we assess the similarity between subgraphs centered on nodes
from two domains, which encompasses both node-wise and edge-
wise distances. Specifically, for a source node 𝑣𝑠𝑖 and a target node
𝑣𝑡𝑗 , we extract their respective ego graphs, denoted as 𝐺̃𝑠𝑖 (𝑉̃

𝑠
𝑖 , 𝐸

𝑠
𝑖)

and 𝐺̃𝑡𝑗 (𝑉̃
𝑡
𝑗 , 𝐸

𝑡
𝑗). An ego graph represents the induced subgraph sur-

rounding a specific node. We use 𝑉̃ 𝑠𝑖 and 𝑉̃ 𝑡𝑗 to denote the induced
sets of nodes, and 𝐸𝑠𝑖 and 𝐸𝑡𝑗 to represent the induced sets of edges.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Grasp the Key Takeaways from Source Domain for Few Shot Graph Domain Adaptation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

The number of nodes in 𝐺̃𝑠𝑖 and 𝐺̃𝑡𝑗 is represented as 𝑛1 and 𝑛2,
respectively,

The node-wise distance can be calculated usingmetrics based on
two node sets, 𝑉̃ 𝑠𝑖 and 𝑉̃ 𝑡𝑗 . In this context, we employ the Wasser-
stein distance [20] for node-wise distance 𝐷Node (𝑉̃ 𝑠𝑖 , 𝑉̃

𝑡
𝑗), as fol-

lows:

𝐷Node (𝑉̃ 𝑠𝑖 , 𝑉̃
𝑡
𝑗) = min

𝛾 ∈Π (𝜇𝑖 ,𝜇 𝑗)

∑
𝑎∈𝑉̃ 𝑠

𝑖

∑
𝑏∈𝑉̃ 𝑡

𝑗

𝛾𝑎𝑏 · 𝑐 (𝑥𝑎, 𝑥𝑏) (6)

where Π(𝜇𝑖 , 𝜇 𝑗) =
{
𝛾 ∈ R𝑛1×𝑛2+ | 𝛾1𝑛1 = 𝜇𝑖 , 1𝑇𝑛2𝛾 = 𝜇 𝑗

}
denotes

the valid transport plan 𝛾 . Here, 1𝑛1 and 1𝑛2 are column vectors of
ones with 𝑛1 and 𝑛2 entries, respectively. Here for simiplicity, we
use 𝑎 and 𝑏 to represent the nodes 𝑣𝑠𝑎 and 𝑣𝑡

𝑏
, respectively. 𝑥𝑎 and

𝑥𝑏 denotes the node embedding. And 𝑐 (𝑥𝑎, 𝑥𝑏) denote the cost to
move a distribution to another, here we choose the commonly used
squared Euclidean distance, defined as 𝑐 (𝑥𝑎, 𝑥𝑏) = ∥𝑥𝑎 − 𝑥𝑏 ∥2.

Besides the node-wise distance between two ego graphs, we fur-
ther incorporate the edge-wise distance to capture structure simi-
larity. Following the same notions in Eq. (6), we employ Gromov-
Wasserstein [2] to calculate distances 𝐷Edge (𝐸𝑠𝑖 , 𝐸

𝑡
𝑗) between the

edge sets 𝐸𝑠𝑖 and 𝐸𝑡𝑗 :

𝐷Edge (𝐸𝑠𝑖 , 𝐸
𝑡
𝑗) = min

𝛾 ∈Π (𝜇𝑖 ,𝜇 𝑗)

∑
(𝑎,𝑐) ∈𝐸̃𝑠𝑖

∑
(𝑏,𝑑) ∈𝐸̃𝑡𝑗

𝛾𝑎𝑏 · 𝑐 (𝑥𝑎, 𝑥𝑐 , 𝑥𝑏 , 𝑥𝑑)

(7)

where 𝑐 (𝑥𝑎, 𝑥𝑐 , 𝑥𝑏 , 𝑥𝑑) = ∥cos(𝑥𝑎, 𝑥𝑐) − cos(𝑥𝑏 , 𝑥𝑑)∥ is the cost
function between edges from different graphs. Here, cos refers to
cosine similarity, defined as cos(𝑥,𝑦) = 𝑥 ·𝑦

∥𝑥 ∥ ∥𝑦 ∥ . The final ego-
graph based distance 𝑑𝑖 𝑗 are formulated as follows:

𝑑𝑖 𝑗 = 𝐷
Node (𝑉̃ 𝑠𝑖 , 𝑉̃

𝑡
𝑗) + 𝐷

Edge (𝐸𝑠𝑖 , 𝐸
𝑡
𝑗) (8)

Unstability estimate. The unstability of the model’s predictions
on samples can be assessed by measuring the inconsistency be-
tween predictions on the samples and their corresponding virtual
adversarial samples [10]. In this part, we first construct an adver-
sarial sample by maximizing the spectral distance between the
original graph and the perturbed graph, centered around specific
nodes. And then we utilize the Kullback-Leibler (KL) divergence
between the predictions from the original graph and the perturbed
graph to estimate unstability.

