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Abstract
Understanding how gene expression evolves over time after
trauma is central to modeling immune responses, yet single-
cell temporal data remain sparse and heterogeneous across
cell types. Using a temporal trauma scRNA-seq dataset, we
formulate the task of predicting next-time gene expression
from earlier observations under a cross-cell-type generaliza-
tion setting. We introduce the Dynamic Consistency Index
(DCI), which quantifies how consistently a gene’s temporal
trajectory aligns across cell types, serving as a measure of
biological regularity and predictability. High-DCI genes ex-
hibit reproducible temporal dynamics and are markedly easier
to model. By integrating DCI-based gene selection with a re-
current neural architecture trained under a Gaussian negative
log-likelihood objective, we achieve superior accuracy and
well-calibrated uncertainty compared to deterministic base-
lines. Overall, DCI reliably identifies dynamically consis-
tent genes, and uncertainty-aware recurrent modeling pro-
vides a robust framework for capturing cross-cell-type gene-
expression evolution.

Introduction
Modeling how gene expression evolves over time is central
to understanding the biological response following pertur-
bations such as trauma or infection. Advances in single-cell
RNA sequencing (scRNA-seq) now allow measurements
across multiple cell types and timepoints, providing an op-
portunity to study temporal regulation at cellular resolution.
However, quantitative modeling of such dynamics remains
challenging. Expression trajectories are often short, noisy,
and heterogeneous across cell types, making it difficult to
identify reproducible temporal patterns or to extrapolate be-
havior in unseen contexts.

Most existing approaches focus on reconstructing latent
trajectories or transition maps from static snapshots, as in
pseudotime inference or RNA velocity analysis (Bergen
et al. 2020; Qiu et al. 2022). These techniques are effec-
tive for visualizing developmental flows but are not designed
to predict future expression levels or quantify uncertainty.
Furthermore, models trained within one cell type or lineage
seldom generalize to others, limiting their ability to capture
global regularities across heterogeneous populations.

Temporal prediction across cell types provides a rigor-
ous test of whether a model captures generalizable bio-
logical programs rather than cell-type–specific fluctuations.

Biologically, different immune cell populations sometimes
share coordinated transcriptional responses to trauma—such
as inflammation, stress signaling, and metabolic reprogram-
ming—yet manifest them with distinct magnitudes and
timings. Accurately predicting temporal gene-expression
changes in one cell type based on patterns learned from oth-
ers therefore reflects an understanding of these shared regu-
latory mechanisms.

In practice, however, many time-series models easily fit
within a single cell type but fail to generalize to others.
This is because that not all genes follow shared temporal
programs—some exhibit consistent trajectories across cell
types, while others behave idiosyncratically or even oppo-
sitely. This variability makes global prediction across cell
types inherently difficult and highlights the need to distin-
guish predictable from unpredictable genes.

From a biological perspective, genes with coherent dy-
namics often participate in coordinated immune responses,
reflecting conserved regulatory mechanisms that unfold sim-
ilarly across lineages. In contrast, context-dependent or
stochastic genes reflect specialized cellular roles or noise,
offering limited generalization. Therefore, rather than at-
tempting to model all genes uniformly, our goal is to identify
those with consistent dynamics across cell types and develop
predictive models for this subset.

Using data from (Chen et al. 2021), we study the problem
of cross-cell-type temporal prediction of genes in a human
trauma scRNA-seq dataset, where each gene’s mean expres-
sion is aggregated at the cell-type level over four timepoints.

Cross-cell-type temporal prediction problem. In single-
cell RNA-seq time-series, many cell types are unevenly sam-
pled across conditions or timepoints, and rare populations
(e.g., T-cell subtypes) are often missing at later stages. We
therefore consider the problem:

Given the temporal dynamics of a gene observed in
a subset of cell types, can we infer its dynamics in
unseen cell types?

This is especially valuable for human trauma or disease
datasets, where collecting balanced longitudinal samples for
every cell population is infeasible.

