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Abstract
AI agents are commonly trained with large
datasets of unfiltered demonstrations of human
behavior. However, not all behaviors are equally
safe or desirable. We assume that desired traits
for an AI agent can be approximated by a desired
value function (DVF), that assigns scores to col-
lective outcomes in the dataset. For example, in
a dataset of vehicle interactions, the DVF might
refer to the number of occurred incidents. We
propose to first assess how well individual agents’
behavior is aligned with the DVF, e.g., assessing
how likely an agent is to cause incidents, to then
only imitate agents with desired behaviors. To
identify agents with desired behavior, we propose
the concept of an agent’s Exchange Value, which
quantifies the expected change in collective value
when substituting the agent into a random group.
This concept is similar to Shapley Values used in
Economics, but offers greater flexibility. We fur-
ther introduce a variance maximization objective
to compute Exchange Values from incomplete ob-
servations, effectively clustering agents by their
unobserved traits. Using both human and simu-
lated datasets, we learn aligned imitation policies
that outperform relevant baselines.

1. Introduction
Learning imitation policies for AI agents from large datasets
of human behavior is a promising approach for successful
human-AI and AI-AI interaction, even in complex coop-
erative environments [4, 8, 13, 31]. However, unfiltered
datasets of human interactions often contain behaviors that
may be undesirable for AI agents. This work assumes that
it is possible to approximately score how desirable behavior
is through a (given) desired value function (DVF)1. We as-
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1The DVF itself is not sufficient to describe desired behavior
completely, as it possibly only covers a subset of behavior, e.g.,
safety-relevant aspects. It is complementary to the more com-
plex and nuanced behaviors that are obtained by imitating human
demonstrations, providing guardrails or additional guidance.

sume that the DVF assigns a score to each trajectory in the
dataset (unlike a per-state reward function), which is, e.g.,
the case when desirability cannot practically be assessed
at a per-state level, or when costly human annotations are
only obtained for overall outcomes [33]. Such DVFs have
been successfully applied in fine-tuning of large language
models [1, 26, 33].

This work considers imitating a multi-agent dataset while
ensuring that the learned policy is aligned with a DVF that
is only defined for groups of agents, i.e. for collective be-
havior. Such collective value functions assign scores to
multi-agent trajectories and are relevant in real-world sce-
narios where outcomes depend on complex interactions of
multiple agents. Consider, for example, the scenario of imi-
tating a dataset of vehicle interactions while ensuring not to
imitate behavior that is likely to cause incidents. Another
example constitutes imitating a dataset of a multi-agent on-
line game, where an AI designer wants to ensure that no
behavior is imitated which decreases players’ satisfaction.
In both scenarios, the DVF is only defined for collective out-
comes – assigning either the number of occurred incidents
or the average satisfaction of players to group trajectories in
the datasets.

Understanding whether the behavior of individual agents
in a dataset is aligned with a DVF requires assessing in-
dividual contributions to the DVF. This credit assignment
problem [30] is challenging in real-world datasets for three
reasons. First, groups of certain sizes may never be ob-
served, as many environments only permit specific group
sizes. This makes Shapley Values [30] – a concept com-
monly used in Economics for credit assignment – inapplica-
ble here as it relies on the comparisons of groups of different
sizes. Second, real-world datasets for large groups are nec-
essarily incomplete, i.e. do not contain observations for all
(combinatorially many) possible groups of agents. Third,
datasets of human interactions may be fully anonymized by
assigning single-use agent IDs. In such fully-anonymized
datasets, each agent is observed only as part of one multi-
agent trajectory, hence only appearing once in the entire
dataset. In this case, the credit assignment problem is degen-
erate, and requires incorporating information about agents’
low-level behavior.

