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Abstract

Recent advancements in large language models (LLMs) have demonstrated signifi-
cant potential in enhancing real-time spoken interactions. Presently, open-source
methodologies predominantly depend on intermediate generative text-based tran-
scriptions to manage real-time spoken dialogues. However, these techniques often
struggle with providing seamless interactions that involve real-time streaming audio
inputs. In this research, we unveil an innovative spoken dialogue language model,
Parrot, distinguished by its unique pre-training and supervised fine-tuning (SFT)
pipeline. This pipeline deviates from conventional methodologies by utilizing
both single-channel audio data and dual-channel spoken dialogue data to train the
textless speech language model. During pre-training, we transform single-channel
audio input into a sequence of discrete tokens, thereby instructing the LLM to
identify audio tokens via next-token predictions. In the SFT phase, we pioneer a
novel approach to dual-channel generative spoken dialogue language modeling
with a unique "next-token-pair prediction" objective, facilitating the LLM’s com-
prehension of natural human conversations. Our pipeline equips LLM to produce
spoken interactions that are more natural and fluid than those generated by baseline
approaches, as substantiated by thorough evaluations.

1 Introduction

The advent of large language models (LLMs), particularly the GPT series [16, 13, 14], has profoundly
transformed the field of artificial intelligence. Among these modalities, audio or speech data holds
particular importance as it enables LLMs to engage in real-time voice interactions with humans.
The recently unveiled GPT-4o model [14] exhibits a remarkable proficiency in managing real-time
interactions with users in conversational contexts. Throughout the demo presentation, it was able to
generate authentic emotional responses and engage users with swift reactions. These functionalities,
however, introduce additional challenges, as the model must thoroughly interpret the distinct audio
information within human speech while conducting inference with minimal delay.

In this study, we present a novel pre-training and supervised fine-tuning (SFT) pipeline to develop a
robust model, referred to as Parrot, specifically designed for spoken dialogue language modeling. The
pre-training phase begins with the conversion of continuous audio inputs into a sequence of tokens,
a process made possible by training a vector-quantized autoencoder (VQVAE) [20] to reconstruct
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Figure 1: (a) The cascading approach depends on the intermediate text-based response generation
translated by ASR and TTS; (b) The encoder-decoder spoken dialogue language modeling encode
one of the speaker’s audio sequence Qa = (qa1 , q
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T ) as condition information to decode another
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(c) Our novel decoder-only spoken dialogue language modeling follows the newly proposed next-
token-pair prediction paradigm such that P (Qa, Qb) =
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a
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these audio signals. We then leverage pretrained LLMs as a foundation for continuous learning
on single-channel audio sequences, with the goal of next-token prediction. This is accomplished
by integrating the learned audio tokens into the original text vocabulary. This pretraining stage
aids LLMs in capturing the primary latent distribution of audio token sequences. In the subsequent
stage, we utilize dual-channel audio data for SFT. The key advantage is enabling LLMs to directly
comprehend how humans engage in natural dialogues. Unlike existing approaches, we introduce a
novel “next-token-pair prediction" paradigm to model the dual-channel spoken dialogue generation
using the decoder-only transformer. The comparison between our proposed method and existing
techniques are illustrated in Figure 1. We carry out extensive experiments to validate the superiority
of our innovative approach. Specifically, Parrot consistently outperforms strong baseline methods
by 150% and 200% in average in terms of the reflective pause and interruption response accuracy
respectively. Additionally, it achieves a low latency of 300ms.

2 Parrot: Training and Inference Pipeline

Our Parrot comprises two essential steps. The first involves pretraining the LLM on single-channel
audio token sequences using the traditional "next-token prediction" objective. The second step fine-
tunes the LLM on dual-channel audio token sequences, employing the innovative "next-token-pair
prediction" paradigm. The rationale behind this strategy stems from the fundamental observation
that the single-channel audio data can be sourced from the vast amount of open-source data available
on the web. However, the primary limitation of single-audio data is its lack of speaker identity
information and the overlapping regions between different speakers can be misleading. On the other
hand, dual-channel spoken dialogue data encapsulates crucial turn-taking events with distinct speaker
channels, and any overlapping event can be easily discerned.

