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Abstract

We study the regret minimization problem in the novel setting of generalized1

kernelized bandits (GKBs), where we optimize an unknown function f
→ belonging2

to a reproducing kernel Hilbert space (RKHS) having access to samples generated3

by an exponential family (EF) noise model whose mean is a non-linear function4

µ(f→). This model extends both kernelized bandits (KBs) and generalized linear5

bandits (GLBs). We propose an optimistic algorithm, GKB-UCB, and we explain6

why existing self-normalized concentration inequalities do not allow to provide7

tight regret guarantees. For this reason, we devise a novel self-normalized Bernstein-8

like dimension-free inequality resorting to Freedman’s inequality and a stitching9

argument, which represents a contribution of independent interest. Based on10

it, we conduct a regret analysis of GKB-UCB, deriving a regret bound of order11

Õ(ωT
√
T/ε→), being T the learning horizon, ωT the maximal information gain,12

and ε→ a term characterizing the magnitude the reward nonlinearity. Our result13

matches, up to multiplicative constants and logarithmic terms, the state-of-the-art14

bounds for both KBs and GLBs and provides a unified view of both settings.15

1 Introduction16

Multi-Armed Bandits [MABs, 15] have been extensively studied and extended over the years. One17

key research direction involves expanding the MAB framework to continuous action spaces. Doing18

this requires introducing some notion of similarity or structure in the expected rewards relative to the19

distance between arms. Without such structure, information gathered from explored actions/arms20

cannot be transferred to unexplored ones, making learning infeasible [4]. The most known and studied21

structure over the arms is the linear one, and led to the design of linear bandits [LBs, 1, 6]. In LBs,22

the expected reward is modeled as the inner product between the action and an unknown parameter23

vector (i.e., E[yt|xt;ω→] = →xt,ω→
↑). This setting strictly generalizes the finite-arms MABs [15, 23]24

that can be retrieved considering arms as in an Rd canonical basis.25

LBs, in turn, have been extended in parallel in two directions: generalized linear bandits [GLBs,26

10] and kernelized bandits [KBs, 5, 29]. On the one hand, GLBs employ a generalized linear27

model [GLM, 19] to allow for the representation of different noise models (including Gaussian and28

Bernoulli). This is achieved with the use of a real-valued non-linear inverse link function µ(·), such29

that the expected payoff is defined as E[yt|xt;ω→] = µ(→xt,ω→
↑). On the other hand, KBs focus on30

the optimization of an unknown expected reward function belonging to a reproducing kernel Hilbert31

space (RKHS) induced by a known kernel function k(x,x↑), often resorting to Gaussian processes32

for designing algorithms [22]. We observe that GLBs fall back to LBs when the identity link function33

µ = I is considered, and KBs fall back to LBs when a linear kernel k(x,x↑) = →x,x↑
↑ is considered.34
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In this work, we propose the novel generalized kernelized bandit (GKB) setting, which unifies GLBs35

and KBs (Figure 1). This setting enables learning in the scenarios in which the unknown function36

f
→ comes from an RKHS and the samples come from an exponential family model whose mean is37

obtained by applying an inverse link function µ to function f
→. This allows accounting for a variety38

of noise models, including Gaussian and Bernoulli [3].39

LBGLB KB

GKB µ(f→(xt))

→xt,ω→
↑µ(→xt,ω→

↑) f
→(xt)

d < ↓

µ̇ ↔ R↓0

d < ↓

µ̇ = 1
d = ↓

µ̇ = 1

d = ↓ µ̇ ↔ R↓0

Figure 1: Inclusion of the settings (f(·)
is assumed to belong to a RKHS).

As established by the literature [1, 9, 17], when designing40

optimistic regret minimization algorithms for either GLBs41

and KBs, a fundamental technical tool are self-normalized42

concentration inequalities [7]. When targeting regret min-43

imization in the novel setting of GKBs, it is necessary44

to employ a concentration inequality that combines the45

requirements of GLBs and KBs, i.e., it should avoid de-46

pendencies on the minimum slope µ̇ of the inverse link47

function (as in GLBs) and on the dimensionality of the48

feature representation (as in KBs). The seminal work [1]49

provides a self-normalized concentration inequality for50

least square estimators under subgaussian noise, exploit-51

ing theoretical advancements in self-normalized processes and pseudo-maximization of [7, 8]. How-52

ever, this inequality does not conveniently manage the case in which the samples come from an53

exponential family model where the variances depend on inverse link function µ, ultimately leading54

to a dependence on its minimum slope. To cope with this issue, [9] derive a concentration inequality55

via a pseudo-maximization technique that results in a tight regret bound for GLBs, accounting for the56

heteroscedastic characteristics of the noise (i.e., Bernstein-like). However, their concentration inequal-57

ity presents a dependency on the dimensionality of the feature vector (i.e., dimension-dependent).58

While not being problematic for GLBs, this hinders a direct application to GKBs, where the feature59

representation (induced by the kernel function) can be infinite-dimensional. Additionally, [5] design60

a self-normalized bound for martingales which provides tight concentration results for the KB setting,61

directly operating with kernels. However, this result can be considered the counterpart of [1] in the62

dual (kernel) space and, for this reason, it shares the same limitation when using an inverse link63

function, generating a dependence on the minimum value of µ̇ when applied to GKBs.1 It appears64

now necessary to derive a novel concentration result that is both dimension-free and Bernstein-like to65

properly address the GKB setting.66

Outline and Contributions. We start by introducing the setting of the GKBs, the assumptions,67

and the learning problem (Section 3). Then, we design GKB-UCB, an optimistic regret minimization68

algorithm (Section 4) and we introduced some preliminary results (Section 5). The key contributions69

of this work are contained in Sections 6 and 7. In Section 6, we discuss more formally the limitations70

of the existing inequalities and derive a novel self-normalized Bernstein-like dimension-free inequality71

via the application of Freedman’s inequality together with a stitching argument. In Section 7, we72

analyze the GKB-UCB with a confidence set defined in terms of the previously derived inequality73

and show that it achieves regret of order Õ(ωT
√
T/ε→), being T the learning horizon, ωT the74

maximal information gain, and ε→ a term characterizing the slope of the inverse link function in the75

optimal decision (an efficient implementation is reported in Appendix A). This result matches the76

state-of-the-art of both GLBs and KBs up to multiplicative constants and logarithmic terms.77

2 Preliminaries78

Notation. Let a, b ↔ N with a ↗ b, we denote with !a, b" := {a, a+1, . . . , b} and with !b" := !1, b".79

Let d ↔ N, Id denotes the identity matrix of order d and 0d the column vector of all zeros of size d80

(d is omitted when clear from the context). N (µ,!) denotes the multi-variate Gaussian distribution.81