Inspired by Shapley Values, we propose the concept of
Exchange Values (EVs) of individual agents to address these



issues. EVs define the contribution of a given agent to a
collective value function as the expected change in value
when exchanging an agent in a random group for the given
agent. Hence, EVs only require comparing groups of equal
sizes and can be applied to datasets where some group
sizes never occur. We formally characterize the relationship
between EVs and Shapley Values. To estimate EVs of
individual agents also from incomplete datasets, we propose
a novel method that assigns agents to clusters such that
the variance in EVs is maximized. Under the simplifying
assumption of an additive collective value function, we
theoretically show that this variance maximization objective
is equivalent to clustering agents by their unobserved traits.
Lastly, we modify the variance maximization objective to
also account for agents’ low-level behavior, which allows
us to estimate EVs from fully-anonymized datasets.

Using both simulated datasets and datasets of human interac-
tions, we empirically demonstrate that EVs allow to assess
the contributions of individual agents to a given DVF, in-
cluding successful application to a fully-anonymized human
dataset. We then propose to imitate large unfiltered datasets
by only imitating the behavior of agents with a positive con-
tribution to the DVF. This approach allows learning from
interactions with agents with undesired behaviors (without
imitating them), in contrast to simply excluding all trajec-
tories with a low collective score from the training dataset.
We find that our method enables imitating diverse datasets
while ensuring alignment with relevant DVFs. Our approach
outperforms relevant baselines, such as excluding all trajec-
tories with a low collective score or framing the problem as
offline reinforcement learning.

Our work makes the following contributions:

• We introduce Exchange Values to compute an agent’s
individual contribution to a collective value function and
show their relation to Shapley Values.

• We propose a novel variance maximization method to
estimate contributions from incomplete datasets and show
a theoretical connection to clustering by unobserved traits.

• We empirically demonstrate how EVs can be estimated
from fully-anonymized data and utilized to learn policies
aligned with a DVF using imitation learning.

2. Related Work
Most previous work on aligning AI agents’ policies with
desired value functions either relies on simple hand-crafted
rules [39, 8], which do not scale to complex environments,
or performs post-processing of imitation policies with fine-
tuning [33, 26, 10, 1], which requires access to the environ-
ment or a simulator. In language modeling, Korbak et al.
[18] showed that accounting for the alignment of behav-
ior with the DVF already during imitation learning yields

results superior to fine-tuning after-the-fact, however their
approach considers an agent-specific value function. In con-
trast, we consider learning a policy aligned with a collective
value function, and from offline data alone.

Credit assignment in multi-agent systems was initially stud-
ied in Economics [30]. Subsequently, Shapley Values [30]
and related concepts have been applied in multi-agent rein-
forcement learning, to distribute rewards among individual
agents during the learning process [5, 9, 24, 38, 21, 37].
Outside of policy learning, Heuillet et al. [14] used Shapley
values to analyze agent contributions in multi-agent environ-
ments, however this requires privileged access to a simulator,
in order to replace agents with randomly-acting agents. In
contrast to Shapley Values, the proposed Exchange Values
can be applied in the case of infeasible coalition sizes, omit-
ting, e.g., simulating infeasible coalitions by summing over
multiple outcomes or with random-action policies.

In contrast to this work, existing research on multi-agent
imitation learning typically assumes observations to be
generated by optimal agents, as well as simulator ac-
cess [20, 32, 41]. In a related setting, offline multi-agent
reinforcement learning [16, 36, 35] shares similarities with
our problem, involving policy learning from multi-agent
demonstrations using offline data alone. In contrast to our
setting, offline multi-agent reinforcement learning assumes
a dense reward signal to be given, while the DVF assigns a
single score per trajectory.

In single-agent settings, a large body of work investigates
estimating demonstrator expertise for imitation learning [6,
42, 3, 29, 2, 40], which however does not translate to multi-
agent settings due to the challenge of credit assignment.

To the best of our knowledge, no prior work has considered
imitating multi-agent datasets generated by agents with vary-
ing behaviors while ensuring alignment with a collective
value function.