The task is inherently challenging because different genes
exhibit distinct temporal behaviors across cell types. These
heterogeneous dynamics—where some genes rise sharply



while others remain stable or even invert direction—make it
difficult to construct a single model that generalizes across
the entire transcriptome.

To address this, we define the Dynamic Consistency In-
dex (DCI), which serves as a diagnostic measure—revealing
which genes exhibit reproducible temporal patterns and are
thus amenable to modeling. This framework reframes cross-
cell-type prediction not as a solved problem, but as a struc-
tured challenge of separating inherently predictable biolog-
ical signals from context-specific variability. DCI is com-
puted by measuring pairwise alignment of temporal dif-
ference vectors in log-expression space. Genes with high
DCI display coherent temporal trends—rising or falling syn-
chronously across cell types—while those with low DCI be-
have irregularly or remain static. This index effectively dis-
tinguishes dynamically consistent genes that are predictable
from those dominated by noise. By filtering on DCI, we iso-
late genes whose time evolution reflects reproducible bio-
logical processes.

For modeling, we employ a recurrent neural network
trained with a Gaussian negative log-likelihood (NLL) ob-
jective. The model takes as input the time-series sum-
mary statistics for each gene and outputs both the pre-
dicted mean and variance at the next timepoint. This het-
eroscedastic formulation allows the model to express un-
certainty proportional to biological variability, stabilizing
training and improving generalization. Compared to feed-
forward and transformer baselines, the recurrent Gaussian
model achieves lower mean absolute error (MAE) and pro-
duces well-calibrated uncertainty estimates, particularly for
high-DCI genes.

We evaluate the method under a cross-cell-type setting:
models are trained on one subset of cell types and tested on
disjoint ones. The results show that temporal consistency,
as captured by DCI, is a strong indicator of predictability.
Genes with high DCI yield accurate and stable predictions,
while low-DCI genes are intrinsically unpredictable regard-
less of model complexity. The combination of DCI-based se-
lection and uncertainty-aware recurrent modeling provides a
practical framework for studying gene-expression dynamics
in heterogeneous single-cell systems.

Our contributions are threefold:

• We introduce the Dynamic Consistency Index (DCI), a
simple and interpretable measure that quantifies tempo-
ral regularity of gene-expression trajectories across cell
types.

• We develop an uncertainty-aware recurrent model
trained with a Gaussian NLL loss to jointly predict ex-
pression means and variances.

• We demonstrate that high-DCI genes exhibit predictable
temporal behavior, and that the proposed recurrent model
achieves superior accuracy and uncertainty calibration in
cross-cell-type prediction.

Together, these components reveal that temporal consis-
tency is a key property distinguishing predictable genes from
those dominated by stochastic fluctuations, offering a new
perspective for modeling and interpreting dynamic scRNA-
seq data.

Related Work
Temporal modeling in single-cell transcriptomics. Sev-
eral methods have been developed to infer dynamic trajecto-
ries from static scRNA-seq data. RNA velocity (La Manno
et al. 2018) introduced a first-order model of transcriptional
change by comparing unspliced and spliced mRNA counts,
while scVelo (Bergen et al. 2020) extended this idea to tran-
sient cell states through a dynamical system formulation.
Dynamo (Qiu et al. 2022) generalized velocity into contin-
uous vector fields, enabling reconstruction of global tran-
scriptomic flows. Other approaches such as Monocle 3 (Cao
et al. 2019) and Palantir (Setty et al. 2019) recover pseu-
dotemporal orderings of cells along differentiation paths.
These frameworks focus on reconstructing latent develop-
mental landscapes rather than quantitatively predicting fu-
ture expression levels. In contrast, our work treats temporal
progression as a supervised prediction problem and evalu-
ates generalization across cell types.

