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Abstract

We study the regret minimization problem in the novel setting of generalized
kernelized bandits (GKBs), where we optimize an unknown function f* belonging
to a reproducing kernel Hilbert space (RKHS) having access to samples generated
by an exponential family (EF) noise model whose mean is a non-linear function
w(f*). This model extends both kernelized bandits (KBs) and generalized linear
bandits (GLBs). We propose an optimistic algorithm, GKB-UCB, and we explain
why existing self-normalized concentration inequalities do not allow to provide
tight regret guarantees. For this reason, we devise a novel self-normalized Bernstein-
like dimension-free inequality resorting to Freedman’s inequality and a stitching
argument, which represents a contribution of independent interest. Based on
it, we conduct a regret analysis of GKB-UCB, deriving a regret bound of order
O(yr+/T/k+), being T the learning horizon, 7 the maximal information gain,
and k., a term characterizing the magnitude the reward nonlinearity. Our result
matches, up to multiplicative constants and logarithmic terms, the state-of-the-art
bounds for both KBs and GLBs and provides a unified view of both settings.

1 Introduction

Multi-Armed Bandits [MABs, 15] have been extensively studied and extended over the years. One
key research direction involves expanding the MAB framework to continuous action spaces. Doing
this requires introducing some notion of similarity or structure in the expected rewards relative to the
distance between arms. Without such structure, information gathered from explored actions/arms
cannot be transferred to unexplored ones, making learning infeasible [4]. The most known and studied
structure over the arms is the /inear one, and led to the design of linear bandits [LBs, 1, 6]. In LBs,
the expected reward is modeled as the inner product between the action and an unknown parameter
vector (i.e., E[y:|x:; 0%] = (x4, 0*)). This setting strictly generalizes the finite-arms MABs [15, 23]
that can be retrieved considering arms as in an R% canonical basis.

LBs, in turn, have been extended in parallel in two directions: generalized linear bandits [GLBs,
10] and kernelized bandits [KBs, 5, 29]. On the one hand, GLBs employ a generalized linear
model [GLM, 19] to allow for the representation of different noise models (including Gaussian and
Bernoulli). This is achieved with the use of a real-valued non-linear inverse link function u(-), such
that the expected payoff is defined as E[y;|x;; 0*] = u({x¢, 0*)). On the other hand, KBs focus on
the optimization of an unknown expected reward function belonging to a reproducing kernel Hilbert
space (RKHS) induced by a known kernel function k(x, x’), often resorting to Gaussian processes
for designing algorithms [22]. We observe that GLBs fall back to LBs when the identity link function
u = I is considered, and KBs fall back to LBs when a linear kernel k(x,x’) = (x, x’) is considered.
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In this work, we propose the novel generalized kernelized bandit (GKB) setting, which unifies GLBs
and KBs (Figure 1). This setting enables learning in the scenarios in which the unknown function
f* comes from an RKHS and the samples come from an exponential family model whose mean is
obtained by applying an inverse link function y to function f*. This allows accounting for a variety
of noise models, including Gaussian and Bernoulli [3].

As established by the literature [1, 9, 17], when designing
optimistic regret minimization algorithms for either GLBs

. . GLB LB KB
and KBs, a fundamental technical tool are self-normalized 1(x,0%)) (%0, 0% F(x0)
concentration inequalities [7]. When targeting regret min-

.. . . . L. d < oo d < oo =00
imization in the novel setting of GKBs, it is necessary iR =Y -1
to employ a concentration inequality that combines the -

requirements of GLBs and KBs, i.e., it should avoid de- GKB pu(f*(x1))
pendencies on the minimum slope /i of the inverse link d=c0 f1€Rsg

function (as in GLBs) and on the dimensionality of the
feature representation (as in KBs). The seminal work [1]
provides a self-normalized concentration inequality for
least square estimators under subgaussian noise, exploit-
ing theoretical advancements in self-normalized processes and pseudo-maximization of [7, 8]. How-
ever, this inequality does not conveniently manage the case in which the samples come from an
exponential family model where the variances depend on inverse link function y, ultimately leading
to a dependence on its minimum slope. To cope with this issue, [9] derive a concentration inequality
via a pseudo-maximization technique that results in a tight regret bound for GLBs, accounting for the
heteroscedastic characteristics of the noise (i.e., Bernstein-like). However, their concentration inequal-
ity presents a dependency on the dimensionality of the feature vector (i.e., dimension-dependent).
While not being problematic for GLBs, this hinders a direct application to GKBs, where the feature
representation (induced by the kernel function) can be infinite-dimensional. Additionally, [5] design
a self-normalized bound for martingales which provides tight concentration results for the KB setting,
directly operating with kernels. However, this result can be considered the counterpart of [1] in the
dual (kernel) space and, for this reason, it shares the same limitation when using an inverse link
function, generating a dependence on the minimum value of /i when applied to GKBs.! It appears
now necessary to derive a novel concentration result that is both dimension-free and Bernstein-like to
properly address the GKB setting.

