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Grasp the Key Takeaways from Source Domain for Few Shot
Graph Domain Adaptation

Anonymous Author(s)∗

Abstract
Graph Neural Networks (GNNs) have achieved remarkable success
in node classification tasks on individual graphs. However, exist-
ing GNNs trained within a specific domain (a.k.a., source domain)
frequently exhibit unsatisfied performance when transferred to an-
other domain (a.k.a., target domain), due to the domain gap. To
tackle this issue, Few Shot Graph Domain Adaptation (FSGDA) is
introduced to the node classification task, facilitating knowledge
transfer from a fully labeled source graph to a target graph with
minimal annotations for each class. An intuitive solution is di-
rectly training the GNN with labeled source and target samples
together. Nevertheless, there are two issues in this procedure: (1)
When the annotations on the target domain used for training are
extremely sparse, the GNN performance may significantly be dam-
aged by nodes with the source-domain bias not aligning with the
target-domain distribution. (2) Apart from the biased nodes, the
low-value nodes among the remaining nodes impede the GNN
learning for the core nodes, like the limited target training nodes.
To address the above issues, we propose a new method for FS-
GDA, named GraphInflu, whose core idea is to grasp the key take-
aways from the source domain to facilitate the adaptation pro-
cess. It contains two characteristic modules, including the Sup-
portive Node Selector and the Soft Logic-Inspired Node Reweight-
ing. The former aims to identify the most influential set of source
nodes based on their contribution to improving performance on
target nodes. The latter further focuses more on the core nodes
in the selected influential set, which closely align with the target
nodes especially those presenting challenging predictions. Exten-
sive experiments validate the efficacy of GraphInflu by overcom-
ing the current state-of-the-art methods. Our code is available at
https://anonymous.4open.science/r/GraphInflu-E8E7.

CCS Concepts
• Computing methodologies→ Machine learning.

Keywords
Graph Domain Adaptation, Few-shot Learning

1 Introduction
Node classification using Graph Neural Networks (GNNs) is a fun-
damental yet challenging task in a multitude of applications, such
as citation networks [14], social networks [7], and webpage net-
works [15]. While GNNs have demonstrated significant success in
domain-specific tasks (a.k.a., source domain), their performance
often degrades when applied to a different domain (a.k.a., target
domain) due to the domain gap—a divergence in data distribu-
tions across domains [22, 23, 33, 34]. This gap is particularly pro-
nounced in scenarios like cross-domain citation networks, where
structural and feature differences between networks limit the di-
rect transferability of GNN models [4, 14, 30].
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Figure 1: Top: Differences between our method and tradi-
tional methods to address Few-shot Graph Domain Adapta-
tion (FSGDA). Our key point is not all source-domain nodes
facilitate model training on FSGDA and we may just need
to utilize the necessary ones. Bottom: Performance of GCN
in the cross-graph node classification scenario: ACMv9 ⇒
DBLPv7.

A straightforward solution for Graph Domain Adaptation
(GDA)would be to manually annotate a large number of target do-
main nodes and fine-tune the GNN. However, this approach is im-
practical due to the time and effort required for large-scale node an-
notation. To overcome this bottleneck, Few-Shot Learning (FSL)
has emerged as a promising alternative, aiming to transfer knowl-
edge from the source domain to the target domain using only a
few labeled nodes in each class [32, 40]. Prior methods [5, 35] typ-
ically train GNNs on both the source and target domains, lever-
aging available annotations. However, the extreme sparsity of la-
beled nodes in the target domain introduces two major challenges:
(1) Adverse Node Interference. If we keep the number of the
target-domain training samples and increment the training rate of
the source network from zero, we find that the GNN performance
on the target domain rapidly saturates and then subsequently sta-
bilizes. Taking ACMv9 [27] (source network) and DBLPv7 [27] (tar-
get network) as an example, the performance of the Graph Convo-
lutional Network (GCN) [14] trained on them are shown in Fig-
ure 1. This rapid stabilization may stem from the mutual coun-
terbalance between “beneficial” and “harmful” samples within the
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training dataset. Specifically, part of source-domain samples (ad-
verse node) carry biases that deviate from the target domain dis-
tribution, such as differences in feature distributions and neigh-
borhood structures. As training progresses, the GNN adeptly ac-
quires these source-domain biases by the neighbor-node aggrega-
tion, leading to significant damage in model accuracy. Such neg-
ative impact is balanced by the positive impact brought by the
supportive nodes, consisting of the remaining source-domain sam-
ples and the extremely limited target-domain labeled samples.This
balance results in the stagnation of model performance. Given
the constraint of not being able to access more target-domain la-
beled samples, the key challenge to disrupt this balance and fur-
ther enhance the model lies in how to filter out adverse nodes.
(2) Core Nodes Inundated. Even effectively removing adverse
nodes, the remaining subset may only contain a small number of
high-value core samples, including extremely limited annotated
target-domain nodes, a few source-domain nodes closely aligned
with the target domain distribution, and high-quality nodes con-
taining richer classification knowledge. However, these limited
core nodes are susceptible to being overwhelmed by more low-
value supportive nodes, hindering the GNN’s thorough learning of
underlying patterns. Given the limitation in extending annotations
for target-domain nodes, identifying and elevating the importance
of core nodes in the source domain becomes a pertinent issue wor-
thy of consideration.

To tackle the above issues, we propose the GraphInflu model
for few-shot graph domain adaptation by grasping the key take-
aways from the source domain, as shown in Figure 2. Our method
is specifically designed with two phases to address the correspond-
ing challenges. Phase 1: We aim to establish a supportive node se-
lector that scores the source nodes according to their contribution
to reducing loss on labeled target nodes. To efficiently compute
the contribution score, we approximate loss reduction by compre-
hensively analyzing gradients of the GNN model on the source
nodes and the target nodes. In this way, we develop a contribu-
tion score function to identify supportive source nodes. Given the
score matrix obtained from the score function, we further incor-
porate a class-balanced sampling strategy to avoid selection bias
toward certain classes. Phase 2: We delve into assessing the signif-
icance of each selected supportive source domain data. Specifically,
on the one hand, we introduce perturbations through adversarial
learning to gauge the stability of GNNmodel predictions for target
nodes; on the other hand, we calculate entropy to evaluate the cer-
tainty of GNN predictions for target nodes. By computing the dis-
tances between node-centric subgraphs, we evaluate the proximity
of source-domain nodes to target-domain nodes that exhibit unsta-
ble or uncertain predictions. We posit that source-domain nodes
resembling these challenging target-domain nodes possess greater
learning value.

Our contributions are summarized as follows:

• We study the Few Shot Graph Domain Adaptation (FSGDA) and
uncover the substantial negative impact of adverse source nodes
when the annotated target nodes are scarce. To the best of our
knowledge, we delve into early exploration from the view of the
key source-node retrieval for the FSGDA.

• We propose a novel method named GraphInflu. We filter out
adverse source nodes based on backward gradients and subse-
quently enhance the importance of the high-value nodes via the
graph similarity calculation and the stability estimation based
on a FOL framework.

• We conduct extensive experiments to demonstrate the effective-
ness of our proposed method, and our framework achieves a
new state-of-the-art result.

2 Related Work
Graph domain adaptation (GDA) extends traditional domain adap-
tation (DA) to graph-structured data [19, 21, 24, 34, 42], where fea-
tures and labels are interconnected due to the graph structure. Re-
cent studies aim to combine graph models with domain adapta-
tion techniques to learn domain-invariant representations. These
methods often use adversarial learning or minimize the distance
between representations in the source and target domains. ACDNE
[22] applies adversarial domain adaptation to make node repre-
sentations invariant across networks. UDAGCN [33] further intro-
duces an inter-graph attention mechanism combined with adver-
sarial training. MFFReg [39], a more recent approach, uses graph
spectral regularization to improve the transferability of GraphNeu-
ral Networks (GNNs).

In addition to the existing unsupervised graph domain adapta-
tion (UGDA) methods, AdaGCN [5] and SemiGCL [35] address sce-
narios with limited labeled nodes in the target graph, closely align-
ing with our research focus. AdaGCN minimizes domain discrep-
ancy using the Wasserstein distance, while SemiGCL combines
graph contrastive learning with minimax entropy training to gen-
erate discriminative node representations. However, to the best
of our knowledge, these methods primarily train the model us-
ing source nodes and a few labeled target nodes with a standard
cross-entropy loss.These approaches treat all source nodes equally,
overlooking the unique characteristics of individual source nodes.
Another related approach in graph domain adaptation is test-time
graph adaptation [3, 31], which adjusts graph data during the test-
ing phase. In contrast, our method focuses on the training phase,
where we identify influential source nodes and reweight them.

Recently, few-shot learning on graphs has been proposed to
tackle the issue of limited labeled data in real-world scenarios
[26, 41]. Existing studies on few-shot node classification can be di-
vided into two categories: (1) metric-basedmethods [25, 38], which
primarily classify new nodes by calculating the Euclidean distance
between node embeddings and class prototypes; (2) optimization-
based methods [8, 43], which aim to learn a better initialization of
model parameters that can be updated by a few gradient steps for
new tasks.

3 Preliminaries
3.1 Notations
Let 𝐺 = (𝑉 , 𝐸,𝐴,𝑋,𝑌 ) represent a graph, where 𝑉 is the node set,
𝐸 is the edge set, and 𝐴 is the adjacency matrix. The number of
nodes and edges are denoted by 𝑛 and 𝑚, respectively. 𝑋 is the
node feature matrix, and 𝑌 represents the node labels.

