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Abstract

We explore whether post-hoc interpretability tools can be repurposed as a train-1

ing signal to build models that are more interpretable by design. We introduce2

SAE-ception, a method that iteratively incorporates features extracted by a sparse3

autoencoder (SAE) as auxiliary targets in the training loop. Across three distinct4

settings — an MLP on MNIST, a vision transformer (ViT-H) on CIFAR-10, and5

ConvNeXt-V2 on ImageNet-1k — our method led to substantial gains in the cluster-6

ing and separability of learned SAE features. These gains were evidenced by several7

metrics, such as improved silhouette scores and Davies-Bouldin indices. The effect8

on monosemanticity and task performance, however, is context-dependent. On the9

simpler MLP, the approach is a clear success, improving not only monosemanticity10

in both the base model and the SAE but also increasing the base model’s final task11

accuracy by over 2.5%. On ViT-H, SAE-ception doubles the monosemanticity of12

the SAE — as measured by the uncertainty coefficient (U) — after a single cycle13

with only a 0.09% drop in task accuracy, but the base model’s monosemanticity14

remains largely unchanged. While the gains in feature clustering and separability15

persist on ConvNeXt-V2, monosemanticity metrics remained largely stagnant:16

U shifted from a baseline of 0.28 to 0.31. We conclude that SAE-ception is a17

low-cost method that reliably enhances features for post-hoc analysis, making it a18

valuable tool for practitioners, though its ability to disentangle the base model’s19

representations depends on the specific architecture and task. Determining the20

conditions under which it can consistently improve the internal monosemanticity21

of a base model remains a key direction for future exploration.22

1 Introduction23

A central challenge in deep learning is the opacity of a model’s internal representations. While pow-24

erful, these representations are often tangled and difficult to map to human-understandable concepts,25

a problem exemplified by polysemanticity [10, 14, 23]. To address this, the field has developed26

powerful post-hoc analysis tools, most notably sparse autoencoders (SAEs), which decompose a27

model’s dense activations into a sparse set of more interpretable features [3, 6, 24]. However, the28

utility of these tools is constrained by a fundamental limitation: they are a passive lens applied to29

a pre-trained, static model. Furthermore, this analysis is itself an imperfect and often painstaking30

process, requiring significant manual effort to interpret the complex features extracted from an already31

tangled model [1, 11, 16, 21]. Most critically, these methods can only analyze a messy representation;32

they cannot compel the model to learn a cleaner one in the first place.33

In this work, we ask: can these post-hoc tools be repurposed as an active training signal to build34

models that are more interpretable by design? We introduce SAE-ception, a method that unifies model35

training with mechanistic interpretability. The core idea is an iterative loop: we train an SAE on a36
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model’s activations, identify a set of salient sparse features, and then retrain the base model using the37

reconstructed version of these features as auxiliary targets. This process provides a direct incentive38

for the model to organize its internal representations in a way that aligns with the features discovered39

by the SAE. Our primary goal is to produce representations that are more amenable to analysis by40

improving the separability and clustering of learned features.41

To achieve this, we also introduce feature sharpening, a technique to selectively focus the training42

signal on the most important features. By encouraging the model to prioritize these concepts,43

SAE-ception creates an internal feature space that is better structured for post-hoc examination.44

Our primary contributions are:45

1. We introduce SAE-ception, a novel training method that iteratively incorporates SAE-46

extracted features as auxiliary targets to improve a model’s representational structure.47

2. We demonstrate across three distinct datasets and architectures that SAE-ception reliably48

improves the clustering and separability of learned features, making them more amenable to49

post-hoc analysis.50

3. We propose a new paradigm for model development where interpretability methods are used51

not just as passive analysis tools, but as an active optimization signal to create models that52

are interpretable by design.53

An implementation of our method is available at https://anonymous.4open.science/r/54

SAE-ception-57D3.55

2 Related Work56

SAE-ception’s goal of improving representations through iterative training distinguishes it from con-57

temporary methods that integrate interpretability tools into the fine-tuning process. These approaches58

typically involve one-shot interventions or architectural changes, such as incorporating SAEs into59

