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Abstract

We propose and explore the possibility that language models can be studied as effective proxies for
specific human sub-populations in social science research. Practical and research applications of artificial
intelligence tools have sometimes been limited by problematic biases (such as racism or sexism), which
are often treated as uniform properties of the models. We show that the “algorithmic bias” within one
such tool– the GPT-3 language model– is instead both fine-grained and demographically correlated,
meaning that proper conditioning will cause it to accurately emulate response distributions from a wide
variety of human subgroups. We term this property algorithmic fidelity and explore its extent in GPT-3.
We create “silicon samples” by conditioning the model on thousands of socio-demographic backstories
from real human participants in multiple large surveys conducted in the United States. We then compare
the silicon and human samples to demonstrate that the information contained in GPT-3 goes far beyond
surface similarity. It is nuanced, multifaceted, and reflects the complex interplay between ideas, attitudes,
and socio-cultural context that characterize human attitudes. We suggest that language models with
sufficient algorithmic fidelity thus constitute a novel and powerful tool to advance understanding of
humans and society across a variety of disciplines.
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1 Introduction

Recent years have witnessed a marked increase in the use of machine learning tools to advance social
science research [1–6]. However, little attention has yet been paid to the possible applications of large-
scale generative language models like GPT-2 [7], T5 [8], or GPT-3 [9] to advancing scientific understanding
of human social and political behavior. These models are complex conditional distributions over natural
language that are used to generate synthetic text. When trained at scale, they exhibit a remarkable ability
to capture patterns of grammar, cultural knowledge, and conversational rhythms present in natural language
[10–12], and have become so convincing that the texts they generate are largely indistinguishable from those
generated by humans [9]. We propose that these models can be used as surrogates for human respondents
in a variety of social science tasks.

Our argument begins with a different take on a commonly-recognized problem with artificial intelligence
tools: their penchant for replicating the racial, gender, economic, and other biases of their creators. Most
discussions of this “algorithmic bias” treat it as a singular, macro-level feature of the model, and seek ways
to mitigate negative effects [13–15]. We suggest it is better understood as a complex reflection of the many
various patterns of association between ideas, attitudes, and contexts present among humans. Our studies
show that the same language model, when properly conditioned, is able to produce outputs biased both
toward and against specific groups and perspectives in ways that strongly correspond with human response
patterns along fine-grained demographic axes. In other words, these language models do not contain just one
bias, but many. This means that by conditioning a model on simulated “individuals” with targeted identity
and personality profiles, it is possible to select from among a diverse and frequently disjoint set of response
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distributions within the model, each closely aligned with a real human sub-population. We call the degree
to which a model can accurately reflect these distributions its degree of algorithmic fidelity.

High algorithmic fidelity in language models is crucial for their use in social science as it enables researchers
to extract information from a single language model that provides insight into the different patterns of
attitudes and ideas present across many groups (women, men, White people, people of color, millennials,
baby boomers, etc.) and also the combination and intersection of these groups (Black immigrants, female
Republicans, White males, etc.). As yet, however, the extent of algorithmic fidelity in large-scale language
models is unexplored. In three studies, we provide evidence that the GPT-3 language model [9] satisfies what
we argue are the four essential criteria of algorithmic fidelity. We obtain this evidence by conditioning GPT-
3 on thousands of socio-demographic backstories from real human participants in multiple large surveys in
the United States: the 2012, 2016, and 2020 waves of the American National Election Studies (ANES)[16],
and Rothschild et al.’s “Pigeonholing Partisans” data [17]. We condition the model to generate one “silicon
subject” for each human study participant, and then ask these simulated subjects to complete the same
tasks that were required of human participants. To assess algorithmic fidelity, we explore the degree to
which the complex patterns of relationships between ideas, attitudes, and contexts within our silicon subjects
accurately mirror those within the human populations. The results from our tests provide the first extensive,
systematic exploration of the degree of algorithmic fidelity in a large-scale language model, laying the
groundwork for the use of these models broadly in social science.

These studies also provide initial examples of just a few of the myriad potential ways language models can
be used in social science research once algorithmic fidelity in a given domain is established. In Study 1,
we ask our GPT-3 surrogates to list words describing outgroup partisans and show how closely these words
mirror those listed by their human counterparts. In Studies 2 and 3, we explore the relationships between
various demographics, attitudes, and reported behaviors; our results show the same patterns of relationships
among GPT-3 surrogates and their human counterparts. For all three of these studies, we explain how a
researcher might use only the information from GPT-3 to more effectively study human populations. These
results suggest that in the realm of U.S. politics, researchers can confidently use a GPT-3 “silicon sample” to
explore hypotheses prior to costly deployment with human subjects. GPT-3 can thus be used both in theory
generation and testing.

This paper makes five important contributions: (1) it conceptualizes algorithmic fidelity and identifies four
criteria to assess it; (2) it introduces silicon sampling, a methodology by which a language model can
generate a virtual population of respondents, correcting skewed marginal statistics in the training data; (3)
it introduces a novel approach to conditioning on first-person demographic backstories to simulate targeted
human survey responses; (4) it presents compelling evidence for the existence of algorithmic fidelity in the
GPT-3 language model in the domain of U.S. politics and public opinion; and (5) it provides examples of
how the model can be used for social science research in this domain.

2 The GPT-3 Language Model

The GPT-3 language model holds particular promise as a social science tool. Released by OpenAI in 2020,
GPT-3 has 175 billion parameters and was trained on more than 45 terabytes of text, making it one of
the largest generative language models ever created. Texts generated by GPT-3 are strikingly difficult to
distinguish from authentic human compositions.

Formally, language models like GPT-3 are a conditional probability distribution p(xn|x1, · · · , xn−1) over
tokens, where each xi comes from a fixed vocabulary. By iteratively sampling from this distribution, a
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language model can generate arbitrarily long sequences of text. However, before it can generate text, a
language model like GPT-3 requires “conditioning,” meaning that it must be provided with initial input
tokens comprising {x1, ..., xn−1}. We refer to this conditioning text as the model’s context.

Conditioning a language model on different contexts reduces the probability of some outputs and increases
the probability of others. For example, given the context {x1, x2, x3} =“Can you come”, a language model
might assign high probability to x4=“home”, and low probability to x4=“bananas”, but changing a single
word in the context to {x1, x2, x3} = “Can you eat” reverses that. At each generative step, the model
estimates a probability distribution corresponding to the likelihood that any given token in the vocabulary
would have been the next observed xi if the model were reading a pre-written text. Using a distribution
function, it selects one of the most probable candidates, the new xi is appended to the conditioning context,
and the entire process repeats. This continues until a pre-specified number of tokens has been generated, or
until an external factor causes the process to stop. Because GPT-3 selects output tokens probabilistically, it
can generate many possible continuations for a given context.

3 Algorithmic Fidelity

We define algorithmic fidelity as the degree to which the complex patterns of relationships between ideas,
attitudes, and socio-cultural contexts within a model accurately mirror those within a range of human sub-
populations. The core assumption of algorithmic fidelity is that texts generated by the model are selected
not from a single overarching probability distribution, but from a combination of many distributions, and
that structured curation of the conditioning context can induce the model to produce outputs that correlate
with the attitudes, opinions, experiences of distinct human sub-populations.

This does not imply that the model can simulate a specific individual or that every generated response will be
coherent. Many of the known shortcomings and inaccuracies of large language models still apply [18, 19].
However, by selecting a conditioning context that evokes the shared socio-cultural experience of a specific
demographic group, we find that it is possible to produce response distributions that strongly correlate with
the distribution of human responses to survey questions from that demographic.

Our conception of algorithmic fidelity goes beyond prior observations that language models reflect human-
like biases present in the text corpora used to create them [13–15, 20, 21]. Instead, it suggests that the high-
level, human-like output of language models stems from human-like underlying concept associations. This
means that given basic human demographic background information, the model exhibits underlying patterns
between concepts, ideas, and attitudes that mirror those recorded from humans with matching backgrounds.
To use terms common to social science research, algorithmic fidelity helps to establish the generalizability
of language models, or the degree to which we can apply what we learn from language models to the world
beyond those models.

How much algorithmic fidelity in a language model is enough for social science use? We suggest at a mini-
mum a language model must provide repeated, consistent evidence of meeting the following four criteria:

Criterion 1 (Social Science Turing Test) Generated responses are indistinguishable from parallel human
texts.

Criterion 2 (Backward Continuity) Generated responses are consistent with the attitudes and socio-demographic
information of its input/“conditioning context,” such that humans viewing the responses can infer key ele-
ments of that input.
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Criterion 3 (Forward Continuity) Generated responses proceed naturally from the conditioning context
provided, reliably reflecting the form, tone, and content of the context.

Criterion 4 (Pattern Correspondence) Generated responses reflect underlying patterns of relationships
between ideas, demographics, and behavior that would be observed in comparable human-produced data.

These criteria represent four qualitatively different dimensions on which a model must have fidelity to human
responses if researchers are to have confidence in the ability of the model to generate reliable surrogate
human responses. A lack of fidelity in any one of these four areas decreases confidence in its usability;
a lack of fidelity in more than one decreases confidence further. We do not propose specific metrics or
numerical thresholds to quantify meeting or missing these criteria, as the appropriate statistics will depend
on varying data structures and disciplinary standards. Instead,we suggest the best metric is repeated support
for each criteria across multiple data sources, different measures, and across many groups.

In the following studies, we take this approach in examining support for these criteria within GPT-3 in
the domain of U.S. politics and public opinion. Decades of research in political science provide a robust
literature identifying expected relationship patterns between political ideas, concepts, and attitudes [22–27].
We leverage these as a basis for comparison.

4 Silicon Sampling: Correcting Skewed Marginals

Applying language models to social science research raises an obvious question: how can we compensate for
the fact that the demographics of internet users (on which the model was trained) are neither representative of
most populations of interest nor demographically balanced, and that language models are trained on internet
snapshots acquired at a fixed point in time?

We propose a general methodology, which we term silicon sampling, that corrects skewed marginal statistics
of a language model. To see what needs correcting, imagine trying to use GPT-3 to assess marginal proba-
bilities of voting patterns P (V ). GPT-3 models both voting patterns V and demographics BGPT3 jointly as
P (V,BGPT3)=P (V |BGPT3)P (BGPT3).

However, the distribution of backstories P (BGPT3) does not match the distribution P (BTrue) in the pop-
ulations of interest to most social scientists (say, among all voting-eligible citizens); without correction,
conclusions about marginal voting patterns P (V )=

∫
B P (V,BGPT3) will be skewed by this difference. To

overcome this, we leverage the conditional nature of language models and sample backstories from a known,
nationally representative sample (for example, the ANES) and then estimate P (V ) based on those ANES-
sampled backstories. This allows us to compute P (V |BANES)P (BANES). As long as GPT-3 models the
conditional distribution P (V |B) well, we can explore patterns in any designated population.

The conditional nature of GPT-3’s text completions creates a situation analogous to Simpson’s Paradox
[28], in which the trends evident in a combined group do not reflect the trends of its composite distributions.
Specifically, our silicon sampling method allows us to examine the distinct opinions, biases, and voting
patterns of identified sub-populations, which can differ drastically from the patterns exhibited by generic
(i.e. not demographically conditioned) GPT-3 text completions. Of course, the ability to sample from GPT-
3’s component text distributions does not, in and of itself, guarantee that these distributions faithfully reflect
the behavior of specific human sub-populations. For that, one must first examine the model’s algorithmic
fidelity with respect to both the domain of study and the demographic groups of interest.
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Ideologically, I describe myself as conservative. Politically, I am a strong Republi-
can. Racially, I am white. I am male. Financially, I am upper-class. In terms of my 
age, I am young. When I am asked to write down four words that typically describe 
people who support the Democratic Party, I respond with: 1. Liberal 2. Socialist 
3. Communist 4. Atheist. 

Ideologically, I describe myself as liberal. Politically, I am a strong Democrat. 
Racially, I am white. I am female. Financially, I am poor. In terms of my age, I am 
old. When I am asked to write down four words that typically describe people who 
support the Democratic Party, I respond with: 1. Liberal. 2. Young. 3. Female. 4. 
Poor. 

Ideologically, I describe myself as conservative. Politically, I am a strong 
Republican. Racially, I am white. I am male. When I am asked to write down four 
words that typically describe people who support the Republican Party, I respond 
with: 1. Conservative 2. Male 3. White (or Caucasian) 4. Christian. 

Ideologically, I describe myself as extremely liberal. Politically, I am a strong 
Democrat. Racially, I am hispanic. I am male. Financially, I am upper-class. In 
terms of my age, I am middle-aged. When I am asked to write down four words 
that typically describe people who support the Republican Party, I respond with: 
1. Ignorant 2. Racist 3.  Misogynist 4.  Homophobic. 

