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Abstract
Deep neural networks (DNNs) have a risk of
remembering sensitive data from their training
datasets, inadvertently leading to substantial in-
formation leakage through privacy attacks like
membership inference attacks. DP-SGD is a
simple yet effective defense method that incor-
porates Gaussian noise into gradient updates to
safeguard sensitive information. With the preva-
lence of large neural networks, DP-SIGNSGD,
a variant of DP-SGD, has emerged, aiming to
curtail communication load while maintaining se-
curity. However, it is noteworthy that most DP-
SIGNSGD algorithms default to Gaussian noise,
suitable only for DP-SGD, without scant discus-
sion of its appropriateness for SIGNSGD. Our
study delves into an intriguing question: “Can we
find a more efficient substitute for Gaussian noise
to secure privacy in DP-SIGNSGD?” We propose
an answer with a Logistic mechanism, which con-
forms to SIGNSGD principles and is interestingly
evolved from an exponential mechanism. In this
paper, we provide both theoretical and experimen-
tal evidence showing that our method surpasses
DP-SIGNSGD.

1. Introduction
The realm of machine learning has faced substantial chal-
lenges related to data privacy. Notably, deep neural networks
(DNNs) can unintentionally remember sensitive informa-
tion from the datasets they were trained on (Feldman &
Zhang, 2020). This issue becomes problematic not only
when DNNs are released to the public (Song et al., 2017),
but also when only inference results are made available (Pa-
pernot et al., 2017).

1Department of Electrical Engineering, Pohang University of
Science and Technology, Pohang, South Korea. Correspondence
to: Hyun Jong Yang <hyunyang@postech.ac.kr>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

In response to these privacy challenges, several solutions
have been proposed, including federated learning (FL)
by McMahan et al. (2017), homomorphic encryption (HE)
by Lee et al. (2022)), and differentially private stochastic
gradient descent (DP-SGD) by Abadi et al. (2016). While
HE is hampered by its high complexity, and FL can not pre-
vent data memorization, the DP-SGD algorithm emerges
as a simpler yet efficient method by adding Gaussian noise
for securing trained DNN models. The effectiveness of
DP-SGD is validated by the adoption of differential privacy
(DP) (Dwork et al., 2006), the underlying principle of DP-
SGD, by major tech companies like Apple, Google, and
Microsoft in their data collection practices (Apple, 2017;
Nguyên et al., 2016).

Aside from this, another new challenge has arisen: the ever-
increasing size of deep neural networks in distributed learn-
ing frameworks. As a solution, one can adopt SIGNSGD to
compress gradient vectors for efficient node-to-node gradi-
ent exchanges (Bernstein et al., 2019). The importance of
gradient compression becomes increasingly pivotal as the
size of neural networks explosively enlarges.

In this paper, we mainly focus on the combining advantages
of SIGNSGD and DP-SGD for reserving communication
efficiency while preserving privacy. Previously, few straight-
forward approaches have been proposed by Jin et al. (2020);
Lyu (2021)—namely, DP-SIGNSGD. However, a notable
limitation arises in the naive implementation of the DP-
SIGNSGD algorithm: the use of Gaussian noise, while spe-
cialized for DP-SGD, is not ideally suited for SIGNSGD. In
DP, the distribution of additive noise is an important factor,
because the goal of DP research is to maximize utility while
preserving statistical data privacy. At this point, we raise a
fundamental question:

“What is a better noise mechanism for SIGNSGD?”

Our solution, DP-SIGNLOSGD, replaces the traditional
Gaussian mechanism with an additive Logistic mecha-
nism. To this end, we revisit the foundational principles
of SIGNSGD, which finds a point in a set {−1, 1}N nearest
to the stochastic gradient—namely, sign sampling problem.
Our initial strategy utilizes an exponential mechanism, a
utility-maximizing mechanism, by setting the utility based
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on the sign sampling problem. However, we face a chal-
lenge: the exponential mechanism is not an additive noise
form; thus, we cannot answer the above research question.
To address this, we explore an alternative approach using the
additive Logistic mechanism before sign function. More-
over, we show that our method can sample an element from
the set {−1, 1}N in the same manner that mirrors the distri-
bution of the exponential mechanism.

Novelty Extensive research has been conducted on DP-
SGD; however, none of the following works directly ad-
dresses our question: tighter DP accounting (Andrew et al.,
2023; Jagielski et al., 2020; Girgis et al., 2021), Renyi-
DP (Girgis et al., 2021), Gaussian-DP (Dong et al., 2019),
gradient sparsification (Zhu & Blaschko, 2021), enhanced
projection (Sha et al., 2023), enhanced data sampling (Heo
et al., 2023), sensitivity optimization (Galli et al., 2023),
large language models (Hong et al., 2023), and gradient
compression (Lin, 2022; Kerkouche et al., 2021).

Summary of our findings In this paper, our introduction
of DP-SIGNLOSGD marks a significant advancement, of-
fering enhanced accuracy and convergence over the additive
Gaussian noise, and thereby establishing a new standard in
the field. Our salient findings are four-fold:

• Logistic mechanism for SIGNSGD: We present
DP-SIGNLOSGD, a novel approach that combines
SIGNSGD with a Logistic mechanism for guaranteeing
DP. To this end, we develop an exponential mechanism
adhering to the principles of SIGNSGD. Furthermore,
for sampling efficiency, we show that incorporating
Logistic noise before the sign function seamlessly
integrates with our exponential mechanism.

• Enhanced utility and privacy loss: Our theoretical
and experimental findings confirm that the Logistic
mechanism offers a tighter privacy loss and higher
utility compared to Gaussian noise, particularly in ac-
curately selecting the sign of the gradient within the
same privacy budget.

• Improved convergence: We show that the conver-
gence speed of SIGNSGD with additive noises is ham-
pered by an additional noise standard deviation term.
However, DP-SIGNLOSGD, requiring lower noise
variance, ensures more efficient convergence than the
DP-SIGNSGD.

• Experimental result: Our extensive experiments show
that the classification accuracy of DP-SIGNLOSGD is
higher than that of DP-SIGNSGD across all hyper-
parameter combinations, under the same privacy bud-
get. 1

1By following the standard in DP-SGD and its variations, we
use CIFAR-10 and MNIST datasets for our experiments.

2. Backgrounds and Related Works
This section presents backgrounds and related works on DP,
offering foundational insights for those new to the topic,
while experts and practitioners with a pre-established un-
derstanding of DP may choose to proceed to subsequent
sections.

2.1. Differential Privacy

DP is a mathematical definition that quantifies the privacy of
a randomized algorithm. Let us consider a dataset d ∈ Xn

and a randomized algorithm A, where n is the number of
elements in the dataset. For all adjacent datasets2 d and
d′, we can measure the statistical difference between A(d)
and A(d′). Intuitively, if A(d) and A(d′) are statistically
indistinguishable, the randomized algorithm A is private
because any single instance seldom affects the algorithm’s
output. The formal definition of (ϵ, δ)-DP is available in the
following definition.
Definition 2.1 (Approximate differential privacy). For an
arbitrary domain and range sets Xn andR, consider a ran-
domized mechanism A : Xn → R. The randomized mech-
anism A satisfies (ϵ, δ)-DP, if for all two adjacent datasets
d, d′ ∈ D and for all T ⊂ R,

Pr [A(d) ∈ T ] ≤ exp(ϵ) · Pr [A(d′) ∈ T ] + δ. (1)

We note that the original definition of ϵ-DP is (ϵ, 0)-DP, by
setting additive term δ = 0. DP is known for properties like
composability (the combination of multiple DP mechanisms
remains DP) and robustness to post-processing (any func-
tion applied after a DP mechanism does not weaken its DP
guarantee).

In our work, we aim to render trained DNN models differen-
tially private. This means making the models indistinguish-
able whether or not they include an arbitrary data element,
thereby ensuring privacy preservation in DP contexts.

2.2. Representative DP Mechanisms

In the paper (Dwork & Roth, 2014), various DP mechanisms
are introduced, including additive noise mechanisms and
randomized selection mechanisms. To define a mechanism
that satisfies (ϵ, δ)-DP, one crucial aspect to determine is the
sensitivity of the function—essentially, how much its output
varies with input changes. In simpler terms, if a function is
highly sensitive to input changes, it requires the addition of
proportionally larger noise to maintain privacy.
Definition 2.2 (ℓm sensitivity). For adjacent datasets d and
d′, the ℓm sensitivity of a query f can be represented by

∆m = max
d,d′
∥f(d)− f(d′)∥m. (2)

2We say that two datasets are adjacent if they differ in a single
entry.