In the Few Shot Graph Domain Adaptation (FSGDA) scenario,
we have a fully labeled source graph 𝐺𝑠 = (𝑉 𝑠 , 𝐸𝑠 , 𝐴𝑠 , 𝑋𝑠 , 𝑌 𝑠 )
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Gt

<latexit sha1_base64="jaFL84zHWdGtRZEZQLpQhu6PFGI=">AAAB8nicbVDJSgNBEK2JW4xb1KOXxiB4CjOCy82AB/UWwSyQjKGn05M06VnorhHCMJ/hxYMiXv0Y8ebf2JnkoIkPCh7vVVFVz4ul0Gjb31ZhaXllda24XtrY3NreKe/uNXWUKMYbLJKRantUcylC3kCBkrdjxWngSd7yRlcTv/XIlRZReI/jmLsBHYTCF4yikTrXD2l3SDHVWdYrV+yqnYMsEmdGKpefkKPeK391+xFLAh4ik1TrjmPH6KZUoWCSZ6VuonlM2YgOeMfQkAZcu2l+ckaOjNInfqRMhUhy9fdESgOtx4FnOgOKQz3vTcT/vE6C/oWbijBOkIdsushPJMGITP4nfaE4Qzk2hDIlzK2EDamiDE1KJROCM//yImmeVJ2z6umdXandTtOAIhzAIRyDA+dQgxuoQwMYRPAEL/BqofVsvVnv09aCNZvZhz+wPn4AL02SpQ==</latexit>

Gŝ

<latexit sha1_base64="jaFL84zHWdGtRZEZQLpQhu6PFGI=">AAAB8nicbVDJSgNBEK2JW4xb1KOXxiB4CjOCy82AB/UWwSyQjKGn05M06VnorhHCMJ/hxYMiXv0Y8ebf2JnkoIkPCh7vVVFVz4ul0Gjb31ZhaXllda24XtrY3NreKe/uNXWUKMYbLJKRantUcylC3kCBkrdjxWngSd7yRlcTv/XIlRZReI/jmLsBHYTCF4yikTrXD2l3SDHVWdYrV+yqnYMsEmdGKpefkKPeK391+xFLAh4ik1TrjmPH6KZUoWCSZ6VuonlM2YgOeMfQkAZcu2l+ckaOjNInfqRMhUhy9fdESgOtx4FnOgOKQz3vTcT/vE6C/oWbijBOkIdsushPJMGITP4nfaE4Qzk2hDIlzK2EDamiDE1KJROCM//yImmeVJ2z6umdXandTtOAIhzAIRyDA+dQgxuoQwMYRPAEL/BqofVsvVnv09aCNZvZhz+wPn4AL02SpQ==</latexit>

Gŝ

<latexit sha1_base64="gD63Busp+0saUNNF4o3Y5k3H9lM=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4Kon4dSx40VsF0xbaWDbbSbt0swm7m0Ip/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAqujet+Oyura+sbm4Wt4vbO7t5+6eCwrpNMMfRZIhLVDKlGwSX6hhuBzVQhjUOBjXBwO/UbQ1SaJ/LRjFIMYtqTPOKMGiv5wyfd4Z1S2a24M5Bl4uWkDDlqndJXu5uwLEZpmKBatzw3NcGYKsOZwEmxnWlMKRvQHrYslTRGHYxnx07IqVW6JEqULWnITP09Maax1qM4tJ0xNX296E3F/7xWZqKbYMxlmhmUbL4oygQxCZl+TrpcITNiZAllittbCetTRZmx+RRtCN7iy8ukfl7xriqXDxfl6n0eRwGO4QTOwINrqMId1MAHBhye4RXeHOm8OO/Ox7x1xclnjuAPnM8f7HCOzA==</latexit>

vsi

<latexit sha1_base64="k7I5Vhal+E9WkfqAoGVdUb6cHkg=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSTi17HgRW8VTFtoY9lsN+3azSbsTgol9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5QSK4Rsf5tgorq2vrG8XN0tb2zu5eef+goeNUUebRWMSqFRDNBJfMQ46CtRLFSBQI1gyGN1O/OWJK81g+4DhhfkT6koecEjSSN3rE7lO3XHGqzgz2MnFzUoEc9W75q9OLaRoxiVQQrduuk6CfEYWcCjYpdVLNEkKHpM/ahkoSMe1ns2Mn9olRenYYK1MS7Zn6eyIjkdbjKDCdEcGBXvSm4n9eO8Xw2s+4TFJkks4XhamwMbann9s9rhhFMTaEUMXNrTYdEEUomnxKJgR38eVl0jirupfVi/vzSu0uj6MIR3AMp+DCFdTgFurgAQUOz/AKb5a0Xqx362PeWrDymUP4A+vzB+96js4=</latexit>

vtj

<latexit sha1_base64="gD63Busp+0saUNNF4o3Y5k3H9lM=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4Kon4dSx40VsF0xbaWDbbSbt0swm7m0Ip/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAqujet+Oyura+sbm4Wt4vbO7t5+6eCwrpNMMfRZIhLVDKlGwSX6hhuBzVQhjUOBjXBwO/UbQ1SaJ/LRjFIMYtqTPOKMGiv5wyfd4Z1S2a24M5Bl4uWkDDlqndJXu5uwLEZpmKBatzw3NcGYKsOZwEmxnWlMKRvQHrYslTRGHYxnx07IqVW6JEqULWnITP09Maax1qM4tJ0xNX296E3F/7xWZqKbYMxlmhmUbL4oygQxCZl+TrpcITNiZAllittbCetTRZmx+RRtCN7iy8ukfl7xriqXDxfl6n0eRwGO4QTOwINrqMId1MAHBhye4RXeHOm8OO/Ox7x1xclnjuAPnM8f7HCOzA==</latexit>

vsi
<latexit sha1_base64="k7I5Vhal+E9WkfqAoGVdUb6cHkg=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSTi17HgRW8VTFtoY9lsN+3azSbsTgol9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5QSK4Rsf5tgorq2vrG8XN0tb2zu5eef+goeNUUebRWMSqFRDNBJfMQ46CtRLFSBQI1gyGN1O/OWJK81g+4DhhfkT6koecEjSSN3rE7lO3XHGqzgz2MnFzUoEc9W75q9OLaRoxiVQQrduuk6CfEYWcCjYpdVLNEkKHpM/ahkoSMe1ns2Mn9olRenYYK1MS7Zn6eyIjkdbjKDCdEcGBXvSm4n9eO8Xw2s+4TFJkks4XhamwMbann9s9rhhFMTaEUMXNrTYdEEUomnxKJgR38eVl0jirupfVi/vzSu0uj6MIR3AMp+DCFdTgFurgAQUOz/AKb5a0Xqx362PeWrDymUP4A+vzB+96js4=</latexit>

vtj

Node-wise Distance

Edge-wise Distance

<latexit sha1_base64="IQ/keTvHbN3tsJRaQECf61RvZKk=">AAAChnicbZHbSiNBEIZ7RteN8RTXS28ag6CshBlddW+EgEa9WlwwUUji0NNTia09B7prxDAM+CK+lHe+jZ1M0EQtaPjrr/qo7mo/kUKj47xa9szsj7mfpfnywuLS8kpl9VdLx6ni0OSxjNW1zzRIEUETBUq4ThSw0Jdw5d8fD+tXD6C0iKNLHCTQDVk/Ej3BGRrLqzx3EB4xOzGT8q0OChlAdpbfaE/s0I8UvbttekQnem+yIvkXB5C/k61psjUmf39HNoL+BNmYJhsF6VWqTs0ZBf0q3LGoknFceJWXThDzNIQIuWRat10nwW7GFAouIS93Ug0J4/esD20jIxaC7majNeZ00zgB7cXKnAjpyJ0kMhZqPQh90xkyvNWfa0Pzu1o7xd7fbiaiJEWIeDGol0qKMR3+CQ2EAo5yYATjSpi7Un7LFONofq5sluB+fvJX0dqtuQe1/f9/qvXTp2IdJbJONsgWcckhqZNzckGahFsz1ra1a+3ZJbtm79uHRattjVe4RqbCrr8BggHGxw==</latexit>

Dist(G̃s
i , G̃

t
j) = DistNode(Ṽ s

i , Ṽ
t
j ) + DistEdge(Ẽs

i , Ẽ
t
j)

<latexit sha1_base64="1hsCALRmQJHNYPbz5tS7rSyFVJ0=">AAACLHicbVDLSiNBFL2tjo+MOlGXbgplxAEJ3SM+loJoXCqYKKRjqK7cmMLqh1W3hdA0+Dtu/BVBXBjErT/gD1jpZOHoHCjqnHPvpeqeIFHSkOv2nbHxiR+TU9MzpZ+zc/O/yguLdROnWmBNxCrW5wE3qGSENZKk8DzRyMNA4VlwtT+on92gNjKOTqmXYDPkl5HsSMHJWq3yvk9StTGr5hemJdn6SNYLucFG8qCQf5hv0sAg4TVj1YvM73LKTJ63yqtuxS3AvhNvRFb31t43BzhulR/9dizSECMSihvT8NyEmhnXJIXCvOSnBhMurvglNiyNeIimmRXL5uy3ddqsE2t7ImKF+3ki46ExvTCwnSGnrvlaG5j/qzVS6uw2MxklKWEkhg91UsUoZoPkWFtqFKR6lnChpf0rE12uuSCbb8mG4H1d+Tup/61425WtE5vG4S0UmIZlWIF18GAH9uAIjqEGAu7gAZ6h79w7T86L8zpsHXOGNyzBP3DePgBXGquQ</latexit>