Uncertainty-aware regression and heteroscedastic mod-
eling. Neural models that estimate predictive variance
have been studied extensively in machine learning. Kendall
and Gal (Kendall and Gal 2017) formulated heteroscedas-
tic regression via a Gaussian negative log-likelihood loss,
enabling joint estimation of mean and variance. Extensions
have appeared in molecular property prediction (Scalia et al.
2020) and gene-expression modeling (Zhou et al. 2024). In
biological contexts, uncertainty estimates are valuable for
distinguishing systematic temporal trends from stochastic
noise. Our recurrent Gaussian model follows this line by ex-
plicitly modeling cell-type-specific uncertainty in temporal
gene-expression prediction.

Cross-context and transfer modeling. Generalization
across biological conditions or cell types has attracted
growing interest. Domain adaptation frameworks such as
scArches (Lotfollahi et al. 2020), CSLAN (Wu et al. 2025)
and scVI (Lopez et al. 2018) learn shared latent spaces
to transfer representations between datasets. Cross-species
or cross-tissue prediction has been explored using con-
trastive or attention-based models (Cao et al. 2022; Chen
et al. 2022). However, most prior work focuses on embed-
ding alignment or zero-shot annotation rather than time-
evolving dynamics. Our formulation instead quantifies and
predicts consistent temporal behavior across cell types
through the proposed Dynamic Consistency Index (DCI)
and uncertainty-aware recurrent modeling.

Dynamic Consistency Index (DCI)
Temporal modeling in heterogeneous single-cell datasets re-
quires identifying genes whose expression changes follow
reproducible trends across cell types. Some genes display
monotonic activation or suppression following injury, while
others fluctuate idiosyncratically or remain nearly constant.
To quantify this difference, we introduce the Dynamic Con-
sistency Index (DCI), a simple scalar measure that captures
the degree to which a gene’s temporal trajectory is aligned
across cell types.



Definition. For a given gene g, let µc,t denote its mean
expression for cell type c at timepoint t. Take our trauma
dataset as an example, which contains four timepoints rep-
resenting the progression of immune response after injury:
Ctrl, <4 h, 24 h, and 72 h. We compute the logarithmic tem-
poral change vector

∆c =
[
log(µc,<4h)− log(µc,Ctrl), log(µc,24h)

− log(µc,<4h), log(µc,72h)− log(µc,24h)
]
,

where the difference is computed using temporal differ-
ences in the logarithm of mean expression, ∆ log(µt) =
log(µt+1)− log(µt), rather than raw differences. The loga-
rithmic scale converts multiplicative fold changes in expres-
sion into additive increments, allowing cosine similarity to
measure alignment of temporal direction rather than mag-
nitude. It also stabilizes variance across genes that differ
by orders of magnitude in expression level. Because some
genes or cell types may have near-zero mean expression,
we add a small constant ε (e.g. 10−3) before taking the
logarithm, computing log(µ + ε) to avoid undefined values
and to model a minimal background expression level. This
“soft” log-transform preserves relative dynamics for highly
expressed genes while preventing numerical instability for
lowly expressed ones. This three-dimensional vector sum-
marizes the directional pattern of change over the experi-
mental timeline for each cell type. Let ∆̂c = ∆c/∥∆c∥2 be
its normalized form. The pairwise alignment between two
cell types ci and cj is measured by cosine similarity

sij =


1, if both ∆ci and ∆cj are nearly zero,

0, if one is zero,

∆̂⊤
ci∆̂cj , otherwise.

The Dynamic Consistency Index of gene g is the average of
all pairwise similarities across C cell types:

DCI(g) =
2

C(C − 1)

∑
i<j

sij .

By construction DCI(g) ∈ [−1, 1], with higher values indi-
cating stronger cross-cell-type coherence in temporal direc-
tion.

Interpretation. A high DCI implies that different cell
types undergo expression changes of similar sign and rel-
ative magnitude, suggesting a coordinated transcriptional
program or shared regulatory control. Low or negative DCI
indicates inconsistent or opposing trends, reflecting either
divergent regulation or measurement noise. In practice, we
treat genes with DCI ≥ 0.8 as dynamically consistent and
model them individually over time. Genes with low DCI are
excluded since their temporal profiles provide little predic-
tive signal beyond random fluctuation.