Mixture-of-Experts layers for knowledge editing (Monet [20]), using SAEs to guide fine-tuning for60

targeted safety ablations (CAFT [5]), or performing a one-shot transfer of interpretability from a61

large model to a smaller one (Resa [26]). In contrast to these methods, SAE-ception cyclically refines62

the base model’s entire feature space without altering its original architecture.63

Our method also differs from regularization-based approaches. For instance, DecPO encourages64

sparse activations by adding a feature decorrelation penalty to the main loss function during preference65

optimization [27]. SAE-ception, however, provides guidance not through a penalty term, but via an66

explicit auxiliary target produced by an SAE.67

3 SAE-ception68

The core of SAE-ception is an auxiliary loss term, Laux, that encourages a model’s internal activations69

to align with sparse, disentangled features derived from an SAE. This process is applied iteratively70

over several training cycles.71

3.1 Auxiliary Loss Function72

At each retraining cycle, the model’s standard task loss, Ltask, is combined with an auxiliary loss,73

Laux. Let x be an activation vector from the layer where SAE-ception is applied. Let f ′ be the74

sharpened features derived from our SAE — f ′ is pre-computed and held constant during the75

retraining step. The auxiliary loss is the cosine distance between these vectors:76

Laux(x, f
′) = 1− cos(x, f ′) = 1− x · f ′

∥x∥2∥f ′∥2

The total loss is a weighted sum controlled by hyperparameter λs:77

Ltotal = Ltask + λsLaux
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Minimizing Laux drives the model’s activations x to point in the same direction as the sharpened fea-78

tures f ′, effectively steering the model to learn the most pertinent information from the disentangled79

features discovered by the SAE.80

3.2 Generating Sharpened Features81

The target vectors f ′ are not the direct output of the SAE. Instead, they are “sharpened” to focus82

the training signal on the most class-relevant features. For a given trained model, modelk, and its83

corresponding SAE, SAEk, we generate the targets f ′
k as follows:84

1. Identify Top Class-Features: First, for each class c in the dataset, we determine which85

SAE sparse features are most representative. We calculate the mean activation âc,i for each86

sparse feature dimension i across all examples Sc of that class:87

âc,i =
1

|Sc|
∑
x∈Sc

encoderk(x)i

We then rank these feature dimensions by their mean activation and select the indices of the88

top-25, forming a set Kc.89

2. Create Sharpened Sparse Code: For a given input example x belonging to class c, we90

compute its original sparse code, encoderk(x). We then create a sharpened sparse code, s′k,91

by keeping only the activations corresponding to the top-feature indices Kc and zeroing out92

all others:93

(s′k)i =

{
encoderk(x)i i ∈ Kc

0 i /∈ Kc

3. Reconstruct the Final Target Vector: Finally, we reconstruct a vector from this sharpened94

sparse code, s′k, using the SAE’s decoder, decoderk. This yields the final sharpened target95

vector, f ′
k, which has the same dimensions as the model’s activation vector x:96

(f ′
k) = decoderk(s

′
k)

We use sharpened sparse targets to concentrate the interpretability signal on a small set of class-97

relevant features. This reduces the burden on the model’s capacity, which in turn fosters better feature98

separation and more monosemantic representations (Figure 1; see Appendix A for a quantitative99

analysis).100

3.3 The Iterative SAE-ception Process101

SAE-ception is an iterative process that progressively refines a model’s representations. The process102

is initiated by training a baseline model, model0, using only the standard task loss, Ltask. model0 is103

then used to kick off the first full cycle of the core iterative algorithm.104

For each cycle (k = 0, 1, 2, ...):105

1. Train SAE: Freeze the weights of modelk. Generate activations from this model for the106

entire training set. Use these activations to train a new sparse autoencoder, SAEk.107

2. Generate Targets: Use the trained SAEk to compute the set of all sharpened target vectors,108

{f ′
k}, for the training set as described in Section 3.2.109

3. Train Next Model: Initialize a new model, modelk+1, with the weights of modelk. Fine-110

tune modelk+1 using the combined loss. Crucially, the auxiliary loss is a function of the111

new model’s activations, xk+1, and the fixed targets from the current cycle, f ′
k:112

Ltotal = Ltask + λsLaux(xk+1, f
′
k)

