
A Linked Data Application Framework
to Enable Rapid Prototyping

Markus Schröder, Christian Jilek, and Andreas Dengel

1 Smart Data & Knowledge Services Dept., DFKI GmbH, Kaiserslautern, Germany
2 Computer Science Dept., TU Kaiserslautern, Germany

{markus.schroeder, christian.jilek, andreas.dengel}@dfki.de

Abstract. Application developers, in our experience, tend to hesitate
when dealing with linked data technologies. To reduce their initial hurdle
and enable rapid prototyping, we propose in this paper a framework
for building linked data applications. Our approach especially considers
the participation of web developers and non-technical users without
much prior knowledge about linked data concepts. Web developers are
supported with bidirectional RDF to JSON conversions and suitable
CRUD endpoints. Non-technical users can browse websites generated
from JSON data by means of a template language. A prototypical open
source implementation demonstrates its capabilities.

Keywords: Linked Data · RDF · JSON · Converter · Platform

1 Introduction and Motivation

The approach of linking data enjoys great popularity in our projects. However, we
observe that the adoption of linked data, especially for beginners, does not show a
flat learning curve because of rich technology stacks, standards and new concepts
that need to be studied first. This includes, for instance, the Semantic Web layer
cake, RDF basics (statements, literals), ontologies, SPARQL and so on. The
multitude of technologies can be overwhelming for application developers who
come in contact with them for the first time. For these reasons, our experience has
shown that they tend to hesitate when dealing with such technologies, especially
in the industrial sector. A suitable development framework could reduce the
initial hurdle to build linked data applications and eventually work with linked
data.

Once such data is introduced in a project, various users despite their different
roles should be able to participate and contribute to it. That is why we think
that linked data applications should be designed to consider at least these major
user groups: Semantic Web practitioners, web developers and non-technical users
such as knowledge workers. Because linked data is already stored in a desired
data model for Semantic Web experts (typically RDF), they can directly work
with it, for example by using SPARQL queries, without data conversion needs.
In contrast, web developers, not necessarily experienced with Semantic Web
technologies, in our opinion rather expect a JSON-based API to be available in



2 Markus Schröder, Christian Jilek, and Andreas Dengel

such systems which may also support basic Create, Read, Update and Delete
operations (CRUD). Furthermore, non-technical users usually have a demand
for graphical user interfaces (GUI), in our projects often HTML and JavaScript-
driven web apps, that provide various forms to let them browse and manipulate
data dynamically.

We propose a Linked Data Application Framework (LDAF) in which these
requirements are recognized. Our design decisions are outlined in the following.
Such a framework should ensure that managed hyperlinks (URIs) are resolvable
which is essential in linked data. Links are a known concept for users and enable the
querying, referring and ultimately linking of resources. Even non-technical users
are familiar with URLs due to their browsing in the World Wide Web. However,
when links are surfed, users usually expect to receive data in a familiar format.
This is typically accomplished with content negotiation, however, it requires that
linked data has to be properly converted to JSON for web developers and HTML
for non-technical users. Therefore, our proposal includes that such applications
should provide a way to bidirectionally transform between JSON and RDF. By
additionally providing CRUD operations with POST, GET, PUT, PATCH and DELETE

request methods, web developers are able to build services with a JSON-based
API that sufficiently retrieve, manipulate and especially link resources. To render
well-designed HTML pages for knowledge workers, a template language can
be utilized that is fed with JSON object representations just mentioned. Such
websites can also make use of asynchronous HTTP requests to build dynamic web
apps. Besides simple CRUD resources, the framework should also be extendable
with further linked data resources to satisfy more complex use cases.

We see in the usage of LDAF several opportunities. With almost no additional
effort Semantic Web enthusiasts are able to provide linked data applications
for their project partners not acquainted with Semantic Web standards. With
that, the group can directly make use of the evolving linked data graph while
contributors entering and manipulating data on websites or through programmed
web services. This rapid prototyping can push early discussions about the modeled
domain in projects and enable developers to test their first knowledge services,
like for instance knowledge assistants3. Furthermore, it could serve as a initial
basis for discussions when constructed knowledge graphs need to be reviewed by
users.

In this paper, we present our first prototypical implementation of the envi-
sioned framework.

2 Demo

Our open source implementation is written in Java and hosted on GitHub4. The
example application from our tutorial is available on a demo page5 for testing.
What follows are implementation details of its features.

3 https://comem.ai/SensAI
4 https://github.com/mschroeder-github/ldaf
5 http://www.dfki.uni-kl.de/~mschroeder/demo/ldaf

https://comem.ai/SensAI
https://github.com/mschroeder-github/ldaf
http://www.dfki.uni-kl.de/~mschroeder/demo/ldaf


A Linked Data Application Framework to Enable Rapid Prototyping 3

With multiple independent users in mind, our framework implements basic
registration and login functionalities. Each registered user is associated with a
private RDF graph that stores the person’s personal information like names and
password (hash). However, this does not restrict application builders to create
shared graphs for user groups. Signed-in agents have access to the subsequently
described resources.