G̃s
i (Ṽ

s
i , Ẽ

s
i ) ✓ Gŝ

Spectral Perturbation Unstability  

Edge perturbation 

<latexit sha1_base64="k7I5Vhal+E9WkfqAoGVdUb6cHkg=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSTi17HgRW8VTFtoY9lsN+3azSbsTgol9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5QSK4Rsf5tgorq2vrG8XN0tb2zu5eef+goeNUUebRWMSqFRDNBJfMQ46CtRLFSBQI1gyGN1O/OWJK81g+4DhhfkT6koecEjSSN3rE7lO3XHGqzgz2MnFzUoEc9W75q9OLaRoxiVQQrduuk6CfEYWcCjYpdVLNEkKHpM/ahkoSMe1ns2Mn9olRenYYK1MS7Zn6eyIjkdbjKDCdEcGBXvSm4n9eO8Xw2s+4TFJkks4XhamwMbann9s9rhhFMTaEUMXNrTYdEEUomnxKJgR38eVl0jirupfVi/vzSu0uj6MIR3AMp+DCFdTgFurgAQUOz/AKb5a0Xqx362PeWrDymUP4A+vzB+96js4=</latexit>

vtj

<latexit sha1_base64="cYZHPuO1+TeRDsl58jk/+GOEq2U=">AAACNXicbVBNSxxBEK0xJjFrPjbx6KVRhA2EZUbQ5BIQAirowYCrws666emtdVt7eobuGskwDnjyB3nxf+SkBw8G9Zq/kN5ZD349KOrxXjVd9aJUSUu+f+GNvRh/+er1xJva5Nt37z/UP37asklmBLZEohKzE3GLSmpskSSFO6lBHkcKt6ODH0N/+xCNlYnepDzFTsz3tOxLwclJ3fp6SPibipa2xCOpJOVl43CXuvuf2Xc28tbWy0Z6FJJUPSxWysr8wsIBpyItj6p+p3brs37Tr8CekuCOzC4F+Ym3+Otmo1v/E/YSkcWoSShubTvwU+oU3JAUCstamFlMuTjge9h2VPMYbaeori7ZnFN6rJ8YV5pYpd5/UfDY2jyO3GTMaWAfe0PxOa+dUf9bp5A6zQi1GH3UzxSjhA0jZD1pUJDKHeHCSLcrEwNuuCAXdM2FEDw++SnZmm8Gi82Fny6N5WOoMAHTMAMNCOArLMEqbEALBJzCOVzBX+/Mu/SuvdvR6Jg36jAFD+D9+w8xH7BD</latexit>

Unstability(vtj) = KL(p|G̃t
j), p̂|Ĝt

j)

Entropy based Uncertainty 

Class
Pr

ob
ab

ilit
y

<latexit sha1_base64="vWZ9B49dn7Vz/eFofLYhkl7YJmE=">AAAB8HicbVDJSgNBEK2JW4xb1KOXxiB4kDAjbseAIB4jmEWSMfR0Okmbnp6hu0YIQ8B/8OJBEa9+jjf/xs5y0MQHBY/3qqiqF8RSGHTdbyezsLi0vJJdza2tb2xu5bd3qiZKNOMVFslI1wNquBSKV1Cg5PVYcxoGkteC/uXIrz1ybUSkbnEQcz+kXSU6glG00l18j6304YgNW/mCW3THIPPEm5ICTFFu5b+a7YglIVfIJDWm4bkx+inVKJjkw1wzMTymrE+7vGGpoiE3fjo+eEgOrNImnUjbUkjG6u+JlIbGDMLAdoYUe2bWG4n/eY0EOxd+KlScIFdssqiTSIIRGX1P2kJzhnJgCWVa2FsJ61FNGdqMcjYEb/bleVI9LnpnxdObk0Lp6mkSRxb2YB8OwYNzKME1lKECDEJ4hld4c7Tz4rw7H5PWjDONcBf+wPn8AfpRkPQ=</latexit>

ptj,c

<latexit sha1_base64="diZeymICFnG91noVhRGK26kHKEE=">AAACFHicbZDLSgNBEEV7fMb4irp000QERQgzig9cBQVxIRjFJEImDD2dStLY86C7RgxDPkIQf8WNC0XcunCXv7GTuNDohYbDrSqq6/qxFBptu2eNjU9MTk1nZrKzc/MLi7ml5YqOEsWhzCMZqWufaZAihDIKlHAdK2CBL6Hq3xz369VbUFpE4RV2YqgHrBWKpuAMjeXltlyEO0xPzs/oZSJBH9IurXoOdTmL6UbV2zaUxMba2cx6uTW7YA9E/4LzDWvFvLv10Ct2Sl7u021EPAkgRC6Z1jXHjrGeMoWCS+hm3URDzPgNa0HNYMgC0PV0cFSXrhunQZuRMi9EOnB/TqQs0LoT+KYzYNjWo7W++V+tlmDzoJ6KME4QQj5c1EwkxYj2E6INoYCj7BhgXAnzV8rbTDGOJsd+CM7oyX+hsl1w9gq7FyaNIzJUhqySPNkgDtknRXJKSqRMOLknT+SFvFqP1rP1Zr0PW8es75kV8kvWxxde257U</latexit>

FOL Rules: W1 \ (W2 [W3)

<latexit sha1_base64="qNK9uxzyMNxcmR7m5NfXk0eOxr4=">AAACqXicbZHbitswEIZl97R1D5u2l70RDV1KCyHO0gO9Wuhe9KIXu1AnoVEIY2XsiJVlI41Lg/G79Rl617epnGRp9jAg+Pl/fWg0k1ZaORoO/wbhnbv37j84eBg9evzk6WHv2fOxK2srMZGlLu00BYdaGUxIkcZpZRGKVOMkvfjS5ZOfaJ0qzXdaVzgvIDcqUxLIW4veb5FirkyTadAqN2/biB/xySLmgvAXNZ9PfQtgJLacc6GRC9DVCrrclKYuUrRciC0zumQS45lUaUXrlosc+SU1uoU6/k9JtATKdNQV7HgPiwSa5V630aLXHw6Gm+I3RbwTfbars0Xvj1iWsi7QkNTg3CweVjRvwJKSGttI1A4rkBeQ48xLAwW6ebOZdMtfe2fJs9L6Y4hv3H2igcK5dZH6mwXQyl3POvO2bFZT9mneKFPVhEZuH8pqzank3dr4UlmUpNdegLTK98rlCixI8svthhBf//JNMR4N4g+D9+ej/snpbhwH7CV7xd6wmH1kJ+wrO2MJk8FR8C1IgnH4LjwPp+GP7dUw2DEv2JUK5T81E800</latexit>

W1:Distance  ↵1

W2:Unstability � ↵2

W3:Uncertainty � ↵3

<latexit sha1_base64="lv6psc/G1APVEC+304Ixu2WHBZw=">AAACD3icbVDJSgNBEO1xN25Rj14agxJBwoy4XQTBg3qLYDSQZejpVExr98zQXRMMQ/7Ai7/ixYMiXr1682/sLAeNPih4vFdFVb0glsKg6345Y+MTk1PTM7OZufmFxaXs8sqViRLNocQjGelywAxIEUIJBUooxxqYCiRcB3cnPf+6DdqIKLzETgw1xW5C0RScoZX87Gb1lCnF/FTcdo+qCPeYGh5p6ObbdeOLbdquo3+75WdzbsHtg/4l3pDkyBBFP/tZbUQ8URAil8yYiufGWEuZRsEldDPVxEDM+B27gYqlIVNgamn/ny7dsEqDNiNtK0TaV39OpEwZ01GB7VQMW2bU64n/eZUEm4e1VIRxghDywaJmIilGtBcObQgNHGXHEsa1sLdS3mKacbQRZmwI3ujLf8nVTsHbL+xd7OaOz4dxzJA1sk7yxCMH5JickSIpEU4eyBN5Ia/Oo/PsvDnvg9YxZzizSn7B+fgGQHuc0A==</latexit>

�ij = score(vsi , v
t
j)

<latexit sha1_base64="0iD3SCCkDWTPYatVoWUKs60hDdM=">AAACI3icbVDJSgNBEK1xN25Rj14aRVCQMCO44EkQl6OCiUISY0+nYlp7FrtrhDAEPPkdXvwVLx4U8eLBo/9hZ5KD24Om33tVRXc9P1bSkOu+O339A4NDwyOjubHxicmp/PRMyUSJFlgUkYr0qc8NKhlikSQpPI018sBXeOJf7XTqJzeojYzCY2rFWA34RSgbUnCyVi2/VSGp6pjut8+odsmWerKUyRXWk7uZXGYVk/gGCa/ZvjXyC27BzcD+Eq9HFra91p2zfv55WMu/VuqRSAIMSShuTNlzY6qmXJMUCtu5SmIw5uKKX2DZ0pAHaKpptmObLVqnzhqRticklrnfJ1IeGNMKfNsZcGqa37WO+V+tnFBjs5rKME4IQ9F9qJEoRhHrBMbqUqMg1bKECy3tX5locs0F2VhzNgTv98p/SWm14K0X1o5sGnu3kGEE5mAelsCDDdiGAziEIgi4h0d4hhfnwXlyXp23bmuf071hFn7A+fgCeMqoKA==</latexit>