Reproducing Kernel Hilbert Space. Let X ↘ Rd be a decision set and H be a Hilbert space82

endowed with the inner product →·, ·↑ (and induced norm ≃ · ≃). H is a reproducing kernel Hilbert83

space [28] if there exists a function k : X⇐X ⇒ R, called kernel, such that it satisfies the reproducing84

property, i.e., for every function f ↔ H it holds that f(x) = →f, k(x, ·)↑ for every x ↔ X . It follows85

that the kernel k is symmetric and satisfies the conditions for positive semi-definiteness. We denote86

with I the identity operator on H. From Mercer’s theorem [20, 14], there exists a (possibly infinite-87

1We refer to Table 1 for an overview of the properties of concentration inequalities present in the literature.
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Self-normalized
Concentrations

Properties
Condition Dim-free Empirical Heterosc. Technique

Dani et al., 2008 [6] Hoeffding ✁ ✁ ✁ Freedman
Abbasi-Yadkori et al., 2011 [1] Hoeffding ✂ ✂ ✁ Pseudo-Max
Chowdhury and Gopalan, 2017 [5] Hoeffding ✂ ✂ ✁ Pseudo-Max
Faury et al., 2020 [9] Bernstein ✁ ✂ ✂ Pseudo-Max
Zhou et al., 2021 [36] Bernstein ✁ ✁ ✁ Freedman
Ziemann, 2024 [37] Bernstein ✁ ✂ ✁ PAC-Bayes

Our work Bernstein ✂ ✂ ✂ Freedman

Table 1: Summary of the properties of self-normalized concentrations.

dimensional) feature mapping ϑ : X ⇒ RN such that for every function f ↔ H there exists a88

(possibly infinite-dimensional) vector of coefficients ϖ ↔ RN such that for every x ↔ X , we have89

f(x) =
∑

i↔N ϖiϑi(x) = →ϖ,ϑ(x)↑, where ϖ depends on f but not on x and for every i ↔ N, we90

have that ϑi : X ⇒ R depends on x but not on f and the series converges absolutely and uniformly91

for almost all x. Moreover, for every i, j ↔ N with i ⇑= j, we have ≃ϑi≃ = →ϑi,ϑi↑ = 1 and92

→ϑi,ϑj↑ = 0, i.e., (ϑi)i↔N forms an orthonormal basis. Thus, if f = →ϖ,ϑ(x)↑, we have ≃f≃ = ≃ϖ≃.93

Furthermore, for every x ↔ X , we have that |f(x)| ↗ ≃f≃≃k(·,x)≃ = ≃f≃
√

k(x,x).94

Information Gain. Let k be a kernel, let t ↔ N, and let x1, . . . ,xt ↔ X be a sequence of decisions,95

the information gain !t and the maximal information gain ωt are defined, respectively as [29]:96

!t :=
1
2 log det(I + ϱ

↗1Kt) and ωt := maxx1,...,xt↔X !t, where ϱ > 0 and Kt ↔ R(t↗1)↘(t↗1) is97

the Kernel matrix (Kt)i,j = k(xi,xj) for i, j ↔ !t⇓ 1". !t is the mutual information between the98

random vectors ft ⇔ N (0, ς2Kt) and yt = ft + εt where εt ⇔ N (0t, v
2
ϱIt), for arbitrary v > 0.99

We use the abbreviation Kt(ϱ) := ϱI+Kt, so that, !t :=
1
2 log det(ϱ

↗1Kt(ϱ)).2100

Covariance Operators. Let H be a RKHS with kernel k inducing the feature mapping ϑ, let101

t ↔ N and x1, . . . ,xt ↔ X be a sequence of decisions, the covariance operator is defined as:102

Vt(ϱ) := Vt + ϱI =
∑t↗1

s=1 ϑ(xs)ϑ(xs)≃ + ϱI . The following identity was shown in [32]:103

det(ϱ↗1
Vt(ϱ)) = det(ϱ↗1Kt(ϱ)). (1)

Canonical Exponential Family Models. Let f : X ⇒ R, a real-valued random variable y belongs104

to the canonical exponential family [EF, 3] if it has density:105

p(y|x; f) = exp

(
yf(x)⇓m(f(x))

g(φ)
+ h(y, φ)

)
, (2)

where φ > 0 is a temperature parameter and g,m : R ⇒ R and h : R2
⇒ R are suitably defined106

functions [17]. This EF model allows representing a variety of distributions, including Gaussian,107

Bernoulli, exponentials, and Poisson. Function m is called log-partition function and fulfills the108

following assumptions. As customary [17, 25], m is assumed to be three times differentiable and109

convex. We define the inverse link function µ = m
↑, that, since m is convex, is monotonically110

non-decreasing. Thus, the following hold [17]: E[y|x; f ] = m
↑(f(x)) = µ(f(x)) and Var[y|x; f ] =111

g(φ)µ̇(f(x)). When f is a linear function, the model in Equation (2) is also called generalized linear112

model [GLM, 19]. We also define the maximum slope of µ, i.e., Rµ̇ := supf↔H,x↔X
µ̇(f(x)).113

3 Problem Formulation114

We define the novel generalized kernelized bandit (GKB) setting and the learning problem.115

Setting. Let f→
↔ H be an unknown function belonging to the RKHS H. At every round t ↔ !T ",116

being T ↔ N the learning horizon, the learner chooses a decision xt ↔ X by means of a policy117

↼t : Ft↗1 ⇒ X , being Ft↗1 = ↽(x1, y1, . . . ,xt↗1, yt↗1) the filtration of all random variables118

realized so far, and observes a reward yt ⇔ p(·|xt; f→). The goal of the agent is to find a decision119

x→
↔ X maximizing the expected reward: x→

↔ argmaxx↔X
µ(f→(x)). Since µ is monotonically120

non-decreasing, maximizing µ(f→(·)) is equivalent to maximizing f
→(·). It is worth noting that the121

GKB generalizes two well-known settings: (i) generalized linear bandits [GLBs, 18] when the kernel122

2Known bounds for ωt are available for commonly used kernels [29, 31].
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is linear k(x,x↑) = →x,x↑
↑ and (ii) kernelized bandits [KBs, 5] when the inverse link function is the123

identity function, i.e., µ = I .124

Learning Problem. We evaluate the performance of a learner, i.e., a ↼ = (↼t)t↔!T ", with cumulative125

regret: R(↼, T ) :=
∑

t↔!T " (µ(f
→(x→))⇓ µ(f→(xt))), where xt = ↼t(Ft↗1) for all t ↔ !T ".126

Assumptions. We make the following assumptions about function f
→ and the RKHS H.127

Assumption 3.1 (Bounded Norm). It exists a known constant B < +↓ such that ≃f→
≃ ↗ B.128

Assumption 3.2 (Bounded Kernel). It exists a known constant K<+↓ such that sup
x↔X

k(x,x)↗K
2.129

Assumptions 3.1 and 3.2 are widely employed in the KB literature [5], where, in particular, Assump-130

tion 3.2 is enforced with K = 1 and it is fulfilled by commonly used kernels (e.g., Gaussian and131