2



Rethinking DP-SGD in Discrete Domain: Exploring Logistic Distribution in the Realm of SIGNSGD

For numeric functions, three representative mechanisms are
widely used to guarantee DP: 1) Laplace mechanism, 2)
Gaussian mechanism, and 3) exponential mechanism.

Definition 2.3 (Laplace Mechanism). Let ∆1 denote the
ℓ1 sensitivity of f . The Laplace mechanism, a fundamental
method for achieving (ϵ, 0)-DP, adds Laplace noise to the
output of f :

A(d) = f(d) + nLap, (3)

where nLap ∼ Laplace(0, ∆1

ϵ ).

The Laplace noise is a symmetric and exponentially de-
caying distribution, where the tail of which exponentially
decays, thereby achieving (ϵ, 0)-DP.

Definition 2.4 (Gaussian Mechanism). Let ∆2 be the ℓ2
sensitivity of f . The Gaussian mechanism, a representative
method guaranteeing (ϵ, δ)-DP, adds Gaussian noise to the
output of f by

A(d) = f(d) + nGau, (4)

where nGau ∼ N (0,
2∆2

2 log(1.25/δ)
ϵ2 ).

The Gaussian mechanism adds a symmetric and bell-shaped
distribution, Gaussian noise, to the function output. Unlike
the Laplace mechanism, the tail of the Gaussian mechanism
drops off faster than exponential; thus, an additional margin
δ > 0 is required.

Definition 2.5 (Exponential mechanism). Let us consider
a score function s : Xn ×R → R. Then, the exponential
mechanism A samples an output fromR by following the
probability density function overR:

Pr(A(d) = r) =
exp( ϵs(d,r)2∆1

)∫
R exp( ϵs(d,a)2∆1

)da
. (5)

In the exponential mechanism, the scoring function is a
method where the analyst assigns scores to each element
based on specific criteria, determining the ‘best’ from the
set. The key property is, that the exponential mechanism en-
ables us to return a precise answer (without additive noise),
i.e., the output is always a member of set R. This prop-
erty motivates us to apply the exponential mechanism to
SIGNSGD problem, sampling exactly from the set {−1, 1}.
Remark 2.6 (Foundation mechanism). Another important
property of the exponential mechanism is its foundational
role in developing other DP mechanisms. By setting the
score function as ℓ1 distance between f(d) and ME(d), we
can derive the Laplace mechanism. Similarly, it provides an
intuitive basis for the Gaussian mechanism by considering
the square of ℓ2 distance between f(d) and ME(d), though
δ > 0 due to unbounded ℓ1 sensitivity of this score function.

Algorithm 1 DP-SIGNSGD
1: Input: dataset D = {z1, z2, ..., zn}, loss function
L(θ) =

∑
i l(θ, zi).

2: Parameters: noise scale σ, batch size B, and gradient
norm bound C.

3: Initialize θ0 randomly
4: for t ∈ {0, ..., T − 1} do
5: Sample a random batch Bt.
6: for i ∈ Bt do
7: gt(zi)← ∇θl(θt, zi) {Compute gradient}
8: g̃t(zi)← gt(zi)/max

(
1, ∥gt(zi)∥2

C

)
{Clipping}

9: end for
10: ḡt ← sign

(∑
i∈Bt

g̃t(zi) +N (0, σ2C2I)
)

11: θt+1 ← θt − ηtḡt

12: end for
13: Output: θT and computed privacy cost (ϵ, δ).

2.3. DP-SIGNSGD

Here, we introduce DP-SIGNSGD (Jin et al., 2020; Lyu,
2021), outlined in Algorithm 1. DP-SIGNSGD is a variant
of DP-SGD (Abadi et al., 2016), where the sign func-
tion is added to reduce the communication overhead in
distributed learning (Bernstein et al., 2018). In Line 8, the
gradient vector of each data is clipped by ℓ2 norm with a
threshold of C for boundedness of sensitivity. In Line 10,
the Gaussian noise is added to ensure DP. By considering
the sign function in Line 10 as a post-processing step,
the privacy moments accountant works the same as in the
DP-SGD.

3. Main Results
In this section, we present DP-SIGNLOSGD by replacing
the additive Gaussian noise with additive Logistic noise.
As in the paper (Jin et al., 2020), one might attempt to
design DP-SIGNSGD by adding sign function as a post-
processing module. Unfortunately, the number of trainable
epochs is limited due to DP, and the added sign function
slows down the convergence. Moreover, the Gaussian noise,
designed for perturbing continuous-valued gradient, leads
to a loose privacy loss, thereby destroying the utility of the
learned model. Therefore, we aim to find a surrogate noise
distribution appropriate for SIGNSGD.

To this end, we first formulate a problem to find the steep-
est direction that minimizes the linearly approximated loss
function. Then, we derive that the exponential mechanism
for the formulated problem is equivalent to adding Logistic
noise before sign function.

Let us consider a stochastic optimization problem with the
dataset D = {z1, ..., zn} and the loss function L(θ) =∑n

i=1 l(θ, zi), where θ ∈ RN denotes neural network pa-
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rameters. For brevity, we denote g(zi) = ∇θl(θ, zi). For
guaranteeing DP, our method requires bounding the sensi-
tivity of the mini-batch gradient, which is also a popular
ingredient in machine learning for non-privacy objectives.
Similar to DP-SGD, we employ ℓ2-clipping with a thresh-
old C. The clipped gradient is thus represented as

g̃(zi) = g(zi)/max

(
1,
∥g(zi)∥2

C

)
. (6)

With a step size of α and minibatch B, SIGNSGD updates
the parameter θ by

θ ← θ − α · sign

(∑
i∈B

g̃(zi)

)
. (7)

Intuition of SIGNSGD In Equation (7), the sign of the
gradient is leveraged to update the parameter θ. The
choice of the sign can be reconsidered by finding a point in
{−α, α}N nearest to the stochastic gradient. Thus, the sign
sampling problem is formulated as

min
v∈{−α,α}N

∥v + αg̃B∥22 ←→ min
v∈{−α,α}N

vTg̃B, (8)

where g̃B =
∑

i∈B g̃(zi), and the problem transformation
holds because ∥v∥22 = Nα2 is a constant. The solution of
the problem (8) is equivalent to SIGNSGD in Equation (7),
i.e., v = −α · sign(g̃B). In the next section, we propose
an exponential mechanism based on the problem (8).

3.1. Motivation: Exponential Mechanism for SIGNSGD

Our motivation is that the exponential mechanism can be
used as a foundation mechanism. By following this, we
design the exponential mechanism E for solving the problem
(8) by letting the score function as s(g̃B,v) = −vTg̃B,
where v ∈ H = {−α, α}N . Then, by letting vi = [v]i and
g̃i = [g̃B]i, the sampling probability in the setH is defined
by

Pr[E(g̃B) = v] ∝ exp
(
−vTg̃B/(2sC)

)
=

N∏
i=1

exp (−vig̃i/(2sC)) ,∀v ∈ H,
(9)

where 2sC is the scale factor of the distribution to guaran-
tee DP. The remaining challenge is “how to determine an
appropriate scale s for guaranteeing DP?” For instance, if
s =∞, the distribution in (9) is a uniform distribution over
the setH regardless of input gradient, achieving (0, 0)-DP.
One can directly use the exponential mechanism for ma-
chine learning algorithms; however, its distribution in (9)
is non-identical and complex, thereby causing implemen-
tational inefficiency. Thus, our next goal is to derive an
identical and simple additive noise distribution equivalent
to this exponential mechanism.

Remark 3.1. The Gaussian noise is an appropriate choice
for the standard SGD without sign function. Consider the
intuition behind SGD as a proximal gradient descent, formu-
lated as minv v

TgB +
∥v∥2

2

2α . Following this motivation, we
derive Gaussian noise, where the probability is proportional
to exp((vTgB +

∥v∥2
2

2α ) · 2ασ2 ).
Remark 3.2. The exponential mechanism in (9) satisfies the
original DP ((ϵ, 0)-DP) if we set s = α

√
N/ϵ, because the

ℓ1 sensitivity of the score function is α
√
N .

3.2. Transform Exponential to Logistic Mechanism

In this section, we aim to derive the additive noise mecha-
nism equivalent to the exponential mechanism in (9). For
brevity of notation, we will continue to use g̃i = [g̃B]i.
Given that each element of mechanism E is indepen-
dently distributed, considering the output range is the set
{−α, α}N , the output of mechanism E has the following
probability mass function:

Pr([E(g̃B)]i = vi) =
exp(−vig̃i

2sC )

exp( g̃i
2sC ) + exp(− g̃i

2sC )
. (10)

Here, our focus is to derive a noise distribution of random
variable ni that satisfies [E(g̃B)]i = −sign(g̃i +niC). We
start from the distribution of noise ni making the output
negative: Pr(ni + g̃i/C < 0) = Pr([E(g̃B)]i = 1). From
this, the cumulative distribution function of ni is represented
by

Pr(ni < −g̃i/C) = Pr(ni + g̃i/C < 0) (11)

= Pr([E(g̃B)]i = 1) =
exp(− g̃i

2sC )

exp( g̃i
2sC ) + exp(− g̃i

2sC )
.