G̃t
j(Ṽ

t
j , Ẽ

t
j) ✓ Gt

<latexit sha1_base64="j3erOmx5hdC6FxwOgcNdMDVtdZY=">AAACKXicbZDLSgMxFIYz3q23qks3wSIoaJkRbxuhIIhLBatCpw6Z9LRGM5khOSOWYcCnceOruFFQ1K0vYnoRvP0Q+PKfc0jOHyZSGHTdN2dgcGh4ZHRsvDAxOTU9U5ydOzFxqjlUeSxjfRYyA1IoqKJACWeJBhaFEk7Dq71O/fQatBGxOsZ2AvWItZRoCs7QWkGx4iPcYFZVHDQyobCdL1+fY3C5QnfpGvVNGgUZz2livexy1ZIv49bXlfI8KJbcstsV/QteH0qkr8Og+OQ3Yp5GoJBLZkzNcxOsZ0yj4BLygp8aSBi/Yi2oWVQsAlPPupvmdMk6DdqMtT0Kadf9PpGxyJh2FNrOiOGF+V3rmP/Vaik2d+qZUEmKoHjvoWYqKca0ExttCA0cZdsC41rYv1J+wTTjaMMt2BC83yv/hZP1srdV3jzaKFX2b3txjJEFskiWiUe2SYUckENSJZzckQfyTF6ce+fReXXee60DTj/CefJDzscnowKnQQ==</latexit>

Uncertainty(vtj) = �
X

c

ptj,c log p
t
j,c

<latexit sha1_base64="k7I5Vhal+E9WkfqAoGVdUb6cHkg=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSTi17HgRW8VTFtoY9lsN+3azSbsTgol9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5QSK4Rsf5tgorq2vrG8XN0tb2zu5eef+goeNUUebRWMSqFRDNBJfMQ46CtRLFSBQI1gyGN1O/OWJK81g+4DhhfkT6koecEjSSN3rE7lO3XHGqzgz2MnFzUoEc9W75q9OLaRoxiVQQrduuk6CfEYWcCjYpdVLNEkKHpM/ahkoSMe1ns2Mn9olRenYYK1MS7Zn6eyIjkdbjKDCdEcGBXvSm4n9eO8Xw2s+4TFJkks4XhamwMbann9s9rhhFMTaEUMXNrTYdEEUomnxKJgR38eVl0jirupfVi/vzSu0uj6MIR3AMp+DCFdTgFurgAQUOz/AKb5a0Xqx362PeWrDymUP4A+vzB+96js4=</latexit>

vtj

<latexit sha1_base64="f9lWOPO2ycpujYuEtSFHkWTNa+E=">AAAB/XicbVDJSgNBEK1xjXGLy81Lo4gKEmYEo8eIoB4jmAWScezpdExrz0J3jRCHoCe/w4sHRbz6H978AP/DTuLB7UFRj/eq6Ornx1JotO13a2h4ZHRsPDORnZyanpnNzc1XdJQoxssskpGq+VRzKUJeRoGS12LFaeBLXvUv93t+9YorLaLwBDsxdwN6HoqWYBSN5OUWG22K6WH3FL0Lsl7bJHtrG8TLrdh5uw/ylzhfZKXodO6swtlHycu9NZoRSwIeIpNU67pjx+imVKFgknezjUTzmLJLes7rhoY04NpN+9d3yapRmqQVKVMhkr76fSOlgdadwDeTAcW2/u31xP+8eoKtXTcVYZwgD9ngoVYiCUakFwVpCsUZyo4hlClhbiWsTRVlaALLmhCc31/+SypbeaeQ3z42aRzcQh8ZWIJlWAcHdqAIR1CCMjC4hnt4hCfrxnqwnq2XweiQNeiwAD9gvX4C8qyW+Q==</latexit>

Ĝt
j(X,A0)

<latexit sha1_base64="inh0R+NvH2JQIN6oojh8GJzJ1JA=">AAACDnicbVC7SkNBEJ3r2/iKWtosiqAg4V7BR6kIaqlgHpDEuHcz0dW9D3fnCuESsLKx8VdsLBSxtbbzA/wPN4mFJh4Y5nDODLtz/FhJQ6776QwMDg2PjI6NZyYmp6ZnsrNzBRMlWmBeRCrSJZ8bVDLEPElSWIo18sBXWPSv9tp+8Qa1kVF4Qs0YqwE/D2VDCk5WqmWXKyRVHdOD1inVLtlKaY3trrKKSXyDhNeMHZym1Kpll9yc2wHrJ94PWdrxmnfO5tnXUS37UalHIgkwJKG4MWXPjamack1SKGxlKonBmIsrfo5lS0MeoKmmnXNabNkqddaItK2QWEf9vZHywJhm4NvJgNOF6fXa4n9eOaHGdjWVYZwQhqL7UCNRjCLWzobVpUZBqmkJF1ravzJxwTUXZBPM2BC83pP7SWE9523mNo5tGvu30MEYLMAirIAHW7ADh3AEeRBwD4/wDC/Og/PkvDpv3dEBp9thHv7Aef8GVoueag==</latexit>

G̃t
j(X,A) ✓ Gt

Figure 2: The architecture of GraphInflu consists of two phases: (a) Supportive Node Selector via Gradients identifies the most
influential source nodes through gradientmatching between gradient information of source nodes and few-shot labeled target
nodes; and (b) Soft Logic-Inspired Node Reweighting further assigns greater importance to selected source nodes that closely
align with the target domain, particularly where challenging target nodes exist. It estimates the ego-graph based distance to
ensure that reweighted source nodes are sufficiently close to certain target nodes. The unstability of target nodes is evalu-
ated using the KL divergence between the original ego graphs and their corresponding adversarially perturbed versions. The
uncertainty of target nodes is estimated through entropy calculation. Subsequently, a First-Order Logic (FOL) framework is
incorporated to balance these metrics, facilitating the reweighting of source nodes.

with 𝑛𝑠 nodes, and a partially labeled target graph 𝐺𝑡 =
(𝑉 𝑡 , 𝐸𝑡 , 𝐴𝑡 , 𝑋 𝑡 , 𝑌 𝑡 ) with 𝑛𝑡 nodes. The source graph 𝐺𝑠 contains
a fully labeled node set 𝑉 𝑠,𝑙 , where 𝑛𝑠,𝑙 = 𝑛𝑠 . In the target graph
𝐺𝑡 , the nodes are divided into labeled nodes 𝑉 𝑡,𝑙 and unlabeled
nodes 𝑉 𝑡,𝑢 , such that 𝑛𝑡,𝑙 + 𝑛𝑡,𝑢 = 𝑛𝑡 , with 𝑛𝑡,𝑢 is significantly
larger than 𝑛𝑡,𝑙 . Typically, there are only a few labeled nodes per
class in the target graph, for instance, five labels per class (5-shot).
We assume the label space is shared between the source and target
domains, with 𝐶 denoting the number of classes. The objective of
FSGDA is to train a model𝑔 that performs well on the target graph,
leveraging the labeled source nodes and the limited labeled target
nodes.

3.2 General Objective Function of FSGDA
The general objective function of FSGDA can be formulated as fol-
lows:

LFSGDA = Lcls + Lalign [+Lother] (1)
where Lcls denotes the cross-entropy loss function for the node

classification task using labeled nodes. This term can be further di-
vided into two parts based on the origin of nodes: Lcls = L𝑠cls +
L𝑡cls. And the Lalign term represents the domain alignment loss,
which can be implemented using techniques such as maximum
mean discrepancy (MMD) [11, 37] or adversarial training mech-
anisms [1, 9]. The last term, Lother, is optional and usually denotes
self-supervised methods, such as graph contrastive learning tech-
niques employed in both source and target graphs [28, 35].

4 Method
In this section, we introduce a novel method GraphInflu, which
aims to identify the most influential source nodes that better align
with the target domain and further enhance the importance of
these high-value nodes. To address this, as shown in Figure 2, our
method is divided into two phases: (1) supportive node selector
via gradients, and (2) soft logic-inspired node reweighting.

In phase 1, we train a GNN model on the source graph and
compute the loss for all labeled nodes during the training process.
By performing backpropagation, we obtain the gradient stores for
both the source and target nodes. Furthermore, we deduce that
the change in loss for labeled target nodes can be measured by
the inner product of the gradient features from the two networks.
Based on this, we construct a contribution score function for
the source nodes using these two sets of gradient features. Finally,
we apply a class-balanced sampling strategy based on the contri-
bution score to select supportive data. In phase 2, we train a new
GNN model on both the source and target graphs. During train-
ing, we place greater emphasis on source nodes whose distribu-
tion closely aligns with the target nodes, particularly the challeng-
ing target ones. The representativeness metric is evaluated based
on the distance between ego graphs centered specific nodes from
both domains, consisting of both node-wise and edge-wise dis-
tances. The difficulty metric consists of two components: unsta-
bility and uncertainty of specific target nodes. For unstability, we
construct an adversarially perturbed ego graph by maximizing the
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spectral distance. The unstability metric is computed using the KL
divergence between the original prediction (based on the original
ego graph) and the perturbed prediction (based on the perturbed
graph). For uncertainty, we estimate the model’s uncertainty via
the entropy of its predictions. These three metrics are then inte-
grated into a First-Order Logic (FOL) framework to compute an
importance weight for each source node.

4.1 Supportive Node Selector via Gradients
As mentioned in introduction, a certain proportion of source do-
main nodes (referred to as adverse data) introduce biases that devi-
ate from the target domain distribution. As the model trains, these
biases are enhanced and thus the degrades model performance on
the target domain. With limited labeled data in the target domain,
here we aim to identify the influential source nodes and filter out
adverse ones to improve model performance.