Matérn kernels). Assumptions 3.1 and 3.2 are the analogous in GLBs of requiring the boundedness132

of the parameter vector (since if f = →ϖ,ϑ↑, then, ≃f≃ = ≃ϖ≃) and requiring the boundedness of133

the norm of the decisions (since when k(x,x↑) = →x,x↑
↑ we have that k(x,x) = ≃x≃2), respec-134

tively [2, 17]. The combination of the two allows bounding the L⇐-norm of f→ as ≃f→
≃⇐ ↗ BK.135

Concerning the EF noise model, we make the following assumptions.136

Assumption 3.3 (Bounded noise). Let x ↔ X , y ⇔ p(·|x; f→), let ⇀ = y ⇓ µ(f→(x)). There exists a137

known constant R < +↓ such that |⇀| ↗ R almost surely.138

This assumption is widely used in the GLB literature [2, 25]. If we deal with ς
2-subgaussian noise139

(instead of bounded), we can take R = ς
√
2 log(2T/⇁) to ensure that |⇀t| ↗ R uniformly for t ↔ !T "140

w.p. 1⇓ ⇁.3 Finally, we introduce the generalized self-concordance property [24].141

Assumption 3.4 ((Generalized) Self-concordance). There exists a known constant Rs < +↓ such142

that for every function f ↔ H and decision x ↔ X , it holds that |µ̈(f(x))| ↗ Rsµ̇(f(x)).143

In [25], the authors show (Lemma 2.1) that if the EF model generates random variables that are144

bounded by |y| ↗ Y a.s., Assumption 3.4 hold with Rs = Y . Moreover, it holds for Bernoulli noise145

with Rs = 1 and Gaussian with Rs = 0 [17].146

Problem Characterization. We define the following characterizing the difficulty of the problem:147

ε→ = 1
µ̇(f→(x→)) and εX = supx↔X

1
µ̇(f→(x)) . We have that ε→ ↗ εX . Our goal is to devise algorithms148

for which the dominating term in the regret bound depends on ε→ only.149

4 Algorithm150

Input: Decision set X , confidence sets Ct(ε)
for t → !T " do

//Maximum Likelihood Estimate

f̂t → argmin
f→H

Lt(f) (Equation 3)

//Optimistic Decision Selection

(f̃t,xt) → argmax
f→Ct(ω),x→X

µ(f(x)) (Equation 6)

Play xt and observe yt

end
Algorithm 1: GKB-UCB.

In this section, we introduce Generalized151

Kernelized Bandits-Upper Confidence152

Bounds (GKB-UCB), a regret minimization153

optimistic algorithm for the GKB setting154

(Algorithm 1). GKB-UCB is composed of two155

steps: maximum likelihood (ML) estimation156

and optimistic decision selection. We pro-157

vide a computationally tractable version in158

Appendix A.159

Maximum Likelihood Estimate. At each160

round t ↔ !T ", we employ the samples collected161

so far {(xs, ys)}s↔!t↗1", to obtain an estimate f̂t of f→. Starting from the EF model, we minimize162

the Ridge-regularized log-likelihood:163

Lt(f) :=
t↗1∑

s=1

⇓ysf(xs) +m(f(xs))

g(φ)
+

ϱ

2
≃f≃

2
, ↖f ↔ H, t ↔ !T ", (3)

where ϱ ↙ 0 is the Ridge regularization parameter. The ML estimate is denoted as f̂t ↔164

argminf↔H
Lt(f). Since, for Mercer’s theorem, when f ↔ H, we can write f = →ϖ,ϑ↑ with165

3This will result in an additional logarithmic term in the final regret bound only.
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a fixed feature function ϑ, with little abuse of notation, we can look at Lt as a function of the166

parameters ϖ, i.e., Lt(ϖ) ∝ Lt(f). With this in mind, we introduce the operator gt(f) ↔ RN related167

to the gradient of the loss Lt(f) w.r.t. the parameters ϖ and the weighted covariance operator168

Ṽt(ϱ; f) ↔ RN↘N corresponding to the Hessian of the loss Lt(f) w.r.t. parameters ϖ:169

gt(f) :=
t↗1∑

s=1

µ(f(xs))

g(φ)
ϑ(xs) + ϱϖ, ′Lt(f) = ⇓

t↗1∑

s=1

ysϑ(xs)

g(φ)
+ gt(f), (4)

Ṽt(ϱ; f) := ′
2
Lt(f) = Ṽt(f) + ϱI =

t↗1∑

s=1

µ̇(f(xs))

g(φ)
ϑ(xs)ϑ(xs)

≃ + ϱI. (5)

The loss function Lt and the operators gt and Ṽt defined above reduce to the ones employed for170

GLBs under the assumption that the kernel k is the linear one [2, 9, 17]. Furthermore, if µ = I , we171

have that Ṽt(ϱ; f) = Vt(ϱ), i.e., the covariance operator.172

Optimistic Decision Selection. Once the ML function f̂t is computed, the algorithm chooses an173

optimistic function f̃t ↔ H in a suitable confidence set Ct(⇁), together with the optimistic choice xt:174

(f̃t,xt) ↔ argmax
f↔Ct(ω),x↔X

µ(f(x)). (6)

It is worth noting that since µ is non-decreasing, we can ignore µ in the maximization. We will175

consider a confidence set, defined for every round t ↔ !T " and confidence ⇁ ↔ (0, 1) as follows:4176

Ct(⇁) =

{
f ↔ H :

∥∥∥gt(f)⇓ gt(f̂t)
∥∥∥
Ṽ ↑1
t (ε;f)

↗ Bt(⇁; f)

}
, (7)

where the confidence ratio Bt(⇁; f) will be specified later with the goal of guaranteeing optimism,177

i.e., that the true unknown function f
→ belongs to Ct(⇁) in high probability, and limiting the regret.178

5 Weighted Kernel179

We discuss how the combination between a function f ↔ H with an inverse link function µ induced an-180

other RKHS space that can be characterized by its weighted kernel. Let f ↔ H, we define the weighted181

feature mapping (now dependent on f ) for every x ↔ X as: ϑ̃(x; f) =
√
µ̇(f(x))g(φ)↗1ϑ(x). In the182

primal (feature) space, this allows looking at the weighted covariance operator Ṽt(ϱ; f) as the covari-183

ance operator induced by the feature mapping ϑ̃(·; f), i.e., Ṽt(ϱ; f) =
∑t↗1

s=1 ϑ̃(xs; f)ϑ̃(xs; f)≃+ϱI .184

Passing to the dual (kernel) space, we define the weighted kernel as:185

k̃(x,x↑; f) := →ϑ̃(x; f), ϑ̃(x↑; f)↑ = g(φ)↗1
√
µ̇(f(x))k(x,x↑)

√
µ̇(f(x↑)), ↖x,x↑

↔ X . (8)
This is, in all regards, a valid kernel since it is obtained starting from a valid kernel and performing186

a legal transformation [28]. This way, we can define the weighted kernel matrix as K̃t(ϱ; f) =187