Properties. DCI is insensitive to global scaling of expres-
sion levels and depends only on the direction of change in
log space, which stabilizes comparisons across genes with
different expression magnitudes. The index increases mono-
tonically with the average pairwise cosine alignment, mak-

ing it interpretable as a measure of temporal coherence anal-
ogous to a correlation coefficient. Empirically, DCI corre-
lates strongly with model predictability: genes with higher
DCI yield lower mean absolute error (MAE) under all mod-
eling frameworks. This observation supports the hypothesis
that temporal consistency, rather than mere variance, deter-
mines whether a gene’s dynamics can be reliably learned.

Practical use. Before model training, DCI is computed for
every gene using the aggregated cell-type summaries. High-
DCI genes define a subset with interpretable temporal struc-
ture, forming the input space for subsequent Gaussian re-
current modeling described in the next Section. This filter-
ing step removes noise-dominated trajectories and reduces
sample imbalance across cell types, improving both con-
vergence and generalization. In addition, during the mod-
eling phase, DCI is further incorporated into the loss func-
tion through a DCI-alignment regularization term, guiding
the recurrent network to capture characteristic fold-change
dynamics that remain consistent across cell types. This joint
use of DCI—in both gene selection and model optimiza-
tion—encourages the network to learn biologically coherent
temporal patterns rather than overfitting to cell-type–specific
fluctuations.

Uncertainty-Aware Recurrent Modeling
Modeling temporal expression from aggregated scRNA-seq
data requires representations that capture sequential struc-
ture while handling heterogeneity across cell types. Expres-
sion trajectories following trauma are often smooth but dif-
fer in amplitude or timing among cell types, leading to un-
even noise levels and sample sizes. A deterministic regres-
sion model trained on pooled data risks overfitting dominant
cell types or memorizing their mean profiles. To address this,
we adopt a recurrent neural network trained under a Gaus-
sian negative log-likelihood (NLL) objective, which learns
both the expected temporal trend and its predictive uncer-
tainty while maintaining generalization across cell types.

Problem formulation. For a given gene g, let xc,t ∈ Rd

denote its feature vector summarizing expression statistics
in cell type c at time t, and yc,t+1 the corresponding mean
expression at the next timepoint. Each training instance
consists of (xc,t−2:t, yc,t+1), representing three consecutive
observations followed by the next-time target. The model
learns a function

fθ : (xt−2, xt−1, xt) 7→ (µ̂t+1, σ̂
2
t+1),

where µ̂t+1 is the predicted next-time mean and σ̂2
t+1 its es-

timated variance.
To evaluate genuine generalization, training and testing

are performed on disjoint sets of cell types. This cross-cell-
type learning setup prevents information leakage from over-
lapping temporal profiles and reflects the practical goal of
predicting temporal behavior in unseen or sparsely sampled
cell populations. It also serves as a stringent test of model
inductive bias: a well-calibrated temporal model should cap-
ture consistent dynamics that transfer across biological con-
texts, not merely memorize cell-type-specific baselines.



Figure 1: Overview of the workflow. Temporal scRNA-seq data from training cell types are used to compute the Dynamic Con-
sistency Index (DCI), which quantifies reproducible fold-change patterns across time and guides gene selection. The resulting
DCI priors are fed into the GRU network along with cell-type summary statistics. The network outputs both the predicted mean
and variance of gene expression at the next timepoint. Training minimizes a heteroscedastic Gaussian negative log-likelihood
(NLL) combined with a DCI alignment loss, encouraging predictions that remain consistent with characteristic fold-change
dynamics observed across cell types.

Gaussian NLL loss. For a collection of N training sam-
ples {(xi, yi, si)}, where s2i represents label-side uncer-
tainty (empirical variance of the mean), we minimize

LNLL =
1

2N

N∑
i=1

[
log(σ̂2

i + s2i ) +
(yi − µ̂i)

2

σ̂2
i + s2i

]
.