Here we emphasize the effective utilization of the few labeled
target nodes. We offer a unique perspective by viewing source
graph nodes as training data and correspondingly labeled target
nodes as validation data. This allows the performance on these
“validation” data (labeled target nodes) to provide insights into
model’s generalization ability on the target distribution. Conse-
quently, the problem can be transformed into selecting the most
influential source nodes to achieve better performance on these
limited labeled target ones.
Contribution score function. We consider using gradient fea-
tures from both labeled source nodes and target nodes to con-
struct our contribution score function. Consider a node classifica-
tion model 𝑔 = ℎ ◦ 𝑓 trained on the loss L. Here 𝑓 denotes the
feature extractor and ℎ is the node classification head. The overall
parameters are represented by 𝜃 . Notably, the training process re-
lies exclusively on the source graph, while the few labeled target
nodes are solely used for evaluation. In this way, we can estimate
first-order Taylor expansion of loss on the labeled target node 𝑣𝑡𝑗
at the (𝑘 + 1)-th update of the model.:

L(𝑣𝑡𝑗 , 𝜃𝑘+1) ≈ L(𝑣𝑡𝑗 , 𝜃𝑘 ) − 𝜂𝑘∇𝜃𝑘L(𝑣𝑡𝑗 , 𝜃𝑘 )
⊤∇𝜃𝑘L(𝑣𝑠𝑖 , 𝜃𝑘 ) (2)

where 𝑣𝑠𝑖 ∈ 𝑉 𝑠,𝑙 and 𝑣𝑡𝑗 ∈ 𝑉
𝑡,𝑙 represent the source node and target

node, respectively. 𝜂𝑘 denotes the learning rate at step 𝑘 . ∇𝜃𝑘 (·)
signifies the gradient of the loss function with respect to the model
weights 𝜃𝑘 . Furthermore, we can formulate the following loss re-
duction extent at step 𝑘 :

L(𝑣𝑡𝑗 , 𝜃𝑘 ) − L(𝑣𝑡𝑗 , 𝜃𝑘+1) ≈ 𝜂𝑡∇𝜃𝑘L(𝑣𝑡𝑗 , 𝜃𝑘 )
⊤∇𝜃𝑘L(𝑣𝑠𝑖 , 𝜃𝑘 ) (3)

We can observe that the inner product of gradient features
∇𝜃𝑘L(𝑣𝑡𝑗 , 𝜃𝑘 )

⊤∇𝜃𝑘L(𝑣𝑠𝑖 , 𝜃𝑘 ) measures the change in the loss on la-
beled target nodes.Themagnitude of the change in loss reflects the
extent to which the source node contributes to the performance
on the corresponding target node. Therefore, we can utilize this
item to define the following contribution score function score(·, ·)
through aggregating multiple learning steps:

score(𝑣𝑠𝑖 , 𝑣
𝑡
𝑗 ) =

∑
𝑘

𝜂𝑘∇𝜃𝑘L(𝑣𝑡𝑗 , 𝜃𝑘 )
⊤∇𝜃𝑘L(𝑣𝑠𝑖 , 𝜃𝑘 ) (4)

The above formulation illustrates the contribution score of a source
node in relation to a specific target node. Furthermore, we can

derive the contribution score matrix Γ ∈ R𝑛
𝑠,𝑙×𝑛𝑡,𝑙 , where Γ𝑖 𝑗 =

score(𝑣𝑠𝑖 , 𝑣
𝑡
𝑗 ).

Class-balanced selection strategy. In practice, relying solely on
the highest score for selection from Eq. (4) tends to construct a
class biased source node set. One possible reason is that the se-
mantic representations of certain classes have a smaller domain
gap, leading to higher scores for source nodes from those classes.

To address this issue, we employ a class-balanced selection strat-
egy. For a given source node 𝑣𝑠𝑖 , we aggregate the contribution
score based on the label of few-shot target nodes. In this way, we
can obtain a class-wise contribution score matrix Γ̂ ∈ R𝑛

𝑠,𝑙×𝐶 :

Γ̂𝑖 𝑗 =

∑
𝑣𝑡𝑚∈𝑉 𝑡,𝑙 I(𝑦𝑡𝑚 = 𝑐 𝑗 ) · Γ𝑖 𝑗∑
𝑣𝑡𝑚∈𝑉 𝑡,𝑙 I(𝑦𝑡𝑚 = 𝑐 𝑗 )

(5)

where I is an indicator function that returns 1 when the condi-
tion is satisfied and 0 otherwise. Here Γ̂𝑖 𝑗 denotes the contribu-
tion score of source node 𝑣𝑠𝑖 belonging to class 𝑐 𝑗 . Assume we
select a total of 𝑄 source nodes from 𝑉 𝑠 . For a specific class 𝑐𝑖 ,
we choose (1+𝛽 )𝑄

𝐶 samples with the highest scores under class 𝑐𝑖 ,
where 𝛽 > 0 facilitates the selection of additional candidates. This
adjustment addresses the potential overlap among class-wise can-
didates; for example, a single node may exhibit high contribution
score in both class 𝑐𝑖 and class 𝑐 𝑗 . Finally, we can obtain a class-
balanced supportive source node set 𝑉 𝑠 via employing Γ and our
sampling strategy.

4.2 Soft Logic-Inspired Node Reweighting
Even with supportive nodes identified by the above score function,
the core source nodes can easily be overshadowed by low-value
nodes, limiting the GNN’s ability to fully capture the underlying
patterns. Given the limited availability of target domain labels, we
further emphasize the importance and uniqueness of core source
nodes closely aligned with the target nodes, especially the chal-
lenging target ones.

The previous section primarily emphasizes the use of labeled tar-
get nodes to identify the supportive source nodes. However, the
abundant unlabeled target nodes also provide valuable informa-
tion for domain adaptation. In this section, we explore the role of
source nodes in the domain adaptation process by effectively utiliz-
ing these numerous unlabeled target nodes. Here, we consider two
kinds of challenging nodes: unstable and uncertain target nodes,
as they contribute more to domain adaptation when properly ad-
dressed.

Given a source node 𝑣𝑠𝑖 , we first find its 𝐾 nearest target nodes
A𝑖 = {𝑣𝑡𝑗 }

𝐾
𝑗=1 in the representation space. The unstability and un-

certainty of these𝐾 target nodes are then estimated to dynamically
adjust the importance of the corresponding source node 𝑣𝑠𝑖 .
Ego-graph based distance.Given the structural nature of graphs,
we assess the similarity between subgraphs centered on nodes
from two domains, which encompasses both node-wise and edge-
wise distances. Specifically, for a source node 𝑣𝑠𝑖 and a target node
𝑣𝑡𝑗 , we extract their respective ego graphs, denoted as 𝐺̃𝑠𝑖 (𝑉̃

𝑠
𝑖 , 𝐸

𝑠
𝑖 )

and 𝐺̃𝑡𝑗 (𝑉̃
𝑡
𝑗 , 𝐸

𝑡
𝑗 ). An ego graph represents the induced subgraph sur-

rounding a specific node. We use 𝑉̃ 𝑠𝑖 and 𝑉̃ 𝑡𝑗 to denote the induced
sets of nodes, and 𝐸𝑠𝑖 and 𝐸𝑡𝑗 to represent the induced sets of edges.

4
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The number of nodes in 𝐺̃𝑠𝑖 and 𝐺̃𝑡𝑗 is represented as 𝑛1 and 𝑛2,
respectively,

The node-wise distance can be calculated usingmetrics based on
two node sets, 𝑉̃ 𝑠𝑖 and 𝑉̃ 𝑡𝑗 . In this context, we employ the Wasser-
stein distance [20] for node-wise distance 𝐷Node (𝑉̃ 𝑠𝑖 , 𝑉̃

𝑡
𝑗 ), as fol-

lows:

𝐷Node (𝑉̃ 𝑠𝑖 , 𝑉̃
𝑡
𝑗 ) = min

𝛾 ∈Π (𝜇𝑖 ,𝜇 𝑗 )

∑
𝑎∈𝑉̃ 𝑠

𝑖

∑
𝑏∈𝑉̃ 𝑡

𝑗

𝛾𝑎𝑏 · 𝑐 (𝑥𝑎, 𝑥𝑏 ) (6)

where Π(𝜇𝑖 , 𝜇 𝑗 ) =
{
𝛾 ∈ R𝑛1×𝑛2+ | 𝛾1𝑛1 = 𝜇𝑖 , 1𝑇𝑛2𝛾 = 𝜇 𝑗

}
denotes

the valid transport plan 𝛾 . Here, 1𝑛1 and 1𝑛2 are column vectors of
ones with 𝑛1 and 𝑛2 entries, respectively. Here for simiplicity, we
use 𝑎 and 𝑏 to represent the nodes 𝑣𝑠𝑎 and 𝑣𝑡

𝑏
, respectively. 𝑥𝑎 and

𝑥𝑏 denotes the node embedding. And 𝑐 (𝑥𝑎, 𝑥𝑏 ) denote the cost to
move a distribution to another, here we choose the commonly used
squared Euclidean distance, defined as 𝑐 (𝑥𝑎, 𝑥𝑏 ) = ∥𝑥𝑎 − 𝑥𝑏 ∥2.