For example, consider the first cycle (k = 0). We begin with the baseline, model0. First, model0 is113

frozen and its activations are used to train SAE0. Second, a fixed set of targets, {f ′
0}, is generated by114
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Figure 1: An illustration of the Feature Sharpening pipeline. The process begins with the
extracted polysemantic activation vector, x, where mixed colors in each node represent multiple
features. Our SAE encoder maps x to a sparse vector s, composed of largely monosemantic features
(single colors) and inactive features (white). A Sharpen step then prunes less active features to create
a sharpened vector s′ (e.g., the cyan and orange features are removed). This sharpened vector is
passed to the SAE decoder, which generates the final target, f ′. The resulting reconstruction f ′ shows
reduced polysemanticity, demonstrating the effect of the sharpening process.

SAE0. Finally, model1 is trained (initialized from model0) with a loss that encourages its activations,115

x1, to align with the targets f ′
0. The resulting model1 then becomes the input for the next cycle where116

k = 1 (Figure 2).117

This cyclical process allows the model and the SAE to progressively shape the feature space, ideally118

leading to representations that are both performant and more interpretable.119

4 Experimental Setup120

To evaluate our approach across a spectrum of model complexities and task difficulties, our experi-121

mental design comprises three distinct settings. Each was chosen to systematically validate a key122

aspect of our method:123

• MLP on MNIST: A simple, fully-connected network was used to establish core functional-124

ity.125

• ViT-H on CIFAR-10: A high-performance Vision Transformer (ViT-H/14) was used to126

assess our method on modern, over-parameterized architectures. The model was pre-trained127

on ImageNet-21k and fine-tuned to replicate state-of-the-art accuracy on CIFAR-10 [8].128

• ConvNeXt-V2 on ImageNet-1k: A large, powerful convolutional architecture1 was used to129

test the practicality and scalability of our approach for real-world applications.130

4.1 Implementation Details131

Targeted Layers. For the MLP, which consists of two 16-dimensional hidden layers, we applied132

SAE-ception to the first hidden layer to study its effect on early feature formation.133

For the ViT-H, we targeted the final output representation of the [CLS] token. This was accomplished134

by placing a forward hook on the main Encoder module and extracting the state of the first token135

(index 0) from its output sequence. This vector represents the aggregated global features of the input136

image just before being passed to the classifier head, making it a rich target for analyzing the model’s137

high-level semantic understanding.138

1We use the convnextv2_large.fcmae_ft_in22k_in1k_384 checkpoint from the Timm library.
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k
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modelk+1
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Figure 2: The SAE-ception Training Loop. Top: First, the frozen model, modelk, is used to
generate a sharpened reconstructed target, f ′

k, from an internal activation xk. Bottom: The new
model, modelk+1, is then trained. A total loss, Ltotal, is computed by combining the standard task
loss, Ltask, with an auxiliary loss, Laux, that steers the new activation, xk+1, to match the sharpened
target f ′

k. This total loss is used to update the weights of modelk+1 during backpropagation.

For the ConvNeXt-V2 model, we targeted the output of the Flatten layer within the classifier head.139

This layer produces the final 1536-dimensional feature vector prior to classification, making it a140

prime location for high-level semantic features.141

Training Procedure. We employ two training procedures tailored to our different experimental142

settings.143

For the smaller MLP model trained from scratch, we used a concurrent approach. In this setup, the144

SAE and base model are updated simultaneously. Crucially, this deviates from our core fine-tuning145

algorithm: instead of initializing the weights of modelk+1 with the weights of modelk, each cycle’s146

model is retrained from the same random initialization used for model0. This allowed us to explore147

how SAE-ception might be used throughout a full training run, instead of just fine-tuning.148

In contrast, for the larger ViT-H and ConvNeXt-V2 models, we utilized a decoupled approach that149

follows the exact iterative fine-tuning process described in Section 3.3. Each cycle consists of150

fine-tuning the base model for 1-3 epochs. The model is then frozen and its static activations are used151
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to train an SAE for 1-5 epochs. This decoupled process ensures that the SAE is trained on a stable,152

high-quality representation before being used to guide the next fine-tuning step.153

SAE Architecture. Our SAE implementation closely follows the architecture and loss function154

described in Towards Monosemanticity [3]. Sparsity levels for each experiment are reported in Table155

1. For the large-scale ConvNeXt-V2 experiment, SAE linear probes were trained on a representative156

30% sample of the training set for efficiency.157

Table 1: Mean L0 norm for SAEs across experiments.