From the cumulative distribution function we obtained, the
probability density function of ni can be derived as a Logis-
tic distribution:

fni
(x) =

exp(−x/s)
s(1 + exp(−x/s))2

, (12)

which can be denoted as ni ∼ Logistic(0, s). We note
that the obtained probability distribution is independent and
identical for all elements of the gradient g̃.

3.3. Proposed Method: DP-SIGNLOSGD

Here, we present DP-SIGNLOSGD, a differentially private
SIGNSGD mechanism with additive Logistic noise, which
can be easily implemented by replacing the Gaussian noise
in Line 10 of Algorithm 1 with Logistic distribution with
scale of s. Due to limited space, the step-by-step algorithm
of DP-SIGNLOSGD is available in Algorithm 2 (on page
12). The details of the DP-SIGNLOSGD update are defined
in the following definition.
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Definition 3.3 (DP-SIGNLOSGD). For a stochastic gra-
dient vector g ∈ RN targeted a specific weight θ, let us
consider the clipped mini-batch stochastic gradient g̃. Then,
DP-SIGNLOSGD updates the neural network weight θ by

θ ← θ − α sign (g̃ + C · l) , (13)

where α is learning rate and l ∼ Logistic(0, sI).

Then, what we need to discuss is the computation of accu-
mulated privacy cost in Line 13 of Algorithm 1. We use the
moments accountant, proposed by Abadi et al. (2016), for
obtaining the accumulated privacy loss during the training.

Moments accountant The moments accountant has been
widely used to track the privacy loss across multiple per-
turbed training steps with additive noises (generally Gaus-
sian). From the obtained accumulated loss, the moments
accountant enables us to find the value of ϵ or δ if the other
is given.

For any arbitrary mechanismM, let us define the divergence
variable of two adjacent mini-batch stochastic gradients g
and g′, which only differ in a data instance:

c(v;M,g,g′) ≜ log
Pr[M(g) = v]

Pr[M(g′) = v]
. (14)

The moments accountant is based on the moment composi-
tion, where the summation of moment generating function
(MGF) of the divergence variable is used for computing
accumulated privacy loss. The MGF with exponent λ is
written as

αM(λ;g,g′) :=

Ev∼M(g) [exp(λc(v;M,g,g′))] .
(15)

For the privacy guarantees, we have to find the worst-case
MGF for all adjacent gradients g and g′ as

αM(λ) = max
g,g′

αM(λ,g,g′). (16)

Then, the moments accountant defined in Definition 3.4
can obtain the upperbound of the accumulated privacy loss
(composability) and the value of δ from the accumulated
privacy loss (tail bound).

Definition 3.4 (Moments accountant (Abadi et al., 2016)).
Let αM (λ) be defined as above. Then

1. [Composability] Suppose that a mechanism M
consists of a sequence of adaptive mechanisms
M1, . . . ,Mk where Mi :

∏i−1
j=1 RN × Xn → RN .

Then, for any λ

αM(λ) ≤
k∑

i=1

αMi
(λ). (17)

2. [Tail bound] For any ε > 0, the mechanism M is
(ε, δ)-differentially private for

δ = min
λ

exp(αM(λ)− λε). (18)

The proof can be found in DP-SGD.

λ-th order MGF of Logistic mechanism In Algorithm 2,
the proposed method utilizes Logistic mechanism for per-
turbing the gradient. For obtaining the accumulated privacy
loss, we should take manual integration in (16) to achieve
tighter privacy loss bound. If the gradient of each data
instance is clipped by C, the MGF αE(λ) is bounded by

αE(λ) ≤ −N · log (1 + exp(−G))

+N log (1 + exp(−(1 + 2λ)G))

+NλG,

(19)

where q is ratio of batch size q = |B|/n and G =
q/(2s

√
N). We use this MGF formulation in our exper-

iments.

3.4. Theoretic Analysis

Here, we show the theoretic superiority of the proposed
method compared to DP-SIGNSGD.

Momentum generating function We first compare the
MGF (16) of the proposed method and DP-SIGNSGD. In
this analysis, we assume that the variance of Gaussian noise
in DP-SIGNSGD is bounded by σ < 1

16q . Under this as-
sumption, Abadi et al. (2016) have proved that the MGF of
DP-SIGNSGD is bounded by λ(λ+ 1)q2/(1− q)σ2. For
fairness of the comparison, we equivalently assume that
the scale of the additive Logistic mechanism is bounded
by s <

√
3

16πq , because the variance of Logistic distribution

with a scale s is π2s2

3 . In Theorem 3.5, we show that the

MGF is bounded by λ(λ+1)q2

50s2 under this assumption, which
is significantly tighter than that of DP-SIGNSGD.

Theorem 3.5 (Asymptotic bound of αM(λ)). If s <
√
3

16πq ,
αM(λ) with the Logistic mechanism is bounded by

αE(λ) ≤
λ(λ+ 1)q2

50s2
. (20)

Trainable epochs This result indicates that the proposed
method has a significantly smaller noise scale compared to
DP-SIGNSGD (s = σ√

50
). In DP-SGD, because the noise

scale is inversely proportional to
√
T , where T denotes the

number of total trainable steps. Thus, our method can 50x
more training steps with the obtained bound. We note that
the MGF bound is not used for practical implementation;
thus, with the numeric integration of MGF, the proposed
method can have 1.5x more training epochs (see Figure 2).
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Convergence of SIGNSGD with additive noise Next, we
show the ℓ1 convergence of SIGNSGD with arbitrary addi-
tive noises. In Theorem 3.6, by assuming β-smoothness, we
show that the ℓ1 convergence is bounded by SIGNSGD con-
vergence term (first term) and the additive noise term (sec-
ond term). Our focus is on the second term, in which the
proposed method requires a smaller noise variance (≈20
times) compared to the DP-signSGD. Thus, the proposed
method can have much faster convergence.

Theorem 3.6 (Convergence of SIGNSGD with additive
noise). For the loss function L, let us assume that the pa-
rameter θ satisfies β⃗-smoothness. If SIGNSGD optimizer
is implemented with zero-mean independent additive noise,
the ℓ1 convergence of the gradient is bounded by

1

T

T−1∑
t=0

E[∥∇L(θt)∥1]

≤ 1√
T

[√
∥β⃗∥1

(
L(θ0)− L∗ +

1

2

)
+ 2ξ

]

+ 2

√
Tr(N)√
T

,

(21)

where T denotes the total number of trainable steps, N
denotes the covariance matrix of additive noise, and ξ is a
constant related to boundedness of gradients.

Accuracy analysis Here, we aim to find the upperbound
of the error rate of sign sampling. In the proposed method,
the sign of the proposed method has an error if sign(x +
l) ̸= sign(x), where l ∼ Logistic(0, s). Then, the error
rate of the proposed method is bounded by

Pr[sign(x+ l) ̸= sign(x)] ≤ 1

1 + e
√
50|x|/σ

. (22)

On the other hand, in DP-SIGNSGD, the error rate is
bounded by

Pr[sign(x+ ngau) ̸= sign(x)] ≤ exp

(
− x2

2σ2

)
, (23)

where ngau ∼ N (0, σ2). From Equations (22) and (23), we
confirm that the proposed method has a lower error rate if
|x| < 14σ. If |x| > 14σ, the error probability is almost
zero as it is an extreme case in the probability distribution,
approximately 1.56 · 10−44 ≈ 0. Thus, we show that the
proposed method has a higher chance to correctly choose
the sign of the gradient in general (|x| < 14σ).

4. Numerical Results
In this section, we compare the proposed method
and DP-SIGNSGD. We have implemented both meth-
ods in Pytorch, where the source code is available in
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Figure 1. The sign error rate of the DP-signSGD methods. The
noise scale of all the methods used in this experiment is configured
to satisfy (ϵ = 4.0, δ = 10−5)-DP.

https://github.com/jonggyujang0123/sign-dp-sgd. The ex-
periments are done for the two datasets (MNIST (Cohen
et al., 2017) and CIFAR-10 (Krizhevsky, 2009)) with a cus-
tom 3-layer fully connected layer (Dense), CNN models
(ResNet (He et al., 2016), VGG (Simonyan & Zisserman,
2015)), and vision transformer (ViT) (Dosovitskiy et al.,
2021). For comparison, we use the DP-SIGNSGD in (Jin
et al., 2020) as a baseline scheme. Further implementation
details are available in Appendix B. For CIFAR-10 dataset
results, please refer to Appendix E.