ϱI+ K̃t(f), where K̃t(f) = (k̃(xi,xj ; f))i,j↔!t↗1". Using the identity in Equation (1), we can also188

deduce that det(ϱ↗1
Ṽt(ϱ; f)) = det(ϱ↗1K̃t(ϱ; f)). We also define the weighted information gain189

!̃t(f) and the weighted maximal information gain ω̃t(f) as !̃t(f) :=
1
2 log det(ϱ

↗1K̃t(ϱ; f)) and190

ω̃t(t) := maxx1,...,xt↔X !̃t(f). Finally, we consider the maximum value of the (maximal) information191

gain by varying the function f in H, i.e., !̃t(H) = supf↔H
!̃t(f) and ω̃t(H) = supf↔H

ω̃t(f). The192

following result relates weighted and unweighted information gains.193

Lemma 5.1. Let H be a RKHS induced by kernel k. Let t ↔ N and let x1, . . . ,xt ↔ X be a sequence194

of decisions. It holds that !̃t(H) ↗ max{1, Rµ̇g(φ)↗1
}!t.195

Notice that the bound introduces just a dependence on the maximum slope of the inverse link function196

Rµ̇ and no dependence on the minimum slope εX . This result will play a significant role in the197

derivation of an efficient implementation for GKB-UCB (Appendix A).198

4Assessing whether a function f → H belongs to the confidence set Ct(ε) is clearly intractable since it
requires computing norms of operators. In Appendix A, we provide an efficient alternative confidence set that
will lead to analogous regret guarantees.
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6 Challenges and New Technical Tools199

In this section, we discuss the main challenges for achieving sensible regret guarantees for GKBs.200

We start discussing the limitations of existing self-normalized concentration bounds (see Table 1) to201

control the error in the ML estimate (Section 6.1). This motivates the need for a novel self-normalized202

inequality that represents a key contribution of this work (Section 6.2).203

6.1 Limitations of Existing Self-Normalized Concentration Inequalities204

To understand the need for a novel concentration bound, we need to anticipate some key passages of205

the regret analysis. We recall that the confidence radius Bt(⇁; f) should be designed to guarantee206

that: (i) the true unknown function f
→ = →ϖ

→
,ϑ↑ belongs to Ct(⇁) (Equation 7) and (ii) the regret is207

as small as possible. For point (i), we can conveniently express the difference between the operators208

gt evaluated in the true function f
→ and in the ML estimate f̂t (see Lemma 7.1):209

gt(f
→)⇓ gt(f̂t) = g(φ)↗1

t↗1∑

s=1

⇀sϑ(xs) + ϱϖ
→
, (9)

where ⇀s = ys ⇓ µ(f→(xs)) is the noise. Thus, since since ϖ
→ is bounded in norm under Assump-210

tion 3.1, to suitably design Bt(⇁; f), we need to control the martingale St =
∑t↗1

s=1 ⇀sϑ(xs). For211

point (ii), in the regret analysis, we need to bound the difference between optimistic function f̃t and212

true unknown function f
→, both evaluated in the played decision xt, i.e., f̃t(xt)⇓ f

→(xt) with the213

martingale St. Similarly to [2, 9], this is done by decomposing both functions as an inner product214

(Mercer’s theorem) and then applying a Cauchy-Schwarz inequality by making a specific choice of215

operator Wt(f→), possibly depending on the unknown function f
→:216

f̃t(xt)⇓ f
→(xt) = →ϖ̃t ⇓ ϖ

→
,ϑ(xt)↑ ↗ ≃ϖ̃t ⇓ ϖ

→
≃Wt(f→)︸ ︷︷ ︸

(A)

≃ϑ(xt)≃Wt(f→)↑1

︸ ︷︷ ︸
(B)

. (10)

The choice of operator Wt(f→) has two effects: (i) by relating term (A) with the confidence set217

Ct(⇁) definition, it determines the multiplicative coefficient and the norm under which martingale218

St has to be controlled and (ii) it allows bounding (B) by means of an elliptic potential lemma [16,219

Lemma 19.4]. We now discuss two choices of operators Wt(f→) leading to different concentration220

bounds and, consequently, confidence sets, and discuss their advantages and disadvantages.221

Covariance Operator (Wt(f→) = Vt(ϱ)). We start considering the case in which Wt(f→) = Vt(ϱ),222

where Vt is the usual covariance operator. In this case, we can link the term (A) with the confidence223

set as follows (see Lemma C.4):224

(A) = ≃ϖ̃t ⇓ ϖ
→
≃Vt(ε) ↗ (1 + 2RsBK)max{1, g(φ)ϑX }

∥∥∥gt(f̃t)⇓ gt(f
→)
∥∥∥
V ↑1
t (ε)

, (11)

introducing an inconvenient multiplicative dependence on max{1, g(φ)εX }, i.e., on the minimum225

slope εX of the inverse link function. At this point, we have to control the martingale St under226

the norm weighted by V
↗1
t (ϱ), as

∥∥∥gt(f→)⇓ gt(f̂t)
∥∥∥
V ↑1
t (ε)

↗ ≃St≃V ↑1
t (ε) +

B
⇒

ε
. The quantity227

≃St≃V ↑1
t (ε) can be conveniently bounded by using a self-normalized concentration bound for sub-228

gaussian5 martingales (i.e., Hoeffding-like), as in the seminal work [1]:229

≃St≃V ↑1
t

↗ R

√
2 log(⇁↗1) + log det(ϱ↗1Vt(ϱ)) = R

√
2 log(⇁↗1) + log det(ϱ↗1Kt(ϱ)), (12)

where the equality is obtained by Equation (1). We recall that the second bound is also obtained in230

Theorem 1 of [5] where the quantity ≃St≃V ↑1
t

is controlled in the dual (kernel) space. The advantage231

of these bounds is that they do not exhibit a dependence on the dimensionality d of the feature space232

ϑ, which in GKBs is infinite. Nevertheless, in this way, the dependence on the minimum slope of the233

inverse link function εX (as in Equation 11) becomes unavoidable in the regret. This suggests that234

we should prefer a different choice of operator Wt(f→).235

Weighted Covariance Operator (Wt(f→) = Ṽt(ϱ; f→)). The presence of the multiplicative factor236

εX depends on the covariance operator and emerges also in the GLB setting when making the choice237

5We recall that since |ϑs| ↑ R a.s., it is also R
2-subgaussian.
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Wt(f→) = Vt(ϱ) [2, 9]. The solution, in the GLB case, consists of choosing the weighted covariance238

operator Wt(f→) = Ṽt(ϱ; f→), where each outer product ϑ(xs)ϑ(xs)≃ is weighted by the variance239
µ̇(f(xs))

g(ϑ) of the noise random variable ⇀s. This allows relating the distance of the parameters with the240

confidence set Ct(⇁), avoiding the inconvenient dependence on εX (see Lemma C.4 with f
↑↑ = f ):241