For an ego graph 𝐺̃𝑡𝑗 centered at node 𝑣𝑡𝑗 , we use G(𝑋,𝐴) with
feature matrix 𝑋 and adjacency matrix 𝐴 to represent 𝐺𝑡𝑗 to sim-
plify symbols. The normalized Laplacian matrix 𝐿 is defined as
𝐿 = 𝐼𝑛 − 𝐷− 1

2𝐴𝐷− 1
2 , where 𝐷 is the diagonal degree matrix with

entries 𝐷𝑖𝑖 =
∑𝑚
𝑗=1𝐴𝑖 𝑗 . Furthermore, the edge decomposition of

the Laplacian matrix 𝐿 can be expressed as 𝐿 = 𝑈Λ𝑈⊤, where
Λ = diag(𝜆1, . . . , 𝜆𝑛) is the diagonal matrix of eigenvalues, and 𝑈
is a unitary matrix.

We generate edge perturbations Δ ∈ [0, 1]𝑛×𝑛 by maximizing
the spectral distance between the original graph G(𝑋,𝐴) and the
perturbed graph G′ (𝑋,𝐴′). The perturbed adjacency matrix 𝐴′ is
formulated as follows:

𝐴′ = Δ ◦ (1 −𝐴) + (1 − Δ) ◦𝐴 (9)

Here, Δ𝑖 𝑗 = 1 indicates a flip operation: if 𝐴𝑖 𝑗 = 1, the edge is
deleted; if𝐴𝑖 𝑗 = 0, the edge is added. The symbol ◦means element-
wise multiplication. The optimal perturbed matrix 𝐴′ can be op-
timized through the spectral distance 𝐷spec, which is defined as
𝐷spec = ∥𝑔∗

𝜙
(Λ) − 𝑔∗

𝜙
(Λ′)∥, where 𝑔∗

𝜙
represents the graph filter

parameterized by 𝜙 . Following the approach in [18], 𝑔∗
𝜙
can be ap-

proximated using the first-order approximation of the Chebyshev
polynomials [13], yielding 𝑔∗

𝜙
≈ ∥𝐼𝑛 − Λ∥. Thus, 𝐷spec can be ap-

proximated by the formulation:

𝐷spec ≈ ∥(𝐼𝑛 − Λ) − (𝐼𝑛 − Λ′)∥ = ∥Λ − Λ′∥ (10)

Consequently, we can conclude our objective is to achieve an op-
timal edge perturbation Δ by solving the following optimization
problem:

Δ0 = argmax
Δ

∥Λ − Λ′∥ (11)

This formulation can be effectively solved using gradient descent.
Once Δ is obtained, we can define the unstability of the target
node 𝑣𝑡𝑗 using the Kullback-Leibler divergence between the orig-
inal ego graph G and the corresponding adversarially perturbated
ego graph G′ (𝑋,𝐴′) as follows:

𝑤̂𝑡𝑗,uns = KL(𝑃 (𝑝𝑡𝑗 |G(𝑋,𝐴)), 𝑃 (𝑝𝑡𝑗 |G
′ (𝑋,𝐴′))) (12)

where 𝑝𝑡𝑗 and 𝑝
𝑡
𝑗 represent the predictions under G and G′, re-

spectively.
Uncertainty estimate. The uncertain target nodes have low pre-
diction confidence yet may be informative to the target domain.
Here we employ the entropy to calculate the uncertainty of sam-
ples. For a given target node 𝑣𝑡𝑗 , we extract its representation 𝑧𝑡𝑗
from the last layer of the feature encoder 𝑓 , and obtain its predic-
tion 𝑝𝑡𝑗 after passing through the classifier head ℎ. The entropy for
unlabeled target node 𝑣𝑡𝑗 ∈ 𝑉

𝑡
𝑢,𝑙

can be formulated as follows:

𝑤̂𝑡𝑗,unc = Entropy(𝑣𝑡𝑗 , 𝜃) = −
∑
𝑐

𝑝𝑡𝑗,𝑐 log𝑝
𝑡
𝑗,𝑐 (13)

where 𝑝𝑡𝑗,𝑐 denotes the prediction probability of 𝑣𝑡𝑗 belong to the
class 𝑐 .
Node reweighting with FOL. As illustrated above, we aim to
adjust the importance of source nodes based on the uncertainty
and unstability (which we refer to as difficulty metrics) of their
K nearest target nodes. Meanwhile, to mitigate the influence of
outliers or unrepresentative samples in the target domain, we em-
ploy ego graph-based distance to ensure structural similarity be-
tween source nodes and target nodes. In this section, we utilize a
first-order logic (FOL) framework [17] to inject structured domain
knowledge to balance the difficulty and distance metrics. The core
idea is to emphasize representative source nodes whose distribu-
tion closely aligns with the target nodes, particularly the challeng-
ing target ones.

Here, we use the uppercase 𝑊 to denote our focused weight
term, with the subscript indicating the specific metric being repre-
sented.The lowercase𝑤 is used to denote the corresponding value.
To achieve balance between difficulty and distance metrics, we for-
mulate this structure knowledge as the following FOL rules:

(𝑊𝑑𝑖𝑠 ≤ 𝛼1) ∧ (𝑊uns ≥ 𝛼2 ∨𝑊𝑢𝑛𝑐 ≥ 𝛼3) (14)
5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Here 𝛼1, 𝛼2, 𝛼3 denotes are the thresholds. However, the above
formulation is not differentiable. To address it, we define the fol-
lowing indicator function𝜓𝑔 and𝜓𝑙 for𝑤𝑖 ≥ 𝛼 and𝑤𝑖 ≤ 𝛼 respec-
tively as follows:

𝜓𝑔 (𝑥𝑖 , 𝛼) =
1

𝑒−(𝑤𝑖−𝛼)
(15)

𝜓𝑙 (𝑥𝑖 , 𝛼) =
1

𝑒 (𝑤𝑖−𝛼)
(16)

Further, motivated by Łukasiewicz Tnorm and T-conorm [16], we
relax the logic rules to define a soft version of conjections and dis-
junctions. Specifically, we follow [17] define the mapping function
Φ to map the outputs of FOL into real values:
• Φ (𝑊𝑖) = 𝑤𝑖
• Φ

(∨
𝑖
𝑊𝑖

)
= min

(
1,
∑
𝑖
𝑤𝑖

)
• Φ

(∧
𝑖
𝑊𝑖

)
= max

(
0,
∑
𝑖
𝑤𝑖 − |𝑊 | + 1

)
The first principle maps a variable in FOL to a real value in the
range [0, 1]. The last two principles map the conjunctions and dis-
junctions to real values in the range [0, 1].