4.1. Experiment 1: Privacy Accountant

In the previous section, we theoretically show that the pro-
posed scheme has a tighter bound of privacy loss with the
same noise variance and higher gradient accuracy. In previ-
ous studies (Abadi et al., 2016; Jin et al., 2020), the moments
accountant computes the accumulated MGF of the privacy
loss via empirical integration of the probability distribution;
thus, we empirically compare the proposed method and the
DP-SIGNSGD with the gradient accuracy (in Figure 1) and
accumulated privacy loss (in Figure 2).

In this experiment, we assume that the number of total
training steps is 104, and the batch size ratio q = L/N
is 0.01. We set the following privacy parameters (ϵ ∈
{2.0, 4.0}, δ = 10−5). The number of trainable parame-
ters is assumed to be one for brevity.

Error rate. In Figure 1, we show the gradient’s sign er-
ror rate with respect to the input gradient magnitude. For
comparison, we use Gaussian and Laplace mechanisms with
moments accountant. The standard deviation (std) of the
additive Logistic, Gaussian, and Laplace mechanisms are
1.17, 1.48, and 70.7, respectively. That is, the proposed
method (Logistic) has a smaller std compared to baseline
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Figure 2. Results on the value of δ for different noise levels on
moments accountant. In all the experiments, two different target
ϵ is used, and the target δ is set to be 10−5. Also, the number of
trainable parameters is assume to be one.

methods. As depicted in the figure, the proposed method has
the smallest error rate of selecting the sign of the gradient.
Since the Laplace mechanism is vulnerable to guarantee a
tight privacy loss in the composition setting, we only com-
pare DP-SIGNSGD using the Gaussian mechanism in the
remainder part.

Accumulated privacy loss. By setting the std of all the
noise distributions the same, we draw figures of the accumu-
lated privacy loss in Figure 2. As in Definition 3.4, we can
measure δ for given ϵ and αM (λ). With the noise std of 3.0,
we depict the value of δ obtained via moments accountant
in Figure 2(a). In the figure, the proposed method can have
22 and 71 more training epochs than the DP-SIGNSGD for
ϵ of 2.0 and 4.0, respectively. Similarly, if the noise std
is fixed to 6.0, the proposed method has 32 and 110 more
training epochs than the DP-SIGNSGD for ϵ of 2.0 and 4.0,
respectively.

By doing these experiments, we confirm that the proposed
method’s tight privacy loss enables 1) a smaller error in sign
gradient than the additive Gaussian mechanism under the
same setting and 2) more training epochs with the same std
of the additive noise.

4.2. Experiment 2: MNIST

In this experiment, we train various neural network mod-
els for the MNIST dataset. In Figure 3, we compare the
proposed method and the DP-SIGNSGD by varying a) ϵ,
b) δ, c) batch size, d) total number of epochs, and e) gra-
dient clipping constant. The most important result is that
the proposed method outperforms the DP-SIGNSGD for all

Table 1. MNIST classification accuracy for various neural network
models.

MODELS
PROPOSED DP-SIGNSGD

TRAINING TEST TRAINING TEST

DENSE 96.14% 95.78% 92.31% 92.55%
RESNET-10 98.36% 98.49% 96.07% 96.48%
RESNET-18 98.73% 98.70% 96.77% 96.490%
RESNET-34 98.61% 98.55% 96.60% 96.83%
RESNET-50 98.12% 98.17% 94.60% 94.92%
VGG11 98.87% 98.95% 97.45% 97.66%
VGG13 98.97% 99.03% 97.79% 97.98%
VGG16 98.91% 98.80% 97.44% 97.63%
VGG19 98.78% 98.80% 97.41% 97.58%
VIT-B-16 99.06% 99.01% 84.72% 85.46%

hyper-parameter changes.

Privacy budget In Figures 3(a) and 3(b), we depict the
training/test accuracy by varying the value of privacy budget
parameters ϵ and δ. As the privacy budget is loosened (ϵ
and δ ↑), the training/test accuracy is gradually increased.
Specifically, in Figure 3(a), the gap between the proposed
method and DP-SIGNSGD increases as ϵ increases. How-
ever, as ϵ→∞, the accuracy of both methods converge as
the scale of the noise goes to zero3.

Learning parameters In Figure 3(c), we depict the ac-
curacy for varying batch size. In this figure, we can find
that the batch size suggestion in (Abadi et al., 2016) still
holds (|B| ≈

√
N ). In other figures (Figures 3(d) and 3(e)),

we show that the gradient clipping constant and the number
of epochs do not significantly affect the trained model if a
sufficient number of epochs are given.

Various neural network models Table 1 shows the
MNIST classification accuracies for various neural net-
work models, including custom dense network, ResNet,
VGG, and ViT. Here, we note that the privacy budget pa-
rameter is fixed to (ϵ, δ) = (6.4, 10−5). In the results, the
proposed method has training/test accuracies compared to
DP-SIGNSGD for all models, even with the same hyper-
parameter settings.

Through these experiments, we show that the proposed
method can outperform DP-SIGNSGD by replacing the
Gaussian noise with more appropriate noise, Logistic noise.

3We implement both methods with ϵ > 1010 and confirm
that the training and test accuracy converges around 99.85% and
98.22%, respectively.
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Figure 3. MNIST classification accuracy when one hyper-parameter varies, and the others are fixed at the reference values in Appendix B.

5. Discussion
Logistic vs. Gaussian The Logistic and Gaussian distri-
butions are symmetric, bell-shaped, and log-concave dis-
tributions. The tail distribution is important because the
concept of DP is bounding the divergence variable in tails
with probabilistic margin δ. In tail distribution, the Logis-
tic distribution has a heavier tail compared to the Gaussian
distribution. As shown in (Vinterbo, 2022), by virtue of its
heavier tail, the Logistic mechanism has a lower ℓ2 error
than the Gaussian mechanism when δ is small. More intu-
itively, the Logistic mechanism does not always require pos-
itive δ because its tail distribution decays sub-exponentially.
On the other hand, the Gaussian mechanism, whose tail
decays faster than exponential, always requires a margin
δ > 0.

Positive effect This work paves the way for further re-
search into identifying optimal noise distributions for vari-
ous optimization methods. While we have focused on the
integration of additive Logistic noise in DP-SIGNSGD, our
findings suggest broader applications and potential improve-
ments in differential privacy. The incorporation of this noise
type not only reduces privacy loss but also contributes to the
overall robustness and efficiency of the learning process.

6. Conclusion
In this paper, we have demonstrated the effectiveness
of additive Logistic noise in reducing accumulated pri-
vacy loss in differentially private sign-based stochastic

gradient descent (DP-SIGNSGD), leading to the develop-
ment of DP-SIGNLOSGD. The primary advantage of DP-
SIGNLOSGD over traditional DP-SIGNSGD, which utilizes
additive Gaussian noise, is its ability to support training over
more epochs without significantly compromising privacy.
This feature makes DP-SIGNLOSGD a promising tool for
ensuring differential privacy in federated and distributed
learning methodologies (Jin et al., 2024).

Our proposed framework introduces an innovative approach
to differentially private sign-based SGD, utilizing an expo-
nential mechanism for sign sampling to identify the most
effective direction for gradient descent. This method is
theoretically equivalent to the addition of Logistic noise
prior to the sign function. The comprehensive nature of
our theoretical analysis highlights the superiority of DP-
SIGNLOSGD in terms of convergence speed, accuracy, and
the tightness of privacy loss bounds.