Figure 1: Inclusion of the settings (f(-)
is assumed to belong to a RKHS).

Outline and Contributions. We start by introducing the setting of the GKBs, the assumptions,
and the learning problem (Section 3). Then, we design GKB-UCB, an optimistic regret minimization
algorithm (Section 4) and we introduced some preliminary results (Section 5). The key contributions
of this work are contained in Sections 6 and 7. In Section 6, we discuss more formally the limitations
of the existing inequalities and derive a novel self-normalized Bernstein-like dimension-free inequality
via the application of Freedman’s inequality together with a stitching argument. In Section 7, we
analyze the GKB-UCB with a confidence set defined in terms of the previously derived inequality
and show that it achieves regret of order O(vy7+/T/k.), being T the learning horizon, yr the
maximal information gain, and . a term characterizing the slope of the inverse link function in the
optimal decision (an efficient implementation is reported in Appendix A). This result matches the
state-of-the-art of both GLBs and KBs up to multiplicative constants and logarithmic terms.

2 Preliminaries

Notation. Leta,b € N with a < b, we denote with [a, b] := {a,a+1,...,b} and with [b] = [1, b].
Let d € N, I; denotes the identity matrix of order d and 04 the column vector of all zeros of size d
(d is omitted when clear from the context). N'(u, X) denotes the multi-variate Gaussian distribution.

Reproducing Kernel Hilbert Space. Let X C R? be a decision set and # be a Hilbert space
endowed with the inner product (-, -) (and induced norm || - ||). H is a reproducing kernel Hilbert
space [28] if there exists a function k£ : X x X — R, called kernel, such that it satisfies the reproducing
property, i.e., for every function f € H it holds that f(x) = (f, k(x,-)) for every x € X. It follows
that the kernel k is symmetric and satisfies the conditions for positive semi-definiteness. We denote
with I the identity operator on H. From Mercer’s theorem [20, 14], there exists a (possibly infinite-

'We refer to Table 1 for an overview of the properties of concentration inequalities present in the literature.
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Self-normalized Properties

Concentrations Condition Dim-free Empirical Heterosc.  Technique
Dani et al., 2008 [6] X X X Freedman
Abbasi-Yadkori et al., 2011 [1] v v X Pseudo-Max
Chowdhury and Gopalan, 2017 [5] 4 4 X Pseudo-Max
Faury et al., 2020 [9] Bernstein X v v Pseudo-Max
Zhou et al., 2021 [36] Bernstein X X X Freedman
Ziemann, 2024 [37] Bernstein X v X PAC-Bayes
Our work | Bernstein v/ v/ v/ Freedman

Table 1: Summary of the properties of self-normalized concentrations.

dimensional) feature mapping ¢ : X — RY such that for every function f € H there exists a
(possibly infinite-dimensional) vector of coefficients & € RY such that for every x € X, we have
J(X) =D ien @idi(x) = (, ¢(x)), where o depends on f but not on x and for every i € N, we
have that ¢; : X — R depends on x but not on f and the series converges absolutely and uniformly
for almost all x. Moreover, for every i,j € N with i # j, we have ||¢;|| = (¢i,¢;) = 1 and
(¢i,05) = 0,1.e., (¢;)ien forms an orthonormal basis. Thus, if f = (a, ¢(x)), we have || f|| = ||a].

Furthermore, for every x € X, we have that | f(x)| < || f||||E(-, x)|| = || flv/k(x, %).

Information Gain. Let k& be a kernel, lett € N, and let x;,...,x; € X be a sequence of decisions,
the information gain I'y and the maximal information gain -y, are defined, respectively as [29]:
Iy == flogdet(I+ A~'K;) and v, := maxy, . x,ecx L', where A > 0 and K; € RE-Dx(E=1) g
the Kernel matrix (K;); ; = k(x;,x;) fori,j € [t — 1]. I'y is the mutual information between the
random vectors f; ~ NV (0,?K;) and y; = f; + €; where €; ~ N(0;,v?\I;), for arbitrary v > 0.
We use the abbreviation K, (\) := A + Ky, so that, Ty := £ log det(A™'K())).?