Given a source node 𝑣𝑠𝑖 , and one of its nearest target node 𝑣𝑡𝑗 ∈
A𝑖 . We can calculate the source weight 𝑤𝑠𝑖 𝑗 via the soft logic of
rules in Eq. (14) as follows:

𝑤𝑠𝑖 𝑗 = Φ
(
𝜓𝑙 (𝑑𝑖 𝑗 , 𝛼1) ∧ Φ

(
𝜓𝑔 (𝑤̂𝑡𝑗,𝑢𝑛𝑠 , 𝛼2) ∨ (𝜓𝑔 (𝑤̂𝑡𝑗,𝑢𝑛𝑐 , 𝛼3)

))
(17)

Furthermore, we combine the source weight across nearest tar-
get set A𝑖 to obtain the final value:

𝑤𝑠𝑖 =
1
𝐾

∑
𝑗∈A𝑖

𝑤𝑠𝑖 𝑗 (18)

4.3 Model Training
As summarized in the general form of the objective function in Sec-
tion 3.2, our method can be integrated with existing graph domain
adaptation methods. The key difference is that our approach re-
placeL𝑠cls withL𝑠cls, while keeping other terms unchanged. Specif-
ically, L𝑠cls is defined as follows:

L𝑠cls = −
∑
𝑣𝑠𝑖 ∈𝑉 𝑠

𝑤𝑠𝑖 · 𝑦
𝑠
𝑖 log𝑦

𝑠
𝑖 (19)

Here,𝑦𝑠𝑖 ∈ 𝑌
𝑠 is the true label of source node 𝑣𝑠𝑖 and𝑦

𝑠
𝑖 denotes the

model prediction. The acquisition of set 𝑉 𝑠 is described in Section
4.1 and the calculation of the source node weights𝑤𝑠 is detailed in
Section 4.2. The pseudocode can be found in Appendix A.

5 Experiments
5.1 Experiment Settings
Datasets. Following [22, 33], we conduct experiments on three
commonly used real-world datasets provided by ArnetMiner [27]:
ACMv9, Citationv1, and DBLPv7, which are from different sources
and consequently have varied data distributions. We include six
transfer scenarios: C⇒A, D⇒A, A⇒C, D⇒C, A⇒D, and C⇒D,
where ACMv9, Citationv1, and DBLPv7 are represented as A, C,

and D for simplicity. We place more details about datasets in Ap-
pendix B.
Metrics. Following [5], we choose Micro-F1 score and Macro-F1
score to evaluate classification performance.
Baselines. We compare our approach against the following base-
lines, which can be categorized into three categories:

• Vanilla GNN methods: GCN [14], GSAGE [12] and GIN [36].
These classical GNN models are used for single graph represen-
tation learning. To align them with our settings, following the
method in [6], we adapt them by incorporating an additional
cross-entropy loss term calculated from the limited labeled tar-
get nodes.

• Unsupervised graph domain adaptation methods:
CDNE [23], ACDNE [22], UDAGCN [33] and MFRReg [39].
These methods are designed for unsupervised graph domain
adaptation methods. To align with our settings, we incorporate
the classification loss on labeled target nodes into their origin
loss functions.

• Few-shot graph domain adaptation methods: AdaGCN [5]
and SemiGCL [35].Thesemethods can directly deal with FSGDA
task.

Implementation details. GraphInflu can be integrated with cur-
rent graph domain adatation methods. We choose SemiGCL [35]
as our backbone which involves cross-entropy loss, contrastive
loss and entropy loss. These losses are computed based on identi-
fied source nodes𝑉 𝑠 , with the classification loss being reweighted
accordingly. The target graph is designed to include five labeled
nodes for each class. For supportive node selector, we set the train-
ing intervals 𝑇 = 5 and a scaling factor 𝛽 = 1.2. We set the de-
fault selection ratio of source nodes as 0.3. In the node reweight-
ing phase, we set the number of samples to 𝐾 = 5, and thresholds
to 𝛼1 = 0.4, 𝛼2 = 0.6, and 𝛼3 = 0.6. The Adam optimizer is used
with a default learning rate of 3× 10−3. For a fair comparision, our
method and all baselines set the hidden size of feature extractor
with 256.

5.2 Performance Comparision
We conduct the experiments using 30% of the source nodes and all
labeled target nodes for training across all methods.The results for
FSGDA on six domain adaptation scenarios, are detailed in Table
1. From this table, we can conclude the following discoveries:

• Compared to the three baseline categories, our proposed
method consistently outperforms them, achieving an average
improvement of 2.01% in micro-F1 and a 2.11% improvement in
macro-F1 over the best baseline. This result indicates that, given
the same selection budget for source nodes, our method effec-
tively identifies the most influential nodes and prioritizes these
core nodes, resulting in enhanced performance.