(A) = ≃ϖ̃t ⇓ ϖ
→
≃Ṽt(ε;f→) ↗ (1 + 2RsBK)

∥∥∥gt(f̃t)⇓ gt(f
→)
∥∥∥
Ṽ ↑1
t (ε;f→)

. (13)

Proceeding analogously as above, we should now control the quantity ≃St≃Ṽ ↑1
t (ε;f→). Since the242

weighted covariance operator Ṽt(ϱ; f→) contains the variance of each sample, we need to resort to a243

Bernstein-like self-normalized concentration bound in order to make effective use of such information.244

The fundamental result in the GLB literature is the bound of [9, Theorem 1]:245

≃St≃Ṽ ↑1
t (ε;f→) ↗

∞
ϱ

2
+

2
∞
ϱ
d log 2 +

2
∞
ϱ
log

1

⇁
+

1
∞
ϱ
log det(ϱ↗1

Ṽt(ϱ; f
→)), (14)

where d is the dimensionality of the feature map ϑ, which is infinite-dimensional in our GKB setting,246

making the bound vacuous.6247

6.2 A Novel Bernstein-like Dimension-Free Self-Normalized Inequality248

From the above discussion, it should now appear clear why we need a novel self-normalized concen-249

tration bound that combines two desired properties:250

• Bernstein-like: it should account for a weighted covariance operator Ṽt(ϱ; f→) where the weights251

correspond to the variance of the samples to avoid the inconvenient multiplicative factor εX ;252

• Dimension-free: it should avoid any dependence on the dimensionality of the feature space ϑ, in253

order to make it applicable to our GKB setting, where ϑ can be infinite-dimensional.254

With this goal, we deviate from the two traditional approaches to derive self-normalized concentra-255

tions, i.e., pseudomaximization via method of mixtures [1, 7, 9] and PAC Bayes [17, 37]. Instead, we256

follow the path of [36] that, in turn, extends [6], by directly decomposing the norm ≃St≃Ṽ ↑1
t (ε;f→)257

and bounding individual terms by means of Freedman’s inequality [11]. In addition to the require-258

ments above, we aim to obtain a data-driven bound in which, just like in Equations (12) and (14),259

the bound depends on the sequence of the actual decisions, i.e., on the weighted information gain260

!̃t(f→) = 1
2 log det(ϱ

↗1
Ṽt(ϱ; f→)) instead of the maximal information gain ω̃t(f→). This is clearly261

desirable since !̃t(f→) ↗ ω̃t(f→).7 However, this is not straightforward when following the technique262

of [6, 36], that necessitates deterministic bounds to the cumulative variance for the application of263

Freedman’s inequality. For this reason, we provide a first result that extends Freedman’s inequality264

allowing for bounds of the cumulative variance that are not deterministic but, instead, predictable265

processes. This will represent the core for deriving our self-normalized concentration bound.266

Theorem 6.1 (A data-driven Freedman’s inequality). Let (zt)t↓1 be a real-valued martingale267

difference sequence adapted to the filtration Ft such that zt ↗ R a.s. for all t ↙ 1. Let (vt)t↓1 be a268

process predictable by the filtration Ft such that for every t ↙ 1, we have that
∑t

s=1 E[z2s |Fs↗1] ↗ vt269

a.s.. Then, for every η > 1 and v0 > 0, with probability at least 1⇓ ⇁, it holds that:270

↖t ↙ 1 :
t∑

s=1

zs ↗

√

2max {v0, ηvt} log
↼2(-̂+ 1)2

6⇁
+

R

3
log

↼
2(-̂+ 1)2

6⇁
, (15)

where -̂ = max

0,

logϖ(vt/v0)


.271

The inequality of Theorem 6.1, compared to the standard Freedman’s inequality (see Lemma B.1),272

allows obtaining a bound that depends on the predictable process vt that we can think to as a proxy273

(upper bound) of the variance that, however, does not need to be deterministic. This allows us to obtain274

bounds that depend on the actual sequence of decisions x1, . . . ,xt and their weighted information275

6One could attempt to operate as in [9, Theorem 1] for deriving but directly in the dual (kernel) space.
Although this is possible, it would make appear a dependence on the order of the weighted kernel matrix
K̃t(ϖ; f), i.e., t in replacement of d. This is not of any help since it will make the regret degenerate to linear.

7Indeed, in [36], the bound depends on an upper bound of ωt obtained by bounding the maximum value of
log det(ϖ↑1

Vt) considering the worst-case sequence of decisions [see Lemma B.2 of 36].
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gain !̃t(f→) rather than on the maximal weighted information gain ω̃t(f→), with an improvement276

over previous inequalities like [36]. From a technical perspective, Theorem 6.1 is obtained using277

a stitching argument [13] that brings two beneficial effects. First, it allows to accurately perform278

union bounds considering the values that the predictable process can take over a geometric grid279

{η
ϱ
v0 : - ↔ N} enabling the use of the data-driven quantity vt, where the parameters η > 1 and280

v0 > 0 can be selected to tighten the bound. Second, it allows replacing a log t term in the bound with281

a log log t at the price of a larger multiplicative constant η > 1. A similar data-driven result has been282

provided in [12, Theorem 12]. However, our result allows tuning the parameters η and v0 to tighten283

the bound, ultimately leading to an improvement of the constants. We can now use Theorem 6.1 to284

derive our novel self-normalized Bernstein-like dimension-free concentration inequality.285

Theorem 6.2 (Bernstein-Like Dimension-Free Self-Normalized Concentration). Let (xt)t↓1 be a286

discrete-time stochastic process predictable by the filtration Ft and let (⇀t)t↓1 be a real-valued287

stochastic process adapted to the Ft such that E[⇀t|Ft↗1] = 0, Var[⇀t|Ft↗1] = ↽
2
t = ↽

2(xt), and288

|⇀t| ↗ R a.s. for every t ↙ 1. Let ϑ : X ⇒ RN be the feature mapping induced by kernel k such that289

≃ϑ(x)≃2 ↗ K for every x ↔ X . Let:290

St :=
t↗1∑

s=1

⇀sϑ(xs), Ṽt(ϱ) :=
t↗1∑

s=1

↽
2
sϑ(xs)ϑ(xs)

≃ + ϱI. (16)

Then, for every ⇁ ↔ (0, 1) and t ↙ 1, with probability at least 1⇓ ⇁ it holds that:291

≃St≃Ṽ ↑1
t (ε) ↗

(
73 log det(ϱ↗1Ṽt) +

∞

3

)
log

↼2(▷+ 1)2

3⇁
+

3RK
∞
ϱ

log
↼
2(▷+ 1)2

3⇁
, (17)

where ▷ = max

0,

log


8R2K2(t↗1)3

ε log

1 + K2R2

ε


.292

The concentration bound, as desired, displays no dependence on the dimensionality d of the feature293

map ϑ and no explicit dependence on t (apart from sub-logarithmic ones). We succeeded to remove294

the dependence from d by replacing it with the norm of the feature map, which is bounded by K295

under Assumption 3.1. It is worth noting that, thanks to the data-driven bound of Theorem 6.1, we296

have a dependence on the term log det(ϱ↗1
Ṽt(ϱ)) that, thanks to the identity in Equation (1), can be297

expressed in the dual (kernel) space by means of the information gain 2!̃t = log det(ϱ↗1K̃t(ϱ)),298

where the weighted kernel matrix K̃t(ϱ) is obtained by means of the weighted kernel k̃(x,x↑) =299