Covariance Operators. Let 7{ be a RKHS with kernel k£ inducing the feature mapping ¢, let

t € N and x1,...,%x; € X be a sequence of decisions, the covariance operator is defined as:
Vi) =Vi+ M = Zz,: #(x5)p(xs) " 4+ AI. The following identity was shown in [32]:
det(AT1V4 (M) = det(ATTK (V). )

Canonical Exponential Family Models. Let f : X — R, a real-valued random variable y belongs
to the canonical exponential family [EF, 3] if it has density:

X)— X
o ) — o (yf( ) = M)
g(7)

where 7 > 0 is a temperature parameter and g,m : R — R and h : R? — R are suitably defined
functions [17]. This EF model allows representing a variety of distributions, including Gaussian,
Bernoulli, exponentials, and Poisson. Function m is called log-partition function and fulfills the
following assumptions. As customary [17, 25], m is assumed to be three times differentiable and
convex. We define the inverse link function p = m/, that, since m is convex, is monotonically
non-decreasing. Thus, the following hold [17]: E[y|x; f] = m/(f(x)) = p(f(x)) and Var[y|x; f] =
g(7)(f(x)). When f is a linear function, the model in Equation (2) is also called generalized linear
model [GLM, 19]. We also define the maximum slope of p, i.e., Ry = Sup ey xex 1(f(X))-

+ h(y,T)) ) (@)

3 Problem Formulation

We define the novel generalized kernelized bandit (GKB) setting and the learning problem.

Setting. Let f* € H be an unknown function belonging to the RKHS #. At every round ¢ € [T7,
being T' € N the learning horizon, the learner chooses a decision x; € X by means of a policy
m : Fee1 — X, being Fy_1 = o(x1,Y1,--.,Xt—1,Yy:—1) the filtration of all random variables
realized so far, and observes a reward y; ~ p(:|x¢; f*). The goal of the agent is to find a decision
x* € X maximizing the expected reward: x* € arg max, ¢y p(f*(x)). Since x is monotonically
non-decreasing, maximizing p(f*()) is equivalent to maximizing f*(-). It is worth noting that the
GKB generalizes two well-known settings: (¢) generalized linear bandits [GLBs, 18] when the kernel

>Known bounds for ; are available for commonly used kernels [29, 31].
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is linear k(x,x’) = (x, x’) and (i7) kernelized bandits [KBs, 5] when the inverse link function is the
identity function, i.e., u = I.

Learning Problem. We evaluate the performance of a learner, i.e., a m = (7¢) ¢ [T with cumulative
regret: R(m, T) := 37,y ((f*(x7)) — p(f*(x¢))), where x; = 7 (F;—1) forall t € [TT.
Assumptions. We make the following assumptions about function f* and the RKHS H.
Assumption 3.1 (Bounded Norm). If exists a known constant B < +oo such that || f*|| < B.

Assumption 3.2 (Bounded Kernel). It exists a known constant K <-o0o such that sup k(x,x)<K?2
xXeEX

Assumptions 3.1 and 3.2 are widely employed in the KB literature [S], where, in particular, Assump-
tion 3.2 is enforced with K = 1 and it is fulfilled by commonly used kernels (e.g., Gaussian and
Matérn kernels). Assumptions 3.1 and 3.2 are the analogous in GLBs of requiring the boundedness
of the parameter vector (since if f = (a, ¢), then, || f|| = ||«||) and requiring the boundedness of
the norm of the decisions (since when k(x,x’) = (x,x’) we have that k(x,x) = ||x]||?), respec-
tively [2, 17]. The combination of the two allows bounding the L..-norm of f* as || f*||cc < BK

Concerning the EF noise model, we make the following assumptions.

Assumption 3.3 (Bounded noise). Let x € X, y ~ p(:|x; f*), let ¢ = y — p(f*(x)). There exists a
known constant R < +00 such that || < R almost surely.

This assumption is widely used in the GLB literature [2, 25]. If we deal with v/?-subgaussian noise
(instead of bounded), we can take R = v+/2log(27'/0) to ensure that |e;| < R uniformly for ¢t € [T]
w.p. 1 — 6.3 Finally, we introduce the generalized self-concordance property [24].

Assumption 3.4 ((Generalized) Self-concordance). There exists a known constant Ry < +00 such
that for every function f € H and decision x € X, it holds that |ji(f(x))| < Rsi(f(x)).