Cycle (k) MLP on MNIST ViT-H on CIFAR-10 ConvNeXt-V2 on ImageNet-1k
0 (Baseline) 32.45 45.57 57.75
1 38.29 48.64 90.93
2 39.54 46.08 82.33
3 43.12 57.86 46.69

Further details on our SAE hyperparameters and overall SAE-ception configuration are available in158

Appendix B.159

4.2 Evaluation Metrics160

The effectiveness of our technique is assessed through a comprehensive set of metrics targeting both161

model performance and feature representation interpretability.162

4.2.1 Interpretability163

We evaluate interpretability across two distinct representation spaces: the model’s internal layer164

activations and the sparse codes generated by the SAEs. Monosemanticity is measured in both spaces,165

while feature separation (clustering) is examined only in the sparse code space.166

Monosemanticity Evaluation. We use two complementary metrics to gauge monosemanticity.167

To measure the monosemanticity of the model’s dense layer activations, we apply the Class Selectivity168

Index (CSI). The CSI for a single feature is calculated as the difference between its average activation169

for its maximally activating class and its average activation across all other classes, normalized by170

their sum [13, 19]. A high CSI value (approaching 1) indicates that a feature’s activity is strongly171

concentrated on a single class, serving as a proxy for monosemanticity. We report the average CSI172

across all neurons in the targeted layer.173

While the mean-based CSI effectively measures the focus of a feature’s signal, its reliance on averages174

can be a limitation when analyzing the highly sparse features learned by our SAE. To address this,175

we utilize a complementary metric based on mutual information, the uncertainty coefficient (U) [25].176

This metric is designed to quantify a feature’s informativeness by assessing the predictive power of its177

firing events, rather than its average activation intensity. It operates by first thresholding activations to178

create a binary signal of firing events, then calculating a normalized measure of mutual information179

between this signal and the class labels. This allows us to identify sparse features that are reliably180

predictive, even if they fire too infrequently to register a high mean-based CSI-score.181

This dual-metric approach allows us to simultaneously examine the monosemanticity of concepts182

within the model’s dense activations (via CSI) and the informational clarity of the features extracted183

by our SAE (via U).184

Feature Clustering Evaluation. A desirable property of a learned representation is that features185

corresponding to distinct classes form coherent and well-separated clusters. We assess “feature186

clarity” by applying a suite of standard clustering metrics to the sparse feature activations generated187

by the SAEs at each training cycle k. These metrics assess different aspects of intra-cluster cohesion188

and inter-cluster separation, providing a holistic view of the representation’s geometric structure.189

The chosen metrics are:190

• Adjusted Rand Index (ARI): Measures agreement between clustering and ground-truth191

labels, corrected for chance; ranges [-1, 1] with higher values indicating better recovery of192

true classes [12].193
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• Silhouette Unsupervised (Sil-U): Mean silhouette coefficient computed from cluster as-194

signments; compares intra-cluster cohesion to nearest-cluster separation (range [-1, 1])195

[22].196

• Silhouette Supervised (Sil-S): Same silhouette statistic but computed using true class labels197

as the cluster assignment, measuring how compact and well-separated classes are in feature198

space [22].199

• Davies-Bouldin Index (DBI): Average, per-cluster ratio of within-cluster scatter to between-200

cluster separation; lower values indicate more compact, well-separated clusters [7].201

• Calinski-Harabasz Index (CHI): Ratio of between-cluster dispersion to within-cluster202

dispersion (adjusted by counts); larger values indicate clearer, better-defined clustering [4].203

Higher values for ARI, both silhouette scores, and CHI, and lower values for DBI, are indicative of204

optimal feature clustering.205

4.2.2 Performance206

In addition to interpretability, we monitor performance to ensure our method does not compromise207

the model’s primary function and that the learned SAE features remain task-relevant. First, we track208

the downstream task performance of the full model at each cycle of SAE-ception to monitor for any209

degradation. Second, we assess the utility of the extracted sparse features directly via linear probing.210