Future works Looking forward, our research will extend
into exploring majority vote algorithms (Bernstein et al.,
2019) and n-bit differentially private gradient compres-
sion (Lin, 2022; Kerkouche et al., 2021). These areas offer
significant potential for advancing the field of differential
privacy in machine learning. By focusing on these domains,
we aim to further enhance the efficiency and effectiveness
of privacy-preserving methodologies, contributing to the
development of more secure and reliable machine learning
systems.
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A. Proof of Theorem 3.5
Theorem 3.5. (Asymptotic bound of αE(λ)) If s <

√
3

16πq , the MGF of the Logistic mechanism αE(λ) is bounded by

αE(λ) ≤
λ(λ+ 1)q2

50s2
. (24)

Proof. Before proving Theorem 3.5, we first address the MGF of the privacy loss divergence variable. From the definition
in (16), we have

αE(λ) = max
g,g′

logEv∼E(g)

[
exp

(
λ log

Pr(E(g) = v)

Pr(E(g′) = v)

)]
. (25)

Because each element of the E(g) is independently distributed, the MGF in (25) can be rewritten as

αE(λ) = max
g,g′

N∑
i=1

logEvi∼E(gi) exp

(
λ log

Pr(E(gi) = vi)

Pr(E(g′i) = vi)

)
, (26)

where ∥g−g′∥2 ≤ C. Because g = −g′ = C
2
√
N
·1 is the maximizer in (26), we can obtain αE(λ) for DP-SIGNLOSGD as

follows:

αE(λ)

= N · log

 exp
(

q

4s
√
N

)
exp

(
q

4s
√
N

)
+ exp

(
−q

4s
√
N

) · exp( λq

2s
√
N

)
+

exp
(

−q

4s
√
N

)
exp

(
q

4s
√
N

)
+ exp

(
−q

4s
√
N

) · exp( −λq
2s
√
N

)
= N · log

 exp
(

q

4s
√
N

)
exp

(
q

4s
√
N

)
+ exp

(
−q

4s
√
N

)
+

Nλq

2s
√
N

+N log

(
1 + exp

(
−(1 + 2λ)

q

2s
√
N

))
.

(27)

In (27), we obtain a closed-form representation of the numeric integration in (16). To find the theoretic upperbound of (27)
in a similar form to the original DP-SGD (Kλ2q2/σ2 for arbitrary constant K), we bring the following assumption from
(Abadi et al., 2016): σ < 1

16q . For brevity of the notation, we define an auxiliary variable G = q

2s
√
N

. Since variance of

Logistic distribution with scale s is π2s2/3, we rewrite the assumption by s <
√
3

16πq . With this assumption, we can derive
the upperbound of αE(λ) as

αM(λ) = N · log
(
exp(λG) exp(G/2) + exp(−λG) exp(−G/2)

exp(G/2) + exp(−G/2)

)
< N · log(exp(λG) + exp(−λG))

(a)

≤ N · log(exp(λ
2G2

50
))

= N · λ
2G2

50
=

λ2q2C2

50s2
,

(28)

where the inequality (a) holds if s <
√
3

16πq .
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B. Implementation details

Algorithm 2 DP-SIGNLOSGD
1: Input: Dataset D = {z1, z2, ..., zn}, loss function L(θ) =

∑
i L(θ, zi).

2: Parameters: noise scale σ, batch size B, and gradient norm bound C.
3: Initialize θ0 randomly
4: for t ∈ [T ] do
5: Sample a random batch from Bt.
6: for i ∈ Bt do
7: g̃t(zi)← ∇θtL(θt, xi) {Compute gradient}
8: g̃t(zi)← g̃t(zi)/max(1, ∥g̃t(zi)∥2)

C ) {Clipping}
9: end for

10: gt ← sign(
∑

i g̃t(zi) + Logistic(0, sCI))
11: θt+1 ← θt − ηtgt

12: end for
13: Output: θT and computed privacy cost (ϵ, δ).

Hardware Our experiments are conducted at a workstation with 12th Gen Intel(R) Core(TM) i9-12900K 16-Core
Processor CPU @ 5.20GHz and one NVIDIA Geforce RTX 3090 GPU.

Hyper-parameters In our MNIST experiments, the neural network models except the ViT model are trained with the
initial learning rate of 1.0 · 10−3 and momentum of 0.0. The cosine learning rate scheduler is used. The gradient of each
data instance is clipped4 by 30.0, i.e., C = 30, and the reference batch size is 250. The MNIST images are resized to 32x32
images. For the ViT model, we fine-tune the ViT-B-16 model for 5 epochs with a batch size of 45, in which the MNIST
images are resized to 224. For privacy loss parameters, ϵ = 6.4 and δ = 10−5 are used as reference values. The custom
dense neural network consists of a three-layer fully connected layer, each of which has 512 neurons and is activated by a
rectified linear unit (ReLU). During the experiment, the custom dense neural network is used as a reference model.

Modification for running DP-SIGNLOSGD We use Pytorch 2.0 library in our experiment, where torch.func.vmap
function is used to get a data-wise gradient. In our implementation, because torch.func.vmap does not support the
batch normalization module, we replace all the batch normalization modules with group normalization. We confirm that this
modification does not degrade the accuracy of the trained model. Also, to train VGG and ResNet for 32x32 images, we use
slightly modified versions of them5. For further details, please refer to our source code.

4In the camera-ready revision, numerical results corresponding to the per-layer norm are fixed to the global norm, where performance
gap between the baseline and ours is almost the same.

5https://github.com/kuangliu/pytorch-cifar
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C. Proof of Theorem 3.6
Theorem 3.6. (Convergence of SIGNSGD with additive noise) For the loss function L, let us assume that the parameter
θ satisfies β⃗-smoothness. If SIGNSGD optimizer is implemented with zero-mean independent additive noise, the ℓ1
convergence of the gradient is bounded by

1

T

T−1∑
t=0

E[∥∇L(θt)∥1] ≤
1√
T

[√
∥β⃗∥1

(
L(θ0)− L∗ +

1

2

)
+ 2ξ

]
+ 2

√
Tr(A)√
T

(29)

where T denotes the total number of trainable steps, A denotes the covariance matrix of additive noise, and ξ is a constant
related to boundedness of gradients.

C.1. Assumptions and Lemmas for convergence analysis

To prove the convergence of SIGNSGD with zero-mean additive noise, we have assumed the following assumption. In
Assumption C.1, let us denote the loss function as L(θ) =

∑
k l(θ, zk) with trainable parameter θ ∈ RN , where zk denotes

k-th data in the training dataset. Then, we first assume that the loss function L(θ) is lower-bounded by a constant L∗. For
instance, the generally used loss functions (e.g., negative log-likelihood loss, cross-entropy loss, and mean square error loss)
are lower-bounded by zero.

Assumption C.1 (Lower bounded loss function). For all θ and some constant L∗, the loss function L(θ) is lower-bounded
by L∗, i.e., L(θ) ≥ L∗,∀θ.

In addition to this assumption, we also assume element-wise β-smoothness on L(θ) for all θ.

Assumption C.2 (Element-wise β-smoothness on l(θ, zk)). For all θ, θ′ and positive values β1, β2, ..., βN , the differentiable
loss function L(θ) is β⃗-smoothness, i.e.,

L(θ′) ≤ L(θ) +∇L(θ)T(θ′ − θ) +

N∑
k=1

βk

2
|[θ′]k − [θ]k|2 (30)

where k denotes the element index, and β⃗ = [β1, · · · , βN ].

We note that the element-wise β⃗-smoothness function also satisfies the original β-smoothness by setting β =
maxk=1,...,N βk. Along with the smoothness assumption, we assume the ℓ2 norm and variance of the stochastic gra-
dient g are bounded.

Assumption C.3 (Bounded variance). For all θ, a stochastic gradient g on the θ, and the expected gradient ∇L(θ), the
variance of g is bounded by

E
[
∥gt(zi)−∇L(θ)∥22

∣∣∣∣θ] ≤ η. (31)

where η is constant.

Assumption C.4 (Boundness of stochastic gradient). For all θ, the ℓ2 norm of the stochastic gradient g on the parameter θ
is bounded as

∥gt(zi)∥22 ≤ G2. (32)

Lemma C.5. (Bounded expectation of difference between clipped stochastic gradient and expected gradient) For a certain
θ, the clipped stochastic gradient Clip(g), and the expected gradient∇L(θ), the following inequality holds:

E

[∥∥∥∥
∑

i∈Bt
Clip(gt(zi))

|Bt|
− ∇L(θ)

∥∥∥∥2
2

∣∣∣∣θ
]
≤ ξ2

|Bt|
. (33)

where ξ2 = G2 + η.
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Proof. To prove Lemma C.5, we have the following series of inequalities:

E

[∥∥∥∥
∑

i∈Bt
Clip(gt(zi))

|Bt|
− ∇L(θ)

∥∥∥∥2
2

∣∣∣∣θ
]

=
1

|Bt|2
E

∥∥∥∥∥∑
i∈Bt

Clip(gt(zi))− gt(zi) + gt(zi)−∇L(θ)

∥∥∥∥∥
2

2

∣∣∣∣θ


≤ 1

|Bt|2
E

∥∥∥∥∥∑
i∈Bt

Clip(gt(zi))− gt(zi)

∥∥∥∥∥
2

2

∣∣∣∣θ


︸ ︷︷ ︸
≤
∑

i∈Bt
E[∥gt(zi)∥]22≤|Bt|G2,by Assumption C.4

+
1

|Bt|2
E

∥∥∥∥∥∑
i∈B

gt(zi)−∇L(θ)

∥∥∥∥∥
2

2

∣∣∣∣θ


︸ ︷︷ ︸
≤|Bt|η, by Assumption C.3

≤ G2 + η

|Bt|
=

ξ2

|Bt|
.