2.1 Audio Tokenization and Single-channel Audio Pretraining

A single-channel audio is a continuous input sequence x ∈ RT with time length T . Owing to the
high sampling rate of continuous audio signals, it is essential to employ an audio tokenizer, which
extracts valuable features for the purpose of compressing the information. The audio quantizer Q
projects the audio sequence x into a set of discrete tokens Q = (q1, ..., qT ′) = Q(x) (T ′ ≪ T ),
where each token qt is an integer index from the vocabulary qt ∈ [V ] where the vocabulary size is V .
We train the audio tokenizer Q following the VQ-VAE [20] framework. In contrast to certain prior
studies, we directly train the tokenizer on the raw audio signals x, rather than transforming x into a
mel-spectrogram first. We primarily adopt the training strategy presented in SoundStream [22], and
provide a brief overview of its underlying mechanism.

Specifically, audio inputs x is fed into an encoder E to derive down-sampled latent features f ∈ RT
r ×D

such that f = E(x) with the down-sampling rate r and the latent dimension D. This is achieved
by the CNN [9] architecture, which can capture the local dependency of x. Then the quantizer Q
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converts the latent feature f to discrete tokens q ∈ RT
r such that q = Q(f) where each entry qi is a

quantized integer index. Each latent feature fi for time frame i is mapped to the code index qi of its
nearest embedding vector in the Euclidean sense:

qi =v∈[V ] ∥zv − fi∥2, (1)

where zi denotes the ith embedding vector of the learnable codebook z ∈ RV×D containing |V |
vectors. Then the reconstructed audio signals x̂ are obtained through the decoder G such that
x̂ = G(zq) where zq ∈ RT

r ×D denotes the codebook embedding vectors of the latent feature f
indexed by q. This autoencoder is trained by both the reconstruction loss and discriminator loss
through straight-through estimators with stop-gradient operations. We direct readers to [22] for a
comprehensive description of the architectures and algorithms involved.

After converting the input audio signals into the sequence of audio tokens Q, we subsequently
supplement these audio tokens into the original LLM’s text token vocabulary. Following this, we
train the LLMs on the sequence Q using the standard autoregressive approach with the next-token
prediction paradigm:

p(q1, q2, ..., qT ′) =

T ′∏
t=1

p(qt|qt−1, .., q2, q1). (2)

2.2 Supervised Fine-tuning with Dual-channel Audio
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Figure 2: The illustration of the SFT learning mechanism of Parrot on the dual-channel spoken
dialogue data. The novel architecture consists of two important modules. The first module is the
embedding layer for obtaining the token-pair embedding; The second module is the decoder-only
transformer with a pair-wise causal masking attention for next-token-pair prediction. [s]a and [s]b

denote the special start tokens of channel a and channel b respectively.

The dual-channel audio input comprises a pair of time-aligned single-channel audio inputs, denoted
as (xa,xb), where each channel corresponds to a specific speaker. A fresh challenge arises in the
generative modeling of dual-channel audio sequences using the decoder-only transformer architecture
of LLMs. To address this issue, we propose a novel generative learning paradigm called next-token-
pair prediction. The key idea here is to generate a sequence of time-aligned token pairs, rather than
a single token, in an autoregressive fashion. In contrast to the conventional next-token prediction,
our objective is more suitable to the generative modeling of an interpolated dialogue sequence
which contain two separate channel identities. Specifically, we begin by discretizing both channels
into time-aligned sequences with quantized audio tokens, denoted as (Qa = (qa1 , q

a
2 ..., q

a
T ), Q

b =
(qb1, q

b
2..., q

b
T )). To accommodate the input sequence structure within the decoder-only transformer

architecture, we reorganize both sequences into a single interpolated dialogue sequence, represented
as Qinput = {qa1 , qb1, qa2 , qb2, ..., qaT , qbT }. Subsequently, we model the probability distribution that
generates the next token pair (qat , q

b
t ) at next time step t conditioned on the previously generated

token pairs from step 1 to t− 1:

p(qa1 , q
b
1, q

a
2 , q

b
2..., q

a
T , q

b
T ) =

T∏
t=1

p(qat , q
b
t |qat−1, q

b
t−1, ..., q

a
2 , q

b
2, q

a
1 , q

b
1). (3)