↽(x)k(x,x↑)↽(x↑) that induces the modified feature map ϑ̃(x) = ↽(x)ϑ(x). By denoting with300

ω̃t = maxx1,...,xt↔X !̃t, we can write the non-data-driven bound, holding with probability 1⇓ ⇁:301

↖t ↙ 1 : ≃St≃Ṽ ↑1
t

↗

√
146ω̃t +

∞

3


log
↼2(▷+ 1)2

3⇁
+

3RK
∞
ϱ

log
↼
2(▷+ 1)2

3⇁
. (18)

7 Regret Analysis302

In this section, we provide the regret analysis of GKB-UCB (Algorithm 1). We start with a lemma to303

show that f→ belongs to the confidence set Ct(⇁) (in high probability) with a proper choice of the304

confidence radius Bt(⇁; f) (Lemma 7.1). Then, we move to the regret analysis (Theorem 7.2).305

Lemma 7.1 (Good Event). Let t ↔ N, f ↔ H, and ⇁ ↔ (0, 1), define the confidence radius as:306

Bt(⇁; f) :=
∞

ϱB +
1

g(φ)

(
73 log det(ϱ↗1Ṽt(ϱ; f)) +

∞

3

)
log

↼2(▷+ 1)2

3⇁
+

3RK

g(φ)
∞
ϱ
log

↼
2(▷+ 1)2

3⇁
,

where ▷ = max

0,

log


8R2K2(t↗1)3

ε log

1 + K2R2

ε


. Let Eω := {↖t ↙ 1 : f

→
↔ Ct(⇁)}.307

Under Assumptions 3.1, 3.2, and 3.3, it holds that Pr(Eω) ↙ 1⇓ ⇁.308

Lemma 7.1 resorts to our novel self-normalized bound (Theorem 6.2), together with Assumption 3.1,309

to provide a form to the confidence radius Bt(⇁; f). It is worth noting that, differently from the310

majority of existing works [1, 2, 17], Bt(⇁; f) explicitly depends on function f since the operator311

Ṽt(ϱ; f) necessitates f to compute the weights g(φ)↗1
µ̇(f(xs)). By exploiting the identity in312

Equation (1), we can move to the dual (kernel) space in order to operate with finite-dimensional313

objects: log det(ϱ↗1
Ṽt(ϱ; f)) = log det(K̃t(ϱ; f)) = 2!̃t(f). Let us also define its worst-case314
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version w.r.t. the choice of function f ↔ H, i.e., Bt(⇁;H) = supf↔H
Bt(⇁; f). Although GKB-UCB315

makes use of the confidence radius Bt(⇁; f), for analysis purposes, we also define a non-data-driven316

confidence radius, where the information gain !̃t(f) is replaced by its maximal version:317

◁t(⇁; f) :=
∞

ϱB + g(φ)↗1
√

146ω̃t(f) +
∞

3


log
↼2(▷+ 1)2

3⇁
+

3g(φ)↗1
RK

∞
ϱ

log
↼
2(▷+ 1)2

3⇁
,

and, finally, we introduce its worst-case version w.r.t. the choice of function f ↔ H, i.e., ◁t(⇁;H) =318

supf↔H
◁t(⇁; f), i.e., obtained from ◁t(⇁; f) by replacing ω̃t(f) with ω̃t(H).319

We are now ready to present the regret bound of GKB-UCB.320

Theorem 7.2 (Regret Bound of GKB-UCB). Under Assumptions 3.1, 3.2, 3.3, and 3.4, GKB-UCB321

with the confidence radius Bt(⇁; f) as defined in Lemma 7.1 and ϱ > 0, for every ⇁ ↔ (0, 1), with322

probability at least 1⇓ ⇁, suffers regret bounded as R(GKB-UCB, T ) = Rperm(T ) +Rtrans(T ), where:323

Rperm(T ) ↗ 8(1 + 2RsBK)◁T (⇁;H)

max {g(φ),ϱ↗1Rµ̇K

2} ω̃T (f→)


T

ε→

, (19)

Rtrans(T ) ↗ 32Rs(1 +Rµ̇εX )(1 + 2RsBK)2◁T (⇁;H)2 max

g(φ),ϱ↗1

Rµ̇K
2

ω̃T (f

→). (20)

The proof schema of Theorem 7.2 follows similar steps to [2] and the result, indeed, displays an324

analogous regret decomposition into a permanent term Rperm(T ) and a transient term Rtrans(T ).325

Regarding the dependence on explicit T and ε→, Rperm(T ) is the dominating term that displays the326

desired dependence on
√
T/ε→, whereas Rtrans(T ) exhibits a dependence on the minimum slope of327

the inverse link function εX , but has only logarithmic dependence on T and, for this reason, it is328

negligible. To highlight the dependence on the information gain, we explicit the form of the individual329

terms in the case ϱ ↙ ”(K2):8 ◁T (⇁;H) = Õ(
∞
ϱB +

√
ω̃T (H) log(⇁↗1) +RK log(⇁↗1)). Thus,330

we obtain a regret bound of order:331

R(GKB-UCB, T ) ↗ Õ


(1 +RsBK)

∞
ϱB +

√
ω̃T (H) log(⇁↗1) +RK log(⇁↗1)

√
ω̃T (f→)


T

ε→


.

We have two terms related to the weighted information gain, i.e., ω̃T (H) and ω̃T (f→). This is due to332

the fact that our weighted kernel k̃(·, ·; f) explicitly depends on the evaluated function f . It is worth333

noting that, thanks to Lemma 5.1, we can bound both with the (unweighted) information gain as334

ω̃T (f→) ↗ ω̃T (H) ↗ max{1, Rµ̇g(φ)↗1
}ωT at the mild price of a multiplicative term.335

Let us now comment on the tightness of the bound in the particular cases of KBs and GLBs.336

For KBs, we are in the presence of ς
2-subgaussian noise and, thus, we need to set R =337

O(ς
√
log(T/⇁)). Furthermore, we have that Rs = 0 and µ = I (consequently, µ̇ =338

1, ε→ = 1, and ω̃T (f→) = ω̃T (H) = ωT ). This allows recovering the bound of order339

Õ

∞
ϱB +

√
ωT log(⇁↗1) +Kς log(⇁↗1)3/2


∞
ωTT


, matching the regret order of [5] up to340

logarithmic terms. For GLBs, we can bound the information gain as (see Lemma 11 of [2]):341