Describing Democrats Describing Republicans
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Figure 1: Example contexts and completions from four silicon “individuals” analyzed in Study 1. Plaintext
indicates the conditioning context; underlined words show demographics we dynamically inserted into the
template; blue words are the four harvested words.

5 Study 1: Free-form Partisan Text

Our first examination of algorithmic fidelity in GPT-3 involves a silicon replication of Rothschild et al.’s
“Pigeonholing Partisans” data [17]. This survey asked respondents to list four words to describe both Re-
publicans and Democrats. Rothschild et al. find that people talk about partisans in different ways, focusing
on traits, political issues, social groups, or a combination of all three. Further, people often talk about their
own political party in more positive ways than the other party, in line with other research [29, 30]. In this first
test, we ask whether GPT-3 can produce texts about partisans that are, in the aggregate, indistinguishable
from words generated by humans.

To accomplish this, we leverage our silicon sampling technique, generating a synthetic dataset by construct-
ing a first-person backstory for each human subject in the Pigeonholing Partisans survey, as shown in Figure
1. Using these texts, we ask GPT-3 to sample new words. Because of the setup of our conditioning text,
GPT-3 almost always responds with neatly delineated sets of four words, although – much like humans
– it occasionally responds with long phrases, mini-essays or nothing at all. Post-processing with regular
expressions extracted the final set of four words from each sample.

For GPT-3 to generate 4-word lists that mirror human texts demands significant algorithmic fidelity, for it
requires listing words that in tone and content mirror those listed by humans with a particular background.
Figure 2 compares the most frequent words used to describe Democrats and Republicans in our data, by
data source (GPT-3 or human) and source ideology. Bubble size represents relative frequency of word
occurrence; columns represent the ideology of the list writers. Qualitatively, both the human and GPT-3
lists look initially as political scientists might expect. For example, both GPT-3 and humans use a common
set of words to describe Democrats, and rarely use those words to describe Republicans.

To formally analyze this data, we hired 2873 individuals through the survey platform Lucid [31] to evaluate
the 7675 texts produced by human and GPT-3 survey respondents, without any indication of which was
which. Each individual evaluated 8 randomly assigned lists, with each text evaluated by three different
individuals.

We presented these evaluators with the 4-word lists after the following preface: “Consider the following
description of [Republicans/Democrats]:”. We then asked them to respond to six prompts. First, we asked
them to guess the partisanship of the list writer (Republican, Democrat, or Independent). We then asked
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Figure 2: The original Pigeonholing Partisans dataset and the corresponding GPT-3 generated words. Bubble
size represents relative frequency of word occurrence; columns represent the ideology of list writers. GPT-3
uses a similar set of words to humans.

them to rate the list on 5 dimensions: (1) positive or negative tone, (2) overall extremity, and whether the
text mentioned (3) traits, (4) policy issues, or (5) social groups. Participants then sequentially viewed 8
additional randomly selected lists, were told that some of these lists were generated by a computer model,
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and were asked to guess whether each list was generated by a human or a computer. Extensive details on
the lists, their writers, study participants, and the instructions can be found in the appendix.

Using this design, we explore two social science variations of a Turing Test: (1) whether our human eval-
uators recognize the difference between human and GPT-3-generated lists, and (2) whether the humans
perceive the content of lists from both sources as similar. These tests speak to Criterion 1 (Turing test) and
Criterion 2 (Backward Continuity).

We find evidence in favor of both criteria: participants guessed 61.7% of human-generated lists were human-
generated, while guessing the same of 61.2% of GPT-3 lists (two-tailed difference p=0.44). Although asking
participants to judge if a list is human- or computer-generated leads them to guess that some lists do not come
from humans (nearly 40 percent of both kinds of lists fell in this category), this tendency does not vary by
the source of the list.

This is particularly interesting given the results of our second exploration: whether participants noted any
differences in list characteristics between human and GPT-3-generated lists. To identify these differences,
we estimate regression models using ordinary least squares, regressing each of the 5 characteristics by which
lists were evaluated (positivity, extremity, and mentions of traits, issues, and groups) on a dichotomous
source variable (0 = human, 1 = GPT-3) and a series of control variables recording the gender, ethnicity,
income, age, and partisan identity of the original list-writers in the Rothschild et al. data. All models include
fixed effects for evaluators (as each evaluated 8 lists), and clustered standard errors by evaluator and list (as
each list was evaluated three times).

Figure 3(B) plots the predicted percent of all lists (human and GPT-3) evaluated as having each character-
istic. The results show a remarkable degree of consistency in the evaluations of both human and GPT-3
generated lists in both content and tone. For example, human list-writers included more personality traits
(e.g. “bigoted,”“moral”) than other components (72.3% of lists). So did GPT-3 (66.5% of lists). Less than
half of both human and GPT-3 generated lists were evaluated as extreme (39.8% and 41.0%, respectively).
This pattern of similarity holds across all 5 characteristics, with all but one characteristic hovering around
50%. The lone exception, with a substantially higher frequency in both human and GPT-3 data, is “traits.”
This matches patterns in the original analyses of the human texts [17]. That GPT-3 mirrors this exception,
and patterns in all other characteristics, is strong evidence of the depth of algorithmic fidelity it contains.
Tables of results and further model details can be found in the appendix.

Moreover, as Figure 3(A) indicates, when we drill down to greater levels of detail to explore underlying pat-
terns behind these results, we find that GPT-3 reflects human-similar patterns at this level as well (Criterion
4, Pattern Correspondence). The similarity in the use of positive and extreme words by both humans and
GPT-3, broken out by the ideological subgroup of the list writers, is striking.

We have shown that (1) human evaluators of the word lists could not correctly distinguish between human vs.
GPT-3-generated lists, and (2) that they evaluated the content/characteristics of these lists as quite similar.
We now assess the degree to which our participants were able to use these lists to correctly guess the true
partisanship of the list writers. To explore this question, we estimate a model similar to those just presented,
regressing a dichotomous variable identifying if participants correctly guessed the partisanship of list writers
(1 = Yes; 0 = No) on the source of the list (GPT-3 vs. human) and the same controls. The left-most bars of
Figure 3(B) present the predicted percent correct, by source type.

Participants presented with lists of words from both sources guess the correct partisanship of their writer
significantly better than chance (33%, given respondents could guess Republican, Democrat, or Indepen-
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Figure 3: Analysis of GPT-3 and human responses from the Lucid survey.

dent), providing strong additional evidence in favor of algorithmic fidelity in GPT-3. Participants who saw
human-generated lists guessed successfully roughly 7.3% more often (60.1% vs. 52.8%) than those who
saw GPT-3 lists, a statistically significant difference (two-tailed p < .001). However, texts from both hu-
mans and GPT-3 both clearly contain the sentiment cues necessary to guess the partisanship of the creator
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of the texts at significant levels.

Results from study 1 suggest a remarkably high degree of algorithmic fidelity within GPT-3. We find
repeated, consistent support for Criterion 1 (Turing Test) and Criterion 2 (Backward Continuity) from these
data, with some initial evidence for Criterion 4 (Pattern Correspondence). In all of these cases, we observe
support for these criteria across different measures and for different subsets of the American population.

6 Study 2: Vote Prediction

Our next two studies draw on the ANES, a premier source of data in understanding American public opinion.
In Study 2, we use the 2012, 2016, and 2020 waves of the survey.

We first consider the degree to which GPT-3 silicon samples, constructed to match the demographics of
the 2012, 2016, and 2020 ANES participants, report similar distributions of vote choice as their matching
human samples. This requires GPT-3 to generate text from a limited universe of options (vote for Trump or
Clinton in 2016, for example), but it must do so differently based on the human backgrounds we provide it.
It therefore assesses Criterion 3, requiring forward compatibility of GPT-3 in producing a candidate’s name
in response to the conditioning text, and Criterion 4, the expectation that the conditioning texts will produce
predictable changes in the probability distribution of vote choice. To demonstrate algorithmic fidelity in
this study, GPT-3 must contain human-like patterns of associations, where individuals from different ethnic
groups, living in different locations, of different social backgrounds vote differently in ways identified but
still debated by political scientists [32–35]. Study 2 also explores the temporal limits of GPT-3: the training
corpus for GPT-3 ended in 2019 [9], so data from 2020 allows us to explore how the algorithmic fidelity of
the language model changes when probed outside the time of the original training corpus.

Drawing from research on voting in the United States, we used the following ANES variables to condition
GPT-3: (1) racial/ethnic self-identification, (2) gender, (3) age, (4) conservative-liberal ideological self-
placement, (5) party identification, (6) political interest, (7) church attendance, (8) if the respondent reported
discussing politics with family and friends, (9) feelings of patriotism associated with the American flag (not
available in 2020 at the time of analysis), and (10) state of residence (not available in 2020 at the time of the
analysis). We then recorded the probabilities from GPT-3 that the sentence “In [year], I voted for...” would be
completed with the Republican or Democratic candidate given the each conditioning backstory (see Online
Appendix for further detail). Using these variables as conditioning text in GPT-3 allows us to compare how
well a GPT-3 silicon sample replicates the relationships between each variable and vote choice in our human
sample. In all the comparisons that follow, we code vote choice as 1 when the respondent/GPT-3 indicates a
vote for the Republican candidate and a 0 for a vote for the Democratic candidate in that election. To make
the predictions from GPT-3 match the observed human data, we dichotomized the probability predictions at
0.50, where higher values were scored as a vote for the Republican candidate.

We observe a high degree of correspondence between reported two-party presidential vote choice propor-
tions from GPT-3 and ANES respondents. Averaged across the whole sample, GPT-3 reported a 0.391
probability of voting for Mitt Romney in 2012; the same percentage from the ANES was 0.404. In the 2016
data, GPT-3 estimated a 0.432 probability of voting for Trump, and the probability from the 2016 ANES was
0.477. In 2020, the GPT-3-generated probability of voting for Trump was 0.472, while the percentage from
the ANES respondents was 0.412. In all three cases, we see evidence of a mild amount of overall bias in
GPT-3: GPT-3 was a little predisposed against Romney in 2012, against Trump in 2016, and against Biden
in 2020. However, the substantive difference between the ANES and GPT-3 estimates is relatively small
and, in keeping with our larger arguments about algorithmic fidelity and corrections for skewed marginals,
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Variable 2012 2012 2016 2016 2020 2020

Tetra. Prop. Agree Tetra. Prop. Agree Tetra. Prop. Agree

Whole sample 0.90 0.85 0.92 0.87 0.94 0.89
Men 0.90 0.85 0.93 0.88 0.95 0.88
Women 0.91 0.86 0.92 0.86 0.94 0.90
Strong partisans 0.99 0.97 1.00 0.97 1.00 0.97
Weak partisans 0.73 0.74 0.71 0.74 0.84 0.82
Leaners 0.90 0.85 0.93 0.87 0.95 0.89
Independents 0.31 0.59 0.41 0.62 0.02 0.53
Conservatives 0.84 0.84 0.88 0.86 0.91 0.89
Moderates 0.65 0.77 0.76 0.78 0.71 0.77
Liberals 0.81 0.95 0.73 0.95 0.86 0.97
Whites 0.87 0.82 0.91 0.85 0.94 0.89
Blacks 0.71 0.97 0.87 0.96 0.81 0.94
Hispanics 0.86 0.86 0.93 0.90 0.88 0.83
Attends church 0.91 0.86 0.93 0.88 0.94 0.88
Doesn’t attend church 0.88 0.85 0.90 0.85 0.93 0.90
High interest in politics 0.95 0.90 0.97 0.93 0.97 0.92
Low interest in politics 0.71 0.74 0.75 0.75 0.83 0.81
Discusses politics 0.92 0.87 0.94 0.88 0.95 0.90
Doesn’t discuss politics 0.83 0.82 0.81 0.79 0.80 0.79
18 to 30 years old 0.90 0.87 0.90 0.86 0.90 0.87
31 to 45 years old 0.90 0.85 0.92 0.87 0.94 0.90
46 to 60 years old 0.90 0.86 0.92 0.86 0.92 0.87
Over 60 0.90 0.85 0.93 0.87 0.96 0.91

Table 1: Measures of correlation between GPT-3 and ANES probability of voting for the Republican presi-
dential candidate. Tetra refers to tetrachoric correlation. Prop. Agree refers to proportion agreement. GPT-3
vote is a binary version of GPT-3’s predicted probability of voting for the Republican candidate, dividing
predictions at 0.50.

does not preclude strong and consistent correlations between GPT-3’s simulated responses and the reactions
of subgroups in the American population.