• Unsupervised graph domain adaptation methods (LT variants)
and few-shot graph domain adaptation approaches typically
outperform standard GNN methods, emphasizing the critical
role of adaptation strategies. However, existing few-shot graph
domain adaptation methods underestimate the value of labeled

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Grasp the Key Takeaways from Source Domain for Few Shot Graph Domain Adaptation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 1:Themodel performance is evaluated across six domain adaptation scenarios under a 5-shot learning setting. All meth-
ods are trained with 30% of the source data and all labeled target data. The best results are highlighted and the second-best
results are underlined. A: ACMv9; C:Citationv1; D: DBLPv7. A⇒C represents that A is the source graph and C is the target
graph. The same applies to other scenarios. The methods with the subscript LT represent variants of the baselines that incor-
porate additional classification loss on labeled target nodes.

Methods C⇒A D⇒A A⇒C D⇒C A⇒D C⇒D
Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro

GCNLT 73.98 73.37 69.25 68.90 76.66 74.52 75.16 72.1 70.84 66.92 74.11 72.24
GSAGELT 69.33 67.78 64.69 62.79 72.27 70.79 74.07 71.90 69.12 66.41 71.50 69.01
GINLT 72.87 72.50 68.74 67.80 75.53 73.98 72.39 68.68 70.18 67.56 73.05 70.40
UDAGCNLT 76.98 76.64 74.02 73.99 81.30 78.72 80.40 78.54 74.73 70.72 76.67 73.66
MFRRegLT 73.48 74.98 73.57 75.69 81.53 80.23 81.82 80.56 74.80 72.80 77.48 74.70
ACDNELT 73.15 74.42 69.09 67.81 81.20 79.82 79.13 75.80 74.55 72.74 76.25 72.85
AdaGCN 73.54 73.32 70.23 69.50 77.10 75.11 75.08 72.90 72.07 68.71 73.80 70.94
SemiGCL 77.73 77.48 75.98 75.27 83.25 81.63 82.79 81.25 74.35 72.31 77.35 75.61
GraphInflu 79.86 79.91 79.87 79.48 84.52 82.83 84.14 82.43 76.89 75.44 78.79 77.01
Improv.(%) +2.13 +2.43 +3.89 +3.79 +1.27 +1.20 +1.35 +1.18 +2.09 +2.64 +1.31 +1.40

Table 2: The model performance comparison across six domain adaptation scenarios under a 5-shot learning setting. All base-
lines employ the entire labeled source data and all labeled target data. Other captions are consistent with the Table 1.

Methods C⇒A D⇒A A⇒C D⇒C A⇒D C⇒D
Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro

GCNLT 75.31 75.31 71.74 71.46 77.72 75.93 76.72 73.75 70.72 68.42 75.08 72.90
UDAGCNLT 78.52 78.54 75.53 74.26 81.08 78.82 81.18 79.58 75.42 72.26 77.36 74.71
SemiGCL 78.54 78.47 77.22 77.05 83.49 81.50 83.29 81.41 75.65 73.39 77.73 75.88
GraphInflu 79.86 79.91 79.87 79.48 84.52 82.83 84.14 82.43 76.89 75.44 78.79 77.01

target nodes, leading to performance that is on par with tradi-
tional graph domain adaptation methods (LT variants). In con-
trast, our approach effectively utilize labeled target nodes to
identify the core supportive data from source domain.

Comparison with baselines using all source nodes. To fur-
ther illustrate the effectiveness of our approach, we compare our
model using 30% of the source nodes against the baselines that uti-
lize all labeled source nodes. Additionally, all methods utilize the
labeled target nodes. We select the three representative methods
from three types of baselines. As illustrated in Table 2, our model’s
performance still exceeds that of the baseline models. This result
demonstrates that not all source nodes contribute equally to gen-
eralization in the target domain. Our method is able to identify
high-value nodes, thereby facilitating the domain adaptation pro-
cess. We include more baselines results in Appendix C.
Performance under 1-shot labeled nodes for each class. We
further explore the performance of our approach under extreme
conditions, specifically with 1-shot labeled nodes for each class.
This experiment aims to determine whether our method can ef-
fectively identify valuable information to help pinpoint the most

valuable source nodes. We present our findings in Table 3. Despite
the extremely limited information, our approach demonstrates a
significant performance improvement compared with other base-
lines, showcasing its robustness. Meanwhile, we observe a degra-
dation in performance compared to Table 1, likely due to the fact
that a single sample may originate from outliers in the target do-
main. In practice, we find that using 5-shot labeled nodes achieves
satisfactory performance, striking a balance between performance
and label costs.

D → A A → C0.72

0.76

0.80

0.84

0.88

M
ic

o
F1

G aphInflu
w/o Influ
w/o CB
w/o RW
w/o FOL

D → A A → C0.72

0.76

0.80

0.84

0.88

M
ac

 o
 F

1

G aphInflu
w/o Influ
w/o CB
w/o RW
w/o FOL

Figure 3: Ablation studies on D ⇒ A and A ⇒ C.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

(a) SemiGCL (b) GraphInflu

Figure 4: Visualization of node representations learned by
SemiGCL and GraphInflu in the scenario D⇒ A.

Table 3: Performance on 1-shot labeled nodes for each class
in the scenarios D⇒ A and A ⇒ C.