Then we decompose the token pair conditional generating distribution p(qat , q
b
t |qat−1, q

b
t−1, ..., q

a
1 , q

b
1)

by assuming the conditional independence between qat and qbt :

p(qat , q
b
t |qat−1, q

b
t−1, ..., q

a
1 , q

b
1) = p(qat |qat−1, q

b
t−1, ..., q

a
1 , q

b
1)p(q

b
t |qat−1, q

b
t−1, ..., q

a
1 , q

b
1). (4)
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We illustrate this conditional independence and the dialogue distribution modeling in Figure 1. The
probability distribution in Eq.3 and Eq.4 adheres to a fundamental inductive bias that a person’s
speech is influenced by both his own previous statements and what he has heard in the past. To adapt
to the generative modeling of the newly arranged dialogue sequence Qinput, we need to modify the
embedding layer and the attention masking mechanism accordingly. Our novel token-pair embedding
layer consists of three important embeddings in total, which are codebook embedding z, position
embedding p and channel embedding d. Specifically, for each token pair qat , q

b
t :

zqat , zqbt = lookup(z, qat , q
b
t ), pqat

= pqbt
, dqat

,dqbt
= one-hot-embedding(ida, idb). (5)

In the above Eq. 5, dqt ∈ RD denotes the channel embedding of its one-hot identity encoding id,
which indicates the speaker role (a or b) of token qt. The positional encoding is represented as
pqt ∈ RD indicating which time step both tokens are from. It is important to note that both qat and
qbt share the same positional embedding, with the Llama 3 [5] model utilizing the Rotary positional
embedding as described in [18]. After the token-pair embedding layer, we obtain the input embedding
eqt = [zqt ,pqt ,dqt ] for each token qt (a or b). Following the implementation of Llama 3, we add
both positional embedding and channel embedding to the query and key vectors (instead of value
vectors) of each token pair as follows:
q = WQ[zqat , zqbt ] + [pqat

,pqbt
] + [dqat

,dqbt
], k = WK [zqat , zqbt ] + [pqat

,pqbt
] + [dqat

,dqbt
]. (6)

Following the above Eq. 6, we obtain the query and key matrices for all token pairs, represented as
Q,K ∈ R2T×D, which are projected by weight matrices WQ,WK respectively. Then we separately
multiply codebook embedding vectors by WV to obtain the value matrices V ∈ R2T×D. Based on
these vectors, we conduct the attention computation as follows:

O = SoftMax((QKT /
√
D) ·M)V, M ∈ R2T×2T . (7)

The pair-wise causal masking matrix M ∈ R2T×2T is used to mask out the entries in the self-attention
matrix, preventing each token qt from attending to future tokens (qt′ , t′ > t) and simultaneously
attending to tokens from another channel at the same time (i.e. qat and qbt cannot attend to each
other). The final layer output embedding, denoted as Ol ∈ R2T×2T , is utilized to generate the
next-token-pair prediction (q̂at+1, q̂

b
t+1) for each (qat , q

b
t ) via classifications over codebook embedding

indices. The total training loss is equal to the sum of cross-entropy loss over all generated token
pair predictions and the ground-truth token pairs. The overall modified embedding layers and self-
attention layers are illustrated in Figure 2. Certain advanced architectural components present in
Llama 3, such as grouped-queries attention and feedforward layers, have been omitted here, as our
modifications do not impact them.

2.3 Streaming Inference
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sequence.

In order to simulate a real-time user-assistant
communication scenario, our speech LLM Par-
rot should be proficient in conducting condi-
tional inference with streaming user voice input.
In this inference setting, one speaker’s voice in-
put is provided as the user, and the model is
assigned the task of inferring the other audio
channel. This creates a situation that resembles
a constrained generation problem. If the infer-
ence process strictly follows the training process,
then the model should predict q̂bt immediately after receiving the speaker’s voice input qat at time
t. However, due to the VQ-VAE audio tokenization mechanism, it’s not feasible to receive just a
single audio token from the speaker channel during the streaming inference. This is because the
VQ-VAE requires a complete audio signal input within a specific time window. Therefore, unlike the
training process, we need to determine when the model should start generating spoken responses upon
receiving streaming user input audio tokens. Specifically, we adopt a divide-and-conquer approach
to the inference process, breaking it down into chunks, each containing a predetermined number of
tokens, denoted as λ. Each time the number of user input tokens reaches λ (a chunk of speaker input
is given), our model begins to generate predictions until the number of predicted tokens also reaches
λ (a chunk is filled). This procedure is repeated until the end of user voice inputs (e.g., the conclusion
of the voice-assistant service). This inference process is illustrated in the accompanying Figure 3.
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3 Experiment