By training a linear classifier on these features alone, we can quantify their predictive power. Strong211

linear probe accuracy demonstrates that the SAE is learning a high-quality, informative representation212

of the data.213

To validate the efficacy of our feature sharpening technique, we also conducted a preliminary ablation214

study on the MNIST dataset. In this ablation, we compared our standard approach against a baseline215

that used an equivalent number of randomly generated noise vectors for the auxiliary target f ′. A216

detailed comparison is available in Appendix C.217

5 Results218

In this section, we present the empirical results of our method, SAE-ception, across the three219

experimental setups: an MLP on MNIST, a ViT-H on CIFAR-10, and a ConvNeXt-V2 on ImageNet-220

1k. The results are organized by metric type across three tables: Table 2 reports our monosemanticity221

evaluation, Table 3 details the feature clustering scores, and Table 4 presents the final performance222

metrics. The initial row (k = 0) in each table corresponds to the baseline model before any223

modifications, while subsequent rows show the progressive impact after each iterative cycle of224

SAE-ception.225

Notably, our ablation study confirmed the importance of feature sharpening; it outperformed random226

feature targets on performance and clustering metrics, although random targets intriguingly produced227

slightly higher monosemanticity scores (see Appendix C).228

Table 2: SAE-ception feature monosemanticity results.

MLP on MNIST ViT-H on CIFAR-10 ConvNeXt-V2 on ImageNet-1k
Cycle (k) CSI ↑ U ↑ CSI ↑ U ↑ CSI ↑ U ↑
0 (Baseline) 0.28 0.09 0.68 0.05 0.70 0.28
1 0.27 0.10 0.69 0.10 0.70 0.28
2 0.34 0.15 0.69 0.09 0.69 0.31
3 0.31 0.11 0.68 0.08 0.69 0.32

6 Discussion229

Our results establish SAE-ception as a reliable method for improving the structural quality of a230

model’s learned representations. Across all three diverse settings — an MLP, a ViT, and a ConvNeXt231
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Table 3: Feature clustering metrics across SAE-ception cycles.

Experiment Cycle (k) ARI ↑ Sil-U ↑ Sil-S ↑ DBI ↓ CHI ↑
MLP on MNIST 0 (Baseline) 0.26 -0.06 0.26 1.37 1818.76

1 0.37 0.05 0.27 1.30 1667.21
2 0.43 0.11 0.29 1.32 1751.87
3 0.28 -0.02 0.26 1.40 1557.65

ViT-H on CIFAR-10 0 (Baseline) 0.81 0.30 0.49 1.19 2966.10
1 0.90 0.39 0.56 1.00 3854.31
2 0.86 0.32 0.59 0.93 4663.28
3 0.81 0.30 0.55 0.98 3809.12

ConvNeXt-V2 on ImageNet-1k 0 (Baseline) 0.71 0.34 0.40 1.73 109.59
1 0.73 0.38 0.46 1.47 152.13
2 0.73 0.40 0.47 1.44 164.93
3 0.74 0.46 0.49 1.36 191.95

Table 4: Performance metrics across SAE-ception cycles. Task accuracy (Acc.) and SAE probe
accuracy (Probe) are shown for each experiment.

MLP on MNIST ViT-H on CIFAR-10 ConvNeXt-V2 on ImageNet-1k
Cycle (k) Acc. (%) ↑ Probe (%) ↑ Acc. (%) ↑ Probe (%) ↑ Acc. (%) ↑ Probe (%) ↑
0 (Baseline) 91.11 91.67 99.56 99.53 87.89 86.96
1 92.41 92.92 99.47 99.45 87.96 87.44
2 93.20 93.36 98.80 98.95 87.71 87.47
3 93.66 93.89 97.62 97.77 87.39 86.75

— we observed immediate and substantial gains in feature clustering and separability (Table 3). On232