Methods GCNLT UDAGCNLT SemiGCL GraphInflu

D ⇒ A Micro 69.97 71.22 74.42 76.18
Macro 67.99 69.02 73.15 74.60

A ⇒ C Micro 76.83 80.45 82.42 83.45
Macro 74.17 77.02 80.35 81.60

5.3 Ablation Study
To validate the effectiveness of components, ablation studies are
conducted on:

• w/o Influ: This variant disregards the calculation of the contri-
bution score and randomly selects the source nodes.

• w/o CB: The class-balanced selection strategy is omitted, and
source nodes are selected solely based on score function.

• w/o RW: All source nodes are treated equally, with their
weights in the classification loss set to one.

• w/o FOL: The FOL framework is removed, and source node
weights are assigned only based on the product of the difficulty
and distance metrics.

The results are depicted in Figure 3. The superior performance
of GraphInflu over its variant w/o Influ demonstrates the impor-
tance of contribution score function. This is attributed to the fact
that the few labeled target nodes provide informative guidance
in the form of gradient features, which facilitate the selection of
source nodes. The performance drop of the variant w/o CB indi-
cates that unbalanced source nodes can bias the model towards
a suboptimal optimization direction. Furthermore, the variantw/o
RW underperforms GraphInflu, implying that source nodes do not
contribute equally to the domain adaptation on the target graph.
The refined reweighting design encourages the model to focus on
representative and challenging nodes, which can contribute to per-
formance improvement once addressed. In addition, the observed
decrease in performance of the variant w/o FOL highlights the ef-
fectiveness of our soft logic rules in combining various conditions,
including representativeness metric and difficulty metric.

0.2 0.4 0.6 0.8
Ratio

0.74

0.76

0.78

0.80

0.2 0.4 0.6 0.8
Ratio

0.80

0.82

0.84

Micro-F1 (SemiGCL)
Macro-F1 (SemiGCL)

Micro-F1 (Ours)
Macro-F1 (Ours)

Figure 5: The effect of source ratio in the scenarios D ⇒ A
(left) and A ⇒ C (right).

5.4 More Analysis
Visualization of representative space. We compare the rep-
resentation distributions generated by our model and SemiGCL.
Specifically, we employ t-SNE [29] to project the learned node rep-
resentations in the target domain into a two-dimensional space, us-
ing different colors to denote different classes. As shown in Figure
4, the representations learned by our approach form more concen-
trated clusters compared to SemiGCL. This indicates that GraphIn-
flu can effectively identify the influential source nodes that signif-
icantly contribute to the adaptation process in the target domain.
Effect of selection ratio. In this experiment, we further investi-
gate the impact of selecting different proportions of source nodes
on the target graph’s performance. We select SemiGCL (the op-
timal baseline) for comparison with our method. As illustrated
in Figure 5, our approach consistently demonstrates strong per-
formance across varying source data ratios. Notably, our method
quickly achieves optimal performance, followed by a gradual de-
cline as the source node ratio increases. This quick increase can
be attributed to the effective identification of high-value nodes
from the source domain. However, as the ratio of source nodes
continues to rise, the model’s performance is inevitably impacted
by bias caused by adverse nodes. This demonstrates that the per-
formance improvement primarily originates from the supportive
nodes, while the improper inclusion ofmore adverse nodes leads to
model degradation. In contrast, SemiGCL’s performance remains
relatively stable across different source node ratios, suggesting its
lower effectiveness in identifying and prioritizing the most valu-
able nodes.

6 Conclusion
This paper investigates few-shot graph domain adaptation for node
classification. We argue that the indiscriminate use of all available
source nodes limits the GNN performance on the target network.
This limitation primarily arises from source-domain bias misalign-
ing with the target domain and the presence of low-value nodes
that hinder model training. To address this issue, we propose a
novel method, GraphInflu, which introduces twomodules: the Sup-
portive Node Selector and Soft Logic-Inspired Node Reweighting.
Experiments demonstrate the superior performance of GraphInflu
by surpassing state-of-the-arts. Extensive experiments including
the ablation study prove the reasonable design of each module.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Grasp the Key Takeaways from Source Domain for Few Shot Graph Domain Adaptation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] Firoj Alam, Shafiq Joty, and Muhammad Imran. 2018. Domain adaptation with

adversarial training and graph embeddings. arXiv preprint arXiv:1805.05151
(2018).

[2] David Alvarez-Melis and Tommi S Jaakkola. 2018. Gromov-Wasserstein align-
ment of word embedding spaces. arXiv preprint arXiv:1809.00013 (2018).

[3] Guanzi Chen, Jiying Zhang, Xi Xiao, and Yang Li. 2022. Graphtta: Test time
adaptation on graph neural networks. arXiv preprint arXiv:2208.09126 (2022).

[4] Hyunghoon Cho, Bonnie Berger, and Jian Peng. 2016. Compact integration of
multi-network topology for functional analysis of genes. Cell systems 3, 6 (2016),
540–548.

[5] Quanyu Dai, Xiao-Ming Wu, Jiaren Xiao, Xiao Shen, and Dan Wang. 2022.
Graph transfer learning via adversarial domain adaptation with graph convo-
lution. IEEE Transactions on Knowledge and Data Engineering 35, 5 (2022), 4908–
4922.

[6] Quanyu Dai, Xiao-Ming Wu, Jiaren Xiao, Xiao Shen, and Dan Wang. 2022.
Graph Transfer Learning via Adversarial Domain Adaptation with Graph Con-
volution. IEEE Transactions on Knowledge and Data Engineering (2022).

