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ABSTRACT

Recently, retrieval-based language models (RLMs) have received much attention.
However, most of them leverage a pre-trained retriever with fixed parameters,
which may not adapt well to causal language models. In this work, we propose
Grouped Cross-Attention, a novel module enabling joint pre-training of the re-
triever and causal LM, and apply it to long-context modeling. For a given input
sequence, we split it into chunks and use the current chunk to retrieve past chunks
for subsequent text generation. Our innovation allows the retriever to learn how
to retrieve past chunks that better minimize the auto-regressive loss of subsequent
tokens in an end-to-end manner. By integrating top-k retrieval, our model can be
pre-trained efficiently from scratch with context lengths up to 64K tokens. Our
experiments demonstrate that our model achieves superior performance in vari-
ous tasks against strong baselines, and 100% accuracy in the needle-in-a-haystack
(NIAH) test with a 16M context length.

1 INTRODUCTION

Transformers (Vaswani et al., 2017), serving as the backbone of large language models (LLM), have
revolutionized language modeling and demonstrated exceptional performance across a wide range
of natural language processing tasks (Brown et al., 2020; Achiam et al., 2023; Touvron et al., 2023;
Dubey et al., 2024). While Transformers excel in representational power, their quadratic computa-
tional complexity and increasing memory demands as input length grows pose formidable challenges
for modeling long contexts. Various approaches, such as recurrent memory (Dai et al., 2019), and
linear attention (Katharopoulos et al., 2020) techniques, are proposed to improve the efficiency and
effectiveness of Transformers in handling extended inputs. Nevertheless, these approaches often
sacrifice the random-access flexibility of attention (Mohtashami & Jaggi, 2023) during inference.

In this work, we explore long-range language modeling in Transformers from the perspective of
retrieval-based language models (RLMs) (Asai et al., 2023). Typically, RLMs (Rubin & Berant,
2024; Yen et al., 2024) divide an input sequence into chunks, retrieve relevant ones from the history
for the current input, and then integrate the retrieved chunks into the decoder to predict subse-
quent tokens. By choosing top-k chunks as a “dynamic context”, RLMs overcome the efficiency
challenges in long-context modeling while maintaining random-access flexibility. However, most
RLMs (Lewis et al., 2020; Borgeaud et al., 2022) rely on separately pre-trained retrievers with fixed
parameters, which hinders their ability to adapt to the causal LMs. Although a straightforward ap-
proach is training the retriever end-to-end to select chunks that minimize auto-regressive loss of
subsequent tokens, it is rarely explored. The main challenges are twofold: firstly, while relevance
scores guide chunk selection, these scores do not participate in the next token prediction, thus unable
to receive gradient backpropagation from the auto-regressive loss. Secondly, the large search space
brought by long contexts often results in efficiency and flexibility issues for pre-training.

To tackle these challenges, we propose Grouped Cross-Attention (GCA), a novel module enabling
efficient end-to-end joint optimization of the retriever and causal LM, thus the retriever can learn
to retrieve past chunks that most effectively reduce the auto-regressive loss of subsequent tokens,
which we refer to as causal retrieval. GCA enables the relevance scores to participate in the next
token prediction in a differentiable way. Specifically, GCA can be understood as a chunk-wise anal-
ogy of token-wise self-attention. In self-attention, considering the next token prediction in causal
Transformers, self-attention scores could be viewed as the relevance scores of the current token to
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Figure 1: Comparing previous works with GCA. Consider current chunk ct with its past chunk relevance scores
rkt , where k ∈ {1, . . . , t− 1}, rit and rjt are the top two. In this example, each chunk contains 3 tokens, whose
query, key, and value vectors are denoted as Q,K, V . (a) In previous work, information from retrieved chunks
is fused into LM decoders via Chunked Cross-Attention, in which relevance scores are merely used for chunk
selection. Thus the loss can not back-propagate to the scores. (b) GCA separately applies Cross-Attention
with the two chunks, yielding intermediate outputs Oi

t+1 and Oj
t+1. The softmaxed relevance scores serve as

weights to fuse these intermediates into LM decoders and thus can receive back-propagation from the loss.

past tokens. These scores serve as weights to fuse information gathered from past tokens to predict
the next token. Analogously, we divide the input sequence into chunks and use the relevance scores
between the current and past chunks as weights to fuse information for the next chunk prediction. A
detailed comparison between previous works and GCA is depicted in Figure 1. By appending GCA
after self-attention in Transformer layers, we introduce Differentiable Retrieval-based Transformers
(DRT), enabling pre-training from scratch with context lengths up to 64K. To make pre-training
efficient, we sample top-k past chunks according to the relevance scores for each chunk to perform
GCA, along with fixed-size sliding window self-attention (Child et al., 2019), achieving linear com-
plexity for the entire input sequence’s attention operations. During inference, we offload hidden
states of past chunks to CPU memory and reload them when retrieved. It introduces additional
memory-swap but largely reduces memory footprint.

In our experiments, we evaluate our model on tasks such as long-range language modeling, summa-
rization, and the needle-in-a-haystack (NIAH) tests. The results demonstrate that DRT significantly
outperforms all baselines with comparable pre-training costs and much lower inference costs. No-
tably, in the NIAH test, DRT trained with a 16K context length maintains nearly 100% accuracy on
inputs up to 16M tokens. More interestingly, case studies on the arXiv-math dataset suggest that
long-range reasoning ability emerges in DRT, which retrieves lemmas, variants, or functions defined
distantly but used in the next chunk. These findings suggest that GCA has the potential to be a
fundamental component in retrieval-based LMs. Overall, our main contributions are:

1. We propose a novel module called Grouped Cross-Attention (GCA), which allows dense retriev-
ers learn to retrieve guided by auto-regressive loss in an end-to-end manner efficiently.