To explore these correlations in detail, we turn to the statistics reported in Table 1. This table reports two
forms of correlations between the self-report of voting from the ANES and a binary version of the vote
report from GPT-3 (other metrics support these two and can be found in the appendix). We dichotomize the
GPT-3 vote probability to match our human measure, a binary report of voting from the ANES. Across all
three years of survey data, we see remarkable correspondence between GPT-3 and human respondents. The
2012 tetrachoric correlation across all respondents 0.90, the 2016 estimate was 0.92, and the 2020 value was
0.94. We find this consistently high correlation remarkable given the differences in context across years.

This same high degree of pattern correspondence occurs for various subgroups in the American population.
More than half of the tetrachoric correlations between the reported vote by GPT-3 and the ANES are 0.90
or higher, and this is true for all three years. The proportion agreement column of Table 1 also indicates high
levels of raw agreement between the two reports of vote choice in 2012, 2016, and 2020. Impressively, there
is only one exception to this overall pattern: the estimates of vote choice do not match well for pure inde-
pendents, especially in 2020. However, this is the only deviation from the overall trend in Table 1, where all
other measures of correspondence exceed 0.65 (and are generally closer to 0.8 or 0.9). Further, existing po-
litical science research suggests that this group of individuals should be especially hard to predict as they are
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the most conflicted about the two-party choices, the least likely to vote, the least politically knowledgeable,
and the least interested in politics [36–38]. Overall, then, the results in Table 1 provide strong, additional
evidence for algorithmic fidelity, with repeated, consistent support for Criteria 3 (Forward Continuity) and
4 (Pattern Correspondence). Appendix 3 contains additional results, including an ablation study investigat-
ing the effect of removing backstory elements, and a model comparison showing how alternative language
models perform on this task.

The ability of GPT-3 to capture the voting preferences of different groups of Americans is not restricted to
one moment in time. Moreover, results from the 2020 ANES data indicate the possibility that GPT-3 can be
used, with the right conditioning, to understand people and groups outside its original training corpus.

7 Study 3: Closed-ended Questions and Complex Correlations in Human
Data

Study 3 examines GPT-3’s ability to replicate complex patterns of association between a wide variety of
conceptual nodes. Given the complexity of this task, we conduct it just for the 2016 data from the ANES.
Building on the voting predictions in Study 2, we expand the set of information outputs we ask GPT-3 to
produce, and use the resulting data to evaluate a more complex structure of associations. This is our most
rigorous evaluation of Criterion 4 (Pattern Correspondence).

This study represents both a technical and substantive research challenge. Absent the naturally self-limiting
set of likely responses when asking about vote choice in a particular election (i.e. “Donald Trump” vs. “Hillary
Clinton”), we develop a method to condition GPT-3 to provide specific responses from a list of options. Ad-
ditionally, mirroring the widespread and varied use of survey data in social science applications, we push
beyond high-level conditional probabilities and explore whether GPT-3 demonstrates algorithmic fidelity in
inter-relationships among a variety of underlying attitudes, demographics, and reported behaviors.

For this task, we produce an interview-style conditioning template (see the appendix for an example). The
purpose of this approach is two-fold. First, leveraging the zero-shot learning property of language models
[9], the format induces GPT-3 to respond to survey questions using short strings of tokens drawn from
options provided by the “Interviewer.” Second, the questions incorporated in the conditioning text provide
necessary demographic and attitudinal background information to generate each distinct silicon subject.
We generate the conditioning text using responses that humans gave on the 2016 ANES to eleven survey
questions. We then use GPT-3 to predict the response to the twelfth.

Using the ANES and silicon data, we calculate Cramer’s V for each combination of survey items in the
ANES sample (“Human”), and between the ANES conditioning values and the resulting GPT-3 produced
answer (“GPT-3”). Cramer’s V provides a simple summary measure of association that accounts for the
variation in base rates in the raw data [39]. Figure 4 displays the comparison in Cramer’s V between the
two data sources. We again find remarkably high correspondence between the patterns of associations in
human survey data and these same patterns in GPT-3 produced survey data. The mean difference between
the Cramer’s V values is -0.026. As can be seen, the Cramer’s V for GPT-3-generated responses is not
uniformly high or low, but instead mirrors stronger and weaker relationships present in the human data.
Where two concepts are not strongly associated in the human data, they likewise show little association
in the GPT-3 data. The converse is also true. And while there is variation in Figure 4 in terms of how
precisely the patterns of relationships in GPT-3 match those in the ANES, the overall pattern is a stunning
correspondence between GPT-3 and the ANES in the vast majority of cases.
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Although we provide first-person backstories based on specific human survey profiles, we do not expect
the values in the silicon sample to exactly match the human response on the individual level. For each
text completion, the language model uses a stochastic sampling process to select the completion from the
distribution of probable next tokens. Therefore, with a large enough sample size we expect the overall
distribution of text responses in the silicon sample to match the overall distribution in the human data, but
we do not evaluate correspondence at the individual level. Additionally, as with all stochastic processes, we
expect some variation in different draws of the silicon sample. In the appendix, we report on variation in the
pattern correspondence based on different sampling parameters in GPT-3.

These results again provide compelling, consistent, repeated evidence for Criterion 4 (Pattern Correspon-
dence). GPT-3 reproduces nuanced patterns of associations not limited to aggregated toplines. When pro-
vided with real survey data as inputs, GPT-3 reliably answers closed-ended survey questions in a way that
closely mirrors answers given by human respondents. The statistical similarities extend to a whole set of
inter-correlations between measures of personal behaviors, demographic characteristics, and complex atti-
tudes. We again see this as strong evidence for algorithmic fidelity.
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Figure 4: Cramer’s V Correlations in ANES vs. GPT-3 Data

8 Where do we go from here?

Thus far, our emphasis has been on documenting the algorithmic fidelity of GPT-3 by comparing its outputs
to human data. However, our purpose is not limited to these particular human-computer comparisons; if
this were the case, the usefulness of GPT-3 would be dramatically limited. Instead, we provide evidence
that algorithmic fidelity is a crucial attribute of tools like GPT-3 because it demonstrates that these language
models can be used prior to or in the absence of human data.
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To illustrate this, consider the conclusions we would have drawn with only our data from GPT-3. The data
from our silicon sample in Study 1 suggests that (1) people describe Republicans and Democrats with differ-
ent terms that highlight distinct stereotypes of both groups; (2) the affective content and extremity of these
texts is tied to individuals’ political beliefs and identity in systematic ways that can be used to generate
theory; (3) stereotypes of partisans contain issue, group, and trait-based content, although trait references
are most common; and (4) others can guess the partisanship of individuals based on their stereotypes of
Democrats and Republicans. All of this is evident using only the data from GPT-3. With this information,
interested researchers could design survey questions, experimental treatments, and codebooks to guide hu-
man research. Crucially, this can be done with substantially fewer resources than a parallel data collection
with human respondents: Study 1 cost $29 on GPT-3.

The same is true for studies 2 and 3. The ablation analysis for Study 2 (contained in Appendix 3) suggests
which variables researchers should include in their studies of public opinion if they want to accurately
understand Americans’ voting behavior. Study 3 could be used by social scientists to target important
connections between characteristics and views that merit further exploration. Based on the results from
GPT-3, a social scientist could design an experiment or observational study to confirm and dissect this
relationship in a rigorous and causal way. The results also indicate which variables operate as potential
confounds that should be included in pre-analysis plans for regression and other econometric models that
have causal aspirations. Again, all of these insights would be clear to researchers with only access to GPT-
3 and without our human baselines. These studies suggest that after establishing algorithmic fidelity in a
given model for a given topic/domain, researchers can leverage the insights gained from simulated, silicon
samples to pilot different question wording, triage different types of measures, identify key relationships to
evaluate more closely, and come up with analysis plans prior to collecting any data with human participants.

9 Discussion

In this paper, we introduce the concept of algorithmic fidelity as a means to justify the use of large-scale
language models as proxies for human cognition at an aggregate level, and as general-purpose windows
into human thinking. We propose four criteria to establish the algorithmic fidelity of these models and
demonstrate empirical methods for their evaluation.

Using these concepts and methods, we show that GPT-3, one of the largest publicly available language
models, contains a striking degree of algorithmic fidelity within the realm of public opinion in the United
States. Study 1 shows that GPT-3 passes a social science version of the Turing Test (Criterion 1) and exhibits
both strong Backward Continuity (Criterion 2) and Pattern Correspondence (Criterion 4). Studies 2 and 3
provide compelling evidence of Forward Continuity (Criterion 3) as well as additional, much more granular
evidence for Pattern Correspondence (Criterion 4). As noted in Studies 2 and 3, careful conditioning of GPT-
3 allows us to address issues of temporality and replicability, points further supported in results presented in
the appendix. Importantly, in all studies, we find evidence that GPT-3 is capable of replicating the viewpoints
of demographically varied sub-populations within the U.S. Taken together, these studies show consistent,
repeated evidence for these criteria across a range of data sources, measures, and points in time.

These studies also provide examples of some of the many ways in which large scale language models like
GPT-3 might be used for social science research. We can envision many others, and expect that this method
will have strengths and weaknesses in comparison to traditional social science methods (as we highlight in
Appendix 5, cost is certainly a strength of this method). We note, however, that while this work lays exciting
groundwork for the beneficial use of these models in social science, these these tools also have dangerous
potential. Models with such fidelity, coupled with other computational and methodological advances, could
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be used to target human groups for misinformation, manipulation, fraud, and so forth [9]. We acknowledge
these dangers, and both join with and strongly endorse the work of others in pushing for a clear standard of
ethics for their use in research and deployment [40, 41]. We believe that transparent, research-based, and
community-accountable exploration and understanding of these tools will be essential for recognizing and
preventing abuse by private actors who will inevitably employ these models for less noble ends.

While the current study is restricted to a specific domain, the underlying methodology is general purpose
and calls for additional work to quantify both the extent and limitations of GPT-3’s algorithmic fidelity in
a wide array of social science fields. Such an effort goes well beyond what one research team can hope to
accomplish; we extend this invitation to the wider scientific community.

A General details on GPT-3 usage

For GPT-3 model specifics, refer to Brown et. al.’s original paper from OpenAI referenced in the main text.
We use the model through their remote API. This interface accepts several inputs, including a text prompt
(e.g. “backstories”, survey questions, etc.), model specification (we use Davinci, the largest of the models
at 175 billion parameters, as opposed to Ada, Curie, or Babbage), and temperature (we use 0.7), and returns
a dictionary including text completion and corresponding log-probabilities.

In contexts where we care about modeling probabilities, as opposed to simply sampling to generate text, we
use a standard log-sum-exp conversion. In such contexts, we consider certain token sets to be equivalent. For
example, when estimating the probability that a voter cast a vote for Donald Trump in the 2016 presidential
election, the prompt might be “In 2016, I voted for”. Each token in the set {Donald, donald, DONALD,
Trump, trump, TRUMP} has a distinct share of probability, but we consider them to be different expressions
of the same idea. Thus, we sum their probabilities to estimate the un-normalized total share of probability
that Donald Trump is being referred to following the prompt. After collapsing token sets and summing their
probabilities, we normalize across the remaining collapsed token sets such that their probabilities sum to 1.

In Studies 1 and 3, where we are primarily concerned with text generation, we use the Completion API with
default settings, except that temperature is set to 0.7. This encourages more deterministic answers, at the
expense of response diversity. This parameter was not tuned; it would be interesting to see how our results
might vary as it changes.

Figure 5 illustrates some conditioning contexts comprised of first-person demographic backstories paired
with multiple sampled continuations generated by GPT-3.
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Context Sampled completions

I am a strong liberal. I support 
progressive values.  I support 
open immigration and women’s 
right to choose.   I believe in 
systemic racism and that global 
warming is one of our biggest 
challenges.  In 2016, I voted for

Hillary Clinton. However, I’m a huge sports fan, and I’ve 
spent my entire life following and loving the New York 
Yankees. I’m also a huge fan of the New York Giants. I...

Donald Trump, but I didn’t vote for him because I agreed 
with him on all the issues. I voted for him because I didn’t 
want Hillary Clinton to be president. I disagreed with many...

Bernie Sanders in the primaries. I am a member of the 
Democratic Socialists of America. But as a Jewish 
American, I will not be voting for the Democratic...

John Kasich. I haven’t changed my mind on any of those 
issues. But Donald Trump is the opposite of what I’ve always 
believed a Republican should be, and I can’t vote for him...

Hillary Clinton.   But after seeing the way the Democratic 
establishment treated Bernie Sanders, I have lost hope in the 
party.  In 2018, I joined the Democratic Socialists of...