[7] Alex Davies and Nirav Ajmeri. 2022. Realistic synthetic social networks with
graph neural networks. arXiv preprint arXiv:2212.07843 (2022).

[8] Kaize Ding, Jianling Wang, Jundong Li, Kai Shu, Chenghao Liu, and Huan Liu.
2020. Graph prototypical networks for few-shot learning on attributed net-
works. In Proceedings of the 29th ACM International Conference on Information
& Knowledge Management. 295–304.

[9] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo
Larochelle, François Laviolette, Mario March, and Victor Lempitsky. 2016.
Domain-adversarial training of neural networks. Journal of machine learning
research 17, 59 (2016), 1–35.

[10] Lukas Gosch, Simon Geisler, Daniel Sturm, Bertrand Charpentier, Daniel
Zügner, and Stephan Günnemann. 2024. Adversarial training for graph neural
networks: Pitfalls, solutions, and new directions. Advances in Neural Informa-
tion Processing Systems 36 (2024).

[11] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and
Alexander Smola. 2012. A kernel two-sample test. The Journal of Machine Learn-
ing Research 13, 1 (2012), 723–773.

[12] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in neural information processing systems 30
(2017).

[13] David K Hammond, Pierre Vandergheynst, and Rémi Gribonval. 2011. Wavelets
on graphs via spectral graph theory. Applied and Computational Harmonic Anal-
ysis 30, 2 (2011), 129–150.

[14] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[15] Jon M Kleinberg, Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and
Andrew S Tomkins. 1999. Theweb as a graph: Measurements, models, andmeth-
ods. In Computing and Combinatorics: 5th Annual International Conference, CO-
COON’99 Tokyo, Japan, July 26–28, 1999 Proceedings 5. Springer, 1–17.

[16] Erich Peter Klement, Radko Mesiar, and Endre Pap. 2013. Triangular norms.
Vol. 8. Springer Science & Business Media.

[17] Tao Li, Vivek Gupta, Maitrey Mehta, and Vivek Srikumar. 2019. A logic-driven
framework for consistency of neural models. arXiv preprint arXiv:1909.00126
(2019).

[18] Lu Lin, Ethan Blaser, and Hongning Wang. 2022. Graph structural attack by
perturbing spectral distance. In Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining. 989–998.

[19] Shuhan Liu and Kaize Ding. 2024. Beyond Generalization: A Survey of Out-Of-
Distribution Adaptation on Graphs. arXiv preprint arXiv:2402.11153 (2024).

[20] Giulia Luise, Alessandro Rudi, Massimiliano Pontil, and Carlo Ciliberto. 2018.
Differential properties of sinkhorn approximation for learning with wasserstein
distance. Advances in Neural Information Processing Systems 31 (2018).

[21] Massimiliano Mancini, Samuel Rota Bulo, Barbara Caputo, and Elisa Ricci. 2019.
Adagraph: Unifying predictive and continuous domain adaptation through
graphs. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition. 6568–6577.

[22] Xiao Shen, Quanyu Dai, Fu-lai Chung, Wei Lu, and Kup-Sze Choi. 2020. Ad-
versarial deep network embedding for cross-network node classification. In Pro-
ceedings of the AAAI conference on artificial intelligence, Vol. 34. 2991–2999.

[23] Xiao Shen, Quanyu Dai, Sitong Mao, Fu-lai Chung, and Kup-Sze Choi. 2020.
Network together: Node classification via cross-network deep network embed-
ding. IEEE Transactions on Neural Networks and Learning Systems 32, 5 (2020),
1935–1948.

[24] Xiao Shen, Shirui Pan, Kup-Sze Choi, and Xi Zhou. 2023. Domain-adaptive mes-
sage passing graph neural network. Neural Networks 164 (2023), 439–454.

[25] Zhen Tan, Kaize Ding, Ruocheng Guo, and Huan Liu. 2022. Graph few-shot
class-incremental learning. In Proceedings of the fifteenth ACM international con-
ference on web search and data mining. 987–996.

[26] Zhen Tan, Song Wang, Kaize Ding, Jundong Li, and Huan Liu. 2022. Trans-
ductive linear probing: A novel framework for few-shot node classification. In
Learning on Graphs Conference. PMLR, 4–1.

[27] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008. Ar-
netminer: extraction and mining of academic social networks. In Proceedings of
the 14th ACM SIGKDD international conference on Knowledge discovery and data
mining. 990–998.

[28] Mamatha Thota and Georgios Leontidis. 2021. Contrastive domain adaptation.
In Proceedings of the IEEE/CVF Conference on computer vision and pattern recog-
nition. 2209–2218.

[29] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using
t-SNE. Journal of machine learning research 9, 11 (2008).

[30] Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. 2021. In-
ductive representation learning in temporal networks via causal anonymous
walks. arXiv preprint arXiv:2101.05974 (2021).

[31] Yiqi Wang, Chaozhuo Li, Wei Jin, Rui Li, Jianan Zhao, Jiliang Tang, and Xing
Xie. 2022. Test-time training for graph neural networks. arXiv preprint
arXiv:2210.08813 (2022).

[32] Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M Ni. 2020. Gener-
alizing from a few examples: A survey on few-shot learning. ACM computing
surveys (csur) 53, 3 (2020), 1–34.

[33] Man Wu, Shirui Pan, Chuan Zhou, Xiaojun Chang, and Xingquan Zhu. 2020.
Unsupervised domain adaptive graph convolutional networks. In Proceedings of
the web conference 2020. 1457–1467.