3. Background and Notation
Markov Game. We consider Markov Games [22], which
generalize Markov Decision Processes (MDP) to multi-
agent scenarios. In a Markov Game, agents interact in a
common environment. At time step t, each agent (the ith
of a total of m agents) takes the action ati and the environ-
ment transitions from state st to st+1. A reduced Markov
game (without rewards) is then defined by a state space S
(st ∈ S), a distribution of initial states η, the action space
Ai (ati ∈ Ai) of each agent i, an environment state transition
probability P (st+1|st, a1, . . . , am) and the episode length
T . We denote this Markov Game as M = (S,A, P, T ). We
define a trajectory as τ = (s0,a0, s1,a1, . . . , sT ).



Set of multi-agent demonstrations generated by many
agents. We consider a symmetric Markov Game M in-
volving m agents, where N = 1, . . . , n is the set of all
demonstrator agents and n ≥ m. The dataset D is con-
structed from a variety of coalitions interacting in M. These
coalitions, or groups of agents, are referred to interchange-
ably. The set of observed coalitions is denoted as Q, com-
prising q coalitions C where C ∈ Q. Each coalition C
is a subset of N and consists of m agents. The dataset D
comprises tuples (C̄, τ), where C̄ represents an observed
coalition from Q, and τ is the trajectory generated by that
coalition in M. In the context of the Markov Game, each
state st in the tractory τ describes the collective state of all
individual agents in the environment.

Shapley Values. We now define the concept of the Shap-
ley Value of an agent [30], which is commonly used to
evaluate contributions of individual agents to a collective
value function in a characteristic function game. Defini-
tion 3.2 below is somewhat non-conventional, but can be
easily seen to be equivalent to the standard definition.
Definition 3.1 (Characteristic function game). A charac-
teristic function game G is given by a pair (N, v), where
N = {1, . . . , n} is a finite, non-empty set of agents and
v : 2N → R is a characteristic function, which maps each
coalition C ⊆ N to a real number v(C); it is assumed that
v(∅) = 0. The number v(C) is usually referred to as the
value of the coalition C.

Given a characteristic function game G = (N, v), let
ΠN\{i} denote the set of all permutations of N\{i}, i.e.,
one-to-one mappings from N\{i} to itself. For each per-
mutation π ∈ ΠN\{i}, we denote by Sπ(m) the slice of π
up until and including position m; we think of Sπ(m) as
the set of all agents that appear in the first m positions in
π (note that Sπ(0) = ∅). The marginal contribution of an
agent i with respect to a permutation π and a slice m in a
game G = (N, v) is given by

∆G
m,π(i) = v(Sπ(m) ∪ {i})− v(Sπ(m)).

This quantity measures the increase in the value of the coali-
tion consisting of the agents in slice m of π when agent
i joins them. We can now define the Shapley Value of an
agent i: it is simply the agent’s average marginal contribu-
tion, where the average is taken over all permutations of
N\{i} and all slices.
Definition 3.2 (Shapley Value). Given a characteristic func-
tion game G = (N, v) with |N | = n, the Shapley Value of
an agent i ∈ N is denoted by φi(G) and is given by

φi(G) = 1/n! ·∑n−1
m=0

∑
π∈ΠN\{i}

∆G
m,π(i). (1)

Def. 3.2 is important in the context of credit assignment,
as it provides a possible solution for distributing collective

value to individual agents. It also has several properties
related to its consistency [30].

4. Methods
4.1. Exchange Values to evaluate agents’ individual

contributions

Overview and notation. When agents form coalitions,
Shapley Values are often used to evaluate all agents’ individ-
ual contributions. Now, as per Definition 3.2, the Shapley
Value of agent i is determined by the change in value when
adding agent i to a given coalition. This requires evaluating
the values of coalitions of different sizes, as adding an agent
increases the coalition size by one. However, many relevant
real-world coalition formation scenarios only permit spe-
cific coalition sizes, potentially even only a single size. This
is the case, for example, for football games, where a team
(coalition) always has 11 players, hence Shapley values can-
not be computed, as the game outcome cannot be evaluated
for 10 or 12 players. To evaluate agents’ contributions in
games that only permit certain coalition sizes, we first define
the concept of Exchange Values for regular characteristic
function games. We then show that our definition extends
naturally to characteristic function games with constraints
on feasible coalition sizes.

