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Abstract
Object detection methods based on deep neural
networks are vulnerable to adversarial examples.
The existing attack methods have the following
problems: 1) the training generator takes a long
time and is difficult to extend to a large dataset;
2) the excessive destruction of the image features
does not improve black-box attack effect(the gen-
erated adversarial examples have poor transfer-
ability) and brings about visible perturbations.
In response to these problems, we proposed a
more imperceptible attack(MI attack) with a stop-
ping condition of feature destruction and a noise
cancellation mechanism. Finally, the generator
generates subtle adversarial perturbations, which
can not only attack the object detection models
that are based on proposal and regression but also
boost the training speed by 4-6 times. Experi-
ments show that the MI method has achieved the
state-of-the-art attack performance in the large
datasets PASCAL VOC.

1. Introduction
In recent years, a large number of research and applica-
tions have proven that deep networks can achieve state-
of-the-art performance in various fields, including object
detection(Lin et al., 2017)(He et al., 2017), semantic seg-
mentation (Long et al., 2015)(Ronneberger et al., 2015),
self-driving cars(Chen et al., 2015), face recognition (Shu
et al., 2016)(Zhang et al., 2016), image-to-image transla-
tion (Isola et al., 2017)(Liu et al., 2017), etc. Although deep
learning has achieved great success, recent studies (Szegedy
et al., 2013)(Kurakin et al., 2016)(Madry et al., 2017) have
confirmed that classifiers based on deep neural networks
have serious security problems.
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Object detection can be roughly divided into two categories:
models based on proposal(Faster R-CNN (Ren et al., 2015))
and models based on regression(SSD (Liu et al., 2016)).
As a critical subtask in computer vision, it is equally vul-
nerable to adversarial perturbation. The DAG (Xie et al.,
2017) attacks the Faster R-CNN by optimizing to generate
adversarial examples. The Bose’s method (Bose & Aarabi,
2018) trains a generator to attack the face detector based on
the Faster R-CNN. To attack proposal-based and regression-
based models, the UEA (Wei et al., 2018) proposes a unified
framework to generate a transferable adversarial example
by combining the feature loss and the class loss.
However, these methods have apparent shortcomings. The
DAG (Xie et al., 2017) serves as an iterative optimization
method, which is very time-consuming. The Bose’s method
can not attack object detection models based on regression.
The UEA method (Wei et al., 2018) has the following prob-
lems: Firstly, the generator needs to iterate at least fifty
hours to make network convergence when the training im-
ages are 2511(VOC2007 (Everingham et al., 2007)). The
time for the training significantly limits the extension of
this approach to more massive datasets. Secondly, the unre-
stricted destruction of image features does not improve the
black-box affect(the generated adversarial examples have
poor transferability) and makes adversarial examples have
excessive noise.
UEA method which is blindly minimizing the feature layer
of the clean image and the Gaussian noise is unreasonable.
We hope to find an adversarial example that is less noisy
but still effective for two types of detection models. We call
it the MI(more imperceptible) attack. The contributions of
this paper can be summarized as follows:
•We have found that blindly destroying the target feature
does not improve the transferability of adversarial examples.
• We find a stopping condition of the feature destruction.
Under the same experimental conditions, we improve the
transferability of adversarial examples and accelerate train-
ing speed by 4-6 times.
• For excessive noise, we use a noise cancellation mecha-
nism(the group optimization and the random elimination)
to generate more imperceptible adversarial perturbations.
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2. Methodology
In this section, We will analyze the problems caused by
over-destructive features in the UEA methods and introduce
the MI attack approach.