[34] Man Wu, Xin Zheng, Qin Zhang, Xiao Shen, Xiong Luo, Xingquan Zhu, and
Shirui Pan. 2024. Graph Learning under Distribution Shifts: A Comprehen-
sive Survey on Domain Adaptation, Out-of-distribution, and Continual Learn-
ing. arXiv preprint arXiv:2402.16374 (2024).

[35] Jiaren Xiao, Quanyu Dai, Xiao Shen, Xiaochen Xie, Jing Dai, James Lam, and
Ka-Wai Kwok. 2024. Semi-supervised domain adaptation on graphs with con-
trastive learning and minimax entropy. Neurocomputing 580 (2024), 127469.

[36] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How power-
ful are graph neural networks? arXiv preprint arXiv:1810.00826 (2018).

[37] Hongliang Yan, YukangDing, Peihua Li, QilongWang, YongXu, andWangmeng
Zuo. 2017. Mind the class weight bias: Weighted maximum mean discrepancy
for unsupervised domain adaptation. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 2272–2281.

[38] Huaxiu Yao, Chuxu Zhang, Ying Wei, Meng Jiang, Suhang Wang, Junzhou
Huang, Nitesh Chawla, and Zhenhui Li. 2020. Graph few-shot learning via
knowledge transfer. In Proceedings of the AAAI conference on artificial intelli-
gence, Vol. 34. 6656–6663.

[39] Yuning You, Tianlong Chen, Zhangyang Wang, and Yang Shen. 2023. Graph
domain adaptation via theory-grounded spectral regularization. In The eleventh
international conference on learning representations.

[40] Xingtong Yu, Yuan Fang, Zemin Liu, Yuxia Wu, Zhihao Wen, Jianyuan Bo, Xin-
ming Zhang, and Steven CH Hoi. 2024. Few-shot learning on graphs: from
meta-learning to pre-training and prompting. arXiv preprint arXiv:2402.01440
(2024).

[41] Chuxu Zhang, Kaize Ding, Jundong Li, Xiangliang Zhang, Yanfang Ye, Nitesh V
Chawla, and Huan Liu. 2022. Few-shot learning on graphs. arXiv preprint
arXiv:2203.09308 (2022).

[42] Zhen Zhang, Meihan Liu, AnhuiWang, Hongyang Chen, Zhao Li, Jiajun Bu, and
Bingsheng He. 2024. Collaborate to Adapt: Source-Free Graph Domain Adapta-
tion via Bi-directional Adaptation. In Proceedings of the ACM onWeb Conference
2024. 664–675.

[43] Fan Zhou, Chengtai Cao, Kunpeng Zhang, Goce Trajcevski, Ting Zhong, and Ji
Geng. 2019. Meta-gnn: On few-shot node classification in graph meta-learning.
In Proceedings of the 28th ACM International Conference on Information and
Knowledge Management. 2357–2360.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A Algorithms Details
Algorithm 1 and Algorithm 2 show the pseudocodes of Support-
ive Node Selector and Soft Logic-Inspired Node Reweighting, respec-
tively.

Algorithm 1: Supportive Node Selector
Input: source graph 𝐺𝑠 , target graph 𝐺𝑡 , training intervals

𝑇 , epochs 𝐸, sample number 𝑄 , number of classes 𝐶 ,
scaling factor 𝛽

Output: supportive source node set 𝑉 𝑠
Initialize a single-domain node classifier 𝑔𝜃
Initialize score matrix Γ = 0𝑛𝑠,𝑙×𝑛𝑡,𝑙
Initialize supportive source node set 𝑉 𝑠 = ∅
// Calculate contribution score for source nodes

for 𝑒 = 1 to 𝐸 do
Train GNN model 𝑔 using source graph 𝐺𝑠
if 𝑒%𝑇 == 0 then

Calculate current update step 𝑘 = 𝑒
𝑇

Calculate source node gradient store ∇𝜃𝑘L(𝑣𝑠 , 𝜃𝑘)
Calculate target node gradient store ∇𝜃𝑘L(𝑣𝑡 , 𝜃𝑘)
Obtain score matrix Γ𝑘 using Eq. (3)
Update score matrix Γ = Γ + 𝜂𝑘 · Γ𝑘

// Class-balanced selection strategy

Calculate class-wise contribution score Γ̂ using Eq. (5)
Calculate the number of samples for each class 𝑛 = (1+𝛽)𝑄

𝐶
for 𝑐 = 0 to 𝐶 − 1 do

Obtain class-wise node set 𝑉 𝑠𝑐 = Top-n
(
Γ̂ [:, 𝑐]

)
𝑉 𝑠 = 𝑉 𝑠 ∪𝑉 𝑠𝑐

Algorithm 2: Soft Logic-Inspired Node Reweighting
Input: Selected source graph 𝐺𝑠 , target graph 𝐺𝑡 , sample

number 𝐾 , GNN model 𝑔, thresholds 𝛼1, 𝛼2, 𝛼3,
steps 𝐸

Output: source node weight𝑤𝑠
Obtain representation 𝑧𝑠 , 𝑧𝑡 and prediction 𝑝𝑡 = ℎ(𝑧𝑠)
Choose 𝐾 nearest samples for source nodes A with
A𝑖 = Top-K𝑗

(
max

(
cos(𝑧𝑠𝑖 , 𝑧

𝑡
𝑗)
))