2. Building upon GCA, we introduce Differentiable Retrieval-based Transformers (DRT), which is
fast and memory-efficient in both pre-training and inference on long texts, but still maintains the
random-access flexibility and excellent extrapolation capability.

3. We implement a hardware-aware GCA based on FlashAttention-2 (Dao, 2024), significantly re-
ducing the training and inference time. The code will be made publicly available.

2 RELATED WORKS

Relation to RPT & Landmark Attention. There are two long-range LMs closely related to ours.
One of them is Retrieval-Pretrained Transformer (RPT) (Rubin & Berant, 2024). The key difference
between DRT and RPT is the training approach of the retriever. During data-preparation, for each
chunk, RPT picks relevant past chunks by using BM25 (Robertson & Zaragoza, 2009), concatenates
them with the current chunk, and evaluates them by a reference LM like Pythia 1.4B (Biderman

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

et al., 2023). The past chunks that increase the probability of the next chunk are identified as ‘gold
chunks’ to train RPT’s retriever. However, such a complex data preparation process limits scalability
and flexibility in pre-training and post-training (Lee, 2024). In contrast, DRT is pre-trained end-to-
end. By employing a sliding window size larger than the chunk size, it effectively uses feedback
from subsequent several chunks to train the retriever. Its flexibility also allows for adaptive multi-
hop retrieval. Landmark Attention (LA) (Mohtashami & Jaggi, 2023) is another close work. LA is
pre-trained with short contexts but capable of handling long contexts during inference. It addresses
long-range language modeling by modifying self-attention KV Cache. During inference, each token,
at each layer, selects top-k chunks based on token-to-chunk attention scores and appends their key
and value vectors to the current KV cache of self-attention. The token-to-chunk attention scores
are trained in an end-to-end manner with a grouped softmax technique. However, it has to perform
top-k chunk selection per token, per layer, which incurs significant extra costs during inference.
Moreover, it fails to extrapolate on longer context length. Our method combines the chunk-retrieval
and grouped softmax ideas, resolving the aforementioned issues while balancing training efficiency
and inference performance.

Long-Range Language Modeling. Various methods have been proposed to improve long-range
language modeling. One line of research is introducing memorization to Transformers via recur-
rence. Many works (Dai et al., 2019; Burtsev & Sapunov, 2020; Martins et al., 2022; Hutchins
et al., 2022) compress past information into fixed-sized vectors. However, these methods often
sacrifice the flexibility to attend to arbitrary past tokens. Meanwhile, other works focus on main-
taining random-access flexibility of attention. Memorizing Transformers (Wu et al., 2022) appends
retrieved past keys and values to the current attention segment via k-NN search, but they do not
back-propagate gradients to them. CEPE (Yen et al., 2024) retrieves previous chunks using an inde-
pendently trained dense retriever and fuses them into the decoder. During the training process, the
decoder parameters are fixed, and only the encoder is adjusted. A notable distinction in our work is
the end-to-end optimization of all parameters, particularly the retriever.

Efficient Language Modeling. Many works have been done to reduce the training and inference
cost of LLM. One direction is sparse attention, which includes limiting the attention window to
a small range around each token (Child et al., 2019; Zaheer et al., 2020; Beltagy et al., 2020),
approximating attention matrix (Wang et al., 2020), leveraging locality-sensitive-hashing(LSH) for
key vectors retrieval (Kitaev et al., 2020), and hierarchical self-attention (Ren et al., 2021). However,
empirically most efficient Transformers sacrifice performance for efficiency. Recently, state-space
models (Gu & Dao, 2023; Dao & Gu, 2024) and RNN models (Beck et al., 2024) provide new
architecture alternatives, with comparable performance to Transformers but much lower cost for
inference. We argue that our core innovation GCA is flexible enough to be incorporated into these
models as an additional module to obtain random-access flexibility.

Retrieval-Augmented Language Models. Retrieval-augmented LMs leverage a retriever to ac-
cess relevant external knowledge, enhancing their generation capabilities. In some works, the re-
triever can be jointly trained with the LM such as REALM (Guu et al., 2020). However, its computa-
tional complexity limits its extension to causal LMs. On the other hand, in most other works (Lewis
et al., 2020; Izacard & Grave, 2021; Borgeaud et al., 2022; Ivgi et al., 2023), retriever parameters
are fixed, preventing optimization for retrieving information that best predicts subsequent tokens.

Unsupervised Dense Retrieval. In the line of research on unsupervised dense retrieval, early
works leverage Inverse Cloze Task (Lee et al., 2019) to train retriever unsupervisedly, where a sen-
tence is randomly sampled from a document and the task is to predict its surrounding context. How-
ever, this approach still lags behind BM25 on long-tail entities (Sciavolino et al., 2021). Recently,
contrastive learning methods (Izacard et al., 2022; Gao & Callan, 2022) have shown improved re-
sults by creating positive and negative pairs from sentences within the same or different documents,
respectively. However, these unsupervisedly trained retrievers are typically not optimized for causal
LMs, so they may not guarantee to retrieve the most pertinent information.

3 DIFFERENTIABLE RETRIEVAL-BASED TRANSFORMER

A typical architecture of RLMs (Borgeaud et al., 2022; Yen et al., 2024; Rubin & Berant, 2024)
appends Chunked Cross-Attention (CCA) after self-attention to fuse information from retrieved

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: The illustration shows how the current chunk c6 retrieves past chunks for better next token prediction
of x20 in the next chunk c7. The landmark representation l6 is used to compute relevance scores with past
chunks, selecting the top four. The hidden states of x20 at the l-th layer, hl

20, perform Cross-Attention (CA)
with all tokens in each separate chunk. The chunk-wise CA outputs, ol,·20, are fused via weighted sum, whose
weights are softmaxed relevance scores.

chunks, in which a retriever is merely used to pick relevant chunks. Our approach makes retriever
learnable by replacing CCA with GCA, which represents the key innovation of this work. The
novelty of GCA lies in using relevance scores to fuse information from retrieved chunks for LM
decoders, enabling the retriever to adaptively learn to select the best past chunks for predicting
subsequent tokens, guided by the auto-regressive loss. This section details the model architecture,
training, and inference.