Besides the node-wise distance between two ego graphs, we fur-
ther incorporate the edge-wise distance to capture structure simi-
larity. Following the same notions in Eq. (6), we employ Gromov-
Wasserstein [2] to calculate distances 𝐷Edge (𝐸𝑠𝑖 , 𝐸

𝑡
𝑗 ) between the

edge sets 𝐸𝑠𝑖 and 𝐸𝑡𝑗 :

𝐷Edge (𝐸𝑠𝑖 , 𝐸
𝑡
𝑗 ) = min

𝛾 ∈Π (𝜇𝑖 ,𝜇 𝑗 )

∑
(𝑎,𝑐 ) ∈𝐸̃𝑠𝑖

∑
(𝑏,𝑑 ) ∈𝐸̃𝑡𝑗

𝛾𝑎𝑏 · 𝑐 (𝑥𝑎, 𝑥𝑐 , 𝑥𝑏 , 𝑥𝑑 )

(7)

where 𝑐 (𝑥𝑎, 𝑥𝑐 , 𝑥𝑏 , 𝑥𝑑 ) = ∥cos(𝑥𝑎, 𝑥𝑐 ) − cos(𝑥𝑏 , 𝑥𝑑 )∥ is the cost
function between edges from different graphs. Here, cos refers to
cosine similarity, defined as cos(𝑥,𝑦) = 𝑥 ·𝑦

∥𝑥 ∥ ∥𝑦 ∥ . The final ego-
graph based distance 𝑑𝑖 𝑗 are formulated as follows:

𝑑𝑖 𝑗 = 𝐷
Node (𝑉̃ 𝑠𝑖 , 𝑉̃

𝑡
𝑗 ) + 𝐷

Edge (𝐸𝑠𝑖 , 𝐸
𝑡
𝑗 ) (8)

Unstability estimate. The unstability of the model’s predictions
on samples can be assessed by measuring the inconsistency be-
tween predictions on the samples and their corresponding virtual
adversarial samples [10]. In this part, we first construct an adver-
sarial sample by maximizing the spectral distance between the
original graph and the perturbed graph, centered around specific
nodes. And then we utilize the Kullback-Leibler (KL) divergence
between the predictions from the original graph and the perturbed
graph to estimate unstability.

For an ego graph 𝐺̃𝑡𝑗 centered at node 𝑣𝑡𝑗 , we use G(𝑋,𝐴) with
feature matrix 𝑋 and adjacency matrix 𝐴 to represent 𝐺𝑡𝑗 to sim-
plify symbols. The normalized Laplacian matrix 𝐿 is defined as
𝐿 = 𝐼𝑛 − 𝐷− 1

2𝐴𝐷− 1
2 , where 𝐷 is the diagonal degree matrix with

entries 𝐷𝑖𝑖 =
∑𝑚
𝑗=1𝐴𝑖 𝑗 . Furthermore, the edge decomposition of

the Laplacian matrix 𝐿 can be expressed as 𝐿 = 𝑈Λ𝑈⊤, where
Λ = diag(𝜆1, . . . , 𝜆𝑛) is the diagonal matrix of eigenvalues, and 𝑈
is a unitary matrix.

We generate edge perturbations Δ ∈ [0, 1]𝑛×𝑛 by maximizing
the spectral distance between the original graph G(𝑋,𝐴) and the
perturbed graph G′ (𝑋,𝐴′). The perturbed adjacency matrix 𝐴′ is
formulated as follows:

𝐴′ = Δ ◦ (1 −𝐴) + (1 − Δ) ◦𝐴 (9)

Here, Δ𝑖 𝑗 = 1 indicates a flip operation: if 𝐴𝑖 𝑗 = 1, the edge is
deleted; if𝐴𝑖 𝑗 = 0, the edge is added. The symbol ◦means element-
wise multiplication. The optimal perturbed matrix 𝐴′ can be op-
timized through the spectral distance 𝐷spec, which is defined as
𝐷spec = ∥𝑔∗

𝜙
(Λ) − 𝑔∗

𝜙
(Λ′)∥, where 𝑔∗

𝜙
represents the graph filter

parameterized by 𝜙 . Following the approach in [18], 𝑔∗
𝜙
can be ap-

proximated using the first-order approximation of the Chebyshev
polynomials [13], yielding 𝑔∗

𝜙
≈ ∥𝐼𝑛 − Λ∥. Thus, 𝐷spec can be ap-

proximated by the formulation:

𝐷spec ≈ ∥(𝐼𝑛 − Λ) − (𝐼𝑛 − Λ′)∥ = ∥Λ − Λ′∥ (10)

Consequently, we can conclude our objective is to achieve an op-
timal edge perturbation Δ by solving the following optimization
problem:

Δ0 = argmax
Δ

∥Λ − Λ′∥ (11)

This formulation can be effectively solved using gradient descent.
Once Δ is obtained, we can define the unstability of the target
node 𝑣𝑡𝑗 using the Kullback-Leibler divergence between the orig-
inal ego graph G and the corresponding adversarially perturbated
ego graph G′ (𝑋,𝐴′) as follows:

𝑤̂𝑡𝑗,uns = KL(𝑃 (𝑝𝑡𝑗 |G(𝑋,𝐴)), 𝑃 (𝑝𝑡𝑗 |G
′ (𝑋,𝐴′))) (12)

where 𝑝𝑡𝑗 and 𝑝
𝑡
𝑗 represent the predictions under G and G′, re-

spectively.
Uncertainty estimate. The uncertain target nodes have low pre-
diction confidence yet may be informative to the target domain.
Here we employ the entropy to calculate the uncertainty of sam-
ples. For a given target node 𝑣𝑡𝑗 , we extract its representation 𝑧𝑡𝑗
from the last layer of the feature encoder 𝑓 , and obtain its predic-
tion 𝑝𝑡𝑗 after passing through the classifier head ℎ. The entropy for
unlabeled target node 𝑣𝑡𝑗 ∈ 𝑉

𝑡
𝑢,𝑙

can be formulated as follows:

𝑤̂𝑡𝑗,unc = Entropy(𝑣𝑡𝑗 , 𝜃 ) = −
∑
𝑐

𝑝𝑡𝑗,𝑐 log𝑝
𝑡
𝑗,𝑐 (13)

where 𝑝𝑡𝑗,𝑐 denotes the prediction probability of 𝑣𝑡𝑗 belong to the
class 𝑐 .
Node reweighting with FOL. As illustrated above, we aim to
adjust the importance of source nodes based on the uncertainty
and unstability (which we refer to as difficulty metrics) of their
K nearest target nodes. Meanwhile, to mitigate the influence of
outliers or unrepresentative samples in the target domain, we em-
ploy ego graph-based distance to ensure structural similarity be-
tween source nodes and target nodes. In this section, we utilize a
first-order logic (FOL) framework [17] to inject structured domain
knowledge to balance the difficulty and distance metrics. The core
idea is to emphasize representative source nodes whose distribu-
tion closely aligns with the target nodes, particularly the challeng-
ing target ones.

Here, we use the uppercase 𝑊 to denote our focused weight
term, with the subscript indicating the specific metric being repre-
sented.The lowercase𝑤 is used to denote the corresponding value.
To achieve balance between difficulty and distance metrics, we for-
mulate this structure knowledge as the following FOL rules:

(𝑊𝑑𝑖𝑠 ≤ 𝛼1) ∧ (𝑊uns ≥ 𝛼2 ∨𝑊𝑢𝑛𝑐 ≥ 𝛼3) (14)
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Here 𝛼1, 𝛼2, 𝛼3 denotes are the thresholds. However, the above
formulation is not differentiable. To address it, we define the fol-
lowing indicator function𝜓𝑔 and𝜓𝑙 for𝑤𝑖 ≥ 𝛼 and𝑤𝑖 ≤ 𝛼 respec-
tively as follows:

𝜓𝑔 (𝑥𝑖 , 𝛼) =
1

𝑒−(𝑤𝑖−𝛼 )
(15)

𝜓𝑙 (𝑥𝑖 , 𝛼) =
1

𝑒 (𝑤𝑖−𝛼 )
(16)

Further, motivated by Łukasiewicz Tnorm and T-conorm [16], we
relax the logic rules to define a soft version of conjections and dis-
junctions. Specifically, we follow [17] define the mapping function
Φ to map the outputs of FOL into real values:
• Φ (𝑊𝑖 ) = 𝑤𝑖
• Φ

(∨
𝑖
𝑊𝑖

)
= min

(
1,
∑
𝑖
𝑤𝑖

)
• Φ

(∧
𝑖
𝑊𝑖

)
= max

(
0,
∑
𝑖
𝑤𝑖 − |𝑊 | + 1

)
The first principle maps a variable in FOL to a real value in the
range [0, 1]. The last two principles map the conjunctions and dis-
junctions to real values in the range [0, 1].

Given a source node 𝑣𝑠𝑖 , and one of its nearest target node 𝑣𝑡𝑗 ∈
A𝑖 . We can calculate the source weight 𝑤𝑠𝑖 𝑗 via the soft logic of
rules in Eq. (14) as follows:

𝑤𝑠𝑖 𝑗 = Φ
(
𝜓𝑙 (𝑑𝑖 𝑗 , 𝛼1) ∧ Φ

(
𝜓𝑔 (𝑤̂𝑡𝑗,𝑢𝑛𝑠 , 𝛼2) ∨ (𝜓𝑔 (𝑤̂𝑡𝑗,𝑢𝑛𝑐 , 𝛼3)

))
(17)

Furthermore, we combine the source weight across nearest tar-
get set A𝑖 to obtain the final value:

𝑤𝑠𝑖 =
1
𝐾

∑
𝑗∈A𝑖

𝑤𝑠𝑖 𝑗 (18)

4.3 Model Training
As summarized in the general form of the objective function in Sec-
tion 3.2, our method can be integrated with existing graph domain
adaptation methods. The key difference is that our approach re-
placeL𝑠cls withL𝑠cls, while keeping other terms unchanged. Specif-
ically, L𝑠cls is defined as follows:

L𝑠cls = −
∑
𝑣𝑠𝑖 ∈𝑉 𝑠

𝑤𝑠𝑖 · 𝑦
𝑠
𝑖 log𝑦

𝑠
𝑖 (19)

Here,𝑦𝑠𝑖 ∈ 𝑌
𝑠 is the true label of source node 𝑣𝑠𝑖 and𝑦

𝑠
𝑖 denotes the

model prediction. The acquisition of set 𝑉 𝑠 is described in Section
4.1 and the calculation of the source node weights𝑤𝑠 is detailed in
Section 4.2. The pseudocode can be found in Appendix A.