(34)

C.2. Proof of Theorem 3.6

Let us consider θ1, ..., θT updated by SIGNSGD with zero-mean additive noise a, where its covariance matrix is A, i.e.,

θt+1 ← θt − αt · sign(g̃ + a). (35)

where g̃ denotes the clipped gradient Clip(g). As we assumed element-wise β⃗-smoothness in Assumption C.2, for
parameters θt+1 and θt, we have

L(θt+1) ≤ L(θt) + ⟨∇L(θt), θt+1 − θt⟩+
N∑

k=1

βk

2
|[θt+1]k − [θt]k|2 (36)

Because θt+1 − θt = −αt · sign(g̃ + a), we can show that the following inequalities hold:

L(θt+1) ≤ L(θt)− αt

N∑
k=1

[∇L(θt)]k[sign(g̃ + a)]k +

N∑
k=1

α2
tβk

2
|sign[(g̃ + a)]k|2︸ ︷︷ ︸

=1

= L(θt)− αt

N∑
k=1

[∇L(θt)]k [sign(g̃ + a)]k +

N∑
k=1

α2
tβk

2

= L(θt)− αt∥∇L(θt)∥1 + α2
t

||β⃗||1
2

+ 2αt

N∑
k=1

|[∇L(θt)k]| · I ([sign(g̃ + a)]k ̸= [sign(∇L(θt))]k) ,

(37)

where I(·) is the indicator function. By applying Ea,Bt
[·|θt] to both side of Equation (37), we have

E[L(θt+1)|θt] ≤ L(θt)− ηt∥∇L(θt)∥1 + α2
t

||β⃗||1
2

+ 2ηt

N∑
k=1

|[∇L(θt)]k|Pr [[sign(g̃ + a)]k ̸= [sign(∇L(θt))]k|θt] .
(38)

Then, our next focus is on obtaining the bound of the fourth term in (38). Before this, we have the following brief notations:
each element of g̃ as gk, each element of∇L(θt) as∇L(θt)k, and each element of a as ak, where k is element index. By
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ignoring the constant 2 · αt, and for a constant B = |Bt|, we have

N∑
k=1

|∇L(θt)k|Pr [sign(gk + ak) ̸= sign(∇L(θt)k)|θt]

=

N∑
k=1

|∇L(θt)k| Pr

[
sign

(
gk + ak

B

)
̸= sign(∇L(θt)k)

∣∣∣∣∣θt
]

≤
N∑

k=1

|∇L(θt)k|Pr
[∣∣∣∣gk + ak

B
−∇L(θt)k

∣∣∣∣ ≥ |∇L(θt)k|]

(a)

≤
N∑

k=1

|∇L(θt)k|
E

[ ∣∣ gk+ak

B −∇L(θt)k
∣∣ ∣∣∣∣∣θt

]
|∇L(θt)k|

=

N∑
k=1

E

[ ∣∣∣∣gk + ak
B

−∇L(θt)k
∣∣∣∣
∣∣∣∣∣θt
]

≤
N∑

k=1

E

[ ∣∣∣gk
B
−∇L(θt)k

∣∣∣ ∣∣∣∣∣θt
]
+

N∑
k=1

E
[∣∣∣ak

B

∣∣∣]

≤

√√√√ N∑
k=1

E

[(gk
B
−∇L(θt)k

)2 ∣∣∣∣∣θt
]
+

√√√√ N∑
k=1

E
[(ak

B

)2]
︸ ︷︷ ︸

=
√

Tr(A/B)

=

√√√√E

[∥∥∥∥ g̃B −∇L(θt)
∥∥∥∥2
2

∣∣∣∣∣θt
]
+

√
Tr(A)

B

(b)

≤ ξ√
B

+

√
Tr(A)√
B

,

(39)

where the inequality (a) follows Markov inequality, and inequality (b) holds from Lemma C.5.

By substituting the result in (39) in Equation (38), we have

E[L(θt+1)|θt] ≤ L(θt)− αt||∇L(θt)||1 + α2
t

∥β⃗∥1
2

+ 2αt
ξ√
B

+ 2αt

√
Tr(A)√
B

.

(40)

According to total expectation,

E[||∇L(θt)||1] ≤
(E[L(θt)]− E[L(θt+1)])

αt
+ αt

∥β⃗∥1
2

+ 2
ξ√
B

+ 2

√
Tr(A)√
B

.

(41)

For a fixed learning rate αt = α, by summing up the inequality (41) from t = 0 to T − 1, we have

1

T

T−1∑
t=0

E [∥∇L(θt)∥1] ≤
L(θ0)− E[L(θT )]

αT
+ α
∥β⃗∥1
2

+ 2
ξ√
B

+ 2

√
Tr(A)√
B

. (42)
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Lastly, by substituting α = 1√
T∥β⃗∥1

and B = T , and by using Assumption C.1, we conclude this proof as follows:

1

T

T−1∑
t=0

E [∥∇L(θt)∥1] ≤
1√
T

[√
||β⃗||1

(
L(θ0)− E[L(θT )] +

1

2

)
+ 2ξ

]
+ 2

√
Tr(A)√
T

(43)

≤ 1√
T

[√
∥β⃗∥1

(
L(θ0)− L∗ +

1

2

)
+ 2ξ

]
+ 2

√
Tr(A)√
T

(44)
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D. Privacy Loss Accumulation for Various Neural Network Models

(a) Small noise (standard deviation of 3.0)

(b) Large noise (standard deviation of 6.0)

Figure 4. Results on the value of δ for different noise levels on moments accountant. In all the experiments, the value of target ϵ is fixed
to 2.0. Also, we bring practical experimental environment. (MNIST: number of data is 60,000, batch-size is 250)

Impact of the number of trainable parameters In Fig. 2, we operate under the assumption the number of trainable
parameters is set to one, as it does not significantly impact the privacy accumulation of the proposed method. In addition to
that result, we add the results for the privacy accumulation of various numbers of parameters. In Fig. 4, we illustrate the
accumulated privacy loss in the same setting as our MNIST experiments, considering four scenarios with varying numbers
of parameters: 1, 10, 5e9 (ResNet-18), and 5e10 (ViT) for curve plotting. The figure demonstrates that, irrespective of the
parameter count, our proposed method consistently shows a significantly lower delta compared to DP-signSGD (Gaussian).
For clarity, we include a magnified view of the figure, highlighting that the increase in delta with the number of trainable
parameters in our method is negligible.
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E. Numerical Results: CIFAR-10
In addition to the experiments with MNIST data, we have conducted supplementary experiments on the CIFAR-10 dataset.
In our CIFAR-10 experiments, most hyper-parameters are the same as the MNIST experiments, except total epochs. We
train all the neural networks except the ViT model for 50 epochs. The cosine learning rate scheduler is used. Unlike the
MNIST experiment, we use the ResNet-18 model as the reference model. Also, the image augmentation with padding with
4 pixels and random crop 32x32 pixels is used.

Table 2. CIFAR-10 classification accuracies for various value of target ϵ.

ϵ
PROPOSED DP-SIGNSGD

TRAINING TEST TRAINING TEST

0.4 32.73% 33.64% 30.74% 32.05%
0.8 37.45% 37.45% 35.20% 35.21%
1.6 44.90% 43.75% 40.95% 41.18%
3.2 54.20% 51.61% 47.64% 46.48%
6.4 62.57% 58.85% 51.71% 49.96%
12.8 69.41% 64.94% 54.42% 52.21%
25.6 74.70% 69.56% 57.62% 55.19%

Various target epsilon (ϵ) In Table 2, we show the CIFAR-10 classification accuracies for various values of ϵ. Similar
to the result in Figure 3(a), the training/test accuracies are gradually increased as the privacy budget is loosened. More
importantly, the gap between the proposed method and DP-SIGNSGD is getting larger as ϵ increases.

Table 3. CIFAR-10 classification accuracies for various neural network models.