To ease the development, our framework already provides several default
implementations of commonly required resources. The /ontology resource serves
the read-only terminology and makes sure that links to concepts are always
resolvable. A /search resource provides a simple SPARQL and regular expression
based search in resource labels. The /sparql endpoint lets experts run self-
written SPARQL queries on their visible RDF graphs. An image uploader at
/upload allows users to send and link depictions of their resources. If the default
implementations do not fit a user’s needs, our framework is easily extensible
with Java classes extending LinkedDataResource. All resources perform content
negotiations together with format conversions to correctly respond to the MIME
types text/html, text/turtle and application/json.

To accomplish the latter, a Converter is provided that bidirectionally trans-
forms RDF statements to JSON object representations. Given a starting resource,
the RDF graph is traversed in a configurable depth in order to create for each
resource nested JSON objects containing the resource’s uri, path, localname
and further properties as keys. A special incoming object lists all properties
and subjects that refer to it. Our converter tries to achieve a good trade-off
between RDF(S) expressiveness and a more lightweight JSON representation that
provides an intuitive object view for web developers not familiar with Semantic
Web concepts.

To provide HTML pages, we make use of the template language Apache
FreeMarker6. Using the converted JSON objects for the data model, equivalent
representations can be built with HTML, CSS and JavaScript. Additional forms
and asynchronous HTTP requests let non-technical users view and manipulate
linked data dynamically.

To archive this, our framework also provides default implementations for
CRUD operations and pagination. Every component, especially the Create com-
ponent, ensures that all URIs managed by the application are always resolvable.

3 Related Work

The related Linked Data Platform7 also describes how to read and write linked
data with HTTP operations. However, this standard mainly considers RDF as
an exchange format, while other formats (HTTP, JSON) are only marginally
mentioned (see Section 6.2.1).

SPARQL Template [1] is a related approach to generate other formats from
RDF. It may also be used to build JSON objects or HTML pages, but it requires

6 https://freemarker.apache.org
7 https://www.w3.org/TR/ldp

https://github.com/mschroeder-github/LDAF/blob/main/ldaf/src/main/java/de/dfki/sds/ldaf/LinkedDataResource.java
https://github.com/mschroeder-github/LDAF/blob/main/ldaf/src/main/java/de/dfki/sds/ldaf/Converter.java
https://freemarker.apache.org
https://www.w3.org/TR/ldp


4 Markus Schröder, Christian Jilek, and Andreas Dengel

sufficient experience in SPARQL. Similarly, one could easily provide JSON-LD8

when JSON data is desired. Yet, we did not consider this RDF serialization
format, since it needs additional training to comprehend its 23 @-notations (like
@context) and its sometimes unexpected nesting.

In former work, we already demonstrated how Semantic Web newcomers are
enabled to interact with associated technologies: A path based JSON REST API
allows users to perform CRUD operations on RDF graphs [2], while a generator
is able to build relational databases and REST APIs from RDF [3]. This work
ties together previous ideas and new ones in a dedicated framework.

4 Conclusion and Outlook

Because of our observation that people often tend to hesitate when dealing with
Semantic Web technologies due to its complexity, we proposed a Linked Data
Application Framework (LDAF) with the intention to reduce initial hurdles and
enable rapid prototyping, especially for web developers and non-technical users.
A prototypical open source implementation demonstrated its capabilities and
possible opportunities.

In the future, we plan to deploy our framework in projects with different
domains and users. A major use case will be the integration of domain experts as
Humans-in-the-Loop (HumL) during the construction of knowledge graphs. For
that, we intend to provide in future versions of our prototype an HTML-GUI
generation approach comparable with [3].

References

1. Corby, O., Faron-Zucker, C.: SPARQL template : un langage de pretty printing
pour RDF. In: IC 2014 : 25es Journées francophones d’Ingénierie des Connaissances
(Proceedings of the 25th French Knowledge Engineering Conference), Clermont
Ferrand, France, May 12-16, 2014. pp. 213–224 (2014)

2. Schröder, M., Hees, J., Bernardi, A., Ewert, D., Klotz, P., Stadtmüller, S.: Simplified
SPARQL REST API - CRUD on JSON object graphs via URI paths. In: The
Semantic Web: ESWC 2018 Satellite Events - ESWC 2018 Satellite Events, Heraklion,
Crete, Greece, June 3-7, 2018. LNCS, vol. 11155, pp. 40–45. Springer (2018), https:
//doi.org/10.1007/978-3-319-98192-5_8

3. Schröder, M., Schulze, M., Jilek, C., Dengel, A.: Bridging the technology gap between
industry and semantic web: Generating databases and server code from RDF. In:
Proceedings of the 13th International Conference on Agents and Artificial Intelligence,
ICAART 2021, Volume 2, Online Streaming, February 4-6, 2021. pp. 507–514.
SCITEPRESS (2021), https://doi.org/10.5220/0010186005070514

8 https://www.w3.org/TR/json-ld11

https://doi.org/10.1007/978-3-319-98192-5_8
https://doi.org/10.1007/978-3-319-98192-5_8
https://doi.org/10.5220/0010186005070514
https://www.w3.org/TR/json-ld11

	A Linked Data Application Frameworkto Enable Rapid Prototyping