In [25], the authors show (Lemma 2.1) that if the EF model generates random variables that are
bounded by |y| < Y a.s., Assumption 3.4 hold with Ry = Y. Moreover, it holds for Bernoulli noise
with R, = 1 and Gaussian with R, = 0 [17].

Problem Characterization. We define the following characterizing the difficulty of the problem:
P m and Ky = SUpycy m We have that s, < kx. Our goal is to devise algorithms
for which the dominating term in the regret bound depends on &, only.

4 Algorithm

In this §ect10n, we. introduce Genel.*allzed Input: Decision set X, confidence sets Cy (3)
Kernelized Bandits-Upper Confidence for t € [T7] do

Bounds (GKB-UCB), a regret minimization //Maximum Likelihood Estimate
optimistic algorithm for the GKB setting fi € argmin £,(f) (Equation 3)
(Algorithm 1). GKB-UCB is composed of two TeH

steps: maximum likelihood (ML) estimation //Optimistic Decision Selection

and optimistic decision selection. We pro- (fe,xe) € feacrg( ;)ni’éxl‘(f (x)) (Equation 6)
vide a computationally tractable version in Play x; and observe "

Appendix A. end

Maximum Likelihood Estimate. At each Algorithm 1: GKB-UCB.

round ¢ € [T, we employ the samples collected

so far {(Xs, ¥s) }se[¢—1]» to obtain an estimate f, of f*. Starting from the EF model, we minimize
the Ridge-regularized log-likelihood:

gy m 3 LR IO e, vy e ®

where A > 0 is the Ridge regularization parameter. The ML estimate is denoted as ﬁ €
argmin .4, L4(f). Since, for Mercer’s theorem, when f € H, we can write f = (a, ¢) with

3This will result in an additional logarithmic term in the final regret bound only.
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a fixed feature function ¢, with little abuse of notation, we can look at £; as a function of the
parameters o, i.e., £;(a) = L£;(f). With this in mind, we introduce the operator g;(f) € RY related
to the gradient of the loss £:(f) w.r.t. the parameters « and the weighted covariance operator

Vi(\; f) € RN¥*N corresponding to the Hessian of the loss £;(f) w.r.t. parameters c:

) :z_:m¢(xs)+)\a7 Vﬁt(f):_z_:ys¢(XS) +gt(f); )
24 2 g(n)

B ) = 92l) = Tl +01 = 3 P o) T 47 ®

The loss function £; and the operators g; and 17,5 defined above reduce to the ones employed for
GLBs under the assumption that the kernel k is the linear one [2, 9, 17]. Furthermore, if y = I, we

have that V;(); f) = V;()\), i.e., the covariance operator.

Optimistic Decision Selection. Once the ML function ft is computed, the algorithm chooses an
optimistic function f; € # in a suitable confidence set C;(0), together with the optimistic choice x;:

(foxi) € argmax  pu(f(x)). (6)
fECL(5),xeX

It is worth noting that since p is non-decreasing, we can ignore y in the maximization. We will
consider a confidence set, defined for every round ¢ € [T and confidence § € (0, 1) as follows:*

@ ={ren: [ -at), ., <B6D}, 0

where the confidence ratio B;(4; f) will be specified later with the goal of guaranteeing optimism,
i.e., that the true unknown function f* belongs to C;(d) in high probability, and limiting the regret.

5 Weighted Kernel

We discuss how the combination between a function f € # with an inverse link function x induced an-
other RKHS space that can be characterized by its weighted kernel. Let f € ?—l we deﬁne the weighted

feature mapping (now dependent on f) for every x € X as: qS X f) =@ ~1p(x). In the
primal (feature) space, this allows looking at the weighted covariance operator Vt()\ f ) as the covari-

ance operator induced by the feature mapping ¢(-; f), i.e., Va(\; f) = P 11¢(Xs, Ho(xe; [)T+AL
Passing to the dual (kernel) space, we define the Welghted kernel as:

R, X ) = (00 1), 603 1)) = a(r) VAT EkGe X )VEAFE),  vxx € X, (®)
This is, in all regards, a valid kernel since it is obtained starting from a valid kernel and performing
a legal transformation [28]. This way, we can define the weighted kernel matrix as I~(t()\; f) =
M + K, (f), where K, (f) = (k(x;, X;; f))i,je[t—1]- Using the identity in Equation (1), we can also
deduce that det(A™1V,(\; f)) = det(A"K;(); f)). We also define the weighted information gain
ft(f) and the weighted maximal information gain ¥;(f) as Ty(f) =1 5 log det(/\_lﬁt()\' f)) and
i(t) = maxx, . x,ex ft (f). Finally, we consider the maximum value of the (maximal) information
gain by varying the function f in H, i.c., [;(H) = SUp ey Ty(f) and 7, (H) = sup ey Ve (f)- The
following result relates weighted and unweighted information gains.