MODELS
PROPOSED DP-SIGNSGD

TRAINING TEST TRAINING TEST

RESNET-10 59.47% 57.33% 49.25% 47.37%
RESNET-18 62.57% 58.85% 51.71% 49.96%
RESNET-34 60.73% 58.05% 49.30% 48.26%
VGG11 61.06% 62.03% 61.06% 62.03%
VGG13 61.44% 62.04% 61.44% 62.04%
VGG16 60.69% 61.56% 60.69% 61.56%
VGG19 58.94% 59.93% 58.94% 59.93%

Various neural network models In Table 3, the CIFAR-10 classification accuracies are indicated by varying the neural
network models. The privacy budget is fixed to ϵ = 6.4 and δ = 1 · 10−5. For all models we used, the proposed method has
a meaningful enhancement in both training/test accuracies than DP-SIGNSGD. For the experiments without pre-trained
neural network weights, the proposed method significantly outperforms DP-SIGNSGD. Even if the neural network model is
pre-trained with a large dataset (ImageNet), the proposed method still outperforms DP-SIGNSGD.

Table 4. The proportional gap of the standard deviation of the noise added for guaranteeing various (ϵ, δ)-DP.

ϵ OURS (A) DP-SIGNSGD (B) B −A (B −A)/A

0.4 5.48 6.11 0.63 0.11
0.8 2.76 3.15 0.39 0.14
1.6 1.40 1.71 0.31 0.22
3.2 0.72 1.05 0.33 0.46
6.4 0.38 0.76 0.38 1.00

12.8 0.21 0.60 0.39 1.85
25.6 0.11 0.49 0.38 3.45
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Comparison of scale of additive noise As shown in the table, the proportional gap of the variance becomes larger
as ϵ increases, indicating that the proposed method efficiently secures privacy loss. For instance, when ϵ = 0.4, the
standard deviations of the two methods are similar

(
(B)−(A)

(A) = 0.11
)

. However, when ϵ = 25.6, the gap is much larger(
(B)−(A)

(A) = 3.45
)

. Thus, our method have a more significant improvement for larger ϵ.

Table 5. (Fine-tuning) CIFAR-10 image classification results for various ϵ values. The model used in this experiment is ResNet-18.

SIGNSGD P-SIGNSGD PROPOSED DP-SIGNSGD
DP X X O O

ϵ TRAINING TEST TRAINING TEST TRAINING TEST TRAINING TEST

0.8

65.78% 60.64% 86.25% 81.07%

49.51% 47.76% 41.92% 40.76%
1.6 59.81% 57.63% 48.40% 46.35%
3.2 70.41% 68.34% 52.28% 50.70%
6.4 77.32% 75.05% 56.99% 55.45%
12.8 82.77% 80.43% 61.45% 58.75%

Table 6. (Fine-tuning) CIFAR-10 image classification results for various neural network models. The target ϵ value is 6.4.

SIGNSGD P-SIGNSGD PROPOSED DP-SIGNSGD
DP X X O O

MODEL TRAINING TEST TRAINING TEST TRAINING TEST TRAINING TEST

RESNET18 65.78% 60.64% 86.25% 81.07% 77.32% 75.05% 56.99% 55.45%
RESNET34 66.79% 62.32% 93.17% 94.82% 74.25% 71.74% 53.23% 49.26%
RESNET50 65.21% 62.34% 84.73% 78.75% 69.85% 64.95% 45.84% 44.11%
VIT-B-16 47.27% 49.21% 94.34% 96.48% 90.51% 94.27% 83.86% 87.31%
VIT-B-32 49.38% 49.31% 93.17% 94.82% 90.05% 93.44% 84.10% 87.92%

Fine-tuning experiments In addition to the training from scratch settings, we additionally have experiments in fine-tuning
settings. The hyper-parameters except the total training epochs are almost the same with the training from scratch setting.
(for detailed experimental setup, please follow our source code’s setup file.) In this experiment, we consider two additional
baseline methods without DP (SIGNSGD and P-SIGNSGD (Chen et al., 2020)). In Tables 5 and 6, we compare the
training/test classification performance of the proposed method and baselines. As shown in the tables, the proposed method
consistently outperforms the DP-SIGNSGD for all ϵ values and neural network models.

More interestingly, the proposed sometimes outperforms the SIGNSGD, even though it does not add any noise to the gradient.
The reason is that the convergence speed of SIGNSGD can be enhanced for large neural network models, where this is
theoretically shown in the non-iid distributed learning settings (Chen et al., 2020). To verify this, we additionally compare
the P-SIGNSGD method with the standard SIGNSGD method, which shows that the adding small amount of noise before
sign function can enhance the convergence of the SIGNSGD.6

6We note that the value of additive noise in P-SIGNSGD is not optimized, because this is not target of our work. We just add this
method to show that adding small noise can enhance the classification accuracy.

19



Rethinking DP-SGD in Discrete Domain: Exploring Logistic Distribution in the Realm of SIGNSGD

F. Numerical Results: CelebA Attribute Classification
For general results on the practical environments, we implemented more performance benchmarks on CelebA (Liu et al.,
2015) attribute classification. Among 162,770 training samples, we use only first 60,000 images in our experiment, where
the number of test images is 19,962 and the number of binary classes is 40. For the data augmentation, we use center
cropping, resize to 128x128 pixels, random rotation, and random horizontal flip. Furthermore, we fine-tune the models from
the pre-trained models available in Pytorch repository (ImageNet-v1). The number of epochs is fixed to four and the batch
size is 120.

In Tables 7 and 8, the proposed method consistently outperforms the baselines, while even closely achieves or outperforms
the accuracy of standard SIGNSGD.

Table 7. CelebA attribute classification results for various ϵ values. The model used in this experiment is ResNet-18.

SIGNSGD PROPOSED DP-SIGNSGD
DP X O O

ϵ TRAINING TEST TRAINING TEST TRAINING TEST

0.4

88.41% 88.30%

86.01% 85.82% 84.33% 84.14%
0.8 87.37% 87.10% 84.85% 84.63%
1.6 88.58% 88.27% 86.38% 86.06%
3.2 89.49% 89.11% 86.73% 86.47%
6.4 89.93% 89.53% 87.14% 86.90%
12.8 90.19% 89.83% 87.41% 87.19%
25.6 90.24% 89.81% 87.73% 87.48%

Table 8. CelebA attribute classification results for various neural network models. The target ϵ value is 6.4.

SIGNSGD PROPOSED DP-SIGNSGD
DP X O O

MODEL TRAINING TEST TRAINING TEST TRAINING TEST

RESNET18 88.73% 88.42% 89.93% 89.53% 87.14% 86.90%
RESNET34 88.22% 88.03% 89.71% 89.35% 87.00% 86.75%
RESNET50 88.38% 88.28% 89.09% 88.84% 86.16% 86.00%
VIT-B-16 87.84% 87.60% 91.52% 91.00% 88.50% 88.30%
VIT-B-32 88.41% 88.30% 91.17% 90.71% 88.39% 88.11%
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G. Numerical Results: Brain Tumor MRI Dataset
In this section, we provide numerical results with a realistic vision dataset, brain tumor MRI dataset7. The dataset contains
5,712 training images and 1,331 test images, where the number of classes is four8. In this experiment, we have the following
data augmentations:

• Random resized crop (scale=0.95∼1.0).
• Random rotation (-5 to 5 degrees).
• Random horizontal flip.

Also, we have trained 20 epochs for ResNets and 8 epochs for ViT models, where the batch size is fixed to 50. In Tables
9 and 10, the proposed method consistently outperforms the baselines, while even closely achieves or outperforms the
accuracy of standard SIGNSGD, where the accuracy of P-SIGNSGDshows that adding negligibly small noise to the gradient
excessively enhance the convergence speed.

Table 9. Brain tumor MRI classification results for various ϵ values. The model used in this experiment is ViT-B-32.

SIGNSGD P-SIGNSGD PROPOSED DP-SIGNSGD
DP X X O O

ϵ TRAINING TEST TRAINING TEST TRAINING TEST TRAINING TEST

0.4

78.75% 73.53% 99.81 99.01

77.07% 72.08% 72.01% 67.35%
0.8 83.33% 77.42% 81.18% 74.75%
1.6 86.38% 78.64% 83.79% 78.26%
3.2 90.20% 83.91% 86.03% 79.41%
6.4 92.52% 88.56% 87.01% 79.94%
12.8 94.56% 91.46% 88.74% 81.39%
25.6 97.11% 95.19% 88.97% 82.00%

Table 10. Brain tumor MRI classification results for various neural network models. The target ϵ value is 6.4.