5 Experiments
5.1 Experiment Settings
Datasets. Following [22, 33], we conduct experiments on three
commonly used real-world datasets provided by ArnetMiner [27]:
ACMv9, Citationv1, and DBLPv7, which are from different sources
and consequently have varied data distributions. We include six
transfer scenarios: C⇒A, D⇒A, A⇒C, D⇒C, A⇒D, and C⇒D,
where ACMv9, Citationv1, and DBLPv7 are represented as A, C,

and D for simplicity. We place more details about datasets in Ap-
pendix B.
Metrics. Following [5], we choose Micro-F1 score and Macro-F1
score to evaluate classification performance.
Baselines. We compare our approach against the following base-
lines, which can be categorized into three categories:

• Vanilla GNN methods: GCN [14], GSAGE [12] and GIN [36].
These classical GNN models are used for single graph represen-
tation learning. To align them with our settings, following the
method in [6], we adapt them by incorporating an additional
cross-entropy loss term calculated from the limited labeled tar-
get nodes.

• Unsupervised graph domain adaptation methods:
CDNE [23], ACDNE [22], UDAGCN [33] and MFRReg [39].
These methods are designed for unsupervised graph domain
adaptation methods. To align with our settings, we incorporate
the classification loss on labeled target nodes into their origin
loss functions.

• Few-shot graph domain adaptation methods: AdaGCN [5]
and SemiGCL [35].Thesemethods can directly deal with FSGDA
task.

Implementation details. GraphInflu can be integrated with cur-
rent graph domain adatation methods. We choose SemiGCL [35]
as our backbone which involves cross-entropy loss, contrastive
loss and entropy loss. These losses are computed based on identi-
fied source nodes𝑉 𝑠 , with the classification loss being reweighted
accordingly. The target graph is designed to include five labeled
nodes for each class. For supportive node selector, we set the train-
ing intervals 𝑇 = 5 and a scaling factor 𝛽 = 1.2. We set the de-
fault selection ratio of source nodes as 0.3. In the node reweight-
ing phase, we set the number of samples to 𝐾 = 5, and thresholds
to 𝛼1 = 0.4, 𝛼2 = 0.6, and 𝛼3 = 0.6. The Adam optimizer is used
with a default learning rate of 3× 10−3. For a fair comparision, our
method and all baselines set the hidden size of feature extractor
with 256.

5.2 Performance Comparision
We conduct the experiments using 30% of the source nodes and all
labeled target nodes for training across all methods.The results for
FSGDA on six domain adaptation scenarios, are detailed in Table
1. From this table, we can conclude the following discoveries:

• Compared to the three baseline categories, our proposed
method consistently outperforms them, achieving an average
improvement of 2.01% in micro-F1 and a 2.11% improvement in
macro-F1 over the best baseline. This result indicates that, given
the same selection budget for source nodes, our method effec-
tively identifies the most influential nodes and prioritizes these
core nodes, resulting in enhanced performance.

• Unsupervised graph domain adaptation methods (LT variants)
and few-shot graph domain adaptation approaches typically
outperform standard GNN methods, emphasizing the critical
role of adaptation strategies. However, existing few-shot graph
domain adaptation methods underestimate the value of labeled
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Table 1:Themodel performance is evaluated across six domain adaptation scenarios under a 5-shot learning setting. All meth-
ods are trained with 30% of the source data and all labeled target data. The best results are highlighted and the second-best
results are underlined. A: ACMv9; C:Citationv1; D: DBLPv7. A⇒C represents that A is the source graph and C is the target
graph. The same applies to other scenarios. The methods with the subscript LT represent variants of the baselines that incor-
porate additional classification loss on labeled target nodes.

Methods C⇒A D⇒A A⇒C D⇒C A⇒D C⇒D
Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro

GCNLT 73.98 73.37 69.25 68.90 76.66 74.52 75.16 72.1 70.84 66.92 74.11 72.24
GSAGELT 69.33 67.78 64.69 62.79 72.27 70.79 74.07 71.90 69.12 66.41 71.50 69.01
GINLT 72.87 72.50 68.74 67.80 75.53 73.98 72.39 68.68 70.18 67.56 73.05 70.40
UDAGCNLT 76.98 76.64 74.02 73.99 81.30 78.72 80.40 78.54 74.73 70.72 76.67 73.66
MFRRegLT 73.48 74.98 73.57 75.69 81.53 80.23 81.82 80.56 74.80 72.80 77.48 74.70
ACDNELT 73.15 74.42 69.09 67.81 81.20 79.82 79.13 75.80 74.55 72.74 76.25 72.85
AdaGCN 73.54 73.32 70.23 69.50 77.10 75.11 75.08 72.90 72.07 68.71 73.80 70.94
SemiGCL 77.73 77.48 75.98 75.27 83.25 81.63 82.79 81.25 74.35 72.31 77.35 75.61
GraphInflu 79.86 79.91 79.87 79.48 84.52 82.83 84.14 82.43 76.89 75.44 78.79 77.01
Improv.(%) +2.13 +2.43 +3.89 +3.79 +1.27 +1.20 +1.35 +1.18 +2.09 +2.64 +1.31 +1.40

Table 2: The model performance comparison across six domain adaptation scenarios under a 5-shot learning setting. All base-
lines employ the entire labeled source data and all labeled target data. Other captions are consistent with the Table 1.

Methods C⇒A D⇒A A⇒C D⇒C A⇒D C⇒D
Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro

GCNLT 75.31 75.31 71.74 71.46 77.72 75.93 76.72 73.75 70.72 68.42 75.08 72.90
UDAGCNLT 78.52 78.54 75.53 74.26 81.08 78.82 81.18 79.58 75.42 72.26 77.36 74.71
SemiGCL 78.54 78.47 77.22 77.05 83.49 81.50 83.29 81.41 75.65 73.39 77.73 75.88
GraphInflu 79.86 79.91 79.87 79.48 84.52 82.83 84.14 82.43 76.89 75.44 78.79 77.01

target nodes, leading to performance that is on par with tradi-
tional graph domain adaptation methods (LT variants). In con-
trast, our approach effectively utilize labeled target nodes to
identify the core supportive data from source domain.

Comparison with baselines using all source nodes. To fur-
ther illustrate the effectiveness of our approach, we compare our
model using 30% of the source nodes against the baselines that uti-
lize all labeled source nodes. Additionally, all methods utilize the
labeled target nodes. We select the three representative methods
from three types of baselines. As illustrated in Table 2, our model’s
performance still exceeds that of the baseline models. This result
demonstrates that not all source nodes contribute equally to gen-
eralization in the target domain. Our method is able to identify
high-value nodes, thereby facilitating the domain adaptation pro-
cess. We include more baselines results in Appendix C.
Performance under 1-shot labeled nodes for each class. We
further explore the performance of our approach under extreme
conditions, specifically with 1-shot labeled nodes for each class.
This experiment aims to determine whether our method can ef-
fectively identify valuable information to help pinpoint the most

valuable source nodes. We present our findings in Table 3. Despite
the extremely limited information, our approach demonstrates a
significant performance improvement compared with other base-
lines, showcasing its robustness. Meanwhile, we observe a degra-
dation in performance compared to Table 1, likely due to the fact
that a single sample may originate from outliers in the target do-
main. In practice, we find that using 5-shot labeled nodes achieves
satisfactory performance, striking a balance between performance
and label costs.
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Figure 3: Ablation studies on D ⇒ A and A ⇒ C.
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Figure 4: Visualization of node representations learned by
SemiGCL and GraphInflu in the scenario D⇒ A.

Table 3: Performance on 1-shot labeled nodes for each class
in the scenarios D⇒ A and A ⇒ C.

Methods GCNLT UDAGCNLT SemiGCL GraphInflu

D ⇒ A Micro 69.97 71.22 74.42 76.18
Macro 67.99 69.02 73.15 74.60

A ⇒ C Micro 76.83 80.45 82.42 83.45
Macro 74.17 77.02 80.35 81.60

5.3 Ablation Study
To validate the effectiveness of components, ablation studies are
conducted on:

• w/o Influ: This variant disregards the calculation of the contri-
bution score and randomly selects the source nodes.

• w/o CB: The class-balanced selection strategy is omitted, and
source nodes are selected solely based on score function.

• w/o RW: All source nodes are treated equally, with their
weights in the classification loss set to one.

• w/o FOL: The FOL framework is removed, and source node
weights are assigned only based on the product of the difficulty
and distance metrics.

The results are depicted in Figure 3. The superior performance
of GraphInflu over its variant w/o Influ demonstrates the impor-
tance of contribution score function. This is attributed to the fact
that the few labeled target nodes provide informative guidance
in the form of gradient features, which facilitate the selection of
source nodes. The performance drop of the variant w/o CB indi-
cates that unbalanced source nodes can bias the model towards
a suboptimal optimization direction. Furthermore, the variantw/o
RW underperforms GraphInflu, implying that source nodes do not
contribute equally to the domain adaptation on the target graph.
The refined reweighting design encourages the model to focus on
representative and challenging nodes, which can contribute to per-
formance improvement once addressed. In addition, the observed
decrease in performance of the variant w/o FOL highlights the ef-
fectiveness of our soft logic rules in combining various conditions,
including representativeness metric and difficulty metric.