Lemma 5.1. Let H be a RKHS induced by kernel k. Lett € N and let X1, . ..,x; € X be a sequence
of decisions. It holds that T'y(H) < max{1, Ryg(m) 1T

Notice that the bound introduces just a dependence on the maximum slope of the inverse link function
R, and no dependence on the minimum slope . This result will play a significant role in the
derivation of an efficient implementation for GKB-UCB (Appendix A).

*Assessing whether a function f € H belongs to the confidence set C;(8) is clearly intractable since it
requires computing norms of operators. In Appendix A, we provide an efficient alternative confidence set that
will lead to analogous regret guarantees.
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6 Challenges and New Technical Tools

In this section, we discuss the main challenges for achieving sensible regret guarantees for GKBs.
We start discussing the limitations of existing self-normalized concentration bounds (see Table 1) to
control the error in the ML estimate (Section 6.1). This motivates the need for a novel self-normalized
inequality that represents a key contribution of this work (Section 6.2).

6.1 Limitations of Existing Self-Normalized Concentration Inequalities

To understand the need for a novel concentration bound, we need to anticipate some key passages of
the regret analysis. We recall that the confidence radius B;(J; f) should be designed to guarantee
that: (¢) the true unknown function f* = (a*, ¢) belongs to C;(d) (Equation 7) and (i¢) the regret is
as small as possible. For point (), we can conveniently express the difference between the operators
g; evaluated in the true function f* and in the ML estimate f; (see Lemma 7.1):

t—1

g(f*) = g:(Fi) = (1) 71D €sb(xs) + Ao, ©)
s=1

where €, = ys — u(f*(xs)) is the noise. Thus, since since o* is bounded in norm under Assump-
tion 3.1, to suitably design By(J; f), we need to control the martingale S; = Z;ll €sP(xs). For

point (i), in the regret analysis, we need to bound the difference between optimistic function f; and
true unknown function f*, both evaluated in the played decision x;, i.e., f;(x¢) — f*(x;) with the
martingale S;. Similarly to [2, 9], this is done by decomposing both functions as an inner product
(Mercer’s theorem) and then applying a Cauchy-Schwarz inequality by making a specific choice of
operator Wy (f*), possibly depending on the unknown function f*:

Foloee) = F(x) = (@ — 0", 6(x0)) < 11 — 0 [y, o) [0l gy - (10)

(A) B)

The choice of operator W;(f*) has two effects: (i) by relating term (A) with the confidence set
C1(0) definition, it determines the multiplicative coefficient and the norm under which martingale
S; has to be controlled and (%) it allows bounding (B) by means of an elliptic potential lemma [16,
Lemma 19.4]. We now discuss two choices of operators W;(f*) leading to different concentration
bounds and, consequently, confidence sets, and discuss their advantages and disadvantages.

Covariance Operator (W;(f*) = V;(\)). We start considering the case in which W;(f*) = V;(A),
where V; is the usual covariance operator. In this case, we can link the term (A) with the confidence
set as follows (see Lemma C.4):

(A) = 1 — "l < (14 2R BE) max{1, 8(r)rax} 90(F) = g:(F)|

;3D

Vi )

introducing an inconvenient multiplicative dependence on max{1, g(7)kx }, i.e., on the minimum
slope kx of the inverse link function. At this point, we have to control the martingale S; under

the norm weighted by V,"*()\), as ‘ ge(f*) — gt(ft) —

(IS¢l v,~1(x) can be conveniently bounded by using a self-normalized concentration bound for sub-

B .
N < HStHVt_l()\) + 5 The quantity

gaussian5 martingales (i.e., Hoeffding-like), as in the seminal work [1]:
ISelly,—+ < Ry/210g(671) + log det(A-1V,(A)) = Ry/21og(0~1) +log det(A\ 1K, (X)), (12)

where the equality is obtained by Equation (1). We recall that the second bound is also obtained in
Theorem 1 of [5] where the quantity ||.S; ||V;1 is controlled in the dual (kernel) space. The advantage
of these bounds is that they do not exhibit a dependence on the dimensionality d of the feature space
¢, which in GKBs is infinite. Nevertheless, in this way, the dependence on the minimum slope of the
inverse link function xy (as in Equation 11) becomes unavoidable in the regret. This suggests that
we should prefer a different choice of operator Wy (f*).