3.1 MODEL ARCHITECTURE

DRT is composed of N Transformer-like layers. Similar to RETRO (Borgeaud et al., 2022), the in-
put sequence of DRT is equally divided into chunks. Formally, given a sequence x = [x1, x2, ..., xL]
with L tokens, we divide the sequence into L

S chunks, where S is the chunk size, denoted as
{c1, c2, ..., cL/S}, where xi ∈ c⌈i/S⌉. Similar to Landmark Attention, we insert a special token
LMK at the end of each chunk, which summarizes the preceding content via self-attention.

Forward Pass. Figure 2 illustrates the forward pass of a token in DRT. DRT layers are bifurcated
into upper and lower sections like in RPT (Rubin & Berant, 2024). The key differences are the
introduction of GCA and the further division of the upper layers into G groups, enabling learning to
retrieve on the fly and adaptive multi-hop retrieval. The lower layers comprise standard Transformer
layers while each upper layer has an additional GCA module after self-attention. In the forward
pass, the chunk hidden states output by the lower layers, besides being fed to the upper layers, are
also fed into a bi-directional Transformer encoder, which further contextualizes the representations
with inner-chunk positional encoding, yielding Ck ∈ RS×d and lk ∈ Rd shared across all upper
layers, where d is the hidden state dimension. At the g-th upper decoder group, chunk ct retrieves
the top-k relevant past chunks for its next chunk:

rg,kt =
hg⊤

t lk√
d

, Cgt = Top-k([rg,1t , ..., rg,t−1
t ]) . (1)

Here, hg
t ∈ Rd represents the landmark representation output by the decoder layer just before the

g-th group, which accumulates all information from groups 1 to g − 1. This enables hg
t to retrieve

relevant information based on previously retrieved chunks thus achieving multi-hop retrieval. rg,kt
represents the causal relevance score of ck to ct. Cg

t contains the indices of past chunks with top-k
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relevance scores. The retrieved chunks are shared among the subsequent layers within the same
group. The upper layers apply GCA to fuse retrieved information into the decoder.

Grouped Cross-Attention. For the l-th layer, let H l
t+1 and Ĥ l

t+1 ∈ R(S+1)×d denote the batched
token representations including the landmark token in the next chunk before and after GCA. In GCA,
we perform Cross-Attention (CA) separately and fuse results via relevance scores:

g(l) = ⌈(l − N

2
)/

N

2G
⌉ , Ol

t+1,k = CA(H l
t+1,Ck,Ck) , k ∈ Cg(l)

t ,

w
g(l),k
t =

exp(r
g(l),k
t )∑

k′∈Cg(l)
t

exp(r
g(l),k′
t )

,Ol
t+1 =

∑
k

w
g(l),k
t Ol

t+1,k , Ĥ l
t+1 = Norm(H l

t+1 +Ol
t+1).

(2)

Here g(l) converts the layer index to the group index and Ck ∈ RS×d represents token representa-
tions of the k-th retrieved chunk. Ol

t+1,k ∈ R(S+1)×d represents the information that S + 1 tokens

in chunk ct+1 gather from past chunk ck. w
g(l),k
t is the normalized relevance score after softmax,

serving as the weight of Ol
t+1,k for information fusion. The final fused results of GCA is Ol

t+1.

Since Ck is shared across layers, we use the same K, V liner transformations across layers to com-
pact model parameters and reduce memory footprint. For each head h, we have CA defined as:

CA(H l
t+1,Ck,Ck)h ≜ Softmax(

Ql
h(H

l
t+1)Kh(Ck)

T

√
dh

)Vh(Ck) (3)

Here, dh is per head dimension, and Ql
h,Kh, Vh are linear transformations per head, where Ql

h
varies across layers and Kh, Vh are layer-shared. The final CA outputs are concatenated vectors
from all heads. It is worth noting that GCA is easy to integrate with FlashAttention-2, as detailed in
the pseudo-code in Appendix A.2.

GCA vs CCA. A key distinction between GCA and CCA lies in how softmax is applied to cross-
attention matrices as shown in Figure 1(a)(b). In CCA, all retrieved chunks are concatenated and
softmax is directly applied to the whole attention matrix to fuse token-level information. Notably,
relevance scores are entirely excluded from the process. In contrast, GCA applies softmax to each
chunk’s attention matrix separately. This modification allows information to be gathered from each
chunk separately. The softmaxed relevance scores then serve as soft choices (Hu et al., 2021; 2022),
participating in the next token prediction thus receiving back-propagated gradients.

Encoder-Decoder Variant. Our model architecture could be easily modified to an encoder-
decoder-based variant like RETRO (Borgeaud et al., 2022) by directly applying the encoder to chunk
token embeddings instead of the lower layers’ outputs. This variant allows for retrieval from trillions
of tokens with acceptable storage costs. We will elaborate on this in § 3.3.

3.2 TRAINING

The pre-training objective of DRT is the next token prediction, but there are certain details as dis-
cussed below. We also give a detailed time complexity analysis of training.

Gumbel Top-k sampling. The core idea of self-supervised retrieval is making candidate chunks
compete with each other by softmaxing relevance scores as weights. The weights of the chunks
contributing most to the next chunk prediction are enhanced while the weights of the rest are sup-
pressed. To balance exploration and exploitation, we sample chunks based on relevance scores
instead of always picking the top-k, enabling highly relevant chunks to be more likely chosen while
still considering lower-scoring ones. A simple trick is to add Gumbel noise (Gumbel, 1954) to the
raw scores before the top-k operation. Importantly, this noise doesn’t affect subsequent operations.