Donald Trump. In other words, I’m a typical Republican 
voter, except that I’m gay. And that’s why I’m leaving the 
Republican Party. I’ve felt increasingly unwelcome in the...

Hillary Clinton, because I believed in her vision for 
America.  I felt that she was the only candidate that could 
pull us out of the mess that Obama inherited. I am a loyal...

Donald Trump. And I have no regrets. But in the last two 
years, I’ve watched conservatives convince themselves that 
Trump is a conservative. And this is a lie. Trump has...

Bernie Sanders.  I am pro-LGBTQ.   But I am also pro-life. I 
am Jewish. I have never been religious. I was raised in a 
secular household, but my Jewishness is intrinsic to me. I...

Donald Trump. I consider myself a Republican. But what 
does that mean these days? I’m not so sure. Which brings me 
to this poll, released today by CBS News and the New York...

I am a strong conservative. I 
support traditional values. I 

think we need a balanced 
budget, limited government, 

and a strong military. I’m 
opposed to abortion and I’m 

skeptical of global warming. In 
2016, I voted for

Sampled completions

Figure 5: Conditioning GPT-3 on first-person demographic backstories yields plausible voting patterns and
additional simulated beliefs and opinions.

B Details on Study 1

B.1 Details on Human and GPT-3 samples

To generate our sample for analysis in Study 1, we began with human participants in the Pigeonholing
Partisans dataset who provided answers to all of the following key demographic/background characteristics:
their partisan identification, ethnicity, gender, income, and age. These characteristics were identified by
the authors of the Pigeonholing Partisans paper to correlate with evaluations of partisan outgroups. 2,107
individuals answered all questions and thus were included in our analysis.

We then generated a matching set of 2,107 “silicon” individuals in GPT-3 by feeding these background
characteristics, individual by individual, into a conditioning text template as illustrated in Figure 6. The
underlined text in the figure indicates where we plugged each characteristic into GPT-3. Backstories always
concatenated template fragments in the same order (ideology, 7-point partisanship, race, gender, income,
age). If any demographic variable was missing, the corresponding template fragment was omitted. The
age template fragment mapped 18-24 years to the phrase “young”, 25-39 to “middle-aged”, 40-60 to “old”,
and 61+ to “very old”. The income template fragment mapped annual income less than $15k to “very
poor”, $15k-$50k to “poor”, $50k-$150k to “middle-class”, and $150k+ to “upper-class”. Other template
fragments are self-explanatory.

Using the OpenAI GPT-3 API, we generated 128 tokens worth of text from each silicon respondent. Figure
6 expands on Figure 2 in the text to illustrate what the full responses looked like, with GPT-3 generated
text listed in bold. We used regular expressions to extract the four-words at the center of our study. Light
manual post-processing was used to correct situations where the regular expressions were insufficient to
extract responses. If a GPT-3 response listed more than four words or phrases, only the first four were used.
If a GPT-3 response listed less than four, the remaining phrases were left blank.

Both human and GPT-3 “subjects” were asked to write two lists of words: one describing Republicans,
and one describing Democrats. If all participants fully complied, this would mean a total of 2,107 x 2 =
4,214 texts from each sample. As is common in human studies, we didn’t receive full compliance: some
participants refused to write either list, some only wrote one or the other, and some wrote paragraphs that
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B

A Ideologically, I describe myself as conservative. 
Politically, I am a strong Republican. Racially, I am 
white. I am male. Financially, I am upper-class. In 
terms of my age, I am young. When I am asked to 
write down four words that typically describe people 
who support the Democratic Party, I respond with: 1. 
Liberal 2. Socialist 3. Communist 4. Atheist.  My 
answers are not lies. They are the honest truth. But 
why am I not a Democrat? Why do I not vote blue? 
Why do I vote at all? Part of the answer is that I am 
not a Democrat because I am not a liberal. I am not 
a liberal because I am not a socialist. I am not a 
socialist because I am not a communist. I am not a 
communist because I am not an atheist. I am not an 
atheist because I believe in God. What...

Ideologically, I describe myself as conservative. 
Politically, I am a strong Republican. Racially, I am 
white. I am male. When I am asked to write down four 
words that typically describe people who support the 
Republican Party, I respond with: 1. Conservative 2. 
Male 3. White (or Caucasian) 4. Christian. This is 
who I am, and the more I reflect on the above list, 
the more I am convinced that I am right and just in 
my belief that the Republican Party is a better fit 
for me than the Democratic Party. I am not one of 
the old white guys who simply does not want to 
adapt to the rapidly changing nature of our coun-
try. I am not one of the old white guys who think 
that the old way of doing things is better than the 
new way of doing things. I am the old white guy 
who thinks that the new way...

Ideologically, I describe myself as liberal. Politically, 
I am a strong Democrat. Racially, I am white. I am 
female. Financially, I am poor. In terms of my age, I 
am old. When I am asked to write down four words 
that typically describe people who support the Demo-
cratic Party, I respond with: 1. Liberal. 2. Young. 3. 
Female. 4. Poor. The order might be different, but 
these are the first four words that come to mind 
when I think of my political affiliation. I am an old 
female liberal living in poverty. I have lived a long 
time. I have seen a lot of things. I have done a lot 
of things. I am a survivor. I have worked hard. I 
have given back. I am not a perfect person, but I 
have tried to be a good person. I am someone who 
has always...

Ideologically, I describe myself as extremely liberal. 
Politically, I am a strong Democrat. Racially, I am 
hispanic. I am male. Financially, I am upper-class. In 
terms of my age, I am middle-aged. When I am asked 
to write down four words that typically describe 
people who support the Republican Party, I respond 
with: 1. Ignorant 2. Racist 3.  Misogynist 4.  
Homophobic. If I were asked to write down four 
words that typically describe people who support 
the Democratic Party, I respond with: 1.  Liberal 2.  
Heterosexual 3.  Pro-Choice 4.  Pro-Gay.  If I were 
asked to write down four words that that typically 
describe people who support the Libertarian 
Party, I respond with: 1. Anarchist, 2. Capitalist... 

...four words that typically describe people who support the Republican Party, I respond with: 1. Not very intelli-
gent 2. Uninformed 3. Racist 4. Homophobic 5. Sexist 6. Right-wing Christian fundamentalist 7. Anti-gov-
ernment 8. Anti-gay 9. Anti-choice 10. Pro-corporate 11. Anti-environment 12. Pro-gun 13. Pro-war 14. 
Pro-rich 15. Pro-military 16. Pro-Israel 17. Pro-life 18. Pro-death penalty 19. Pro-military/pro-war 20. 
Anti-science 21. Anti-women...

...four words that typically describe people who support the Republican Party, I respond with: 1. People who 
believe in God 2.  People who believe in smaller government 3.  People who believe in personal responsibili-
ty 4.  People who believe in the Constitution. These positions are all well and good, but they are not the 
main reason that I am a Republican. I am a Republican because I love Jesus Christ and I believe He wants 
me to be a Republican. I believe that Jesus Christ is the Son of God and died on the cross for our sins...

Figure 6: Panel A and B: expanded version of Figure 2 in the main text. Here, we show all 128 tokens
generated by GPT-3, and an additional non-compliant sample.
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Figure 7: Word length of responses in Pigeonholing Partisans data used in the Lucid experiment

could not be broken into four categories. After culling out these non-compliant responses, we ended with
3,592 total texts from the human sample (an average of 1.7 texts per respondent), and 4,083 from GPT-3
(1.9 per respondent). GPT-3 was more compliant at this stage of the process. In total, this made 7675 unique
lists for analysis.

As can be seen, GPT-3 (like some of our human respondents), sometimes listed more than four words.
The most common “non-compliant” response from GPT-3 was to provide four descriptions, rather than just
four words, as illustrated in Panel B. Some of our human respondents did the same. We included all of
these descriptive phrase responses in our dataset. As such, some of our study participants saw four phrases,
instead of four words.

As Figure 7 indicates, Human and GPT-3 respondents differed in their degree of compliance in listing just
four words, with GPT-3 including more responses of additional length (note the log scale of the y-axis). The
mean human text was 4.54 words long (min = 4; max = 15). The mean GPT-3 text length was 7.78 (min
= 4; max = 97). Overall, compliance was high: the modal response in both was 4, and most of the longer
responses were 2-3 word phrases in place of single words.

B.2 Lucid survey design

We built a survey through Qualtrics as an instrument for these texts to be evaluated, and hired 2,873 indi-
viduals from Lucid to do the evaluating. Hiring evaluators from Lucid was faster, cheaper, and provided us
with a wider range of types of evaluators than if we had followed the more traditional process of training a
small set of research assistants. We designed the survey such that it asked participant to make content-based
judgments about 8 randomly-assigned lists from our corpus of 7,675, and then make Turing-test judgments
about 8 additional randomly-assigned lists. No respondents evaluated the same texts in both parts of the
survey. By design, each text was to be evaluated approximately three times in the content portion and three
times in the Turing test portion of the survey. However, due to very minimal non-response, and a few min-
utes of issues with our server interacting with Lucid’s server at the onset of the survey, 120/7,675 (1.5%)
texts were coded only twice, and 7 were coded 4 times. Results do not differ when we exclude these texts.

Lucid participants saw the online/Qualtrics version of the following survey. The order of the answer choices
in each of the following questions was randomized across respondents, but kept constant within each re-
spondent. We include a bolded label to highlight each part of the survey in the reproduction of our survey
that follows; this label was not shown to respondents:
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Welcome Screen

Thanks for participating in this project. We expect this task to take 10-12 minutes to complete. If you have
not completed it in 1 hour after you begin, the task will expire.

In what follows, you will see 8 short lists of words written to describe Republicans and Democrats. In rare
cases, you may see words that are vulgar, offensive, or nonsensical.

On the first page for each list, you will be asked to:

• First, guess if the person who wrote the list was themself a Republican, Democrat, or an Independent.

• Second, indicate if you feel the words in the list as a whole are positive or negative.

• Third, indicate if you think the words listed are extreme.

On the next page for each list you will be asked to indicate whether the list of words does or does not include
any mention to each of the following:

1. personality or character traits;

2. specific government or policy issues; or

3. social groups

You’ll then be asked some concluding questions. Please click on the button below to begin.

Participants next completed a CAPTCHA item to help prevent bots from completing the instrument

List Evaluation Task, shown consecutively for 8 different lists

Consider the following description of [Republicans/Democrats; text piped in here]:

1. (word/phrase 1 piped in here)

2. (word/phrase 2 piped in here)

3. (word/phrase 3 piped in here)

4. (word/phrase 4 piped in here)

Party Would you say that the person that wrote these words is a Republican, Independent, or Democrat?

• Republican

• Independent
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• Democrat

Positivity Would you say that this set of words, as a whole, is more positive or more negative?

• Very positive

• A little positive

• Neither positive nor negative

• A little negative

• Very negative

Extremity Is this set of words extreme?

• Yes

• No

Traits Do these words mention personality or character traits?

• Yes

• No

Issues Do these words include government or policy issues?

• Yes

• No

Groups Do these words mention social groups?

• Yes

• No

After answering these questions for 8 randomly assigned lists, individuals then moved to the Turing
task portion of the survey

Turing task introduction screen

Now, please look at 8 more short sets of words about Republicans and Democrats. Some of these responses
were written by people and others were created by a computer program. You may see a few responses from
a computer and a few from a person. Or you may see mostly responses from one or another. We want you
to guess if a response came from a person or from a computer.

Please click on the button below to begin.
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Turing Evaluation Task, shown consecutively for 8 different lists

Consider the following description of [Republicans/Democrats; text piped in here]:

1. (word/phrase 1 piped in here)

2. (word/phrase 2 piped in here)

3. (word/phrase 3 piped in here)

4. (word/phrase 4 piped in here)

Turing task Would you say that this set of words about [Republicans/Democrats; text piped in here] was
created by a person or a computer program?

• Person

• Computer program

This same question was used to evaluate all 8 lists

Comments screen

We appreciate your participation in this survey. If you have any comments, feel free to leave them in the
space below.

Results screen

As part of this survey, we asked you to judge if a set of words was created by a person or a computer
program. You may be interested in how well you guessed - the table below shows the set of words, your
guess, and if the response came from a computer program or a person.

Coders were then shown a table with the texts, their guesses, and the correct answers.

B.3 Lucid results analysis

As described in the text, we estimated regression models using Ordinary Least Squares (OLS) to analyze
our results. Given that the dependent variable in many of our models is binary (0/1), this means many of
these models are linear probability models (LPMs). Results do not significantly differ when we estimate
the LPM results using logit instead. As noted in the main text, all models include fixed effects for study
participants (recall that each evaluated 8 lists), and clustered standard errors by participants and list (as each
list was evaluated three times). We estimated all of these models using the fixest R package.