3.1 Reflective Pause and Interruption evaluation
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Figure 4: Interaction response accuracy.

In this section, we leverage GPT-4 to meticulously craft
1k diverse conversational scenarios that reflect typical
pauses and interruptions observed in natural dialogue.
These scenarios are designed to capture the nuances
and complexities of real-life interactions, providing rich
evaluation settings for our analysis.

For reflective pauses, Parrot demonstrated the highest accuracy at approximately 60%, significantly
outperforming the other models. VITA and Llama-Omini followed with accuracies around 30% and
20%, respectively, while SpeechGPT lagged behind with an accuracy below 10%. This suggests that
Parrot is particularly adept at managing the subtleties of reflective pauses in conversation, potentially
due to its advanced contextual understanding capabilities. Besides, Parrot excelled with an impressive
accuracy of nearly 80%, indicating its robustness in handling abrupt conversational changes. VITA
also performed relatively well, achieving an accuracy of around 55%. Both SpeechGPT and Llama-
Omini showed lower accuracies, with SpeechGPT slightly outperforming Llama-Omini.

3.2 Quality and statistics of generated dialogues

Table 1: Linguistic quality and turn-taking statistics of generated dialogues, including the number of
turn-Taking events and cumulative durations per minute, compared to the ground truth.

Model Number of occurrences / min Cumulated duration /min
∆IPU ∆Pause ∆Gap ∆Overlap ∆IPU ∆Pause ∆Gap ∆Overlap

dGSLM w/o CA -3.9 0.9 -3.6 -1. -12.1s 8.3s -1.4s 2.5s
dGSLM -1.6 3.4 -2. -2.9 -4.6s 3.6s 0.8s -1.9s
LSLM -2.2 3.6 -2.4 -3.2 -4.1s 3.4s -1.5s -2.3s

Cascaded -4.1 -7. 7.4 -6.5 1.3s -5.5s 0.9s -3.6s

Parrot0.1 -1.4 2.1 -2.0 -1. -3.2s 2.5s -1.2s -2.1s
Parrot0.5 -1.5 1.9 -1.8 -1.5 -2.9s 3.0s -0.9s -2.2s
Parrot0.9 -1.3 2.2 -1.5 -0.9 -3.3s 2.8s -1.4s -1.9s

We evaluate the linguistic quality and turn-taking dynamics of generated dialogues using various
models, as detailed in Table 2. The detailed evaluation settings are in the A.7.2. LSLM[11] integrates
speaker channels at the embedding layer and separates them in the final layer, demonstrates a notable
reduction in the number of Inter-Pausal Units (IPUs) and gaps, indicating smoother transitions
between speakers. The dGSLM[12], particularly with the cross-attention(CA) module, shows a
significant decrease in the cumulative duration of pauses and gaps, suggesting more fluid and
continuous dialogue. Comparatively, Parrot exhibit balanced performance with moderate reductions
in both the number and duration of turn-taking events, highlighting their potential for generating
natural and coherent dialogues. These findings underscore the importance of model architecture in
optimizing dialogue flow and linguistic quality.

4 Conclusion

We propose a novel streaming spoken dialogue language model, Parrot, by employing a unique
pretraining and supervised fine-tuning pipeline. We propose a novel algorithm to enable the decoder-
only transformer to handle spoken dialogue in an autoregressive manner and we have successfully
achieved the streaming audio response generation while the model is actively listening to users in
real-time, outperforming the baseline cascading approaches. Based on experiments, our method
significantly improves the naturalness and fluidity of generated spoken dialogues, addressing the
limitations of existing text-based and encoder-decoder methods in real-time interactive scenarios.
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A Appendix

A.1 Detailed Related Work Discussions

We compare Parrot with several newly released speech LLMs, which are Mini-Omni [21], Llama-
Omni [6], Moshi [4], LSLM [11].