SIGNSGD P-SIGNSGD PROPOSED DP-SIGNSGD
DP X X O O

MODEL TRAINING TEST TRAINING TEST TRAINING TEST TRAINING TEST

RESNET18 86.92% 85.28% 99.81% 99.47% 90.11% 83.83% 84.35% 77.88%
RESNET34 89.76% 88.63% 99.75% 99.16% 89.67% 84.06% 85.26% 77.19%
RESNET50 88.55% 85.89% 98.20% 97.18% 88.94% 82.53% 78.78% 71.40%
VIT-B-16 83.67% 81.31% 99.86% 99.54% 94.94% 92.75% 89.23% 83.60%
VIT-B-32 78.75% 73.53% 99.81% 99.01% 92.52% 88.56% 87.01% 79.94%

7https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset
8‘glioma’, ‘meningioma’, ‘notumor’, ‘pituitary’.
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H. Numerical Results: Blood Cell Images
In this section, we provide numerical results with a realistic medical dataset, blood cell images dataset 9. The numbers of
training and test images are 9,957 and 2,487, respectively. We use the following data augmentations in our training:

• Resize to 224x224 pixels.
• Random rotation (-10 to 10 degrees).
• Random horizontal flip.

Also, the training scenario is fine-tuning from the pre-trained models (ImageNet-v1), where the number of epochs is 20 for
ResNets and 8 for ViT models.

In Tables 11 and 12, the proposed method consistently outperforms the baselines, while even closely achieves or outperforms
the accuracy of standard SIGNSGD, where the accuracy of P-SIGNSGDshows that adding negligibly small noise to the
gradient excessively enhance the convergence speed.

Table 11. Blood cell images classification results for various ϵ values. The model used in this experiment is ViT-B-32.

SIGNSGD P-SIGNSGD PROPOSED DP-SIGNSGD
DP X X O O

ϵ TRAINING TEST TRAINING TEST TRAINING TEST TRAINING TEST

0.4

83.16 77.12 95.45 87.09

62.13% 56.25% 55.53% 53.52%
0.8 66.80% 66.47% 63.36% 64.46%
1.6 79.04% 81.95% 67.42% 69.36%
3.2 82.73% 81.50% 70.95% 70.21%
6.4 88.00% 82.71% 74.21% 75.95%
12.8 91.38% 86.49% 79.06% 81.42%
25.6 92.91% 87.62% 80.13% 77.20%

Table 12. Blood cell images classification results for various neural network models. The target ϵ value is 6.4.

SIGNSGD P-SIGNSGD PROPOSED DP-SIGNSGD
DP X X O O

MODEL TRAINING TEST TRAINING TEST TRAINING TEST TRAINING TEST

RESNET18 99.04% 90.71% 100.00% 87.98% 91.65% 85.69% 72.63% 79.01%
RESNET34 97.59% 87.98% 99.94% 90.31% 95.81% 87.70% 77.77% 73.70%
RESNET50 95.03% 76.72% 99.99% 89.47% 93.08% 85.52% 40.73% 39.53%
VIT-B-16 82.43% 81.58% 93.62% 89.51% 89.93% 86.29% 81.14% 85.61%
VIT-B-32 83.16% 77.12% 95.45% 87.09% 88.00% 82.71% 74.21% 75.95%

9https://www.kaggle.com/datasets/paultimothymooney/blood-cells/data
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I. Numerical Results: Chest X-Ray Images (Pneumonia)
In this section, we present additional experiments with a medical image dataset, chest x-ray image dataset10. The number of
training images is 5,126. The number of test images is 624. We have used the following data augmentation blocks in our
training procedure:

• Random resized crop (scale is 0.7 to 1.0).

We fine-tune the models from the pre-trained models available in Pytorch repository (ImageNet-v1), where the number of
epochs is 10 for both ResNets and ViTs.

In Tables 13 and 14, the proposed method consistently outperforms the baselines, while even closely achieves or outperforms
the accuracy of standard SIGNSGD, where the accuracy of P-SIGNSGDshows that adding negligibly small noise to the
gradient excessively enhance the convergence speed.

Table 13. Chest x-ray images classification results for various ϵ values. The model used in this experiment is ResNet-34.

SIGNSGD P-SIGNSGD PROPOSED DP-SIGNSGD
DP X X O O

ϵ TRAINING TEST TRAINING TEST TRAINING TEST TRAINING TEST

0.4

96.26% 90.87% 98.73 94.09

91.32% 84.94% 78.62% 77.08%
0.8 93.83% 88.14% 91.10% 84.62%
1.6 93.81% 87.98% 93.65% 86.22%
3.2 94.59% 87.34% 92.85% 86.38%
6.4 95.49% 88.78% 94.36% 88.62%
12.8 96.09% 90.22% 94.21% 88.78%
25.6 96.70% 89.74% 94.44% 89.10%

Table 14. Chest x-ray images classification results for various neural network models. The target ϵ value is 6.4.

SIGNSGD P-SIGNSGD PROPOSED DP-SIGNSGD
DP X X O O

MODEL TRAINING TEST TRAINING TEST TRAINING TEST TRAINING TEST

RESNET34 96.26% 90.87% 98.73% 94.07% 95.49% 88.78% 94.36% 88.62%
RESNET50 93.81% 89.42% 98.73% 94.07% 95.48% 90.38% 93.85% 88.30%
VIT-B-32 90.51% 86.54% 98.41% 94.87% 95.38% 92.15% 92.81% 88.78%

10https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia
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J. Extension to Majority Vote Scenario
In Algorithms 1 and 2, the distributed optimization settings are not considered, i.e., the gradients need to be aggregated in
full precision before adding noise and taking the sign. Hence, in distributed optimization settings, this would mean that the
clients need to send the gradients in full precision to the server. In the majority vote paper (Bernstein et al., 2019), their
method only need to send signs to the servers; hence, achieving further communication code reduction.

In this section, we present the method for extending our method to the majority vote scenario. We begin with the following
gradient exchange process:

• Step 1 (at k-th agent): Local agents compute gradient and transmit the signs of their gradients (with noise perturbation).
1. Compute Gradient: g̃t

(k)(zi)← ∇ℓ(θt, x(k)
i )

2. Clipping Gradient: g̃(k)
t (zi)← g̃

(k)
t (zi)/max(1,

∥g̃(k)
t ∥2

C ).
3. Mini-batch gradient for all i ∈ B: g̃(k)

t ←
∑

i g̃
(k)
t .

4. Compute Sign of the Gradient: g̃(k)
t ← sign(g̃

(k)
t + Logistic(0, sCI)).

• Step 2: The server send back the aggregated sign gradient.
1. Aggregate (g̃(k)

t : gradient received from agent k.) g̃t ← sign(
∑

k g̃
(k)
t ).

• Step 3: Local agent updates their model via aggregated gradient g̃t.

In the above update process, we have the following equation:

αM(λ) = max
g,g′,aux

αM(λ, aux,g,g′),

where we omit variable aux in our paper for brevity. (See Eq. (16) in our paper). In our analysis, we explore the differential
privacy implications for data within client k in a majority voting framework. Here, the sign gradients from other clients
are regarded as auxiliary information (aux). In this context, the value of αM(λ, aux,g,g′) becomes non-zero iff client k
acts as a decision maker—able to influence the sign of the aggregated gradient. To apply the maximum operator from the
aforementioned equation, we configure aux such that client k assumes control over all parameters, i.e., client k is always a
decision maker, aligning the equation with Eq. (19) in our paper.

In the following subsections, we present the numerical results for the majority vote scenario, where the number of nodes is
three. For brevity, we skip the detailed analysis for Tables 15 and 16, because the results jointly show that the proposed
method outperforms the DP-SIGNSGD.

Table 15. (From scratch) MNIST image classification results for varying ϵ, under majority voting scenario. The model used in this
experiment is custom dense network.

PROPOSED DP-SIGNSGD

ϵ TRAINING TEST TRAINING TEST

0.2 87.56 88.29 86.90 87.44
0.4 89.30 89.98 88.75 89.49
0.8 90.70 90.96 89.67 90.47
1.6 92.23 92.48 90.40 91.07
3.2 94.25 94.23 90.87 91.21
6.4 96.17 96.00 91.36 91.82
12.8 97.43 96.94 91.96 92.67
25.6 98.27 97.44 92.42 92.88
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Table 16. (From scratch) MNIST image classification results for various neural network models, under majority voting setting. The value
of ϵ is fixed to 6.4.

PROPOSED DP-SIGNSGD

MODEL TRAINING TEST TRAINING TEST

DENSE 96.17 96.00 91.36 91.82
RESNET10 98.74 98.84 95.95 96.22
RESNET18 99.10 99.06 96.69 96.89
RESNET34 99.04 98.93 96.61 96.83
RESNET50 98.58 98.16 94.38 94.56
VGG11 99.17 98.94 97.44 97.66
VGG13 99.27 99.10 97.78 97.83
VGG16 99.19 99.04 97.75 97.84
VGG19 99.11 98.93 97.30 97.84
VIT-B-16 99.11 98.93 96.34 96.32
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