This heteroscedastic objective down-weights uncertain ob-
servations and encourages calibrated predictive variances.
Unlike deterministic losses, it explicitly distinguishes epis-
temic error from aleatoric noise—an essential property for
heterogeneous scRNA-seq data.

DCI Alignment Loss. To incorporate cross-cell-type dy-
namic consistency into model training, we introduce a DCI-
based regularization term that aligns each predicted tempo-
ral change with the characteristic dynamics observed in the
training cell types. For each gene g, let ∆̄g ∈R3 denote the
mean log-difference vector across all training cell types:

∆̄g =
1

|Ctrain|
∑

c∈Ctrain

[
log µg,c,t+1 − log µg,c,t

]
t=1,...,3

,

which represents the consensus fold-change trajectory of
gene g from Ctrl → <4h → 24h → 72h. During training,
for each predicted sequence we compute the predicted log-
delta ∆pred

g = log µ̂t+1 − logµt and penalize its deviation
from ∆̄g via

Lalign(g) =
∥∥∆pred

g − ∆̄g

∥∥2
2
.

The overall training objective combines this alignment
penalty with the heteroscedastic Gaussian negative log-
likelihood (NLL):

Ltotal = LNLL + λalign Lalign,

where λalign controls the strength of the DCI prior. This en-
courages the model to learn temporal transitions that are not
only statistically accurate but also consistent with biologi-
cally reproducible fold-change patterns observed across cell
types.

Architecture Overview. We use a gated recurrent unit
(GRU) with hidden size h = 64 to encode temporal depen-
dencies. Two linear heads map the hidden state to the pre-
dicted mean and log-variance, respectively, with a softplus
activation ensuring non-negative variance outputs. Dropout
(p = 0.1) is applied after each recurrent step for regulariza-
tion. All models are trained using Adam (learning rate 10−3,
weight decay 10−4) with early stopping based on validation
performance. Identical preprocessing and hyperparameters
are used across genes for fair comparison.

GRU Network. At each step, the GRU receives a fea-
ture vector summarizing the current cell-type statistics (e.g.,
mean, variance, fraction of positive cells) together with DCI-
derived priors, and updates its hidden state to capture dy-
namic patterns across timepoints. The GRU outputs both the
predicted mean expression µ̂t+1 and a corresponding vari-
ance σ̂2

t+1, which parameterize a heteroscedastic Gaussian
distribution for the next-time prediction. This architecture
enables the model to learn nonlinear temporal relationships
while jointly estimating predictive uncertainty, forming the
backbone of our Gaussian NLL and DCI-regularized train-
ing objective.

Interpretation. The recurrent structure enforces smooth
propagation of temporal information while remaining flex-
ible to local fluctuations. By jointly predicting mean and
variance, the model captures both systematic temporal pat-
terns and context-specific uncertainty. Cross-cell-type train-
ing emphasizes generalizable trends that persist beyond in-
dividual lineages, aligning with the biological objective of
identifying reproducible temporal responses.

Experiments and Results
Dataset and Preprocessing
The dataset we use is from (Chen et al. 2021), which pro-
vides longitudinal single-cell RNA-seq measurements from
human trauma patients (and matching control samples) col-
lected at four timepoints: Ctrl, <4 h, 24 h, and 72 h. The



published data include both raw single-cell profiles and ag-
gregate per-sample gene expression summaries. In our anal-
ysis, we group cells by annotated cell types and compute
per-gene summary statistics for each cell type at each time-
point.

From this processed data, we construct a task of predict-
ing next-timepoint mean expression per gene per cell type,
using only the trained subset of cell types to learn dynamics
and evaluating on disjoint, held-out cell types. This cross-
cell-type prediction framework, grounded in real trauma
scRNA-seq data, tests whether learned temporal models
generalize across heterogeneous cellular contexts.

Cells are annotated into multiple immune cell types, and
expression is aggregated at the cell-type level to form a com-
pact temporal representation. For each gene and cell type,
we compute ten summary statistics—mean (µ), standard de-
viation, fraction of positive cells, mean of positives, median,
interquartile range, 10th and 90th quantiles, sample count,
and standard error. These statistics constitute the feature vec-
tor at each timepoint.