1) Mini-Omni: The major advancement of this model is the batched parallel decoding strategy.

• Advantages: Text generation can significantly enhance the quality of the audio produced.
Concurrently, the implementation of batched parallel decoding can substantially mitigate
issues related to inference latency. Overall, Mini-Omni effectively maintains a high stan-
dard of response quality while circumventing the latency typically associated with TTS
translations.

• Limitations: This model, while a multi-modal QA system, adheres to the standard architec-
ture of multi-modal LLMs with various modality adaptors. However, it falls short in handling
natural spoken conversations with real-time streaming user voice inputs. The dynamic nature
of real-time dialogues, characterized by various pauses and turn-taking events, cannot be
effectively simulated by this system.

2) Llama-Omni: This speech LLM also mainly focuses on enhancing the decoder stage like the
previous Mini-Omni model. It propose an non-autoregressive decoder to simultaneously generate
texts and audios. The text token is firstly upsampled and then fed into the speech decoder to
derive the output voice. Unlike traditional TTS, Llama-Omni applies TTS word by word in an
non-autoregressive manner.

• Advantages: Like the Mini-Omni, this model also enjoys the response reliability due to the
usage of intermediate text generation. In this way, Llama-Omni also enjoys low inference
latency while maintaining high-quality content response.

• Limitations: The Llama-Omni also shares the same limitations like Mini-Omin. Relying on
text generations cannot handle special speech tokens that are hard to match to text tokens.
In addition, the multi-modal LLMs can only handle multi-turn QA while failing to handle
natural conversations like interruptions and pauses.

3) LSLM: This speech LLM explicitly leverages the double-channel audio data. Unlike Parrot,
LSLM fuses two channel tokens into one single token and still follows the next-token prediction
training objective. To enable LSLM to learn to interrupt, this work trains the speech LLM on the
synthetic interruption data.

• Advantages: No need to change the next-token prediction paradigm of the original LLM,
which keeps the speech LLM as simple as possible.

• Limitations: The introduction of the special “EOS" token and the “interruption" token will
bring additional challenges in audio preprocessing. A threshold must be determined to filter
what tokens are assigned to be “interruption token", which can be tricky. In addition, this
model can only learn to interrupt by training on specific synthetic data. First, it might be
troublesome to synthesize turn-taking events. Second, there is always a distribution gap
between synthetic turn-taking and real-world turn-taking.

4) Moshi: This is a newly open-sourced speech LLM with high-quality spoken responses and
minimal inference latency. Moshi leverages the RVQ technique to tokenize the audio inputs. And
it explicitly proposes the usage of multi-channel audio modeling. There are mainly text channels,
speaker audio channels and listener audio channels. The generative modeling of the multi-channel
token sequences is following the RQtransformer [10], which is an encoder-decoder architecture.

• Advantages: The usage of RVQ can largely improve the quality of discrete audio representa-
tions. And the usage of intermediate text translation can significantly improve the reliability
of response contents.

• Limitations: The multi-channel data structure requires the alignment between text sequences
and audio sequences, which is a non-trivial engineering work. Also, the encoder-decoder
RQtransformer architecture requires to receive the entire input of speaker’s channel, which
still somehow downgrades the modeling efficency. Last but not least, this model can be
regarded as alternative form of online cascading approach, which relies on the accuracy of
both audio-to-text and text-to-audio generation.
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In comparison to the above models, Parrot enjoys several important advantages:

• Real Streaming Inference: Parrot is capable of managing real-time streaming inference,
eliminating the need for specific training on turn-taking, as required by models like LSLM.
It can interact seamlessly with human users through natural turn-taking for the duration of
the service. In contrast, multi-modal speech LLMs such as Mini-Omni and Llama-Omni
can only interact with users on a turn-by-turn basis. In essence, Parrot does not depend on
manually-defined interruption rules when conducting streaming inference.