ω̃T (H) ↗ max{1, Rµ̇g(φ)
↗1

}ωT ↗ max{1, Rµ̇g(φ)
↗1

}d log

(
ϱ+

TK
2

d

)
. (21)

This leads to bound of order Õ((1 + RsBK)(
∞
ϱB +

√
d log(⇁↗1) + RK log(⇁↗1))

√
dT/ε→),342

matching the result of [2] up to logarithmic terms.343

8 Conclusions344

In this paper, we have introduced the novel setting of GKBs, unifying KBs and GLBs. We have345

provided a novel Bernstein-like dimension-free self-normalized bound of independent interest. We346

employed it to analyze the regret of GKB-UCB showing tight regret bounds. Future works include347

investigating the use of the techniques from [17] in order to remove the multiplicative dependence on348

the norm and kernel bounds (1 + RsBK) in the regret bound as well as the study of the inherent349

complexity of regret minimization in the GLB setting by conceiving regret lower bounds [26].350

8With the O(·) notation, we suppress multiplicative constants and dependencies on g(ϱ) and Rµ̇. With the
Õ(·) notation, we also suppress logarithmic dependencies on all variables, except for ε.
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• If applicable, the authors should discuss possible limitations of their approach to481

address problems of privacy and fairness.482

• While the authors might fear that complete honesty about limitations might be used by483

reviewers as grounds for rejection, a worse outcome might be that reviewers discover484

limitations that aren’t acknowledged in the paper. The authors should use their best485

judgment and recognize that individual actions in favor of transparency play an impor-486

tant role in developing norms that preserve the integrity of the community. Reviewers487

will be specifically instructed to not penalize honesty concerning limitations.488

3. Theory assumptions and proofs489

Question: For each theoretical result, does the paper provide the full set of assumptions and490

a complete (and correct) proof?491

Answer: [Yes]492
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Justification: All the statements are provided with proofs in the appendix.493

Guidelines:494

• The answer NA means that the paper does not include theoretical results.495

• All the theorems, formulas, and proofs in the paper should be numbered and cross-496

referenced.497

• All assumptions should be clearly stated or referenced in the statement of any theorems.498

• The proofs can either appear in the main paper or the supplemental material, but if499

they appear in the supplemental material, the authors are encouraged to provide a short500

proof sketch to provide intuition.501

• Inversely, any informal proof provided in the core of the paper should be complemented502

by formal proofs provided in appendix or supplemental material.503

• Theorems and Lemmas that the proof relies upon should be properly referenced.504

4. Experimental result reproducibility505

Question: Does the paper fully disclose all the information needed to reproduce the main ex-506

perimental results of the paper to the extent that it affects the main claims and/or conclusions507

of the paper (regardless of whether the code and data are provided or not)?508

Answer: [NA]509

Justification: No experiments.510

Guidelines:511

• The answer NA means that the paper does not include experiments.512

• If the paper includes experiments, a No answer to this question will not be perceived513

well by the reviewers: Making the paper reproducible is important, regardless of514

whether the code and data are provided or not.515

• If the contribution is a dataset and/or model, the authors should describe the steps taken516

to make their results reproducible or verifiable.517

• Depending on the contribution, reproducibility can be accomplished in various ways.518

For example, if the contribution is a novel architecture, describing the architecture fully519

might suffice, or if the contribution is a specific model and empirical evaluation, it may520

be necessary to either make it possible for others to replicate the model with the same521

dataset, or provide access to the model. In general. releasing code and data is often522

one good way to accomplish this, but reproducibility can also be provided via detailed523

instructions for how to replicate the results, access to a hosted model (e.g., in the case524

of a large language model), releasing of a model checkpoint, or other means that are525

appropriate to the research performed.526

• While NeurIPS does not require releasing code, the conference does require all submis-527

sions to provide some reasonable avenue for reproducibility, which may depend on the528

nature of the contribution. For example529

(a) If the contribution is primarily a new algorithm, the paper should make it clear how530

to reproduce that algorithm.531

(b) If the contribution is primarily a new model architecture, the paper should describe532

the architecture clearly and fully.533

(c) If the contribution is a new model (e.g., a large language model), then there should534

either be a way to access this model for reproducing the results or a way to reproduce535

the model (e.g., with an open-source dataset or instructions for how to construct536

the dataset).537

(d) We recognize that reproducibility may be tricky in some cases, in which case538

authors are welcome to describe the particular way they provide for reproducibility.539

In the case of closed-source models, it may be that access to the model is limited in540

some way (e.g., to registered users), but it should be possible for other researchers541

to have some path to reproducing or verifying the results.542

5. Open access to data and code543

Question: Does the paper provide open access to the data and code, with sufficient instruc-544

tions to faithfully reproduce the main experimental results, as described in supplemental545

material?546
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Answer: [NA]547

Justification: No experiments.548

Guidelines:549

• The answer NA means that paper does not include experiments requiring code.550

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/551

public/guides/CodeSubmissionPolicy) for more details.552

• While we encourage the release of code and data, we understand that this might not be553

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not554

including code, unless this is central to the contribution (e.g., for a new open-source555

benchmark).556

• The instructions should contain the exact command and environment needed to run to557

reproduce the results. See the NeurIPS code and data submission guidelines (https:558

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.559

• The authors should provide instructions on data access and preparation, including how560

to access the raw data, preprocessed data, intermediate data, and generated data, etc.561

• The authors should provide scripts to reproduce all experimental results for the new562

proposed method and baselines. If only a subset of experiments are reproducible, they563

should state which ones are omitted from the script and why.564

• At submission time, to preserve anonymity, the authors should release anonymized565

versions (if applicable).566

• Providing as much information as possible in supplemental material (appended to the567

paper) is recommended, but including URLs to data and code is permitted.568

6. Experimental setting/details569

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-570

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the571

results?572

Answer: [NA]573

Justification: No experiments.574

Guidelines:575

• The answer NA means that the paper does not include experiments.576

• The experimental setting should be presented in the core of the paper to a level of detail577

that is necessary to appreciate the results and make sense of them.578

• The full details can be provided either with the code, in appendix, or as supplemental579

material.580

7. Experiment statistical significance581

Question: Does the paper report error bars suitably and correctly defined or other appropriate582

information about the statistical significance of the experiments?583

Answer: [NA]584

Justification: No experiments.585

Guidelines:586

• The answer NA means that the paper does not include experiments.587

• The authors should answer "Yes" if the results are accompanied by error bars, confi-588

dence intervals, or statistical significance tests, at least for the experiments that support589

the main claims of the paper.590

• The factors of variability that the error bars are capturing should be clearly stated (for591

example, train/test split, initialization, random drawing of some parameter, or overall592

run with given experimental conditions).593

• The method for calculating the error bars should be explained (closed form formula,594

call to a library function, bootstrap, etc.)595

• The assumptions made should be given (e.g., Normally distributed errors).596

• It should be clear whether the error bar is the standard deviation or the standard error597

of the mean.598
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• It is OK to report 1-sigma error bars, but one should state it. The authors should599