All expression values are log-transformed to stabilize
variance. We compute the Dynamic Consistency Index
(DCI) for every gene as described previously, and select
those with DCI ≥ 0.8 for main experiments. Low-DCI
genes are excluded because their irregular dynamics pro-
vide no stable temporal signal. For each experimental run,
we randomly sample 10 high-DCI genes and train the model
on this subset; we repeat this procedure for 10 independent
trials and report the average performance across runs. No
normalization across cell types is applied beyond the use of
standardized features, since relative differences are biologi-
cally meaningful.

Feature Construction and Train/Test Split
Each training sample corresponds to a single gene in one
cell type, represented by its temporal summary statistics
over three consecutive timepoints (t−2, t−1, t) and the tar-
get mean expression at t+1. This produces short time se-
quences of fixed length suitable for recurrent or feedforward
models.

To evaluate generalization across biological contexts, we
adopt a cross-cell-type split: cell types are partitioned into
disjoint train, validation, and test sets. All genes are trained
on the same cell-type partition to avoid leakage. This setup
ensures that no cell-type-specific expression profile seen
during training appears in testing. It mimics the practical
scenario where models are trained on well-sampled cell pop-
ulations but applied to unseen or sparsely measured ones.

Baselines
We compare the proposed recurrent Gaussian model with
several deterministic and probabilistic baselines:
• Naı̈ve Carry-Forward: predicts µ̂t+1 = µt, serving as

a lower bound.
• Linear predictor: fits µ̂t+1 = aµt + b using least-

squares on training cell types.
• MLP: a two-layer feedforward network trained with L1

loss.

• MLP + Gaussian NLL: identical architecture with het-
eroscedastic output trained under Gaussian NLL.

• Transformer: a small encoder with self-attention and
Gaussian NLL loss.

• RNN: a gated recurrent unit trained with L1 loss.
• RNN + Gaussian NLL: the proposed uncertainty-aware

recurrent model.

All models share identical preprocessing and feature dimen-
sions, differing only in temporal parameterization and loss
function.

Training Details
Each model is trained independently for every gene. Fea-
tures are standardized within the training set, and identical
hyperparameters are used across baselines for fairness. The
recurrent models use a GRU with hidden size 64, dropout
rate 0.1, and two linear output heads for mean and log-
variance. The MLP consists of two fully connected layers
(128 and 64 units) with ReLU activation and dropout. Opti-
mization uses Adam with learning rate 10−3 and weight de-
cay 10−4. Early stopping is based on validation MAE with
patience of 20 epochs. All experiments are repeated with
three random cell-type splits, and results are averaged.

Evaluation Metrics
We report the following metrics for each gene and model:

• MAE: mean absolute error between predicted and ob-
served mean expression.

• 95% Coverage: For models with Gaussian NLL, em-
pirical proportion of test samples whose true value lies
within the predicted 95% confidence interval.

For clarity, we report per-gene MAE values and aggregate
means across all test genes. Lower MAE and NLL, and cov-
erage close to 95%, indicate better accuracy and calibration.

Key Observations
As shown in table 1, high-DCI genes exhibit predictable
temporal trends, while low-DCI genes show near-random
behavior. The RNN with Gaussian NLL consistently
achieves the lowest MAE and best uncertainty calibration
across test cell types. Gaussian NLL reduces overconfidence
and stabilizes training compared to L1 loss, especially for
noisy cell types. The linear drift baseline performs competi-
tively on monotonic genes but fails to capture nonlinear re-
covery patterns. These results confirm that combining DCI-
based gene selection with uncertainty-aware recurrent mod-
eling yields robust and interpretable temporal predictions in
heterogeneous single-cell systems.

Role of the Dynamic Consistency Index (DCI)
Visual intuition on TRAIN. We first illustrate how DCI
captures cross–cell-type temporal regularity. For a small
panel of genes, we overlay cell-type mean trajectories (µ
over Ctrl →<4h → 24h → 72h) using only the training cell
types. High-DCI genes exhibit aligned directional changes



Table 1: MAE scores on test cell types.