In addition to a binary variable indicting the source of the text, all models include a standard set of variables
to control for the potential impact of characteristics of the original list writers on our outcomes. These
characteristics come from the original Pigeonholing Partisans dataset, and include the list-writers’:
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• Gender: a categorical variable coded Male, Female, or Other

• Ethnicity: two binary categorical variables, Hispanic/Not-Hispanic and White/Other. We include both
as controls in our models

• Income: Originally asked on an 11-point scale (1 = “Less than $15K”, 11 = “More than $1,000K”).
We collapsed this scale to run 0 to 1.

• Age: a numeric variable capturing each participant’s age, and

• Party Identification: a categorical variable coded Democrat, Republican, or Independent.

In the “Percent correctly predicted” model, we add one additional control, for word length (coded numeri-
cally as the number of words in each list).

In the main text, we graphically present predicted values from these models. Here we present the full tables
of results behind those predictions. As predicted values can only be generated using defined levels for each
of the variables in the model, we chose the following levels: Female, Not Hispanic, White, mean income,
mean age, and Democrat. These were the same across all models that included these variables. In the
‘Percent correctly predicted” model, we set the word length variable to its mean.

Table 2 presents the full results of the models used to predict the percent of texts evaluated as having each of
the five characteristics described in the study. These results are presented graphically in Panel B of Figure 4
in the paper.

Table 3 presents the full results of the model used to predict the percent of texts for which Lucid participants
correctly guessed the partisanship of the text writer (the top-left bars in Panel B of Figure 4 in the paper).

Tables 4-7 present the full results of the models used to generate the predictions in panel A of Figure 4
in the paper. Table 4 corresponds to the top left figure in panel A, Table 5 to the top right, Table 6 to the
bottom left, and Table 7 to the bottom right. These models were subset by the ideology of the list writers
(using the standard 7-point scale described in the paper). In the tables: EC = Extremely Conservative, C =
Conservative, SC = Slightly Conservative, I = Independent, SL = Slightly Liberal, L = Liberal, and EL =
Extremely Liberal.
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Positive Extreme Traits Issues Groups

Source:GPT-3 -0.010 0.013 -0.058 0.033 0.078
(0.006) (0.007) (0.007) (0.007) (0.007)

Gender:Female -0.002 -0.006 -0.010 0.013 0.009
(0.006) (0.008) (0.007) (0.007) (0.007)

Gender:Other -0.111 0.129 -0.175 0.036 -0.077
(0.048) (0.073) (0.072) (0.063) (0.042)

Not Hispanic 0.019 -0.011 0.003 -0.002 -0.0002
(0.009) (0.012) (0.011) (0.012) (0.012)

Income 0.009 -0.008 -0.003 0.007 0.003
(0.001) (0.002) (0.002) (0.002) (0.002)

White 0.001 -0.002 0.021 0.017 -0.011
(0.007) (0.009) (0.008) (0.008) (0.008)

Age -0.0005 0.001 0.0003 0.00006 -0.0003
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

PID:Indep. -0.029 0.031 -0.005 0.018 -0.010
(0.009) (0.012) (0.011) (0.011) (0.011)

PID:Rep. 0.011 -0.022 -0.034 0.027 -0.012
(0.007) (0.009) (0.008) (0.008) (0.008)

Observations 18,903 18,903 18,903 18,903 18,903
RMSE 0.28971 0.39470 0.36560 0.36634 0.37094

Evaluators fixed effects X X X X X

Two-way (Evaluators & Lists) standard-errors in parentheses

Table 2: Evaluated content of lists, Lucid Experiment
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Percent Correctly Guessed

Source:GPT-3 -0.073
(0.008)

Gender:Female -0.007
(0.008)

Gender:Other -0.059
(0.082)

Not Hispanic -0.006
(0.013)

Income 0.002
(0.002)

White 0.012
(0.010)

Age 0.0007
(0.0003)

Word Length 0.0009
(0.0007)

PID:Indep. -0.285
(0.014)

PID:Rep. -0.097
(0.011)

Observations 18,903
RMSE 0.43912

Evaluators fixed effects X

Two-way (Evaluators & Lists) standard-errors in parentheses

Table 3: Correctly guessing the partisanship of list writers, Lucid Experiment
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Positive
EC C SC I SL L EL

Source:GPT-3 -0.085 0.019 -0.041 0.040 0.018 0.034 0.019
(0.121) (0.046) (0.054) (0.028) (0.033) (0.019) (0.051)

Gender:Female 0.015 -0.004 -0.079 0.009 -0.034 -0.055 0.072
(0.103) (0.047) (0.050) (0.028) (0.037) (0.019) (0.041)

Not Hispanic 0.055 -0.102 0.040 0.103 0.023 -0.032 0.022
(0.211) (0.095) (0.064) (0.043) (0.056) (0.037) (0.037)

Income 0.011 0.002 -0.002 0.011 0.012 0.005 0.017
(0.025) (0.010) (0.009) (0.007) (0.007) (0.004) (0.009)

White -0.013 0.147 0.035 0.075 0.033 0.009 -0.086
(0.157) (0.078) (0.058) (0.034) (0.041) (0.024) (0.053)

Age -0.012 -0.001 -0.002 -0.003 -0.0001 -0.0010 -0.002
(0.005) (0.001) (0.001) (0.0009) (0.001) (0.0006) (0.001)

Gender:Other -0.487 -0.078
(0.163) (0.056)

Observations 387 1,122 1,059 2,072 1,419 2,374 1,036
RMSE 0.05609 0.11621 0.10735 0.15728 0.12102 0.13797 0.08714

Evaluators fixed effects X X X X X X X

Two-way (Evaluators & Lists) standard-errors in parentheses

Table 4: Percent of texts rated positively, subset by the ideology of individual list writers: Describing
Republicans
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Positive
EC C SC I SL L EL

Source:GPT-3 -0.145 0.044 0.041 0.089 -0.028 -0.099 -0.033
(0.172) (0.044) (0.045) (0.027) (0.032) (0.020) (0.053)

Gender:Female -0.198 0.011 0.023 -0.026 -0.013 0.003 0.081
(0.119) (0.057) (0.042) (0.026) (0.034) (0.019) (0.045)

Not Hispanic 0.568 0.112 -0.093 0.0004 -0.084 0.051 0.089
(0.226) (0.111) (0.089) (0.039) (0.051) (0.037) (0.068)

Income -0.037 0.006 0.005 0.010 0.020 0.011 0.040
(0.052) (0.010) (0.010) (0.007) (0.008) (0.004) (0.011)

White 0.917 -0.006 -0.077 -0.015 -0.046 0.038 -0.047
(0.177) (0.067) (0.043) (0.031) (0.043) (0.024) (0.067)

Age -0.006 -0.002 -0.0003 0.0002 0.001 -0.001 -0.0004
(0.002) (0.001) (0.001) (0.0009) (0.001) (0.0007) (0.002)

Gender:Other -0.014 0.190
(0.061) (0.109)

Observations 393 1,121 1,048 2,062 1,423 2,370 1,029
RMSE 0.04445 0.11032 0.10969 0.15234 0.11873 0.13810 0.09856

Evaluators fixed effects X X X X X X X

Two-way (Evaluators & Lists) standard-errors in parentheses

Table 5: Percent of texts rated positively, subset by the ideology of individual list writers: Describing
Democrats
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Extreme
EC C SC I SL L EL

Source:GPT-3 0.079 -0.025 0.064 0.035 -0.066 0.016 0.143
(0.070) (0.060) (0.069) (0.038) (0.051) (0.034) (0.080)

Gender:Female 0.024 0.061 -0.137 -0.035 0.059 0.036 0.054
(0.027) (0.059) (0.067) (0.037) (0.056) (0.034) (0.065)

Not Hispanic 0.023 -0.048 -0.075 -0.093 -0.024 -0.029 -0.108
(0.028) (0.119) (0.103) (0.066) (0.095) (0.061) (0.083)

Income 0.005 0.023 0.023 -0.018 0.006 -0.008 0.012
(0.009) (0.013) (0.013) (0.009) (0.012) (0.008) (0.017)

White -0.097 -0.241 -0.009 -0.137 0.046 -0.010 -0.073
(0.093) (0.107) (0.075) (0.047) (0.067) (0.038) (0.094)

Age 0.004 0.0010 0.002 0.004 0.001 0.0009 0.008
(0.003) (0.002) (0.002) (0.001) (0.002) (0.001) (0.002)

Gender:Other 0.705 0.435
(0.273) (0.308)

Observations 387 1,122 1,059 2,072 1,419 2,374 1,036
RMSE 0.03172 0.15942 0.15086 0.21933 0.18450 0.23722 0.15852

Evaluators fixed effects X X X X X X X

Two-way (Evaluators & Lists) standard-errors in parentheses

Table 6: Percent of texts rated as extreme, subset by the ideology of individual list writers: Describing
Republicans
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Extreme
EC C SC I SL L EL

Source:GPT-3 -0.374 -0.089 -0.024 -0.062 0.027 0.015 -0.030
(0.277) (0.059) (0.057) (0.035) (0.044) (0.027) (0.084)

Gender:Female -0.101 -0.105 -0.171 0.058 0.067 -0.004 -0.110
(0.247) (0.071) (0.065) (0.034) (0.051) (0.027) (0.064)

Not Hispanic 0.085 -0.033 0.173 0.089 0.063 -0.006 0.015
(0.524) (0.120) (0.113) (0.048) (0.061) (0.053) (0.103)

Income 0.002 -0.009 -0.005 -0.019 -0.003 -0.002 -0.005
(0.062) (0.014) (0.015) (0.008) (0.011) (0.006) (0.017)

White 0.462 0.103 -0.073 -0.025 0.013 0.005 0.053
(0.317) (0.091) (0.068) (0.038) (0.068) (0.032) (0.103)

Age -0.006 0.0008 0.003 -0.0002 -0.0001 0.002 0.004
(0.007) (0.002) (0.002) (0.001) (0.002) (0.0009) (0.003)

Gender:Other 0.146 0.123
(0.086) (0.274)

Observations 393 1,121 1,048 2,062 1,423 2,370 1,029
RMSE 0.06764 0.15862 0.14552 0.20705 0.16029 0.19170 0.14525

Evaluators fixed effects X X X X X X X

Two-way (Evaluators & Lists) standard-errors in parentheses
Signif. Codes: ***: 0.001, **: 0.01, *: 0.05

Table 7: Percent of texts rated as extreme, subset by the ideology of individual list writers: Describing
Democrats
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C Details on Study 2

C.1 Data generation

For study 2, we generated a silicon sample based on the 2012, 2016, and 2020 ANES Timeseries datasets.
For each subject, we constructed a first-person backstory using a templating strategy similar to that in Study
1. We used the following variables from the ANES to condition GPT-3; in this list, variable names from
the datasets follow in parentheses in this order - 2012 / 2016/ 2020. The variables were (1) racial/ethnic
self-identification (dem-raceeth-x / V161310x / V201549x), (2) gender (gender respondent x / V161342 /
V201600), (3) age (dem age r x / V161267 / V201507x), (4) conservative-liberal ideological self-placement
(libcpre self / V161126 / V201200), (5) party identification (pid x / V161158x / V201231x), (6) if the
subject is interested in politics (paprofile interestpolit / V162256 / V202406), (7) if the respondent attends
church (relig church / V161244 / V201452), (8) if the respondent reported discussing politics with family
and friends (discuss disc / V162174 / V201452), (9) feelings of patriotism associated with the American flag
(patriot flag / V162125x / Not asked), and (10) respondents’ state of residence (sample stfips / V161010d /
Not released as of the time of this writing). For the measure of self-reported vote from the ANES, we used
presvote2012 x in 2012, V162062x in 2016, and V202110x in 2020.

For all template fragments, phrasing was selected to closely match the ANES, although the ANES phras-
ing was translated into first-person declarations. For the age and state of residence fragments, the ANES
result was inserted directly into the template. All other template fragments mapped the ANES variable to
a short string, such as “attend church”, “extremely liberal”, “native American”, etc. that closely matches
the corresponding ANES value, which was then inserted into the template fragment. Template fragments
were then concatenated together to create a final backstory. If any variable for any subject was missing, the
corresponding template fragment was omitted.