Weighted Covariance Operator (W, (f*) = XN/t(A; f*)). The presence of the multiplicative factor
kx depends on the covariance operator and emerges also in the GLB setting when making the choice

We recall that since |es| < R a.s., it is also R?-subgaussian.
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Wi(f*) = Vi(A) [2, 9]. The solution, in the GLB case, consists of choosing the weighted covariance

operator Wi (f*) = V;(X; f*), where each outer product ¢(x,)é(x,) " is weighted by the variance
% of the noise random variable €,. This allows relating the distance of the parameters with the

confidence set C;(9), avoiding the inconvenient dependence on x x (see Lemma C.4 with f” = f):
9 (F0) = 9:(J) (13)

Proceeding analogously as above, we should now control the quantity HSt||‘~/71( Ao fe) Since the
AREY

() = @ = a” g, 5,y < (1+ 2R, BEK) |

“7,,’1(/\#*) ’

weighted covariance operator Vi (\; f*) contains the variance of each sample, we need to resort to a
Bernstein-like self-normalized concentration bound in order to make effective use of such information.
The fundamental result in the GLB literature is the bound of [9, Theorem 1]:
A 2 2 1 1
VA —log -+ —

St|lg- o < — 4+ —=dlog?2
Selvr o) = 7+ R8RS+ 05

where d is the dimensionality of the feature map ¢, which is infinite-dimensional in our GKB setting,
making the bound vacuous.®

log det(A™ V(X £5)), (14)

6.2 A Novel Bernstein-like Dimension-Free Self-Normalized Inequality

From the above discussion, it should now appear clear why we need a novel self-normalized concen-
tration bound that combines two desired properties:

* Bernstein-like: it should account for a weighted covariance operator V;(A; f*) where the weights
correspond to the variance of the samples to avoid the inconvenient multiplicative factor « y;

* Dimension-free: it should avoid any dependence on the dimensionality of the feature space ¢, in
order to make it applicable to our GKB setting, where ¢ can be infinite-dimensional.

With this goal, we deviate from the two traditional approaches to derive self-normalized concentra-
tions, i.e., pseudomaximization via method of mixtures [1, 7, 9] and PAC Bayes [17, 37]. Instead, we
follow the path of [36] that, in turn, extends [6], by directly decomposing the norm ||S; ||‘7;1 uf)
and bounding individual terms by means of Freedman’s inequality [11]. In addition to the require-
ments above, we aim to obtain a data-driven bound in which, just like in Equations (12) and (14),
the bound depends on the sequence of the actual decisions, i.e., on the weighted information gain
Ly(f*) = Llogdet(A~'V;(X; f*)) instead of the maximal information gain 7, (f*). This is clearly
desirable since T'y(f*) < 7;(f*).” However, this is not straightforward when following the technique
of [6, 36], that necessitates deterministic bounds to the cumulative variance for the application of
Freedman’s inequality. For this reason, we provide a first result that extends Freedman’s inequality
allowing for bounds of the cumulative variance that are not deterministic but, instead, predictable
processes. This will represent the core for deriving our self-normalized concentration bound.

Theorem 6.1 (A data-driven Freedman’s inequality). Let (z¢):>1 be a real-valued martingale
difference sequence adapted to the filtration Fy such that z; < R a.s. for all t > 1. Let (v;);>1 be a

process predictable by the filtration F; such that for everyt > 1, we have that ZZ:I E[22|Fs_1] < vy
a.s.. Then, for every n > 1 and vy > 0, with probability at least 1 — 6, it holds that:

¢ 2(7 2 207 2

m2(l+1 R m(l+1
Vi>1: E zs<\/QmaX{vo,77111,/}10g(66)4—310@;(65)7 (15)
s=1

where [ = max {O, ﬂog77 (vt/voﬂ }

The inequality of Theorem 6.1, compared to the standard Freedman’s inequality (see Lemma B.1),
allows obtaining a bound that depends on the predictable process v; that we can think to as a proxy
(upper bound) of the variance that, however, does not need to be deterministic. This allows us to obtain
bounds that depend on the actual sequence of decisions x1, ..., x; and their weighted information

0ne could attempt to operate as in [9, Theorem 1] for deriving but directly in the dual (kernel) space.
Although this is possible, it would make appear a dependence on the order of the weighted kernel matrix
Rt()\; f), i.e., t in replacement of d. This is not of any help since it will make the regret degenerate to linear.