ViT-H, for instance, a single cycle increased the Adjusted Rand Index (ARI) from 0.81 to 0.90, while233

the Davies-Bouldin Index (DBI) improved from 1.19 to 1.00. This consistent success demonstrates234

that SAE-ception is highly effective at reorganizing a model’s activation space into a more structured235

format that is more amenable to post-hoc analysis.236

We observe an “optimal cycle” phenomenon, particularly for feature clustering. Performance on237

these metrics often peaked after one or two cycles before declining, as seen in both the MNIST and238

CIFAR-10 results (Table 3). This suggests a practical guideline for implementation: one or two cycles239

are often sufficient to achieve the most significant benefits before the representational constraints240

begin to discard useful information.241

A key advantage of SAE-ception is its minimal impact on task performance, making it a low-cost242

intervention (Table 4). On the highly optimized ViT-H and ConvNeXt-V2 models, the first cycle of243

SAE-ception resulted in negligible accuracy changes (a 0.09% drop and 0.07% gain, respectively).244

On the simpler MLP, the method provided a remarkable 2.55% absolute accuracy improvement over245

three cycles. This demonstrates that the significant gains in feature structure and interpretability —246

such as doubling the SAE’s U score on ViT-H — can be achieved without sacrificing, and sometimes247

even improving, downstream performance.248

While SAE-ception consistently improves feature structure, its ability to enhance monosemanticity249

appears highly context-dependent. This complexity is highlighted by our preliminary MNIST250

ablation. While applying our auxiliary loss with randomly generated noise vectors offered no251

benefit to performance or clustering, it unexpectedly yielded higher monosemanticity scores than252

our targeted sharpening approach (Appendix C). This suggests a potential trade-off: a structured,253

task-relevant signal (from feature sharpening) excels at improving task-aligned representations, while254

a less-directed, diversifying pressure may be more effective at forcing pure disentanglement.255

This sensitivity to the nature of the guiding signal is likely compounded by the properties of the256

target layer itself. We hypothesize this discrepancy is linked to the targeted layer’s position within257

the network. For the MLP, we target an early hidden layer where abstract features are still being258

formed. In contrast, for ViT-H and ConvNeXt-V2, we target the final layer before the classification259

head. These late-stage representations are likely already highly structured and optimized for the260
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task, making them more “rigid” and resistant to reorganization from the auxiliary signal. This261

insight suggests that SAE-ception’s disentangling pressure may be most effective on less-constrained,262

intermediate representations, pointing to a promising direction for future work in applying the method263

to earlier layers in deeper architectures.264

From a practical standpoint, SAE-ception is easy to implement, requiring no architectural changes.265

The additional computational overhead is modest; the auxiliary SAEs provide a powerful guiding266

signal after just a few epochs of training, and the retraining cycles are comparable to standard267

fine-tuning. This efficiency, combined with its demonstrated ability to improve feature structure and,268

in some cases, model performance, makes SAE-ception a valuable tool.269

7 Limitations270

The primary limitation of this study stems from computational constraints. Our experiments were271

conducted primarily on a single NVIDIA RTX 4090 GPU, which while sufficient for demonstrating272

the viability of SAE-ception, restricted our ability to perform exhaustive hyperparameter optimization.273

Key parameters — such as the SAE’s internal configuration, the weighting of the auxiliary loss,274

the optimal target layers for intervention, and the ideal number of SAE-ception cycles — would all275

benefit from a more extensive search. This constraint was particularly pronounced for the large-scale276

ViT-H and ConvNeXt-V2 models, where the presented results likely represent a conservative estimate277

of our method’s full potential.278

8 Future Work279

Our findings open up several promising avenues for future research, both in refining the core method280

and in broadening its applications.281

Methodological Refinements. Several opportunities exist to improve the SAE-ception procedure282

itself. First, the feature sharpening mechanism, which currently selects a fixed set of top-25 features,283

could be made more adaptive to determine the optimal setting (building on K-sparse autoencoders284

[17]). Future work might explore dynamic thresholding or learnable selection mechanisms to identify285

the most salient sparse features for auxiliary loss. Second, the reliability of feature extraction could be286

enhanced. Inspired by recent work, replacing the single SAE with more robust architectures — such287

as transcoders, cross-coders, or an ensemble of SAEs — could lead to more stable and meaningful288

feature representations, potentially accelerating the interpretability gains per cycle [2, 9, 15, 18].289