2.1. Problem Definition

Given a image x, which have n objects O =
{o1, o2, ..., on} in a specific dataset D. For objects
in ith image, it is represented by binary groups Γ =
{(bi1, yi1), (bi2, y

i
2), ..., (bin, y

i
n)}, where bin represents the co-

ordinates of the nth object in ith image, and yin represents
the label of the nth object in ith image. Assuming that
object detection models are M = {m1,m2, ...,mj}, then
object detection can be expressed as M : Rw×h×c −→
R|Γ|. The M set includes both proposal-based models and
regression-based models.
For an arbitrary detection model mj , the correct classi-
fication label fy(x, on) and the bounding-box function
fb(x, on) denote the detection results of the nth object on
the clean image x. We add a slight perturbation δ to gen-
erate an adversarial example x + δ. When the adversarial
example makes the labels of all objects go wrong or the
IOU between predicted boxes and the ground truth is less
than 0.5, i.e., ∀n, fy(x+δ, on) 6= fy(x, on) ∨ IOU(fb(x+
δ, on), fb(x, on)) < 0.5, we think object detection model
mj can be fooled successfully.
For adversarial attacks, we conduct the white-box attack on
the Faster-RCNN model. In the training phase, we know the
network architecture and parameters of the Faster-RCNN
to train our generator. In contrast, we only know the output
of the SSD model. Therefore, the adversarial attack for the
SSD model is the black-box attack. The transferability of
the adversarial example refers that the adversarial example
has a good performance on the black-box attack.

2.2. Problems caused by feature destruction

In general, the transferability of the adversarial example for
the black-box model has poor performance. For mainstream
object detection methods, they utilize the deep neural net-
work as a feature extractor. The Sabour’s (Sabour et al.,
2015) approach shows that the image features in a deep
neural network (DNN) can be manipulated to generate ad-
versarial examples. Thus, we can destroy image features
to improve the transferability of adversarial examples for
mainstream object detections, e.g., We can manipulate the
image features to make it close to Gaussian noise.
Problem 1 Do not improve the black-box affect(the adver-
sarial example have poor transferability)
Problem 2 Generated adversarial examples bring about vis-
ible perturbations.

Problem 3 The training takes a lot of time.

ρ =

T+1∑
t=1

θ

T + 1
· ∇J(xt)−

T∑
t=1

θ

T
· ∇J(xt) (1)

To minimize the loss function, we need to find a trade-off
between image similarity and feature destruction. The Eq. 1
represents the gain of the noise amplitude, and the T repre-
sents the number of iterations. Eventually, image similarity
will tend to be stable, which means that the disturbance will
have a minimum upper bound θ. The higher the iterations
T , the smaller the gain ρ. In other words, the increment of
each iteration ρ is inversely proportional to the total number
of iterations T .

2.3. Stopping Condition for the Feature Destruction

In the previous section, excessive feature destruction is not
only useless for improving transferability and brings abount
evident perturbations. Thus, finding a suitable stopping
condition is essential. Instead of iterating 20 times for each
sample’s feature loss, we use the SSD model as an indicator,
and it will indicate to the stop of the feature destruction. We
only need to send each generated adversarial example to
the SSD model to get the labels of targets yssd in the input.
If yssd /∈ yground−truth, then we think that the feature
destruction is enough to attack the regression model.
To generate an adversarial example quickly, we still use a
GAN to generate an adversarial example. The generation
network is used to generate adversarial examples that can
fool the classifier. The discriminator takes an image as input
and attempts to predict it as the original image or the output
image of the generator. It determines that the real picture is
1, and the generated picture is 0.

LGAN = Ex∼Pdata
[logD(x)

+ log(1−D(x+ 〈G(x), A〉))]
(2)

The GAN loss can be represented by Eq. 2, D stands for
discriminator, and G stands for generator. By minimizing
GAN loss, we can make the generated adversarial examples
as close as possible to the spatial distribution of real images.
Besides, for the detection task, we only need to perturb the
critical target area so that the target area can not be detected.
Therefore, during the training and testing process, we can
get an attention matrix A through the Faster R-CNN.

LSim = Ex∼Pdata
[‖ 〈G(x), A〉 ‖2] (3)

We use the L2 distance as a metric, by minimizing the
L2 distance between the adversarial example and the input
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picture, as shown in Eq. 3.

LCls = Ex∼Pdata
[

N∑
n=1

[fyn
(x, on)

− fy′
n
((x+ 〈G(x), A〉), on)]]

(4)

The Eq. 4 define the classification loss function. Where
the x represents the input and the on can be defined as the
nth target area in the picture x. yn and y

′

n represent the
classification label for the nth target area on the clean image
and the adversarial image. The f represents the network of
object detection.