• Decoder-only Transformers: In contrast to the encoder-decoder dialogue language mod-
eling, Parrot employs a decoder-only transformer. This architecture offers numerous
significant advantages. For instance, the encoder-decoder structure necessitates maintaining
a window to receive complete inputs during the inference stage. However, the decoder-
only architecture simply requires querying the cached key-value pairs, resulting in superior
computational efficiency during inference.

• Spoken Dialogue Data Usage Efficiency: Both Moshi and LSLM randomly assign one
channel as the speaker and another as the listener. This approach potentially reduces dialogue
data efficiency, as the trained model becomes speaker-dependent. Essentially, the model
needs to train the reverse conditional distribution by swapping the roles, which could pose
scalability issues as more channels are added in the future. In contrast, Parrot is speaker-
independent and concurrently learns the conditional distribution of both speaker’s audio
channels.

A.2 Representation of the joint sequence and mask strategy modeled by Parrot
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Figure 5: Pair-wise causal masking attention for next-token-pair prediction.

A.3 Potential Solutions to Limitations of Parrot

To overcome the limitations previously discussed, we propose a potential solution: the creation of
a novel generative model for RVQ-based dual-channel audio sequences. However, the complexity
of this task is heightened due to the unclear dependency relations across two distinct dimensions -
the time dimension and the residual token dimension. As an alternative, we could opt to refine our
method by increasing the number of discrete tokens per second. This approach would circumvent
the need for RVQ while simultaneously enhancing the quality of the audio information. In future
research, our goal is to train our method on substantially larger datasets and concurrently develop
more sophisticated speech language model architectures. We hypothesize that the performance of
our method can be further elevated to a new level through various potential approaches, without the
direct application of RVQ.

9



A.4 More Implementation Details and Hyper-parameter Settings

A.4.1 Hyper-parameter Settings

Our model is trained on 16 A100 GPUs, utilizing a cosine annealing learning rate scheduler with a
minimum learning rate of 4e-6 and a maximum learning rate of 4e-4. Each training epoch consists of
40,000 steps, with batch size 192 for each step. During fine-tuning, we use learn rate from 4e-6 to
5e-5.

A.4.2 Dataset

Parrot employs a two-stage training process. In the first stage, to establish foundational speech
capabilities, we trained the model using three speech datasets totaling approximately 14,000 hours.
This stage focuses on both speech understanding and synthesis. Unlike other models [6] that require
audio to be transcribed into text, our Parrot only needs single-channel audio for direct training. This
reduces the data requirements and, consequently, increases the amount of training data available.
For the second stage, we need the Parrot to simultaneously gain the ability to listen and speak. To
achieve this, we further utilize the Fisher dataset [3]. This dataset comprises 2200 hours of phone
conversations between randomly paired participants, each discussing a given topic. A notable feature
of the Fisher dataset is that each side of the conversation is recorded on separate channels, which
allows us to provide ground-truth separated streams to Parrot. The original audio is sampled at 8kHz,
and we use Librosa to upsample it to 16kHz.

A.4.3 Baselines

We compare against baselines from the audio language modeling literature, in three settings. The first
category encompasses audio-only models starting from a random initialization, including dGSLM[12].
The second category encompasses several newly released speech LLMs[23, 21, 6]. As a way to
measure the impact of two stage training on spoken fluency, we compare these baselines with Parrot
trained with and without pre-training phase.

Table 2: The datasets and their usage for training Parrot.
Type Stages Dataset Hours
English Reading speech 1 LibriSpeech [15] 1,000 h
Pronunciation recording 1 Common Voice [1] 3,554 h
Video audio 1 Gigaspeech [2] 10,000 h
Spoken English audio 1 Libri-light [8] 60,000 h
Recorded telephone conversation 2 Fisher dataset [3] 2,000 h
Speech Instruction 2 InstructS2S-200K[6] 100 h

A.5 Training details

Large Language Model: In this study, we conceptualize audio as an additional language and employ
three of the most widely recognized open-source LLMs as our foundational models: Llama-3.1-8B[5],
Mistral-7B-v0.3[7], and Gemma-2-9B[19]. Each of these models comprises an embedding layer,
multiple transformer blocks, and a language model (LM) head layer. They all encode the relative
positional information of tokens using rotary positional encoding [17]. Audio Tokenizer: We train
an audio tokenizer based on [20], which encodes each second of audio into 30-50 discrete tokens
from a codebook of size 2048.