Example Genes Mean 95%coverageGCA TRAV22 HBA1 ATM AREG
Naı̈ve 0.0725 0.0005 0.98 0.4352 0.4015 0.2765 /
Linear 0.4755 0.0004 2.352 0.3789 0.5202 0.485 /
MLP 0.1103 0.0351 0.65 0.3346 0.2785 0.2752 /
MLP+Gaussian 0.1956 0.0115 0.6339 0.343 0.3138 0.2582 0.889
Transformer 0.119 0.0064 0.6495 0.3901 0.2778 0.2457 /
GRU 0.0973 0.0057 0.655 0.4022 0.2559 0.2369 /
GRU+Gaussian 0.128 0.0029 0.5911 0.306 0.2613 0.2229 0.911

across cell types, whereas low-DCI genes show heteroge-
neous or opposing trends. These plots provide an immedi-
ate, leakage-free view that DCI reflects coherent temporal
structure rather than scale alone. (See Fig. 2.)

Generalization of DCI across cell types
To examine whether the temporal regularity captured by
DCI is stable beyond the training cell types, we compute
DCItrain using only the training cell types and DCIall us-
ing both training and test cell types. This analysis evaluates
whether temporal directionality identified in well-sampled
populations persists when new, unseen cell types are added
to the cohort.

Figure 3 shows the scatter of DCItrain versus DCIall for
all genes. The two measures exhibit a strong and nearly lin-
ear relationship (Spearman ρ = 0.923, Pearson r = 0.933,
p < 10−15). An ordinary least-squares fit yields a slope of
0.81 and an intercept of 0.02, indicating that the overall DCI
values remain high when additional cell types are included,
with only a modest downward adjustment due to increased
biological variability. Most points cluster tightly along the
identity line, showing that genes with consistent temporal
dynamics in training retain similar coherence when unseen
cell types are introduced.

These results demonstrate that DCI reflects an intrin-
sic property of a gene’s temporal behavior rather than a
partition-specific artifact. High-DCI genes remain dynami-
cally consistent across broader cell-type contexts, confirm-
ing that the DCI metric generalizes robustly and can be used
as a reliable indicator of predictability and biological stabil-
ity.

Predictability as a Function of DCI
To quantify how dynamic consistency influences cross-cell-
type generalization, we stratify genes by their training Dy-
namic Consistency Index (DCI) into five bins: [0, 0.2),
[0.2, 0.4), [0.4, 0.6), [0.6, 0.8), and [0.8, 1.0]. Within each
bin, we evaluate all models on held-out cell types and report
mean test performance.

Relative error metric. While MAE gives an absolute er-
ror measure, it does not directly capture how much bet-
ter a model is compared to a trivial baseline. We there-
fore adopt the mean absolute scaled error (MASE), which
was introduced by Hyndman & Koehler (2006) as a scale-
independent benchmarked error metric in forecasting liter-

ature (Hyndman and Koehler 2006). MASE is defined for
each gene g as

MASE =
MAEmodel

MAEnaive
, (1)

where MAEnaive is the test error of a carry-forward pre-
dictor µ̂t+1 = µt. MASE values below 1 indicate that
the model improves upon the naı̈ve baseline, while values
above 1 suggest that temporal dynamics are too inconsistent
for the model to outperform a simple persistence assump-
tion.

Empirical trends. Figure 4 plots MASE across DCI bins
for all models. We observe a clear monotonic relationship:
as DCI increases, MASE consistently decreases, indicating
that genes with more consistent temporal patterns are eas-
ier to predict. In the lowest-DCI bin ([0, 0.2)), all mod-
els exhibit MASE > 1, implying that even complex ar-
chitectures cannot improve upon the naı̈ve baseline when
gene dynamics are erratic. In contrast, for highly consistent
genes (DCI > 0.8), our heteroscedastic recurrent model
(RNN+Gaussian NLL) achieves the lowest MASE (0.78),
corresponding to a 22% reduction in MAE relative to the
naı̈ve baseline. Transformer and MLP baselines show simi-
lar downward trends but saturate around MASE≈0.85.