LFea = Ex∼Pdata
[

N∑
i=1

‖ 〈Ai, (Xi −GNi)〉 ‖2] (5)

In Eq. 5, theXi represents the ith image features of network
and the GNi represents the ith Gaussian noise features.
The Ai represents attention matrix A in the ith layer in
deep neural network. The (Wei et al., 2018) achieves the
purpose of destroying the feature of the image object region
by minimizing the L2 distance between the input and the
Gaussian noise feature layer.

Ltotal = LGAN + αLSim + βLcls + γLFea (6)

such thatfssd(x+ 〈G(x), A〉) 6= yground−truth

Therefore, the final loss function can be expressed by Eq. 6.
It consists of GAN loss, similarity loss, classification loss,
feature loss, and iteratively optimizes under the condition
that the generated adversarial example can still effectively
attack the SSD model. We set α is 0.05, β is 1. We choose
the fifteenth layer and the twenty layer in the feature loss,
and the γ is [0.00010, 0.00020]. The learning rates of the
generator and the discriminator are 0.0002. We train the
generator and the discriminator on a single GPU Titan XP.
Under the same condition of the hardware, the adversarial
examples have good attack performance on the mainstream
object detection model, and the training time significantly
shortens by 4-6 times compared with the UEA method.

2.4. Eliminate Noise Redundancy

When we use the Eq. 6, we can prevent over-destruction
features to a certain extent and generate less-noise adver-
sarial examples. However, the generated adversarial exam-
ples still have excessive noise. Similar to the method (Shi
et al., 2019), we can get an adversarial example which has a
smaller visual difference with the input by using the noise
cancellation technique, and it can still attack the proposal-
based model and the regression-based model. There is a
better adversarial example x4 around x3, which not only

attacks both detection models at the same time but is closer
to the original sample x.

max(‖ x3 − x ‖2 − ‖ x4 − x ‖2) (7)

The Eq. 7 represents the objective function of the optimal
adversarial example x4. Where x represents the original
image, x3 represents the suboptimal adversarial example,
and x4 represents the optimal adversarial example. We only
need to optimize on suboptimal solution x3 in the previous
section. Removing too much noise will cause the adversarial
example to fail, so the optimal solution x4 exists in a sphere
with a radius of Ψ in the center of the suboptimal solution
x3.
Group Optimization

z0 = x3 − x (8)

The initial noise z0 can be represented by Eq 8, and the
number of iterations of the group optimization is Tg . We can
divide the noise into Tg groups and define the noise group
Z = zn, zn−1, ...z1, where zn = n/Tg ∗ z0, n = 1, 2, ...Tg .
In the test phase, we send clean images to the generator to
generate the adversarial example x3 and to the two types
of detection models to get the initial labels Y . Next, we
obtain the initial noise z0 and calculate the noise group Z.
The noise group Z is sequentially added to the clean image
and sent to the two types of detection models to obtain the
adversarial classification labels Y ′. When ∃y ∈ Y ′, y ∈ Y ,
stop iteration and return the last group noise zg .
Random Elimination

zr = zg ·R,R =

{
0, random() ≤ π
1, random() > π

(9)

The noise after group optimization is called zg , but the noise
still has some redundancy. Therefore, we adopt a random
elimination method. Assuming that the random iteration
optimization number is Tr, we initialize a matrix R0 that is
all 1 and randomly selects an element with a ratio of less
than the threshold π to be 0. The resulting new matrix R is
then multiplied by the group noise zg to obtain a new noise
zr, as shown by Eq.9. Next, the noise obtained from each
iteration is added to the clean picture and sent to the object
detector to obtain the adversarial classification labels Y’.
When ∃y ∈ Y ′, y ∈ Y , the iteration stops and returns the
previous noise.