A.6 Pretrain Evaluation

Single audio channel language modeling: We begin by evaluating the capability of Parrot to model
speech sequences through next-token prediction on the large-scale single channel audio dataset. We
use perplexity on the test set’s single-channel audio as the metric. The 6a presents the training loss
over steps for three distinct models. All three models exhibit a decreasing trend in training loss,
indicating effective learning over time. Mistral 7B and Gemma demonstrate similar training loss
curves. Notably, Llama 3.1, which exhibits superior text reasoning capabilities, achieves a lower

https://librosa.org/doc
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training loss more rapidly compared to Mistral 7B and Gemma. This observation supports our
hypothesis that stronger text models can be more effectively adapted to audio tasks, aligning with the
conceptualization of "audio as a new language."

We also explore the trade-off between token rate and codebook size to optimize streaming interaction
performance in Figure 6c. Notably, the configuration of 30 * 2048, which represents our chosen
compromise solution, demonstrates a balanced performance with a steady decline in training loss.
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Figure 6: Training loss and perplexity curves for Parrot under various Pretraining settings.

A.7 More Experimental Results

A.7.1 Audio tokenizer quality

Table 3: Comparison of different models and tokenizers on objective and subjective metrics.

Model Tokenizer Objective Subjective

WER↓ SIM↑ MOS↑ SMOS↑
Groundtruth 1.9 0.93 4.5 3.96
VALL-E EnCodec 7.9 0.75 3.08 3.31
USLM SpeechTokenizer 7.2 0.81 3.63 3.45
Parrot VQVAE 6.9 0.82 3.71 4.50

A.7.2 Dialogue linguistic quality
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Figure 7: Illustration of turn-taking events: IPU (Interpausal Unit), Turn (for speaker A and Speaker
B, resp), P.(within-speaker Pause), Gap and Overlap.

Our model generates two audio channels at the same time, allowing us to use basic Voice Activity
Detection (VAD) tools on the output to gather turn-taking metrics. According to the settings in [12],
an Inter-Pausal Unit (IPU) is a continuous speech segment within one speaker’s channel, bordered by
VAD-detected silences longer than 200ms on both ends. Silence is defined as the lack of voice signals
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on either channel, while overlap refers to segments where voice signals are detected on both channels.
Silences can be further divided into gaps (between IPUs of different speakers) and pauses (within the
same speaker’s IPUs). Consecutive IPUs by the same speaker, separated by a pause, are merged into
a single turn. Our analysis will focus on measuring the duration distribution of IPUs, gaps, pauses,
and overlaps in both the training corpus and the dialogues generated by our various models.

A.8 Motivations of Using Double-Channel Spoken Dialogue Data

Inspired by GPT-4o [14], we aspire to create a powerful voice assistant that can engage with human
users in a natural and fluent way. Ideally, the assistant should be able to be interrupted by users. If a
user needs to convey something urgently, the assistant should stop speaking and listen attentively.
Furthermore, when a user is in thought or taking a pause, the assistant should not prematurely
conclude that the user has finished speaking. Instead, it should patiently wait for the user to complete
their thoughts. An advanced voice assistant could even interrupt users when it has already grasped
their intentions, much like how we often interrupt each other in daily conversations. There are
numerous other scenarios that an intelligent voice assistant should be equipped to handle. Given
these complex application scenarios, it’s challenging to address these issues through simple manual
engineering, such as the introduction of special tokens like silence tokens, or hard interruptions when
the user is speaking.

The success of foundational models hinges on our trust in the model’s capacity to learn autonomously
from data, rather than over-interfering with the learning process or over-engineering the neural
architectures and algorithms. Consequently, in this paper, we utilize double-channel dialogue data
and directly train the speech LLM on this spoken dialogue data. With robust pre-trained speech LLMs,
we can reasonably anticipate that the model can learn how humans converse with each other by
directly "reading" their dialogues. This approach eliminates the need for setting manual rules to assist
the voice assistant in scenario judgement. The assistant may learn how to navigate these scenarios
by processing a sufficient amount of spoken dialogue data. Regrettably, the current availability of
open-source double-channel spoken-dialogue data is limited. Looking ahead, we hope our work will
stimulate the community to gather large-scale double-channel or even multi-channel spoken dialogue
data.