Broader Applications. An important direction is to validate the cross-domain applicability of290

SAE-ception. While this paper focused on image classification models, the principles of iterative291

feature extraction and sharpening are model-agnostic. Applying our method to large language models,292

such as those in the GPT family, would be a valuable next step to determine if similar gains in the293

monosemanticity of internal neuron activations can be achieved in the language domain.294

9 Conclusion295

We introduced SAE-ception, an iterative training method that uses a sparse autoencoder to actively296

refine a model’s feature space. Our results show that this technique reliably improves the clustering297

and separability of learned features across diverse architectures, making them more suitable for298

post-hoc analysis with minimal trade-offs in performance. While the quest to improve a model’s299

inherent monosemanticity remains an open challenge, our work validates a promising new direction:300

using interpretability tools as an active part of the training process. SAE-ception serves as a practical301

step towards making the internal workings of neural networks less opaque — not by merely observing302

them, but by shaping them to be more understandable from the outset.303

9



References304

[1] Leonard Bereska and Efstratios Gavves. Mechanistic interpretability for ai safety–a review.305

arXiv preprint arXiv:2404.14082, 2024.306

[2] Dan Braun, Jordan Taylor, Nicholas Goldowsky-Dill, and Lee Sharkey. Identifying functionally307

important features with end-to-end sparse dictionary learning. Advances in Neural Information308

Processing Systems, 37:107286–107325, 2024.309

[3] Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Con-310

erly, Nick Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu,311

Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex312

Tamkin, Karina Nguyen, Brayden McLean, Josiah E. Burke, Tristan Hume, Shan Carter,313

Tom Henighan, and Christopher Olah. Towards monosemanticity: Decomposing language314

models with dictionary learning. Transformer Circuits Thread, jun 2023. URL https://315

transformer-circuits.pub/2023/monosemantic-features/index.html. Accessed:316

2025-08-18.317
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A The Effect of Feature Sharpening on Monosemanticity390

Table 5 compares the average Class Selectivity Index (CSI) of two sets of features, evaluated on the391

test set for each experiment. Reconstructed (Control) refers to the activations produced by the SAE392

decoder from the full, unsharpened sparse features. Sharpened Reconstructed (Ours) refers to the393

activations produced by the SAE decoder from the pruned, sharpened sparse features. Higher CSI394

values indicate greater monosemanticity.395

Table 5: Effect of Feature Sharpening on Reconstructed Activation Monosemanticity.

Experiment Cycle (k) Reconstructed (Control) Sharpened Reconstructed (Ours)
CSI ↑ CSI ↑

MLP on MNIST 0 (Baseline) 0.58 0.60
1 0.61 0.57
2 0.62 0.62
3 0.68 0.56

ViT-H on CIFAR-10 0 (Baseline) 0.70 0.71
1 0.70 0.71
2 0.70 0.71
3 0.69 0.71

ConvNeXt-V2 on ImageNet 0 (Baseline) 0.73 0.79
1 0.73 0.77
2 0.73 0.74
3 0.73 0.73

The efficacy of feature sharpening appears correlated with model complexity, providing consistent396

CSI improvements for the ViT-H and ConvNeXt-V2 models but not for the simpler MLP. We397

hypothesize that sharpening is most valuable as a technique for refining the complex, high-dimensional398

representations, which is less prevalent in smaller models with an already-lean feature set.399

B SAE-ception Training Details400

B.1 Base Model Training/Fine-tuning details401

Key hyperparameters for the base model training and fine-tuning stages are summarized in Table 6.402

For all experiments, we utilized an Adam optimizer. The strength of the auxiliary loss, λs, applied403

during each SAE-ception cycle is detailed separately in Table 7.404

Table 6: Base model training and fine-tuning hyperparameters for each experiment.

Hyperparameter MLP on MNIST ViT-H on CIFAR-10 ConvNeXt-V2 on ImageNet-1k
Optimizer Adam Adam Adam
Learning Rate PyTorch Default 1× 10−4 1× 10−4

Weight Decay 0 0.1 0.5
Epochs per Cycle 20 3 1
Batch Size 64 8 64
Grad. Accum. Steps – 8 –
Effective Batch Size 64 64 64

Table 7: Sharpened Features auxiliary loss hyperparameter λs values.