Encoder-Decoder Pre-training. To enhance the encoder’s representational ability, we train it with
MLM in addition to the auto-regressive loss during the first half of pre-training. Specifically, while
the decoder sees all tokens, the encoder’s tokens are partially masked, whose outputs are used in
both the decoder’s GCA and computing the MLM objective. Masking causes inaccurate encoding
that may disturb subsequent computation and training of the decoder, so we eventually remove the
MLM training in the second half of the pretraining.
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Time Complexity. Our approach reduces training complexity by compressing quadratic opera-
tions. Vanilla Transformers have a complexity of O(NL2) for full self-attention. In DRT, we
encode chunks with S tokens into landmark representations, performing chunk-wise full atten-
tion to compute relevance scores within O(GL2

S2 ) for G groups of upper layers. By employ-
ing sliding-window attention and top-k retrieval, we scale down self-attention and GCA costs to
O(GL2

S2 + N
2 LKS + NLW ), where K is the retrieved chunk number and W is the window size,

K,W ≪ L. This largely reduces the complexity but maintains the random-access flexibility.

3.3 INFERENCE

Memory Offloading. During the inference stage of Transformers, the default memory cost
for KV Cache is O(NLd). To reduce GPU memory usage, we can offload past chunk rep-
resentations to CPU memory. This results in a spatial complexity of the GPU memory usage
O(Ld

S + N
2 KSd+NWd) during inference. Here, Ld

S is the memory footprint of landmark represen-
tations, while the remaining terms account for the GCA and sliding-window KV cache. Although
each retrieval involves gathering representations from CPU memory and transferring them to the
GPU, this operation occurs G times every S tokens. Therefore, the cost of memory exchange from
chunk retrievals is minimal.

Infinitely Long Context Retrieval. To mimic humans’ capability for random access to memories,
we extend the retrievable context to all pre-trained tokens, where contextualized token representa-
tions in chunks could be regarded as memory. A straightforward approach, similar to RPT, is to
store chunk-level representations and token-level hidden states as key-value pairs in a Faiss (Douze
et al., 2024). However, this approach requires significant disk space. For instance, a 100 billion
token corpus with 1,024-dimensional hidden states, even with Product Quantization, demands ap-
proximately 25TB. In contrast, using an encoder-decoder variant, we only store a chunk’s landmark
representation and positions in the corpus without saving hidden states. When retrieving, we access
the corresponding tokens by document position and re-encode them to obtain their hidden states,
achieving retrieval from billions of tokens with disk cost reducing by S fold.

4 EXPERIMENTS

We compare DRT with prior works in long-range language modeling, wall-clock training time,
inference cost, extrapolation capability, and infinite-length context retrieval. Notably, we include
the closely related works RPT and Landmark Attention.

4.1 EXPERIMENTAL SETUP

4.1.1 DATASETS

PG19. PG19 (Rae et al., 2020) is a language modeling benchmark widely used to evaluate long-
range text understanding capabilities of models. It includes a collection of full-length books from
Project Gutenberg across a wide range of genres, styles, and topics. The dataset is particularly useful
for evaluating models’ abilities to capture dependencies and context over long sequences of text.

ArXiv-math. ArXiv-math is a corpus consisting of mathematical papers from arXiv. Character-
ized by a sustained coherence over long distance, the corpus requires models’ capability of correctly
referring to long-range history information and using long-range context effectively for predictions.
We use the preprocessed corpus and data splits from Azerbayev et al. (2023).

MiniPile. MiniPile (Kaddour, 2023) is a 6GB subset of the deduplicated 825GB The Pile (Gao
et al., 2021) corpus, which covers sub-datasets from webpages, dialogue, books, science and code.

4.1.2 MODELS

DRTretrieval×G. A DRT consists of 12 Transformer decoder layers, divided into 6 lower and 6
upper layers, with upper layers further split into G groups. The sliding window size is set to W=512,
the chunk size is set to S=64, and 8 chunks are retrieved for GCA, resulting in an attention field of
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512 (8 × 64). We implement hardware-aware GCA based on Triton (Tillet et al., 2019) 1. As
we employ various parameter settings across different experiments, further details are provided in
Appendix A.1. DRTenc-dec: the variant of DRT introduced in § 3.1.

Base LM. Our base LM is based on the implementation of TinyLlama (Zhang et al., 2024) com-
bined with Flash Attention2 (Dao, 2024) enabling ALiBi (Press et al., 2022) and sliding window
attention (Child et al., 2019). We compare models against the baseline across various configura-
tions. One configuration involves 12 layers with a sliding window of 512 tokens, aligning with
the DRT sliding window size. Another configuration of 12 layers with a 768-token sliding win-
dow ensures the same attention field coverage, as 12 × 768 = 12 × 512 + 6 × 512(GCA). The
strongest baseline, with 14 layers and a 658-token sliding window, has a parameter count compa-
rable to our DRT while maintaining a similar total attention field across all 12 layers, calculated as
658× 14 ≈ 12× 512 + 6× 512.

Retrieval-Pretrained Transformer (RPT). Since the official implementation is in JAX and the
code for distilling the retriever is not released, we reimplement RPT in PyTorch and replace the
retriever with Contriever (Izacard et al., 2022). Elaborations can be found in Appendix A.6.

Landmark Attn. We use the official Llama-like implementation 2 of Landmark Attention. Similar
to Base LM, we extend the length of the self-attention range from 512 to 768 to ensure it shares the
same attention field as DRT.

Block-Recurrent TFM. Since the official implementation of Block-Recurrent Transformer is also
based on JAX, we utilized a PyTorch implementation 3 to ensure all baselines are running with the
same framework.

Ablations. w/o Triton: A naively implemented version of GCA without Triton. w/o enc: The
decoder-only version of DRT, which uses the hidden states of the middle layer of the decoder stack
to retrieve history chunks. Differently put, this model can be attained by simply removing the
encoder from DRTenc-dec. w/o mlm: The architecture is exactly the same as DRTenc-dec, while the
only difference lies in the training process by eliminating the masked language modeling part. w/o
gumbel top-k: The architecture is exactly the same as DRT, while the only difference lies in the
training process by eliminating the gumbel noise when selecting the top-k chunks.