0.2 0.4 0.6 0.8
Ratio

0.74

0.76

0.78

0.80

0.2 0.4 0.6 0.8
Ratio

0.80

0.82

0.84

Micro-F1 (SemiGCL)
Macro-F1 (SemiGCL)

Micro-F1 (Ours)
Macro-F1 (Ours)

Figure 5: The effect of source ratio in the scenarios D ⇒ A
(left) and A ⇒ C (right).

5.4 More Analysis
Visualization of representative space. We compare the rep-
resentation distributions generated by our model and SemiGCL.
Specifically, we employ t-SNE [29] to project the learned node rep-
resentations in the target domain into a two-dimensional space, us-
ing different colors to denote different classes. As shown in Figure
4, the representations learned by our approach form more concen-
trated clusters compared to SemiGCL. This indicates that GraphIn-
flu can effectively identify the influential source nodes that signif-
icantly contribute to the adaptation process in the target domain.
Effect of selection ratio. In this experiment, we further investi-
gate the impact of selecting different proportions of source nodes
on the target graph’s performance. We select SemiGCL (the op-
timal baseline) for comparison with our method. As illustrated
in Figure 5, our approach consistently demonstrates strong per-
formance across varying source data ratios. Notably, our method
quickly achieves optimal performance, followed by a gradual de-
cline as the source node ratio increases. This quick increase can
be attributed to the effective identification of high-value nodes
from the source domain. However, as the ratio of source nodes
continues to rise, the model’s performance is inevitably impacted
by bias caused by adverse nodes. This demonstrates that the per-
formance improvement primarily originates from the supportive
nodes, while the improper inclusion ofmore adverse nodes leads to
model degradation. In contrast, SemiGCL’s performance remains
relatively stable across different source node ratios, suggesting its
lower effectiveness in identifying and prioritizing the most valu-
able nodes.

6 Conclusion
This paper investigates few-shot graph domain adaptation for node
classification. We argue that the indiscriminate use of all available
source nodes limits the GNN performance on the target network.
This limitation primarily arises from source-domain bias misalign-
ing with the target domain and the presence of low-value nodes
that hinder model training. To address this issue, we propose a
novel method, GraphInflu, which introduces twomodules: the Sup-
portive Node Selector and Soft Logic-Inspired Node Reweighting.
Experiments demonstrate the superior performance of GraphInflu
by surpassing state-of-the-arts. Extensive experiments including
the ablation study prove the reasonable design of each module.
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A Algorithms Details
Algorithm 1 and Algorithm 2 show the pseudocodes of Support-
ive Node Selector and Soft Logic-Inspired Node Reweighting, respec-
tively.

Algorithm 1: Supportive Node Selector
Input: source graph 𝐺𝑠 , target graph 𝐺𝑡 , training intervals

𝑇 , epochs 𝐸, sample number 𝑄 , number of classes 𝐶 ,
scaling factor 𝛽

Output: supportive source node set 𝑉 𝑠
Initialize a single-domain node classifier 𝑔𝜃
Initialize score matrix Γ = 0𝑛𝑠,𝑙×𝑛𝑡,𝑙
Initialize supportive source node set 𝑉 𝑠 = ∅
// Calculate contribution score for source nodes

for 𝑒 = 1 to 𝐸 do
Train GNN model 𝑔 using source graph 𝐺𝑠
if 𝑒%𝑇 == 0 then

Calculate current update step 𝑘 = 𝑒
𝑇

Calculate source node gradient store ∇𝜃𝑘L(𝑣𝑠 , 𝜃𝑘 )
Calculate target node gradient store ∇𝜃𝑘L(𝑣𝑡 , 𝜃𝑘 )
Obtain score matrix Γ𝑘 using Eq. (3)
Update score matrix Γ = Γ + 𝜂𝑘 · Γ𝑘

// Class-balanced selection strategy

Calculate class-wise contribution score Γ̂ using Eq. (5)
Calculate the number of samples for each class 𝑛 = (1+𝛽 )𝑄

𝐶
for 𝑐 = 0 to 𝐶 − 1 do

Obtain class-wise node set 𝑉 𝑠𝑐 = Top-n
(
Γ̂ [:, 𝑐]

)
𝑉 𝑠 = 𝑉 𝑠 ∪𝑉 𝑠𝑐

Algorithm 2: Soft Logic-Inspired Node Reweighting
Input: Selected source graph 𝐺𝑠 , target graph 𝐺𝑡 , sample

number 𝐾 , GNN model 𝑔, thresholds 𝛼1, 𝛼2, 𝛼3,
steps 𝐸

Output: source node weight𝑤𝑠
Obtain representation 𝑧𝑠 , 𝑧𝑡 and prediction 𝑝𝑡 = ℎ(𝑧𝑠 )
Choose 𝐾 nearest samples for source nodes A with
A𝑖 = Top-K𝑗

(
max

(
cos(𝑧𝑠𝑖 , 𝑧

𝑡
𝑗 )
))

Calculate the ego graph based distance 𝑑 using Eq. (8)
// Unstability estimate

Initializ a random perturbation maxtrix Δ

for 𝑒 = 1 to 𝐸 do
Calculate adversarial perturbation 𝐴′ using Eq. (9)
Calculate eigvalue matrix Λ = Eig(Laplacian(𝐴′)
Calculate spectral distance 𝐷spec using Eq. (10)
Update Δ with graident descent

Calculate unstability 𝑤̂𝑡𝑢𝑛𝑠 using Eq. (12)
Calculate uncertainty 𝑤̂𝑡𝑢𝑛𝑐 using Eq. (13)
Calculate logic forms: 𝜙𝑙 (𝑑, 𝛼1), 𝜙𝑔 (𝑤̂𝑡𝑢𝑛𝑐 , 𝛼2), 𝜙𝑔 (𝑤̂𝑡𝑢𝑛𝑠 , 𝛼3)
Calculate the source weight𝑤𝑠 using Eq. (17)

Table 4: Statistics of the three datasets. ‘#’ indicates the num-
ber of instances.

Dataset #Nodes #Edges #Attributes #Union Attributes #Labels
ACMv9 9,360 15,602 5571 6,775 5

Citationv1 8,935 15,113 5379 6,755 5
DBLPv7 5,484 8,130 4412 6,755 5

B Dataset Details
We summarize the dataset statistics in Table 4.These three datasets
are citation networks from different sources: DBLP (from 2004 to
2008), ACM (after 2010), and Microsoft Academic Graph (before
2008). Consequently, they have varied data distributions. We repre-
sent each citation network as an undirected graphwhere each node
denotes a paper, and an edge corresponds to a citation relationship
between two papers. Each paper belongs to one of the following
five categories based on its research topics: Artificial Intelligence,
Computer Vision, Database, Information Security, and Networking.

C More Experiments
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Figure 6: The model performance with thresholds 𝛼1, 𝛼2, 𝛼3
on D⇒ A.The dashed line indicates the performance of the
best baseline model.

Effect of thresholds. Figure 6 shows the effects of the three
thresholds 𝛼1, 𝛼2 and 𝛼3. According to Eq. 14, 𝛼1 represents the
constraint we impose to ensure that the source node is close to the
target domain. Meanwhile, 𝛼2 and 𝛼3 ensure that the correspond-
ing target nodes present challenges based on unstability and uncer-
tainty metrics. We observe that the model’s performance increases
and remains stable as 𝛼1 increases. In contrast, for 𝛼2 and 𝛼3, there
is an opposite trend: the model’s performance remains relatively
stable at low values but degrades as these values become exces-
sively large. From Eq. 14, we can infer that smaller values of 𝛼1
combined with larger values of 𝛼2 and 𝛼3 lead to stricter logic rules.
This causes the model to treat all source nodes equally, failing to
provide a nuanced distinction in the contributions of individual
source nodes.
Comparison with baselines using all labeled nodes. We
present additional baselines using all labeled source nodes in Table
5.
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Table 5:Themodel performance comparison across six domain adaptation scenarios under 5-shot setting. All baselines employ
the entire labeled source data and all labeled target data. The best results are highlighted and the second-best results are
underlined. A: ACMv9; C:Citationv1; D: DBLPv7. A⇒C represents that A is the source graph andC is the target graph.The same
applies to other scenarios. The methods with the subscript LT represent variants of the baselines that incorporate additional
classification loss on labeled target nodes.

Methods C⇒A D⇒A A⇒C D⇒C A⇒D C⇒D
Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro

GCNLT 75.31 75.31 71.74 71.46 77.72 75.93 76.72 73.75 70.72 68.42 75.08 72.90
GSAGELT 70.58 69.65 67.50 66.64 73.29 71.34 71.69 69.14 67.63 65.21 71.48 69.06
GINLT 73.09 72.28 70.75 69.29 77.21 75.19 74.72 72.81 71.21 65.30 73.69 70.85
UDAGCNLT 78.52 78.54 75.53 74.26 81.08 78.82 81.18 79.58 75.42 72.26 77.36 74.71
MFRRegLT 75.29 76.85 75.28 76.71 82.44 81.10 82.12 80.91 75.69 73.29 77.75 75.61
ACDNELT 74.57 75.91 72.58 73.84 81.23 79.81 79.77 78.21 74.24 71.17 74.26 70.39
AdaGCN 74.87 74.82 72.51 71.86 77.53 75.33 77.29 75.27 71.50 68.20 75.05 71.40
SemiGCL 78.54 78.47 77.22 77.05 83.49 81.50 83.29 81.41 75.65 73.39 77.73 75.88
GraphInflu 79.86 79.91 79.87 79.48 84.52 82.83 84.14 82.43 76.89 75.44 78.79 77.01
Improv.(%) +1.32 +1.37 +2.65 +2.43 +1.03 +1.33 +1.25 +1.02 +1.20 +2.05 +1.04 +1.13
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