A.9 Reflective pause audio dataset

Prompt for reflective pause

“Hmm..., this question is a bit complicated, I need to think about it."
“Let me recall, uh..., yes, we went to the park that day."
“You know, that..., oh, yes, it’s the new restaurant."
“I remember he mentioned it, um..., it seems to be last Friday."
“This matter, um..., I think we need to discuss it again."
“Let me think about it, uh..., yes, that’s it."
“I’m not sure, um..., maybe I need to confirm it again."
“This question, um..., I think we can solve it this way."
“Let me think about it again, uh..., yes, I remember it."
“The one you mentioned, um..., I seem to have some impression."
“We need to deal with the budget issue of this project. Um..., this problem is a bit complicated, I need to
think about it."
“Do you remember the last time we met? Let me recall, uh..., yes, we went to the park that day."
“Have you heard about the new restaurant? You know, that..., oh, yes, that new restaurant."
“When did he tell you the news? I remember he mentioned it, uh..., it seems to be last Friday."
“Do you have any suggestions about this plan? This matter, uh..., I think we need to discuss it again."
“Can you give me an example? Let me think about it, uh..., yes, that’s it."
“Are you sure this data is correct? I’m not sure, uh..., I may need to confirm it again."
“How should we deal with this emergency? This problem, uh..., I think we can solve it this way."
“Can you explain this concept again? Let me think about it again, uh..., yes, I remember it."
“Do you know what he is talking about? The one you said, uh..., I seem to have some impression."
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Prompt for GPT score

Content (1-5 points):
1 point: The response is largely irrelevant, incorrect, or fails to address the user’s query. It may be off-topic
or provide incorrect information.
2 points: The response is somewhat relevant but lacks accuracy or completeness. It may only partially answer
the user’s question or include extraneous information.
3 points: The response is relevant and mostly accurate, but it may lack conciseness or include unnecessary
details that don’t contribute to the main point.
4 points: The response is relevant, accurate, and concise, providing a clear answer to the user’s question
without unnecessary elaboration.
5 points: The response is exceptionally relevant, accurate, and to the point. It directly addresses the user’s
query in a highly effective and efficient manner, providing exactly the information needed.

Style (1-5 points):
1 point: The response is poorly suited for speech interaction, possibly including structured elements like lists
or being overly complex, disjointed, or difficult to understand.
2 points: The response is somewhat suitable but may be too long, too short, or awkwardly phrased, making it
less effective in a speech interaction context.
3 points: The response is generally suitable for speech interaction, but it may have minor issues with length,
clarity, or fluency that detract slightly from the overall effectiveness.
4 points: The response is well-suited for speech interaction, with appropriate length, clear language, and a
natural flow. It is easy to understand when spoken aloud.
5 points: The response is perfectly suited for speech interaction. It is the ideal length, highly clear, and flows
naturally, making it easy to follow and understand when spoken.

Below are the transcription of user’s instruction and models’ response:
### [Instruction]: {instruction}
### [Response]: {response}

After evaluating, please output the scores in JSON format: {“content": content score, “style": style score}.
You don’t need to provide any explanations.

13


	Introduction
	Parrot: Training and Inference Pipeline
	Audio Tokenization and Single-channel Audio Pretraining
	Supervised Fine-tuning with Dual-channel Audio
	Streaming Inference

	Experiment
	Reflective Pause and Interruption evaluation 
	Quality and statistics of generated dialogues

	Conclusion
	Acknowledgements
	Appendix
	Detailed Related Work Discussions
	Representation of the joint sequence and mask strategy modeled by Parrot
	Potential Solutions to Limitations of Parrot
	More Implementation Details and Hyper-parameter Settings
	Hyper-parameter Settings
	Dataset
	Baselines

	Training details
	Pretrain Evaluation
	More Experimental Results
	Audio tokenizer quality
	Dialogue linguistic quality 

	Motivations of Using Double-Channel Spoken Dialogue Data
	Reflective pause audio dataset