4.2 LONG-RANGE LANGUAGE MODELING

In this section, we evaluate DRT against baselines in long-range language modeling on PG19 and
arXiv-math, and report their respective perplexities. All models are pre-trained with the same atten-
tion field and a 16K context by default, except for baselines that cannot efficiently pre-train on long
contexts. To ensure fairness, we adjusted these baselines. Detailed hyper-parameters are provided
in Appendix A.1.

Results. From Table 1, we have several observations. Firstly, DRT outperforms all baselines
where the evaluation length exceeds 16K. While DRT performs retrieval for G times every 64 tokens,
LA performs retrieval at every token and in every layer, potentially offering better random access
flexibility. However, DRT still surpasses LA on longer inputs. This is likely because LA follows
a “train short, test long” approach due to the need for full attention during pre-training, whereas
DRT can be directly pre-trained on long input sequences. Thanks to GCA, our key innovation,
DRT can randomly access distant contexts during pre-training with the same attention field as in
the baselines, allowing it to better utilize long-range information during pre-training with negligible
extra training costs. Secondly, in terms of parameter efficiency, we compared against Base LM with
two additional layers in the decoder stack. It can be observed that on shorter evaluation lengths,
the baseline has a slight advantage. However, with a longer context, our model consistently leads.
This experiment suggests precisely retrieving semantic knowledge from a long context may be more
beneficial for improving the language model than increasing model parameters. Thirdly, multi-hop
retrieval yields positive gains with a low marginal cost. It allows upper layers to access more diverse

1https://github.com/triton-lang/triton/blob/main/python/tutorials/
06-fused-attention.py

2https://github.com/epfml/landmark-attention
3https://github.com/lucidrains/block-recurrent-transformer-pytorch
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Model Time #Param. k attn. win. PG19↓ ArXiv-math↓
dec/enc valid test valid test

Train length=16K, eval length = 2K
BaseLM
(Sliding window+Alibi)

1× 124M - 512 15.00 14.10 3.31 3.31
1.03× 124M - 768 14.86 13.96 3.24 3.24

+2 layers 1.15× 138M - 658 14.71 13.83 3.06 3.06
RPTcontriever(our impl.) 2.5× 133M/14M 8 512 14.81 13.92 3.24 3.24
Landmark Attn. 1.5× 124M 4 768 14.41 13.40 3.17 3.16
Block Recurrent TFM 2× 155M - 768 15.99 15.00 3.33 3.32
DRTenc-dec 1.22× 133M/14M 4 512 14.90 14.02 3.24 3.24
DRTretrieval×1 1.22× 133M/14M 8 512 14.65 13.78 3.24 3.24
DRTretrieval×2 1.24× 133M/14M 8 512 14.56 13.69 3.22 3.22
Train length=16K, eval length = 16k
BaseLM
(Sliding window+Alibi)

1× 124M - 512 14.55 13.68 3.06 3.06
1.03× 124M - 768 14.36 13.49 2.95 2.95

+2 layers 1.15× 138M - 658 14.23 13.37 2.95 2.94
RPTcontriever(our impl.) 2.5× 133M/14M 8 512 14.39 13.52 2.93 2.92
Landmark Attn. 1.5× 124M 4 768 14.10 13.21 3.02 3.02
Block Recurrent TFM 2× 155M - 768 15.59 14.60 3.14 3.14
DRTenc-dec 1.22× 133M/14M 4 512 14.42 13.53 2.93 2.93
DRTretrieval×1 1.22× 133M/14M 8 512 14.05 13.21 2.89 2.89
DRTretrieval×2 1.24× 133M/14M 8 512 14.02 13.18 2.85 2.85
Train length=16K, eval length = 32k
BaseLM
(Sliding window+Alibi)

1× 124M - 512 14.50 13.64 3.05 3.04
1.03× 124M - 768 14.30 13.46 2.93 2.92

+2 layers 1.15× 138M - 658 14.18 13.34 2.93 2.92
RPTcontriever(our impl.) 2.5× 133M/14M 8 512 14.35 13.49 2.91 2.91
Landmark Attn. 1.5× 124M 4 768 14.19 13.33 3.07 3.07
Block Recurrent TFM 2× 155M - 768 15.61 14.56 3.13 3.12
DRTenc-dec 1.22× 133M/14M 4 512 14.38 13.52 2.91 2.91
DRTretrieval×1 1.22× 133M/14M 8 512 14.01 13.19 2.85 2.85
DRTretrieval×2 1.24× 133M/14M 8 512 13.98 13.16 2.81 2.81
Ablation studies

–w/o Triton 1.45× 133M/14M 8 512 — — — —
–w/o enc. -eval len=16k 8 512 14.31 13.44 2.97 2.97
–w/o MLM -eval len=16k 4 512 14.43 13.57 3.07 3.06
–w/o gumbel top-k -eval len=16k 8 512 14.36 13.46 2.90 2.90

Table 1: Perplexity for all datasets. We highlight the best results in bold and underline the second best.

chunks and enables further retrieval based on previous retrieval results. Finally, ablation studies
show that all the training techniques we add bring positive improvements. In conclusion, the above
results fully demonstrate that the GCA module can indeed bring effective gains in modeling long
texts, and it is more advantageous compared to other baselines.

4.3 DOWNSTREAM TASK EVALUATION AND EFFICIENCY ANALYSIS

In this section, we fine-tune all baselines and evaluate them against downstream tasks including sum-
marization (Nallapati et al., 2016; Narayan et al., 2018), single NIAH test, and multi-hop NIAH pro-
posed by Hsieh et al. (2024). The details for the downstream tasks are described in Appendix A.4.
Then we analyze the inference cost, the relationship between training time and context length, and
the extrapolation capability of DRT. In the inference cost analysis, We skip RPT because it has a
similar cost to DRT. In the extrapolation experiments, we utilize the pre-trained models described in
§ 4.2 to assess their performance with extended context lengths.