Calculate the ego graph based distance 𝑑 using Eq. (8)
// Unstability estimate

Initializ a random perturbation maxtrix Δ

for 𝑒 = 1 to 𝐸 do
Calculate adversarial perturbation 𝐴′ using Eq. (9)
Calculate eigvalue matrix Λ = Eig(Laplacian(𝐴′)
Calculate spectral distance 𝐷spec using Eq. (10)
Update Δ with graident descent

Calculate unstability 𝑤̂𝑡𝑢𝑛𝑠 using Eq. (12)
Calculate uncertainty 𝑤̂𝑡𝑢𝑛𝑐 using Eq. (13)
Calculate logic forms: 𝜙𝑙 (𝑑, 𝛼1), 𝜙𝑔 (𝑤̂𝑡𝑢𝑛𝑐 , 𝛼2), 𝜙𝑔 (𝑤̂𝑡𝑢𝑛𝑠 , 𝛼3)
Calculate the source weight𝑤𝑠 using Eq. (17)

Table 4: Statistics of the three datasets. ‘#’ indicates the num-
ber of instances.

Dataset #Nodes #Edges #Attributes #Union Attributes #Labels
ACMv9 9,360 15,602 5571 6,775 5

Citationv1 8,935 15,113 5379 6,755 5
DBLPv7 5,484 8,130 4412 6,755 5

B Dataset Details
We summarize the dataset statistics in Table 4.These three datasets
are citation networks from different sources: DBLP (from 2004 to
2008), ACM (after 2010), and Microsoft Academic Graph (before
2008). Consequently, they have varied data distributions. We repre-
sent each citation network as an undirected graphwhere each node
denotes a paper, and an edge corresponds to a citation relationship
between two papers. Each paper belongs to one of the following
five categories based on its research topics: Artificial Intelligence,
Computer Vision, Database, Information Security, and Networking.

C More Experiments

0.2 0.4 0.6
α1

0.74

0.78

0.82

0.4 0.6 0.8
α2

0.4 0.6 0.8
α3

M
ic

ro
 F

1

Figure 6: The model performance with thresholds 𝛼1, 𝛼2, 𝛼3
on D⇒ A.The dashed line indicates the performance of the
best baseline model.

Effect of thresholds. Figure 6 shows the effects of the three
thresholds 𝛼1, 𝛼2 and 𝛼3. According to Eq. 14, 𝛼1 represents the
constraint we impose to ensure that the source node is close to the
target domain. Meanwhile, 𝛼2 and 𝛼3 ensure that the correspond-
ing target nodes present challenges based on unstability and uncer-
tainty metrics. We observe that the model’s performance increases
and remains stable as 𝛼1 increases. In contrast, for 𝛼2 and 𝛼3, there
is an opposite trend: the model’s performance remains relatively
stable at low values but degrades as these values become exces-
sively large. From Eq. 14, we can infer that smaller values of 𝛼1
combined with larger values of 𝛼2 and 𝛼3 lead to stricter logic rules.
This causes the model to treat all source nodes equally, failing to
provide a nuanced distinction in the contributions of individual
source nodes.
Comparison with baselines using all labeled nodes. We
present additional baselines using all labeled source nodes in Table
5.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Grasp the Key Takeaways from Source Domain for Few Shot Graph Domain Adaptation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Table 5:Themodel performance comparison across six domain adaptation scenarios under 5-shot setting. All baselines employ
the entire labeled source data and all labeled target data. The best results are highlighted and the second-best results are
underlined. A: ACMv9; C:Citationv1; D: DBLPv7. A⇒C represents that A is the source graph andC is the target graph.The same
applies to other scenarios. The methods with the subscript LT represent variants of the baselines that incorporate additional
classification loss on labeled target nodes.

Methods C⇒A D⇒A A⇒C D⇒C A⇒D C⇒D
Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro

GCNLT 75.31 75.31 71.74 71.46 77.72 75.93 76.72 73.75 70.72 68.42 75.08 72.90
GSAGELT 70.58 69.65 67.50 66.64 73.29 71.34 71.69 69.14 67.63 65.21 71.48 69.06
GINLT 73.09 72.28 70.75 69.29 77.21 75.19 74.72 72.81 71.21 65.30 73.69 70.85
UDAGCNLT 78.52 78.54 75.53 74.26 81.08 78.82 81.18 79.58 75.42 72.26 77.36 74.71
MFRRegLT 75.29 76.85 75.28 76.71 82.44 81.10 82.12 80.91 75.69 73.29 77.75 75.61
ACDNELT 74.57 75.91 72.58 73.84 81.23 79.81 79.77 78.21 74.24 71.17 74.26 70.39
AdaGCN 74.87 74.82 72.51 71.86 77.53 75.33 77.29 75.27 71.50 68.20 75.05 71.40
SemiGCL 78.54 78.47 77.22 77.05 83.49 81.50 83.29 81.41 75.65 73.39 77.73 75.88
GraphInflu 79.86 79.91 79.87 79.48 84.52 82.83 84.14 82.43 76.89 75.44 78.79 77.01
Improv.(%) +1.32 +1.37 +2.65 +2.43 +1.03 +1.33 +1.25 +1.02 +1.20 +2.05 +1.04 +1.13

11

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Notations
	3.2 General Objective Function of FSGDA

	4 Method
	4.1 Supportive Node Selector via Gradients
	4.2 Soft Logic-Inspired Node Reweighting
	4.3 Model Training

	5 Experiments
	5.1 Experiment Settings
	5.2 Performance Comparision
	5.3 Ablation Study
	5.4 More Analysis

	6 Conclusion
	References
	A Algorithms Details
	B Dataset Details
	C More Experiments