"Indeed, in [36], the bound depends on an upper bound of -y; obtained by bounding the maximum value of
log det(A~*V;) considering the worst-case sequence of decisions [see Lemma B.2 of 36].
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gain T';(f*) rather than on the maximal weighted information gain 7;(f*), with an improvement
over previous inequalities like [36]. From a technical perspective, Theorem 6.1 is obtained using
a stitching argument [13] that brings two beneficial effects. First, it allows to accurately perform
union bounds considering the values that the predictable process can take over a geometric grid
{n‘vg : ¢ € N} enabling the use of the data-driven quantity v;, where the parameters n > 1 and
vg > 0 can be selected to tighten the bound. Second, it allows replacing a log ¢ term in the bound with
a loglogt at the price of a larger multiplicative constant 7 > 1. A similar data-driven result has been
provided in [12, Theorem 12]. However, our result allows tuning the parameters 1 and vy to tighten
the bound, ultimately leading to an improvement of the constants. We can now use Theorem 6.1 to
derive our novel self-normalized Bernstein-like dimension-free concentration inequality.

Theorem 6.2 (Bernstein-Like Dimension-Free Self-Normalized Concentration). Let (x;)¢>1 be a
discrete-time stochastic process predictable by the filtration F; and let (€;);>1 be a real-valued
stochastic process adapted to the F; such that Ele;|F;_1] = 0, Var[e;|F;_1] = 07 = 0%(x;), and
let] < R a.s. for everyt > 1. Let ¢ : X — RY be the feature mapping induced by kernel k such that
[p(x)]]2 < K for every x € X. Let:

t—1 N t—1

Spi=Y ed(xs),  Vi(\) =) old(x)(xs) " + AL (16)

s=1 s=1

Then, for every § € (0,1) and t > 1, with probability at least 1 — ¢ it holds that:

72(p +1)2 N 3RK . 7%(p+1)2

||St||‘7;1(k) < (\/731ogdet()\—1‘/}) + \@) log % 7 log T

where p = max {0, [1og (M log (1 T @)ﬂ }

The concentration bound, as desired, displays no dependence on the dimensionality d of the feature
map ¢ and no explicit dependence on ¢ (apart from sub-logarithmic ones). We succeeded to remove
the dependence from d by replacing it with the norm of the feature map, which is bounded by K
under Assumption 3.1. It is worth noting that, thanks to the data-driven bound of Theorem 6.1, we
have a dependence on the term log det(A~1V;(\)) that, thanks to the identity in Equation (1), can be
expressed in the dual (kernel) space by means of the information gain o, = log det()\’lfit()\)),
where the weighted kernel matrix K, ()) is obtained by means of the weighted kernel k(x, x') =
o(x)k(x,x')o(x') that induces the modified feature map ¢(x) = o(x)¢(x). By denoting with
Vi = MaAXx,, . x,€X ft, we can write the non-data-driven bound, holding with probability 1 — §:

_ 2(p+1)2 3RK . w2(p+1)?
W1 [Sillpo < (\/146%—&—\/5) log (p?:; L 75 log = (pB;r s

7)

7 Regret Analysis

In this section, we provide the regret analysis of GKB-UCB (Algorithm 1). We start with a lemma to
show that f* belongs to the confidence set C;(d) (in high probability) with a proper choice of the
confidence radius B;(d; f) (Lemma 7.1). Then, we move to the regret analysis (Theorem 7.2).

Lemma 7.1 (Good Event). Lett € N, f € H, and 6 € (0, 1), define the confidence radius as:
m2(p+1)2  3RK m(p+1)2
+ 1 ,

30 sVA P B

where p = max {0, {log (wlog (1 + @))] } LetE& = {Vt > 1 : f* € C(d)}
Under Assumptions 3.1, 3.2, and 3.3, it holds that Pr(Es) > 1 — 4.

Bi(8; f) = VAB + Wlf) (\/7310gdet()\*11~/t()\; )+ \/§> log

Lemma 7.1 resorts to our novel self-normalized bound (Theorem 6.2), together with Assumption 3.1,
to provide a form to the confidence radius B;(d; f). It is worth noting that, differently from the
majority of existing works [1, 2, 17], B.(d; f) explicitly depends on function f since the operator
Vi(); f) necessitates f to compute the weights g(7)~1/(f(xs)). By exploiting the identity in
Equation (1), we can move to the dual (kernel) space in order to operate with finite-dimensional

objects: log det(A2Vi(; £)) = logdet(K;(X; f)) = 20 (f). Let us also define its worst-case
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version w.r.t. the choice of function f € H, i.e., B1(0; H) = sup ey Bi(d; f). Although GKB-UCB
makes use of the confidence radius B;(J; f), for analysis purposes, we also define a non-data-driven
confidence radius, where the information gain I';(f) is replaced by its maximal version:

B8 f) = VAB +g(r) ™ (\/er \/3) log 7r2(,03; b* + Sg(T%RK log T (pgjsr D) ,

and, finally, we introduce its worst-case version w.r.t. the choice of function f € H, i.e., 8;(0; H) =
sup ey Bi(9; f), i.e., obtained from 3;(d; f) by replacing 3¢ (f) with 3, (H).
We are now ready to present the regret bound of GKB-UCB.