Results. From Table 2, we observe that DRT significantly outperforms all baselines in the sum-
marization tasks, validating its capability to effectively utilize long contexts. Notably, in the single
NIAH test, DRT maintains 100% performance even with a context length of up to 16 million tokens,
demonstrating its strong length generalization ability in long-context scenarios. Furthermore, in
the 2-hop NIAH test, DRTretrieval×2 performs comparably to Landmark Attention at context lengths
below 16K tokens while successfully extrapolating to longer context lengths beyond 64K tokens.
Additionally, DRTretrieval×2 significantly outperforms DRTretrieval×1, confirming our hypothesis that
conducting causal retrieval every G-layer contributes to scenarios requiring multi-hop retrievals.
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Models Retrieval Single NIAH↑
1K 2K 4K 8K 16K 32K 64K 16M

Base LM (+2 layers) – 60.43 29.54 15.37 8.30 3.89 2.13 0.0 -
Block Recurrent TFM – 66.80 30.61 13.96 7.60 6.01 2.13 4.29 -
RPTContriever fixed 42.13 18.45 11.66 6.71 4.24 1.42 2.86 -
Landmark Attn. adaptive 99.98 99.08 99.82 97.74 97.88 96.45 0.00 -
DRTretrieval×1 adaptive 98.23 99.12 98.50 98.76 98.59 100.00 100.00 100.00
DRTretrieval×2 adaptive 99.69 99.56 99.65 99.47 99.65 99.99 100.00 100.00

Models XSum↑ CNN/DailyMail↑ 2-hop NIAH with noises↑
R-1 R-2 R-L R-1 R-2 R-L 1K 4K 16K 64K 256K 4M

BaseLM 29.43 8.04 23.26 32.38 12.57 22.61 3.60 1.15 0.71 0.0 0.0 -
+2 layers 29.74 8.26 23.48 34.14 14.09 23.60 16.60 5.83 1.06 0.0 0.0 -

Landmark Attn. 27.98 6.96 21.99 34.06 13.80 23.77 90.82 88.35 86.41 0.0 0.0 -
DRTretrieval×1 30.30 8.59 23.92 36.27 15.88 25.08 41.07 33.39 39.93 38.57 35.29 34.29
DRTretrieval×2 30.39 8.64 23.98 36.39 15.96 25.15 88.52 84.45 86.21 81.43 94.11 79.41

Table 2: The performances of various models on summarization tasks and NIAH tests.

Prompt Generated w/ cpu offload w/o cpu offload
#tokens #tokens time/token↓ mem. cost↓ time/token↓ mem. cost↓

Landmark Attn. / Base LM 16K 128 160.9× 1.98× 4.16× 32×
48K 128 163.1× 2.98× 4.25× 96×

Block Recurrent TFM / Base LM 16K 128 - - 2.85× 2×
48K 128 - - 2.85× 2×

DRTretrieval×1 / Base LM 16K 128 1.25× 1.54× 1.06× 4.08×
48K 128 1.27× 1.62× 1.08× 9.41×

Table 3: The inference time per token and memory footprint ratio compared to the Base LM (12 layers with a
512 sliding window), with lower values indicating better performance.

Figure 3: Training speed, extrapolation ability

Table 3 shows DRT significantly outperforms Landmark Attn in terms of memory footprint and in-
ference speed. The main overhead for Landmark Attn arises from modifications to the self-attention
KV cache and gathering tensors from memory offloaded to the CPU. In DRT, thanks to the chunk-
wise retrieval, we perform retrieval only once every 64 tokens, which is 1/(12 × 64) of the corre-
sponding operation in Landmark Attn.

From Figure 3(a), it can be observed that the total training time increases linearly with the increment
of the sequence length. In the extrapolation experiments, both BaseLM and DRT perform well as
shown in Figure 3(b)(c). However, Landmark Attn fails to extrapolate at longer eval lengths. We
believe a possible explanation is that a longer context increases the probability of retrieving irrelevant
distant chunks, which stems from its limitations in pre-training directly on long contexts. An overly
short pre-training window prevents access to longer-range information, making the model unable to
learn to reduce the attention scores of long-range noise chunks. DRT benefits from being able to
pre-train directly on long contexts, alleviating this issue to a certain extent.

4.4 RETRIEVAL FROM SIMULATED INFINITELY LONG CONTEXT

We wonder whether a densely pre-trained retriever can generalize from a limited to an unlimited
context. To verify this, we simulate an infinitely long context by retrieving from all pre-trained
tokens. The details could be found in Appendix A.5.
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Model Corpus Self MiniPile↓Retrieval Retrieval
Base LM (attn. win. 512) No No 12.68
DRT w/ random retrieval Yes No 12.68
DRT w/ Contriever Yes No 12.65
DRT w/ Contriever No Yes 12.25
DRT Yes No 12.67
DRT Yes Yes 12.30
DRT No Yes 12.18

Settings:

Self-Retrieval:
Indicates if retrieval of past 48K tokens is enabled.

Corpus-Retrieval:
Indicates if retrieval from the pre-training corpus
is enabled.

Table 4: Valid set perplexity for MiniPile under different settings.

Results. From Table 4, we observe that the perplexity of DRT slightly rises instead of declines
when we extend the context to infinity. Retrieving information from a limited-length context yielded
the best results among all methods. A possible explanation is that retrieval from the vast amount of
chunks from the corpus may yield results with similar representations but semantically irrelevant
content. Notably, only Contriever benefits from corpus-retrieval when self-retrieval is disabled.
The key distinction between Contriever and DRT’s inherent retriever is that Contriever incorporates
random negative sampling during training. However, unlike Contriever, our negative samples are
drawn from a fixed-size context, meaning the negative sample candidates are fixed. Contriever,
on the other hand, performs random negative sampling via in-batch sampling, allowing for a more
extensive negative sample space. This insight could potentially contribute to retrieval from trillion
tokens in future works.