3. Experiments
3.1. Datasets

For object detection in the image, we used 5011 images from
the PASCAL VOC 2007 training set to train the generator.
We will evaluate our approach from three perspectives: suc-
cess rate, time, and image quality. Success Rate:For object
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Table 1. Ablation experiment of MI method on images for Faster
R-CNN model and SSD model. The ORI represents that only the
SSD is used as a training stop condition to generate adversarial
examples. +GO represents that adversarial examples are generated
by using the group optimization on adversarial examples generated
by the ORI. +RE represents that adversarial examples are generated
by using the random elimination on adversarial examples generated
by the ORI. MI represents that both the training stop condition and
two noise cancellation methods are used to generate adversarial
examples.

Methods UEA ORI +GO +RE MI
PSNR 28.65 28.65 30.04 29.05 30.15

mAP FR 0.21 0.11 0.14 0.14 0.16
mAP SSD 0.06 0.02 0.05 0.02 0.06

Table 2. Comparison of UEA and MI on clean images.
Evaluation SSD FR Times(s) PSNR

Clean Images 0.70 0.68 \ Inf
UEA 0.21 0.06 8.4 28.65
MI 0.16 0.06 1.8 30.15

detection, we use mAP to judge our attack effect. Time:The
time here is the time to train the generator. PSNR:we eval-
uate the image quality by using the Peak Signal to Noise
Ratio, PSNR.

3.2. Ablation Study

We discuss the ablation study of this method. +GO, +RE,
MI respectively represent that only the grouping optimiza-
tion algorithm is used on the basis of the original method,
only use the random elimination algorithm, and use both
of them. In Table 1, after using the noise cancellation al-
gorithm, the image quality will be significantly improved,
but the attack effect on the SSD will also decrease, which
means that the image quality is negatively correlated with
the transferability of adversarial examples. The grouping
optimization algorithm is better than the random elimination
algorithm. In the same attack effect, the group optimization
algorithm generates adversarial examples which have better
image quality. When we use both of them, we will get ad-
versarial examples that have the best image quality, and its
attack on SSD and FR will be worse.

3.3. Results on Adversarial Images

We mainly compare the performance of the UEA method
and the MI method on clean images. As shown in Table 2,
the adversarial examples generated by the MI method are
very effective for the Faster R-CNN model and the SSD
model. Compared with the UEA method, the mAP of ad-
versarial examples generated by the MI method is only 0.16
(5 percentage points lower) for the black-box attack on the
SSD model. Thus, the adversarial examples by the MI
method have better transferability compared with the UEA

FR FR

SSD SSD

! " !
#

! !
"

!

Figure 1. Quantitative results for images. The first line represents
the original image, the detection results of Faster-RCNN in the
original image, and the detection results of SSD in the original
image. The second line represents the adversarial perturbations,
the detection results of Faster-RCNN in the adversarial image, and
the detection results of SSD in the adversarial image.

method. For the training time, the average time for the
MI method to train a sample is only 1.8s, which is nearly
5 times faster than the UEA method. The shortening of
training time makes it possible to extend the MI method
to training on large datasets. For PSNR, the image quality
generated by the MI method is higher than that of the UEA
method. Therefore, the MI method generates more imper-
ceptible adversarial examples, which are still valid for the
Faster R-CNN model and the SSD model.
In Figure 1, the first and second columns show the results of
the Faster R-CNN model and the SSD model on the clean
image x and the adversarial example x∗, respectively. x∗−x
represents the adversarial perturbations by the MI method.
As shown in the Figure 1, the adversarial examples gener-
ated by the MI method can successfully fool both types of
detection models.

4. Conclusion
In this paper, we propose an attack method that can generate
more imperceptible perturbations to the clean images and
effectively attack two types of object detection methods.
Our proposed MI method shortens the training time of the
UEA method by 4-6 times, making it possible to train the
generator on a large dataset. At the same time, it can produce
an adversarial example with higher image quality or more
transferable. We have experimentally validated on large
datasets PASCAL VOC and ImageNet VID. Considering
the speed of training and the effect of the adversarial attack
together, we believe that the MI method is superior to the
existing adversarial attack methods for object detection on
images.
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