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis600

of Normality of errors is not verified.601

• For asymmetric distributions, the authors should be careful not to show in tables or602

figures symmetric error bars that would yield results that are out of range (e.g. negative603

error rates).604

• If error bars are reported in tables or plots, The authors should explain in the text how605

they were calculated and reference the corresponding figures or tables in the text.606

8. Experiments compute resources607

Question: For each experiment, does the paper provide sufficient information on the com-608

puter resources (type of compute workers, memory, time of execution) needed to reproduce609

the experiments?610

Answer: [NA]611

Justification: No experiments.612

Guidelines:613

• The answer NA means that the paper does not include experiments.614

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,615

or cloud provider, including relevant memory and storage.616

• The paper should provide the amount of compute required for each of the individual617

experimental runs as well as estimate the total compute.618

• The paper should disclose whether the full research project required more compute619

than the experiments reported in the paper (e.g., preliminary or failed experiments that620

didn’t make it into the paper).621

9. Code of ethics622

Question: Does the research conducted in the paper conform, in every respect, with the623

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?624

Answer: [Yes]625

Justification: The paper is coherent with NeurIPS Code of Ethics.626

Guidelines:627

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.628

• If the authors answer No, they should explain the special circumstances that require a629

deviation from the Code of Ethics.630

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-631

eration due to laws or regulations in their jurisdiction).632

10. Broader impacts633

Question: Does the paper discuss both potential positive societal impacts and negative634

societal impacts of the work performed?635

Answer: [NA]636

Justification: —637

Guidelines:638

• The answer NA means that there is no societal impact of the work performed.639

• If the authors answer NA or No, they should explain why their work has no societal640

impact or why the paper does not address societal impact.641

• Examples of negative societal impacts include potential malicious or unintended uses642

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations643

(e.g., deployment of technologies that could make decisions that unfairly impact specific644

groups), privacy considerations, and security considerations.645

• The conference expects that many papers will be foundational research and not tied646

to particular applications, let alone deployments. However, if there is a direct path to647

any negative applications, the authors should point it out. For example, it is legitimate648

to point out that an improvement in the quality of generative models could be used to649
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generate deepfakes for disinformation. On the other hand, it is not needed to point out650

that a generic algorithm for optimizing neural networks could enable people to train651

models that generate Deepfakes faster.652

• The authors should consider possible harms that could arise when the technology is653

being used as intended and functioning correctly, harms that could arise when the654

technology is being used as intended but gives incorrect results, and harms following655

from (intentional or unintentional) misuse of the technology.656

• If there are negative societal impacts, the authors could also discuss possible mitigation657

strategies (e.g., gated release of models, providing defenses in addition to attacks,658

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from659

feedback over time, improving the efficiency and accessibility of ML).660

11. Safeguards661

Question: Does the paper describe safeguards that have been put in place for responsible662

release of data or models that have a high risk for misuse (e.g., pretrained language models,663

image generators, or scraped datasets)?664

Answer: [NA]665

Justification: —666

Guidelines:667

• The answer NA means that the paper poses no such risks.668

• Released models that have a high risk for misuse or dual-use should be released with669

necessary safeguards to allow for controlled use of the model, for example by requiring670

that users adhere to usage guidelines or restrictions to access the model or implementing671

safety filters.672

• Datasets that have been scraped from the Internet could pose safety risks. The authors673

should describe how they avoided releasing unsafe images.674

• We recognize that providing effective safeguards is challenging, and many papers do675

not require this, but we encourage authors to take this into account and make a best676

faith effort.677

12. Licenses for existing assets678

Question: Are the creators or original owners of assets (e.g., code, data, models), used in679

the paper, properly credited and are the license and terms of use explicitly mentioned and680

properly respected?681

Answer: [NA]682

Justification: —683

Guidelines:684

• The answer NA means that the paper does not use existing assets.685

• The authors should cite the original paper that produced the code package or dataset.686

• The authors should state which version of the asset is used and, if possible, include a687

URL.688

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.689

• For scraped data from a particular source (e.g., website), the copyright and terms of690

service of that source should be provided.691

• If assets are released, the license, copyright information, and terms of use in the692

package should be provided. For popular datasets, paperswithcode.com/datasets693

has curated licenses for some datasets. Their licensing guide can help determine the694

license of a dataset.695

• For existing datasets that are re-packaged, both the original license and the license of696

the derived asset (if it has changed) should be provided.697

• If this information is not available online, the authors are encouraged to reach out to698

the asset’s creators.699

13. New assets700

Question: Are new assets introduced in the paper well documented and is the documentation701

provided alongside the assets?702
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Answer: [NA]703

Justification: —704

Guidelines:705

• The answer NA means that the paper does not release new assets.706

• Researchers should communicate the details of the dataset/code/model as part of their707

submissions via structured templates. This includes details about training, license,708

limitations, etc.709

• The paper should discuss whether and how consent was obtained from people whose710

asset is used.711

• At submission time, remember to anonymize your assets (if applicable). You can either712

create an anonymized URL or include an anonymized zip file.713

14. Crowdsourcing and research with human subjects714

Question: For crowdsourcing experiments and research with human subjects, does the paper715

include the full text of instructions given to participants and screenshots, if applicable, as716

well as details about compensation (if any)?717

Answer: [NA]718

Justification: —719

Guidelines:720

• The answer NA means that the paper does not involve crowdsourcing nor research with721

human subjects.722

• Including this information in the supplemental material is fine, but if the main contribu-723

tion of the paper involves human subjects, then as much detail as possible should be724

included in the main paper.725

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,726

or other labor should be paid at least the minimum wage in the country of the data727

collector.728

15. Institutional review board (IRB) approvals or equivalent for research with human729

subjects730

Question: Does the paper describe potential risks incurred by study participants, whether731

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)732

approvals (or an equivalent approval/review based on the requirements of your country or733

institution) were obtained?734

Answer: [NA]735

Justification: —736

Guidelines:737

• The answer NA means that the paper does not involve crowdsourcing nor research with738

human subjects.739

• Depending on the country in which research is conducted, IRB approval (or equivalent)740

may be required for any human subjects research. If you obtained IRB approval, you741

should clearly state this in the paper.742

• We recognize that the procedures for this may vary significantly between institutions743

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the744

guidelines for their institution.745

• For initial submissions, do not include any information that would break anonymity (if746

applicable), such as the institution conducting the review.747

16. Declaration of LLM usage748

Question: Does the paper describe the usage of LLMs if it is an important, original, or749

non-standard component of the core methods in this research? Note that if the LLM is used750

only for writing, editing, or formatting purposes and does not impact the core methodology,751

scientific rigorousness, or originality of the research, declaration is not required.752

Answer: [NA]753
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Justification: —754

Guidelines:755

• The answer NA means that the core method development in this research does not756

involve LLMs as any important, original, or non-standard components.757

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)758

for what should or should not be described.759
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