Because this study predicts voting patterns, we are interested in the probability that GPT-3 assigns to voting
for a particular candidate, given a specific backstory. Note that in this study, GPT-3 was not required to
sample any completions; we only use it to compute the probability of a single successor token, given the
conditioning context. For this reason, the temperature parameter and sampling strategy of the OpenAI API
are irrelevant. Because GPT-3 assigns some probability to a wide variety of semantically equivalent phrases,
we collapse them as described in Section A. We used two token sets for each year of data. In 2012, we in-
cluded the following token sets for voting for Romney: “romney”, “mitt”, “republican”, and “conservative”.
The token set for voting for Obama was “obama”, “barack”, “democrat”, “democratic”, and “liberal”. For
2016, the Trump token set included the terms “trump”, “donald”, “republican” and “conservative”. For the
2016 Clinton token set, we included “clinton”, “hillary”, “rodham”, “senator”, “democrat”, “democratic”,
and “liberal”. For the 2020 data, the token set for Trump included “trump”, “donald”, “republican” and
“conservative”. For Biden, the token set was “joe”, “joseph”, “biden”, “democratic”, “democrat”, and “lib-
eral”. For all of these token sets, lexical variations of each term (lower-case, upper-case, mixed-case, with
and without leading and trailing spaces, etc.; these are all considered distinct tokens by GPT-3) were also
included. Any tokens not in the token sets were ignored. Token sets were selected to ensure that common
cases were caught, but were not tuned or optimized to improve results.

C.2 Data analysis

The primary analysis of this silicon sample comes from comparing the vote choice as reported by ANES re-
spondents and the probability for voting for the Republican candidate from GPT-3. To make the predictions
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from GPT-3 match the observed human data (our baseline in this case), we dichotomized the probability
of voting for the Republican candidate from GPT-3 by dividing the responses exactly at 0.50; probabilities
of more than .50 were coded as a vote for the Republican (i.e., Romney or Trump) and probabilities lower
than 0.50 were coded as a vote for the Democrat (i.e., Obama, Clinton, or Biden). No probabilities were
predicted to be exactly 0.50.

This gives us two binary variables, with which we estimated 4 statistics. Table 1 in the main text presented
only the tetrachoric corelation and proportion agreement, solely for presentational and space purposes. In
the tables in this section, we show the entire set of metrics. In the following table, we calculate the corre-
spondence between the vote variable from the ANES and GPT-3 in four different ways, each of which is a
way to determine how closely two binary variables correspond. These statistics are as follows (presented in
the same order as in the subsequent tables of results):

• Tetrachoric correlation: This measure is a way to calculate a correlation between two variables
when both are binary but come from an underlying, continuous, normal distribution. It is similar to
Pearson’s r in it’s interpretation: values closer to 1 indicate closer correspondence, and values near
0 indicate almost no correspondence. These values were calculated using the tetrachoric command
from the psych package in R.

• Cohen’s Kappa: This statistic, sometimes referred to as κ, calculates the agreement between two
variables. It is generally used to compare the agreement of two raters, and here we use it treating
the ANES and GPT-3 estimates as the two ratings. Many prefer this measure over the proportion of
agreement because κ includes a penalty for the amount of agreement that might have occurred due
to chance alone. Values of κ typically range from 0 to 1, with the same interpretation as tetrachoric
correlation and Pearson’s r. It is theoretically possible to obtain a negative value for κ; this would
indicate worse correspondence between the variables than would occur by chance. The values in Table
1 were calculated using the cohen.kappa command from the psych package in R.

• Intraclass correlation coefficient or ICC: Similar to κ, ICC is commonly used as a measure of
agreement between raters or coders. Values closer to 1 indicate stronger agreement, and generally
scores higher than 0.75 are considered indicates of strong agreement. It is more flexible and can be
used to compare variables of different measurement metrics (e.g., ordinal, continuous, binary, etc.)
to one another. Here we present the results for the ICC measures for the binary vote variables, but
replacing the GPT-3 binary variable for the underlying probability does not change the ICC measures
in meaningful ways. Given that our interest is understanding how both the human and GPT-3 measures
compare to one another, we use the averaged versions of the ICC statistics. Further, rather than focus
on a specific measure of ICC (such as ICC1, ICC2, or ICC3), we simply report the lowest of the three.
In nearly all cases, the differences between these versions of ICC were neglible. Like the previous
two statistics, ICC was calculated with the psych package in R, specifically with the ICC command.

• Proportion agreement: This is the simplest of the measures and indicates the proportion of the
observations where the two vote variables (GPT-3 and human response) exactly match. It does not
account for the probability of matching by chance and should be viewed as a descriptive quantity. It
was calculated by creating frequency tables of the GPT-3 and ANES vote variables and then calcu-
lating proportions based on those frequencies. We include proportion agreement because some of the
other measures (such as the tetrachoric correlation and κ) do not perform well when all of the data
(more than 95 percent) fall in the same quadrant of the frequency table. As a concrete example, the
correlations and κ are quite low for Strong Democrats; upon closer examination, though, this seems to
occur because there is almost no variation in the vote variable for GPT-3 or the ANES. There is near
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Variable Tetrachoric Correlation Cohen’s Kappa ICC Prop. agreement

Whole sample 0.90 0.69 0.81 0.85
Men 0.90 0.70 0.82 0.85
Women 0.91 0.67 0.80 0.86
Strong partisans 0.99 0.93 0.96 0.97
Weak partisans 0.73 0.45 0.61 0.74
Leaners 0.90 0.70 0.82 0.85
Independents 0.31 0.16 0.22 0.59
Conservatives 0.84 0.59 0.74 0.84
Moderates 0.65 0.40 0.57 0.77
Liberals 0.81 0.43 0.60 0.95
Whites 0.87 0.64 0.77 0.82
Blacks 0.71 0.31 0.47 0.97
Hispanics 0.86 0.63 0.78 0.86
Attends church 0.91 0.71 0.83 0.86
Does not attend church 0.88 0.64 0.78 0.85
Very interested in politics 0.95 0.80 0.89 0.90
Not at all interested in politics 0.71 0.38 0.53 0.74
Discusses politics 0.92 0.72 0.84 0.87
Does not discuss politics 0.83 0.57 0.73 0.82
18 to 30 years old 0.90 0.66 0.80 0.87
31 to 45 years old 0.90 0.65 0.79 0.85
46 to 60 years old 0.90 0.69 0.82 0.86
Over 60 0.90 0.71 0.83 0.85
Californians 0.92 0.62 0.76 0.85
Texans 0.91 0.69 0.81 0.84
New Yorkers 0.91 0.59 0.74 0.84
Ohioans 0.88 0.66 0.80 0.84
Arizonans 0.98 0.89 0.94 0.95
Wisconsins 0.95 0.70 0.82 0.85

Table 8: Various measures of correlation between GPT-3 and ANES probability of voting for Mitt Romney
in 2012. GPT-3 vote is a binary version of GPT-3’s predicted probability of voting for Mitt Romney, dividing
predictions at 0.50.

complete agreement between both estimates of vote - it is just that all of the respondents reported vot-
ing (or are predicted by GPT-3 to vote for) the same candidate. This almost complete lack of variation
on the vote variable itself seems to make the measures of correspondence unreliable and unreflective
of the agreement between GPT-3 and the ANES.
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Variable Tetrachoric Correlation Cohen’s Kappa ICC Prop. agreement

Whole sample 0.92 0.73 0.84 0.87
Men 0.93 0.76 0.86 0.88
Women 0.92 0.7 0.82 0.86
Strong partisans 1.00 0.95 0.97 0.97
Weak partisans 0.71 0.46 0.62 0.74
Leaners 0.93 0.74 0.85 0.87
Independents 0.41 0.25 0.39 0.62
Conservatives 0.88 0.66 0.79 0.86
Moderates 0.76 0.52 0.69 0.78
Liberals 0.73 0.25 0.39 0.95
Whites 0.91 0.7 0.83 0.85
Blacks 0.87 0.51 0.67 0.96
Hispanics 0.93 0.73 0.85 0.9
Attends church 0.93 0.75 0.86 0.88
Does not attend church 0.9 0.67 0.8 0.85
Very interested in politics 0.97 0.85 0.92 0.93
Not at all interested in politics 0.75 0.48 0.64 0.75
Discusses politics 0.94 0.76 0.86 0.88
Does not discuss politics 0.81 0.57 0.72 0.79
18 to 30 years old 0.9 0.69 0.81 0.86
31 to 45 years old 0.92 0.72 0.84 0.87
46 to 60 years old 0.92 0.72 0.83 0.86
Over 60 0.93 0.75 0.85 0.87
Californians 0.87 0.58 0.72 0.83
Texans 0.95 0.79 0.88 0.9
New Yorkers 0.95 0.79 0.89 0.91
Ohioans 0.9 0.7 0.83 0.85
Arizonans 0.92 0.74 0.85 0.87
Wisconsins 0.97 0.84 0.91 0.92

Table 9: Various measures of correlation between GPT-3 and ANES probability of voting for Donald Trump
in 2016. GPT-3 vote is a binary version of GPT-3’s predicted probability of voting for Donald Trump,
dividing predictions at 0.50.
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Variable Tetrachoric Correlation Cohen’s Kappa ICC Prop. agreement

Whole sample 0.94 0.77 0.87 0.89
Men 0.95 0.77 0.87 0.88
Women 0.94 0.78 0.88 0.90
Strong partisans 1.00 0.95 0.97 0.97
Weak partisans 0.84 0.63 0.77 0.82
Leaners 0.95 0.79 0.88 0.89
Independents 0.02 0.02 0.03 0.53
Conservatives 0.91 0.71 0.83 0.89
Moderates 0.71 0.48 0.65 0.77
Liberals 0.86 0.51 0.67 0.97
Whites 0.94 0.78 0.88 0.89
Blacks 0.81 0.49 0.66 0.94
Hispanics 0.88 0.63 0.77 0.83
Attends church 0.94 0.77 0.87 0.88
Does not attend church 0.93 0.76 0.86 0.90
Very interested in politics 0.97 0.84 0.91 0.92
Not at all interested in politics 0.83 0.62 0.77 0.81
Discusses politics 0.95 0.79 0.88 0.90
Does not discuss politics 0.80 0.59 0.74 0.79
18 to 30 years old 0.90 0.70 0.82 0.87
31 to 45 years old 0.94 0.78 0.88 0.90
46 to 60 years old 0.92 0.74 0.85 0.87
Over 60 0.96 0.82 0.90 0.91

Table 10: Various measures of correlation between GPT-3 and ANES probability of voting for Donald
Trump in 2020. GPT-3 vote is a binary version of GPT-3’s predicted probability of voting for Donald
Trump, dividing predictions at 0.50.
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Figure 8: An ablation experiment examining the importance of each backstory element. Reported is the
Proportion Agreement on the vote prediction task of the ANES 2016 dataset. Each bar represents a different
template with some set of backstory elements, from “Full backstory” (yielding the results shown in the main
paper), to “No backstory” (where each silicon subject would have the same, empty backstory, therefore
resulting the same vote prediction for every subject; this is essentially equivalent to random chance).

C.3 Ablation analysis

We also conducted an ablation study on the backstories used for vote prediction in the ANES 2016 exper-
iment. Recall that each backstory consisted of a template with 10 different elements. For this experiment,
we investigated how the elements of the template interacted with each other by systematically removing one
or two at a time. We also tested backstories consisting of only one backstory element.

The results are shown in Fig. 8. There are a few notable elements to these results. First, no single back-
story element accounted for all of the predicted power of GPT-3’s vote predictions, suggesting that GPT-3
is indeed synthesizing or fusing multiple backstory elements together, yielding a more accurate final predic-
tion. Second, GPT-3 can use either Party or Ideology to predict vote choice, but Party is more predictive.
Third, the addition of some elements of the backstory template (such as State or Political Interest) mildly
hurt performance. Finally, we conducted an experiment where we removed both Party and Ideology from
the template, yielding only demographic factors; we see that the combination of the remaining 8 elements
yields better accuracy than any single element.

We here additionally note that no attempt was made to optimize the template used during our experiments;
the template used and the 10 elements selected represent our first try. Future work can likely improve these
results by optimizing template and backstory elements before an experiment begins.

C.4 Model comparison

Finally, we tested the performance of different language models on the vote prediction task; results are
shown in Figure 9. Five different families of language models were tested, representing the best available
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Figure 9: Comparison of the performance of different language models on the vote prediction task. See text
for details.

models at the time of writing. GPT-3 and Jurassic are commercial models available only via a paid API; all
other models have been publicly released. The figure shows performance as a function of parameter count,
but performance also depends strongly on the details of the corpus used to train each model. We here only
note that, as in so many other natural language processing tasks, the very largest models perform very well.
Also of note is the surprisingly good performance of the largest member of the GPT-Neo family of models
- at only 6B parameters, its performance rivals that of the much larger and more costly GPT-3 (at 175B
parameters).