Theorem 7.2 (Regret Bound of GKB-UCB). Under Assumptions 3.1, 3.2, 3.3, and 3.4, GKB-UCB
with the confidence radius Bi(5; f) as defined in Lemma 7.1 and \ > 0, for every 6 € (0, 1), with
probability at least 1 — 6, suffers regret bounded as R(GKB-UCB,T') = Rperm (1) 4 Rians(T), where:

Roeen(T) < 8(1 + 2R, BE) 57 (5 1) /max {g(r), \~1 R, K2} %(f*)\/?, (19)

*

Ruans(T) < 32Ry(1 + Rykx)(1 + 2R,BK)?Br(6; H)? max {g(7), A\ "R, K?} 37(f*). (20)

The proof schema of Theorem 7.2 follows similar steps to [2] and the result, indeed, displays an
analogous regret decomposition into a permanent term Rpem (1) and a transient term Rigans(T').
Regarding the dependence on explicit T and k., Rperm(T') is the dominating term that displays the
desired dependence on /T'/ k., whereas Ryns(T") exhibits a dependence on the minimum slope of
the inverse link function « y, but has only logarithmic dependence on 7" and, for this reason, it is
negligible. To highlight the dependence on the information gain, we explicit the form of the individual

terms in the case A > Q(K2):2 S7(5;H) = O(VAB + /A0 (H) log(6—1) + RK log(5~1)). Thus,

we obtain a regret bound of order:

R(GKB-UCB, T) < O ((1 + R,BK) (ﬁB +VAr(H)log(6—1) + RK 1og(5—1)) Var( f*)\/z> .

We have two terms related to the weighted information gain, i.e., () and y7(f*). This is due to

the fact that our weighted kernel 75(, -; f) explicitly depends on the evaluated function f. It is worth
noting that, thanks to Lemma 5.1, we can bound both with the (unweighted) information gain as
Yr(f*) <37(H) < max{1, R,g(7) "' }yr at the mild price of a multiplicative term.

Let us now comment on the tightness of the bound in the particular cases of KBs and GLBs.

For KBs, we are in the presence of v2-subgaussian noise and, thus, we need to set R =

O(v+/log(T/$)). Furthermore, we have that R, = 0 and p = I (consequently, i1 =
1, ke = 1, and F7(f*) = A7r(H) = ~r). This allows recovering the bound of order

0] ((ﬁB +/yrlog(6-1) + Kv 10g(5_1)3/2) \/WTT), matching the regret order of [5] up to

logarithmic terms. For GLBs, we can bound the information gain as (see Lemma 11 of [2]):

2
1 (H) < max{1, Rug(r) " Yoz < max{1, Rug(r) " }dlog (A L ) . an

This leads to bound of order O((1 + R,BK)(VAB + /dlog(6-1) + RK log(6=1))\/dT /),

matching the result of [2] up to logarithmic terms.

8 Conclusions

In this paper, we have introduced the novel setting of GKBs, unifying KBs and GLBs. We have
provided a novel Bernstein-like dimension-free self-normalized bound of independent interest. We
employed it to analyze the regret of GKB-UCB showing tight regret bounds. Future works include
investigating the use of the techniques from [17] in order to remove the multiplicative dependence on
the norm and kernel bounds (1 + R;BK) in the regret bound as well as the study of the inherent
complexity of regret minimization in the GLB setting by conceiving regret lower bounds [26].

8With the O(-) notation, we suppress multiplicative constants and dependencies on g(7) and Ry,. With the
O(+) notation, we also suppress logarithmic dependencies on all variables, except for d.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: —
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.
* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discussed the limits of the paper and the future research directions in order
to address them.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: All the statements are provided with proofs in the appendix.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]
Justification: No experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: No experiments.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: No experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: No experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: No experiments.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The paper is coherent with NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: —
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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12.

13.

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: —
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: —
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: —
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: —
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: —
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: —
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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