4.5 CASE STUDIES

Figure 4: In the case above, Retrieved 2nd best chunk describes a proposition which appears in the current

chunk. retrieved best chunk and retrieved 3rd best chunk are adjacent chunks which introduce the lemma
used in the next chunk.

By analyzing DRT’s retrieval results on the arXiv-math dataset, we find some intriguing cases. A
case is given in Figure 4. When retrieving past chunks, the results not only include the definition
of prepositions referenced in the current chunk but also lemmas to be used in the next chunk. This
validates the idea of causal retrieval, allowing us to not only retrieve semantically similar content
but also information that better predicts the next chunk. More case studies can be found in Ap-
pendix A.3.

5 CONCLUSION & FUTURE WORKS

In this study, we successfully optimize the retriever module with the auto-regressive LM objective
in an end-to-end manner. The core innovation lies in the Grouped Cross-Attention (GCA), which
makes relevance scores learnable by using them to fuse information retrieved by the current chunk
for next chunk prediction. Combined with Gumbel top-k sampling, this approach enables the pre-
training of LMs on context lengths extending up to 64K tokens.

In future work, we will explore self-supervised causal retrieval from vast amounts of tokens outside
the context. Meanwhile, we will combine structured representations (Hu et al., 2024b;a) to achieve
multi-granular retrieval.
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A APPENDIX

A.1 HYPER-PARAMETERS

Long-Range Language Modeling. We employ a Llama-like architecture (Touvron et al., 2023)
featuring a 12-layer, decoder-only transformer with 12 heads per layer (64 dimensions each), an
embedding dimension of 768, and an FFN size of 2048. Training utilizes the AdamW opti-
mizer (Loshchilov & Hutter, 2019) with β1 = 0.9 and β2 = 0.95, and a weight decay factor of
0.001. We used base learning rate 2 × 10−3 for all our experiments with a warmup stage that was
2% of the whole training and applied a cosine scheduler with final learning rate being 4 × 10−4.
We used GPT-2’s (Radford et al., 2019) tokenizer. We used mixed-precision training with bfloat16
over at 8 Nvidia A100 GPUs. We train all models with an effective batch size of 219 tokens for 60K
steps resulting in a total training budget of 32.2 billion tokens. We train Base LM, RPT and DRT
on each dataset with a context length of 16K tokens. Due to Landmark Attention doesn’t support
sliding-window attention, the model is pre-trianed with full self-attention with a context length of
768. Due to Block Recurrent Transformer cannot be fully paralleled, which takes 5× wall-clock
training time with 16K context length, we pre-train it with a context length of 4K.

A.2 HARDWARE-AWARE GCA PSUEDO-CODE

Algorithm 1 FLASHGCA forward pass

Require: Matrices Q ∈ RNq×d,K,V ∈ RK×Nkv×d in HBM, vector w ∈ Rk in HBM, block sizes Bc, Br .
1: Divide Q into Tr =

⌈
Nq

Br

⌉
blocks Q1, . . . ,QTr of size Br×d each, and divide K,V in to K×Tc blocks

where Tc =
⌈

Nkv
Bc

⌉
K1,1, . . . ,KK,Tc and V1,1, . . . ,VK,Tc , of size Bc × d each.

2: Divide the output O ∈ RNq×d into Tr blocks Oi, . . . ,OTr of size Br×d each, and divide the logsumexp
L ∈ RNq×K into Tr ×K blocks L1,1, . . . , LTr,K of size Br each.

3: Divide the output O′ ∈ RK×Nq×d into Tr blocks O1,1, . . . ,OK,Tr of size K ×Br × d each.
4: for 1 ≤ i ≤ Tr do
5: Load Qi from HBM to on-chip SRAM.
6: Load wk from HBM to on-chip SRAM.
7: for 1 ≤ k ≤ K do
8: On chip, initialize O

(0)
i = (0)Br×d ∈ RBr×d, ℓ

(0)
i = (0)Br ∈ RBr ,m

(0)
i = (−∞)Br ∈ RBr .

9: for 1 ≤ j ≤ Tc do
10: Load Kk,j ,Vk,j from HBM to on-chip SRAM.
11: On chip, compute S

(j)
i = QiK

T
k,j ∈ RBr×Bc .

12: On chip, compute m
(j)
i = max(m

(j−1)
i , rowmax(S

(j)
i )) ∈ RBr , P̃(j)

i = exp(S
(j)
i −m

(j)
i ) ∈

RBr×Bc (pointwise), ℓ(j)i = em
j−1
i −m

(j)
i ℓ

(j−1)
i + rowsum(P̃

(j)
i ) ∈ RBr .

13: On chip, compute O
(j)
i = diag(em

(j−1)
i −m

(j)
i )−1O

(j−1)
i + P̃

(j)
i Vk,j .

14: end for
15: On chip, compute O′

i,k = diag(ℓ
(Tc)
i )−1O

(Tc)
i .

16: On chip, compute Oi ← Oi +wkO
′
i,k.

17: Write Oi,k to HBM.
18: On chip, compute Li,k = m

(Tc)
i + log(ℓ

(Tc)
i ).

19: Write Li,k to HBM.
20: end for
21: Write Oi to HBM as the i-th block of O.
22: end for
23: Return the output O and the logsumexp L.
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Algorithm 2 FLASHGCA Backward Pass

Require: Matrices Q,O,dO ∈ RNq×d,K,V ∈ RK×Nkv×d, L ∈ RNq×K ,O′ ∈ RK×Nq×d in HBM,
vector w ∈ RK in HBM, block sizes Bc, Br .