D Details on Study 3

D.1 Data generation

For Study 3, we generated a silicon sample of virtual ANES participants by constructing a complete virtual
interview. As the example template (Figure 10) indicates, we selected twelve common variables1 from the
2016 ANES for exploration, representing a variety of demographic (gender, race/ethnicity, age, education,
religiosity), attitudinal (political interest, patriotic feelings about the flag, party identification, ideology),
and behavioral (talk about politics, vote, and vote choice) information. The conditioning text included the
mock interview with questions and responses for eleven of the twelve items, leaving the twelfth question for
GPT-3 to answer. Each backstory was based on actual responses given by one human ANES respondent.2 In
study 2, the goal was to measure the probability of a single token; here the goal is to measure a wide variety
of multi-token responses, which complicates the analysis of their raw probabilities. Instead, we allow the
GPT-3 API to sample completions, which we then analyze.

Like Study 2, we use a templating system that maps ANES demographic variables to template fragments,
which are then concatenated to construct the conditioning context. Because this was a virtual interview, we
used phrasing that exactly matched the ANES interview verbiage whenever possible. We mapped ANES
variables to short text fragments, which were then interpolated into template fragments. For this study,
we used the following ANES variables (in the following order): gender (V161342), race (V161310x), age
(V161267), education (V161270) church attendance (V161244), patriotism (V162125x), whether the sub-
ject discusses politics (V162174), level of interest in politics (V162256), 7-point self-reported ideology

1Because vote choice is conditional on vote turnout, these two items are combined into one metric in the analysis, for a total of
11 unique items.

2Missing responses in the ANES data resulted in the removal of the question from the conditioning text.
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Interviewer: What is your gender? Are you “male” or “female”?
Me: male
Interviewer: I am going to read you a list of four race categories. What race do you consider yourself to be?
“White”, “Black”, “Asian”, or “Hispanic”?
Me: white
Interviewer: What is your age in years?
Me: 29
Interviewer: What is the highest level of school you have completed, or the highest degree you have received? Is
it “high school”, “some college”, “a four-year college degree”, or “an advanced degree”?
Me: high school
Interviewer: When you see the American flag flying, how does it make you feel? Does it make you feel “ex-
tremely good”, “moderately good”, “a little good”, “neither good nor bad”, “a little bad”, “moderately bad”, or
“extremely bad”?
Me: extremely good
Interviewer: Do you ever discuss politics with your family and friends? Please respond with “yes” or “no”.
Me: yes
Interviewer: How interested would you say you are in politics? Are you “very interested”, “somewhat inter-
ested”, “not very interested”, or “not at all interested”?
Me: somewhat interested
Interviewer: Which would you say best describes your partisan identification. Would you say you are a “strong
democrat”, “not very strong democrat”, “independent, but closer to the Democratic party”, “independent”, “in-
dependent, but closer to the Republican party”, “not very strong Republican”, or “strong Republican”?
Me: strong Republican
Interviewer: Did you vote in the 2016 general election? Please answer with “yes” or “no”.
Me: yes
Interviewer: Which presidential candidate did you vote for in the 2016 presidential election, “Hillary Clinton”,
“Donald Trump”, or “someone else”?
Me: Donald Trump
Interviewer: Lots of things come up that keep people from attending religious services even if they want to.
Thinking about your life these days, do you ever attend religious services? Please respond with “yes” or “no”.
Me: yes

Figure 10: An interview-style context used in Study 3. The context is in plaintext; underline text shows
demographic variables dynamically inserted into the interview template; one possible sampled completion
is shown in bold.
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(V161126), 7-point self-reported partisanship (V161158x), whether the subject voted in 2016 (V162031x)
and for whom (V162062x). Table 11 provides the full text of all ANES question wording and GPT-3 tem-
plate text.

Recall that the goal of this study was to predict one factor (which we call the target factor, such as “Race”)
given specific values of all of the other factors. The template fragment for the target factor was always placed
at the end of the context (and naturally did not include the corresponding ANES variable). Given a context,
we asked GPT-3 to sample 5 tokens, using a temperature of 0.7. GPT-3’s generated text was then lightly
processed (lower-cased, stripped of leading and trailing whitespace), and compared to the limited set of
ANES responses for the target factor using exact string matches. So, for example, if the target question was
“Race”, then the string produced by GPT-3 would be compared to “white”, “black”, “asian” and “hispanic”,
and coded as 1, 2, 3 or 5, respectively. If the GPT-3 response did not match any of the allowable responses,
it was coded as missing data. This generates a dataset that is structurally equivalent to the original ANES
dataset.

The combination of 12 variables and 4270 respondents resulted in the generation of more than 50,000 unique
conditioning texts for GPT-3, each designed to elicit one “silicon” respondent’s answer to one question. In
our analysis, we keep only the 1782 observations that are complete in both ANES and GPT-3 responses.
This prevents variation in the set of cases from introducing additional statistical noise to the comparison.
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Table 11: Comparison of ANES question wording and GPT-3
Template

Order Variable ANES VarID ANES Question Wording GPT-3 Template Text

1 Gender V161342 What is your gender?
What is your gender? Are
you ”male” or ”female”?

2
Race /
Ethnicity

V161310x

I am going to read you a list
of five race categories. Please
choose one or more races that
you consider yourself to be: -
white, - black or African-
American, - American Indian
or Alaska Native, - Asian, or
- Native Hawaiian or other
Pacific Islander? + Are you
Spanish, Hispanic, or Latino?

I am going to read you a list
of four race categories. What
race do you consider yourself
to be? ”White”, ”Black”,
”Asian”, or ”Hispanic”?

3 Age V161247
(Derived variable - no
question text)

What is your age in years?

4 Education V161270

What is the highest level of
school you have completed or
the highest degee you have
received?

What is the highest level of
school you have completed,
or the highest degree you
have received? Is it ”high
school”, ”some college”, ”a
four-year college degree”, or
”an advanced degree”?

continued on next page...
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...continued from last page.
Order Variable ANES VarID ANES Question Wording GPT-3 Template Text

5
Attends
Church

V161244

Lots of things come up that
keep people from attending
religious services even if they
want to. Thinking about your
life these days, do you ever
attend religious services,
apart from occasional
weddings, baptisms or
funerals?

Lots of things come up that
keep people from attending
religious services even if they
want to. Thinking about your
life these days, do you ever
attend religious services?
Please respond with ”yes” or
”no”.

6 Patriotism V162125x

When you see the American
flag flying does it make you
feel good, bad, or neither
good nor bad? + Does it
make you feel [extremely
good, moderately good, or a
little good / a little good,
moderately good, or
extremely good]? / Does it
make you feel [extremely
bad, moderately bad, or a
little bad / a little bad,
moderately bad, or extremely
bad]?

When you see the American
flag flying, how does it make
you feel? Does it make you
feel ”extremely good”,
”moderately good”, ”a little
good”, ”neither good nor
bad”, ”a little bad”,
”moderately bad”, or
”extremely bad”?

7
Discusses
Politics

V162174
Do you ever discuss politics
with your family or friends?

Do you ever discuss politics
with your family and friends?
Please respond with ”Yes” or
”No”.

continued on next page...
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...continued from last page.
Order Variable ANES VarID ANES Question Wording GPT-3 Template Text

8
Political
Interest

V162256

How interested would you
say you are in politics? Are
you [very interested,
somewhat interested, not very
interested, or not at all
interested / not at all interest,
not very interested, somewhat
interested, or very
interested]?

How interested would you
say you are in politics? Are
you ”very interested”,
”somewhat interested”, ”not
very interested”, or ”not at all
interested”?

9
Voted in
2016

V162031x

In talking to people about
elections, we often find that a
lot of people were not able to
vote because they weren’t
registered, they were sick, or
they just didn’t have time.
Which of the following
statements best describes
you: One, I did not vote (in
the election this November),
Two, I thought about voting
this time, but didn’t, Three, I
usually vote, but didn’t this
time, or Four, I am sure I
voted? + (Derived from other
Pre and Post Election
Questions)

Did you vote in the 2016
general election? Please
answer with ”yes” or ”no”.

continued on next page...
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...continued from last page.
Order Variable ANES VarID ANES Question Wording GPT-3 Template Text

10
2016 Vote
Choice

V162062x

Who did you vote for?
[Hillary Clinton, Donald
Trump / Donald Trump,
Hillary Clinton], Gary
Johnson, Jill Stein, or
someone else? + (Derived
from other Pre and Post
Election Questions)

Which presidential candidate
did you vote for in the 2016
presidential election, ”Hillary
Clinton”, ”Donald Trump”, or
”someone else”? Note: Only
displayed if respondent voted.

11 Ideology V161126

Where would you place
yourself on this scale, or
haven’t you thought much
about this? (Scale card shown
or online response options)

When asked about your
political ideology, would you
say you are ”extremely
liberal”, ”liberal”, ”slightly
liberal”, ”moderate”,
”slightly conservative”,
”conservative”, or ”extremely
conservative”?

12 Party ID V161158x

Generally speaking, do you
usually think of yourself as [a
Democrat, a Republican / a
Republican, a Democrat], an
independent, or what? +
Would you call yourself a
strong [Democrat /
Republican] or a not very
strong [Democrat /
Republican]? OR Do you
think of yourself as closer to
the Republican Party or to the
Democratic Party?

Which would you say best
describes your partisan
identification. Would you say
you are a ”strong democrat”,
”not very strong democrat”,
”independent, but closer to
the Democratic party”,
”independent”, ”independent,
but closer to the Republican
party”, ”not very strong
Republican”, or ”strong
Republican”?
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D.2 Data analysis

The complete set of synthetic responses are appended together to create a single dataset that includes the
ANES values for all eleven variables and the silicon responses for all eleven variables.

As an important methodological note, we do not calculate the direct individual-level correspondence be-
tween the ANES value for a given respondent and the GPT-3 value based on the same backstory information
(such as a percent correctly predicted). GPT-3 draws tokens from a distribution of words, and we also
assume distributions in outcomes in the general population. Therefore, even if GPT-3 and ANES values
are drawn from the same distribution, we cannot expect them to match in any given case. The important
demonstration for our point is not whether GPT-3 can correctly predict an individual, but rather whether it
can produce a distribution of generated responses that is comparable to the distribution in the human data.

We use the CramerV function of the R package ‘DescTools’ to calculate the Cramer’s V between every pos-
sible combination of the 22 variables. We use Cramer’s V as it is amenable to calculation using categorical
data, and, like Pearson’s Chi-squared on which it is based, relies on marginal values to account for variations
in base rates. Cramer’s V has a range of 0 to 1. Higher values of Cramer’s V indicate that knowing the value
of one variable gives you more information about the likely value of the second variable.

Tables 12 - 14 report the Cramer’s V values for Figure 6 in the main text of the paper.

D.2.1 Missing Data

In all presented analysis, the data are restricted to just the cases that are complete - meaning there are valid
response values for all ANES and GPT-3 variables. Of the 4270 cases in the 2016 ANES data file, 1782 are
complete cases used in the analysis.

Table 15 displays the percent of cases with missing data for each variable. The percent of missing data
produced varies substantially, for both humans and GPT-3. GPT-3 was able to produce a valid and compliant
answer in more than three-quarters of the cases for all question items, and three of the items had compliance
rates above 99 percent. With additional training for particular questions, non-compliance could likely be
reduced.

D.2.2 Descriptive Statistics

Table 16 presents the descriptive statistics for the variables used in Study 3, separately by data source (ANES
humans or GPT-3 silicon sample).