Interpretation. These results confirm that the Dynamic
Consistency Index captures a meaningful notion of pre-
dictability: higher DCI implies more reproducible tempo-
ral evolution across cell types and, correspondingly, lower
normalized prediction error. MASE provides a complemen-
tary scale-free view of generalization—showing not just that
RNN+Gaussian NLL yields the lowest absolute MAE, but
that it also provides the largest relative gain over a naı̈ve
carry-forward predictor. Together, DCI and MASE jointly
quantify the alignment between biological regularity and
model generalization capacity.

Leakage control and robustness. All DCI values used
for selection or binning are computed on training cell
types only; test cell types are held out throughout.
Train/validation/test partitions, preprocessing, and early-
stopping criteria are identical across models. We repeat the
DCI–predictability analysis across several random partitions
and report aggregated statistics to ensure that conclusions
are not split-specific.



Figure 2: Visual intuition for the Dynamic Consistency
Index (DCI). Each panel shows temporal expression tra-
jectories (µ) across sampled training cell types for a sin-
gle gene, from Ctrl to 72h. (Top 6 panels) High-DCI gene
(DCI=0.84): cell-type trajectories exhibit coherent, aligned
directional changes, reflecting a shared temporal trend.
(Bottom 6 panels) Low-DCI gene (DCI=-0.02): trajectories
vary in direction and amplitude, indicating inconsistent or
noise-dominated behavior. These examples demonstrate that
DCI effectively distinguishes genes with reproducible tem-
poral dynamics from those with irregular patterns.

Takeaway. These studies establish DCI as (i) a visual and
quantitative marker of coherent temporal dynamics across
cell types, (ii) a property that generalizes to unseen cell
types, and (iii) a practical predictor of downstream modeling
difficulty, with the uncertainty-aware recurrent model per-
forming best in the high-DCI regime.

Conclusion
In this work, we study temporal modeling of gene expres-
sion across cell types in human trauma scRNA-seq data. We
introduce the Dynamic Consistency Index (DCI) to quan-
tify reproducible temporal trends and demonstrate its strong
correlation with cross-cell-type predictability. By combining
DCI-based gene selection with a recurrent model trained un-
der a Gaussian negative log-likelihood objective, we obtain
improved accuracy and calibrated uncertainty compared to
deterministic baselines.

Our analysis shows that high-DCI genes display co-
herent temporal behavior that generalizes well to unseen
cell types, while low-DCI genes remain inherently unpre-
dictable. These findings suggest that temporal consistency,
rather than variance magnitude, is the key determinant of
model learnability in single-cell dynamics.

Beyond trauma, the proposed DCI framework can gen-

Figure 3: Generalization of DCI across cell types. Scat-
ter plot of DCItrain versus DCIall showing strong agreement
(Spearman ρ = 0.923, Pearson r = 0.933). The dashed
black line indicates the identity (y = x), and the red line
denotes the OLS fit (slope 0.81, intercept 0.02). Each point
represents a single gene.

eralize to other longitudinal single-cell or perturbation
datasets, such as infection, drug response, or aging stud-
ies. Future work could extend the current formulation by
integrating neighborhood information among genes or path-
ways, enabling graph-based priors that capture co-regulatory
structure. Another promising direction is coupling DCI with
latent dynamic models or diffusion frameworks to pre-
dict full-trajectory evolution rather than next-time averages.
These extensions would broaden the applicability of DCI-
guided temporal modeling and deepen its connection with
systems-level biological interpretation.

We expect the proposed DCI framework and uncertainty-
aware modeling strategy to serve as a foundation for study-
ing temporal regularities in other longitudinal or cross-
condition single-cell datasets.

Data Availability
The datasets and code used in this study are available upon
reasonable request. A public release is planned and will be
shared via an online repository upon publication.
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