1: Divide Q into Tr =
⌈

N
Br

⌉
blocks Q1, . . . ,QTr of size Br×d each, and divide K,V in to K×Tc, where

Tc =
⌈

N
Bc

⌉
blocks K1,1, . . . ,KK,Tc and V1,1, . . . ,VK,Tc , of size Bc × d each.

2: Divide O into Tr blocks Oi, . . . ,OTr of size Br × d each, divide dO into Tr blocks dOi, . . . ,dOTr of
size Br × d each, and divide L into Tr ×K blocks L1,1, . . . , LTr,K of size Br each.

3: Initialize dQ = (0)Nq×d in HBM and divide it into Tr blocks dQ1, . . . ,dQTr
of size Br × d each.

Divide dK,dV ∈ RK×Nkv×d in to K × Tc blocks dK1,1, . . . ,dKK,Tc and dV1,1, . . . ,dVK,Tc , of
size Bc × d each. Initialize dW = (0)Tr×K in HBM.

4: Compute D = rowsum(dO ◦O′) ∈ RNq×K (pointwise multiply), write D to HBM and divide it into Tr

blocks D1, . . . , DTr of size Br each.
5: for 1 ≤ k ≤ K do
6: Load wk from HBM to on-chip SRAM.
7: for 1 ≤ j ≤ Tc do
8: Load Kk,j ,Vk,j from HBM to on-chip SRAM.
9: Initialize dKk,j = (0)Bc×d,dVk,j = (0)Bc×d,dWk,j = (0) on SRAM.

10: for 1 ≤ i ≤ Tr do
11: Load Qi,dOi,dQi, Di from HBM to on-chip SRAM.
12: Load Li,k from HBM to on-chip SRAM.
13: On chip, compute S

(j)
i = QiK

T
k,j ∈ RBr×Bc .

14: On chip, compute P
(j)
i = exp(Sij − Li,k) ∈ RBr×Bc .

15: On chip, compute dVk,j ← dVk,j + (wkP
(j)
i )⊤dOi ∈ RBc×d.

16: On chip, compute dP
(j)
i = dOiV

⊤
j ∈ RBr×Bc .

17: On chip, compute dWi,k = rowsum(P
(j)
i ◦ dP

(j)
i ).

18: On chip, compute dS
(j)
i = wkP

(j)
i ◦ (dP

(j)
i −Di,k) ∈ RBr×Bc .

19: Write dWi,k to HBM.
20: Load dQi from HBM to SRAM, then on chip, update dQi ← dQi + dS

(j)
i Kj ∈ RBr×d, and

write back to HBM.
21: On chip, compute dKk,j ← dKk,j + dS

(k,j)
i

⊤
Qi ∈ RBc×d.

22: end for
23: Write dKk,j ,dVk,j to HBM.
24: end for
25: end for
26: dW = dW .sum(dim = 0)
27: Return dQ,dK,dV,dW .
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A.3 MORE CASE STUDIES

Figure 5: In the case above, retrieved top-1 chunk introduces the definition used in the target chunk, while the
adjacent retrieved 3rd best chunk and retrieved 4th best chunk both cover the same variants as those appear in
the target chunk. Retrieved 2nd best chunk contains the theorem and corollary used in the query chunk.

Figure 6: In the case above, retrieved top-1 chunk introduces the lemma used in the target chunk.

Figure 7: In the case above, retrieved top-1 chunk and retrieved 3rd best chunk are adjacent, which mentions
the same equation as target chunk. retrieved 2nd best chunk and retrieved 4th best chunk both mention

logG(n, x) , which also appears in target chunk.
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A.4 THE DETAILS FOR THE NIAH TEST

In all evaluations conducted for the NIAH tests, we fine-tune all models using checkpoints derived
from PG19, employing the same set of synthetic data. The number of fine-tuning steps is set to one-
tenth of the total steps used during pre-training, while all other hyperparameters are kept constant.
Examples of the synthetic data utilized for each task are presented in the table 5. Specifically, we
pad the input tokens to ensure that the landmark token can be inserted before “is” in the question.

Task Example

Single NIAH

(essays)...
The passkey is: {tokens}.
...
What is the passkey? The passkey is {tokens}.

2-hop NIAH with noises

(essays)...
DEF {tokens 5}->{tokens 6} ...
DEF {tokens 2}->{tokens 3} ...
DEF {tokens 4}->{tokens 5} ...
DEF {tokens 1}->{tokens 2} ...
...
The path from {tokens 1} is: {tokens 2}, {tokens 3}

Table 5: Task examples for the two NIAH tests.

A.5 THE DETAILS FOR INFINITELY LONG CONTEXT RETRIEVAL

We pre-train DRTenc-dec with 200M parameters on MiniPile and store all landmark representations
in a Faiss as described in § 3.3 to emulate an infinite context. The trained model has an embedding
dimension of 1,024, and an FFN size of 2,816. We train DRT on MiniPile for 20 epochs with 384K
tokens per batch. Specifically, we prepare DRT with different settings. DRTw/ random retrieval uses a
randomly generated vector for retrieval. DRTw/ Contriever utilizes a pre-trained retriever with fixed
parameters to select top-k relevance chunks, with information still fused via GCA.

A.6 DISCUSSIONS ABOUT THE RPTCONTRIVER BASELINE

In the original RPT, a reference LM is used to pre-prepare target chunks for each chunk, as discussed
in the related works. Compared to using Contriever as the retrieval module, the original method
offers stronger causal retrieval capabilities. However, since the code for retriever distillation in the
original RPT is not released and the approach is costly and less flexible, we opt to use Contriever
instead. RPTcontriever can be considered a fusion of RETRO and RPT. It retrieves past chunks in a
manner similar to RETRO and integrates the retrieved information in the style of RPT. The retrieval
process involves dividing every 64 tokens into a chunk, encoding them with Contriever to obtain
chunk representations, and then retrieving past chunks based on cosine similarity with the current
chunk.
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