D.3 Alternative Specifications

D.3.1 Completely Synthetic Data

The data generation process results in one vector of synthetic data based on the ANES inputs for the other
eleven items. When these synthetic vectors are combined, the result is a complete dataset of synthetic data.
In the main text of the paper, the Cramer’s V is calculated using the ANES “input” variable and the GPT-3
output. This provides the most direct comparison between the ANES and GPT-3 results, as they are both
based on the same values for one half of the Cramer’s V calculations.
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ANES “Input” “Output” Variable ANES Cramer’s V GPT-3 Cramer’s V Difference
age church.goer 0.2 0.19 0.01
age discuss.politics 0.21 0.21 0
age race 0.21 0.2 0.01
age education 0.25 0.21 0.04
age gender 0.18 0.2 -0.02
age ideology 0.23 0.2 0.03
age patriotism 0.21 0.21 0
age pid7 0.22 0.21 0.01
age political.interest 0.22 0.21 0.01
age vote.2016 0.24 0.23 0.01

church.goer age 0.2 0.2 0
church.goer discuss.politics 0.01 0.14 -0.13
church.goer race 0.09 0.04 0.05
church.goer education 0.06 0.01 0.05
church.goer gender 0.04 0.02 0.02
church.goer ideology 0.28 0.12 0.16
church.goer patriotism 0.2 0.05 0.15
church.goer pid7 0.22 0.19 0.03
church.goer political.interest 0.04 0.08 -0.04
church.goer vote.2016 0.19 0.24 -0.05

discuss.politics age 0.21 0.22 -0.01
discuss.politics church.goer 0.01 0.18 -0.17
discuss.politics race 0.14 0.02 0.12
discuss.politics education 0.2 0.11 0.09
discuss.politics gender 0 0.08 -0.08
discuss.politics ideology 0.17 0.06 0.11
discuss.politics patriotism 0.03 0.1 -0.07
discuss.politics pid7 0.16 0.11 0.05
discuss.politics political.interest 0.4 0.28 0.12
discuss.politics vote.2016 0.11 0.2 -0.09

race age 0.21 0.2 0.01
race church.goer 0.09 0.07 0.02
race discuss.politics 0.14 0.05 0.09
race education 0.1 0.07 0.03
race gender 0.08 0.07 0.01
race ideology 0.12 0.1 0.02
race patriotism 0.17 0.08 0.09
race pid7 0.18 0.1 0.08
race political.interest 0.06 0.11 -0.05
race vote.2016 0.17 0.11 0.06

Table 12: Cramer’s V values
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ANES “Input” “Output” Variable ANES Cramer’s V GPT-3 Cramer’s V Difference
education age 0.25 0.23 0.02
education church.goer 0.06 0.05 0.01
education discuss.politics 0.2 0.07 0.13
education race 0.1 0.04 0.06
education gender 0.04 0.05 -0.01
education ideology 0.13 0.09 0.04
education patriotism 0.09 0.05 0.04
education pid7 0.11 0.08 0.03
education political.interest 0.12 0.07 0.05
education vote.2016 0.14 0.09 0.05

gender age 0.18 0.21 -0.03
gender church.goer 0.04 0.01 0.03
gender discuss.politics 0 0.01 -0.01
gender race 0.08 0.03 0.05
gender education 0.04 0.07 -0.03
gender ideology 0.13 0.14 -0.01
gender patriotism 0.06 0.07 -0.01
gender pid7 0.16 0.1 0.06
gender political.interest 0.12 0.04 0.08
gender vote.2016 0.09 0.11 -0.02

ideology age 0.23 0.2 0.03
ideology church.goer 0.28 0.07 0.21
ideology discuss.politics 0.17 0.08 0.09
ideology race 0.12 0.09 0.03
ideology education 0.13 0.1 0.03
ideology gender 0.13 0.12 0.01
ideology patriotism 0.22 0.15 0.07
ideology pid7 0.37 0.32 0.05
ideology political.interest 0.15 0.14 0.01
ideology vote.2016 0.4 0.28 0.12

patriotism age 0.21 0.18 0.03
patriotism church.goer 0.2 0.11 0.09
patriotism discuss.politics 0.03 0.08 -0.05
patriotism race 0.17 0.1 0.07
patriotism education 0.09 0.07 0.02
patriotism gender 0.06 0.09 -0.03
patriotism ideology 0.22 0.14 0.08
patriotism pid7 0.19 0.16 0.03
patriotism political.interest 0.08 0.17 -0.09
patriotism vote.2016 0.25 0.15 0.1

Table 13: Cramer’s V values
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ANES “Input” “Output” Variable ANES Cramer’s V GPT-3 Cramer’s V Difference

pid7 age 0.22 0.21 0.01
pid7 church.goer 0.22 0.07 0.15
pid7 discuss.politics 0.16 0.13 0.03
pid7 race 0.18 0.07 0.11
pid7 education 0.11 0.12 -0.01
pid7 gender 0.16 0.12 0.04
pid7 ideology 0.37 0.32 0.05
pid7 patriotism 0.19 0.15 0.04
pid7 political.interest 0.12 0.16 -0.04
pid7 vote.2016 0.48 0.37 0.11

political.interest age 0.22 0.2 0.02
political.interest church.goer 0.04 0.13 -0.09
political.interest discuss.politics 0.4 0.16 0.24
political.interest race 0.06 0.04 0.02
political.interest education 0.12 0.07 0.05
political.interest gender 0.12 0.11 0.01
political.interest ideology 0.15 0.1 0.05
political.interest patriotism 0.08 0.16 -0.08
political.interest pid7 0.12 0.12 0
political.interest vote.2016 0.12 0.12 0

vote.2016 age 0.24 0.23 0.01
vote.2016 church.goer 0.19 0.19 0
vote.2016 discuss.politics 0.11 0.23 -0.12
vote.2016 race 0.17 0.07 0.1
vote.2016 education 0.14 0.14 0
vote.2016 gender 0.09 0.19 -0.1
vote.2016 ideology 0.4 0.34 0.06
vote.2016 patriotism 0.25 0.16 0.09
vote.2016 pid7 0.48 0.37 0.11
vote.2016 political.interest 0.12 0.2 -0.08

Table 14: Cramer’s V values
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Variable ANES GPT-3

Age 4.7 2.8
Attends Church 0 0.4

Discusses Politics 0.1 14.6
Race 0.1 5.6

Education 14.3 1
Gender 0 1.2

Ideology 4.2 22.6
Patriotism 0.7 14.6
Party ID 3.6 0.5

Political Interest 1.1 14.8
2016 Vote and Choice 0.5 23.8

Table 15: Percent of Observations Coded as Missing

However, we can also estimate the Cramer’s V between the various synthetic vectors, removing ANES data
from the GPT-3 relationship calculation entirely. Figure 11 shows the same data for the “Human” responses,
but replaces the Cramer’s V between ANES and GPT-3 that forms the “GPT-3” response in the main text
with a Cramer’s V calculation based entirely on synthetic data. Even though the use of synthetic data in both
parts introduces additional noise in the estimation, the pattern of Cramer’s V comparisons is highly similar
to that seen when ANES inputs are used.

D.3.2 GPT-3 Temperature Variation

Additionally, when generating the GPT-3 results, the temperature setting can be varied. Temperature con-
trols the amount of random variation allowed in the text sampling process used by GPT-3. In the main text,
we use the industry standard temperature of .7. However, to demonstrate that the results are robust to mul-
tiple samples using different settings, we also provide a replication using temperature settings of 0.001 and
1.0. A setting of 0.001 means that in virtually all completions the algorithm will provide the response with
the highest probability (meaning for a .49 to .51 split, all completions would return the token associated
with the .51 probability). A setting of 1.0 means that the probability of selecting any particular token is
equivalent to the probability distribution (i.e. there is no adjustment).

Table 17 shows summary statistics of the difference in Cramer’s V between human and GPT-3 produced
responses based on varying temperature settings. In other words, the value for Cramer’s V produced with
human data is subtracted from the value for Cramer’s V produced with GPT-3 data. These results mirror the
main text, and are based on ANES ”inputs” and GPT-3 ”outputs.” Summary statistics are then calculated
based on the differences. We see that, of the three options, a temperature setting of .7 produces the lowest
difference between Human and GPT-3 relationships. There are minimal differences between a temperature
of .7 and a temperature of 1.0. We ran each temperature query once, and did not select the presented models
for best fit from a range of probabilistic runs. The results provide some evidence that the relationship patterns
uncovered by GPT-3 are robust to variations in model specification.

A temperature of 0.001 produces more error and also systematically overstates the relationship between
the human input and GPT-3 output variables. One caveat: at a temperature of 0.001, GPT-3 identified all
respondents as white. Without variation in this variable, we were unable to calcualte Cramer’s V, so race /
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Variable Source N Mean St. Dev. Min Pctl(25) Pctl(75) Max
Age ANES 1,782 50.143 17.557 18 35 64 90
Age GPT-3 1,782 35.486 12.589 0 27 41 99
Attends Church ANES 1,782 0.583 0.493 0 0 1 1
Attends Church GPT-3 1,782 0.604 0.489 0 0 1 1
Talks Politics ANES 1,782 0.864 0.343 0 1 1 1
Talks Politics GPT-3 1,782 0.896 0.305 0 1 1 1
Ideology ANES 1,782 4.095 1.618 1 3 5 7
Ideology GPT-3 1,782 4.017 1.737 1 3 5 7
Patriotism ANES 1,782 1.963 1.299 1 1 2 7
Patriotism GPT-3 1,782 1.456 0.902 1 1 2 7
Party ID ANES 1,782 3.857 2.197 1 2 6 7
Party ID GPT-3 1,782 4.429 2.169 1 2 6 7
Political Interest ANES 1,782 1.990 0.791 1 1 2 4
Political Interest GPT-3 1,782 1.694 0.852 1 1 2 4
White ANES 1,782 0.803 0.398 0 1 1 1
White GPT-3 1,782 0.974 0.159 0 1 1 1
Hispanic ANES 1,782 0.089 0.285 0 0 0 1
Hispanic GPT-3 1,782 0.001 0.033 0 0 0 1
Asian ANES 1,782 0.030 0.171 0 0 0 1
Asian GPT-3 1,782 0.002 0.041 0 0 0 1
Black ANES 1,782 0.077 0.267 0 0 0 1
Black GPT-3 1,782 0.023 0.150 0 0 0 1
Some College ANES 1,782 0.348 0.476 0 0 1 1
Some College GPT-3 1,782 0.642 0.480 0 0 1 1
Graduate Degree ANES 1,782 0.196 0.397 0 0 0 1
Graduate Degree GPT-3 1,782 0.002 0.041 0 0 0 1
Bachelor’s Degree ANES 1,782 0.280 0.449 0 0 1 1
Bachelor’s Degree GPT-3 1,782 0.269 0.443 0 0 1 1
High School ANES 1,782 0.176 0.381 0 0 0 1
High School GPT-3 1,782 0.088 0.283 0 0 0 1
Male ANES 1,782 0.481 0.500 0 0 1 1
Male GPT-3 1,782 0.759 0.428 0 1 1 1
Voted in 2016 ANES 1,782 0.871 0.335 0 1 1 1
Voted in 2016 GPT-3 1,782 0.832 0.374 0 1 1 1
Trump Voter ANES 1,553 0.438 0.496 0 0 1 1
Trump Voter GPT-3 1,483 0.245 0.430 0 0 0 1
Clinton Voter ANES 1,553 0.484 0.500 0 0 1 1
Clinton Voter GPT-3 1,483 0.233 0.423 0 0 0 1
Other Voter ANES 1,553 0.078 0.268 0 0 0 1
Other Voter GPT-3 1,483 0.523 0.500 0 0 1 1

Table 16: Study 3 Descriptive Statistics for ANES and GPT-3 Data
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Figure 11: Cramer’s V Correlations in ANES vs. GPT-3 Data, using Entirely Synthetic GPT-3 Calculations

Summary Statistic Temp: 0.001 Temp: 0.7 Temp: 1.0

Mean 0.059 -0.026 -0.031
Minimum -0.123 -0.241 -0.250
Maximum 0.700 0.168 0.119

Standard Deviation 0.141 0.068 0.070
N 2518 1782 1022

Table 17: Average Error in Cramer’s V Based on Varying Temperatures

ethnicity is excluded from the calculations for a temperature of 0.001.
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All Cramer’s V calculations use the set of cases that have non-missing data for all human and GPT-3 pro-
duced variables. The different temperature settings produce a different number of valid completed cases.
Lower temperature is more deterministic, and so minimizes the number of invalid tokens used as text com-
pletions. Higher temperatures sample from a range of tokens that includes more invalid responses. There-
fore, mid-range temperatures appear to produce the desirable balance between validity and completeness.

E Cost Analysis

The GPT-3 and Jurassic models are available only through a paid API. In the interests of full transparency,
we here report the costs for Studies 1, 2 and 3. We only report costs for the final runs, but note that additional
runs were performed as part of the experimental rhythm.

Study 1 required 1,1471 model queries (one for each human subject). The backstories were relatively small,
at an average of 66 tokens. For each query, we generated a maximum of 128 tokens from the model. At the
standard rate of $0.06 / 1,000 tokens, this experiment cost a total of $29.

Study 2 consisted of 3 experiments, one for ANES 2012, 2016 and 2020. We ran one model query per
participant (5,914 in 20112, 4,270 in 2016 and 5,442 in 2020), for a total of 15,626 queries. Backstories
were a bit longer than in Study 1, at an average of 80 tokens, but we only needed to generate one token per
query, incurring a total cost of $75.

Study 3 was more expensive. Because of the extended interview format, each prompt required an average
of 458 tokens. For each query, we generated a maximum of 5 tokens. We performed one query for each
ANES participant, for a total of 4,270 queries, resulting in a total per experiment of $119. However, recall
that Study 3 involved 12 different experiments (systematically predicting one backstory element from the
others), and so the total cost of Study 3 was $1,428.

We briefly note that using the Jurassic model (not available at the time of writing) would have reduced costs
for all experiments.
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