Cycle (k) MLP on MNIST ViT-H on CIFAR-10 ConvNeXt-V2 on ImageNet-1k
0 (Baseline) N/A N/A N/A
1 0.14 0.01 0.01
2 0.06 0.01 0.50
3 0.18 0.30 0.50
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B.2 SAE Details405

Across all experiments, we utilized a shallow SAE architecture with a ReLU activation. The406

hyperparameters for training the SAEs are provided in Table 8.407

Table 8: Sparse Autoencoder (SAE) training hyperparameters for each experiment.

Hyperparameter MLP on MNIST ViT-H on CIFAR-10 ConvNeXt-V2 on ImageNet-1k
Sparse Dimension 256 5120 6144
Optimizer Adam Adam Adam
Learning Rate PyTorch Default 1× 10−4 1× 10−4

Batch Size 64 64 128
Training Epochs 20 5 1

L1 Penalty
Cycle 0 0.75 2× 10−4 0.5× 10−4

Cycle 1 0.75 2× 10−4 2× 10−4

Cycle 2 0.75 2× 10−4 1× 10−4

Cycle 3 0.75 2× 10−4 7× 10−5

B.3 Evaluation Details.408

To evaluate the predictive quality of the learned SAE features, we trained linear probes on the frozen409

sparse codes. For the MNIST experiment, we used Scikit-learn’s Logistic Regression classifier. For410

the more complex CIFAR-10 and ImageNet-1k experiments, we trained a single linear layer using411

PyTorch. The specific hyperparameters for each probe are detailed in Table 9.412

Table 9: Linear probe hyperparameters for each experiment.

Hyperparameter MLP on MNIST ViT-H on CIFAR-10 ConvNeXt-V2 on ImageNet-1k
Probe Model Logistic Regression PyTorch nn.Linear PyTorch nn.Linear
Solver / Optimizer L-BFGS (default) Adam Adam
Learning Rate N/A 1× 10−3 1× 10−3

Penalty / Loss L2 Cross-Entropy Cross-Entropy
Epochs / Max Iterations 1000 (max_iter) 10 1

B.4 Computational Details.413

All experiments were conducted on a single NVIDIA RTX 4090 GPU, except for replicating the414

state-of-the-art performance from ViT-H/14 on CIFAR-10. For the additional fine-tuning to achieve415

SOTA performance, we utilized a GH200.416

C Preliminary Ablation Studies417

To isolate the contribution of our feature sharpening technique, we conducted an ablation study on418

the MLP on MNIST experiment. We compared our standard method against a control condition419

where the auxiliary target vector, f ′, was a randomly generated noise vector, unit-normalized and420

with the same dimensionality as the model’s activations. Crucially, this target had no connection to421

the input data or the SAE’s learned feature space, serving as a pure, unstructured directional guide for422

the auxiliary loss.423

The results, shown in Table 10, are revealing. As expected, our feature sharpening approach provides424

a modest but consistent edge in task performance and most clustering metrics. This suggests that425

using meaningful, class-relevant targets is beneficial for learning a well-structured, task-aligned426

representation.427

The surprising result is in the monosemanticity scores. The random noise target baseline achieved428

slightly higher scores (particularly for CSI). This suggests that applying an auxiliary loss that pushes429

activations towards any sufficiently diverse set of target directions — even unstructured noise — can430
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encourage feature disentanglement by penalizing representational collapse. However, it is the targeted431

guidance of feature sharpening that aligns this disentanglement with task-relevant outcomes.432

Table 10: Ablation results on MNIST after one cycle (k = 1). Feature Sharpening vs. Random
Feature Targets.

Metric Feature Sharpening Random Targets
Performance
Acc. (%) ↑ 92.41 92.39
Probe (%) ↑ 92.92 92.90

Monosemanticity
CSI ↑ 0.27 0.33
U ↑ 0.10 0.11
Clustering
ARI ↑ 0.37 0.35
Sil-U ↑ 0.05 0.05
Sil-S ↑ 0.27 0.26
DBI ↓ 1.30 1.37
CHI ↑ 1667.21 1586.23
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