In words, the exchange contribution of an agent i with re-
spect to a permutation and slice is defined as the change
in value when replacing the last agent in the slice of a per-
mutation by agent i. Specifically, we define the exchange
contribution ΓG

m,π(i) of an agent i with respect to a permu-
tation π and slice m in a game G = (N, v) as

ΓG
m,π(i) = v(Sπ(m− 1) ∪ {i})− v(Sπ(m)).

Note that this quantity is computed as a difference between
values of equal-size coalitions, unlike the marginal contri-
bution ∆G

m,π(i) in the definition of Shapley Values.

We can now define the Exchange Value analogously to the
Shapley Value as the average exchange contribution over all
permutations of N\{i} and all non-empty slices.

Definition 4.1 (Exchange Value). Given a characteristic
function game G = (N, v) with |N | = n, the Exchange
Value of an agent i ∈ N is denoted by γi(G) and is given
by

γi(G) = ((n− 1)! · (n− 1))−1·∑n−1
m=1

∑
π∈ΠN\{i}

ΓG
m,π(i).

(2)

Relation between Shapley Value and Exchange Value.
By rearranging the terms, it can be verified that the Ex-
change Value of an agent can be derived from its Shapley
Value by subtracting a fraction of the value of the grand



coalition N , i.e.,

γi(G) = ϕi(G)− 1/n · v(N).

Intuitively, this is because (1) no exchange comparisons
can be made for the grand coalition, as all agents are al-
ready part of the grand coalition; (2) every non-empty coali-
tion appears the same number of times (and with the same
sign) in summations (1) and (2). Consequently, the order-
ing of the agents is equivalent under Shapley Values and
Exchange Values, as the value of the grand coalition is in-
dependent of i. Moreover, since

∑
i∈N ϕi(G) = v(N), we

have
∑

i∈N γi(G) =
∑

i∈N

(
ϕi(G)− 1

n · v(N)
)
= 0. In

words, the sum of all agents’ Exchange Values is zero. It can
also be shown that Exchange Values satisfy the symmetry
axiom: if v(S ∪ {i}) = v(S ∪ {j}) for all S ⊆ N \ {i, j},
we have γi(G) = γj(G).

4.2. Computing Exchange Values if only certain
coalition sizes are feasible

For a characteristic function game G = (N, v) the value
function v can be evaluated for each possible coalition C ⊆
N . We now consider the case where the value function v is
only defined for coalitions of certain sizes m ∈ M , i.e. v is
only defined for a subset of coalitions of certain sizes.
Definition 4.2 (Constrained characteristic function game).
A constrained characteristic function game Ḡ is given by
a tuple (N, v,M), where N = {1, . . . , n} is a finite, non-
empty set of agents, M ⊆ {0, . . . , n−1} is a set of feasible
coalition sizes and v : {C ∈ 2N : |C| ∈ M} → R is a
characteristic function, which maps each coalition C ⊆ N
of size |C| ∈ M to a real number v(C).

Note that both the Shapley Value and the Exchange Value
are generally undefined for constrained characteristic func-
tion games, as the value function is not defined for coalitions
C of size |C| /∈ M . The definition of the Shapley Value
cannot easily be adapted to constrained characteristic func-
tion games, as its computation requires evaluating values
of coalitions of different sizes. This becomes clear when
considering the case of a constrained characteristic function
game that only permits a single coalition size (see Defini-
tion 3.2). In contrast, the definition of the Exchange Value
can be straightforwardly adapted to constrained character-
istic function games by limiting the summation to slices of
size m ∈ M+, where M+ = {m ∈ M : m > 0}. Hence,
we define the Constrained Exchange Value as the average
exchange contribution over all permutations of N\{i} and
over all slices of size m ∈ M+.
Definition 4.3 (Constrained Exchange Value). Given a con-
strained characteristic function game Ḡ = (N, v,M) with
|N | = n, the Constrained Exchange Value of an agent
i ∈ N is denoted by γi(Ḡ) and is given by

γi(Ḡ) = ((n−1)!·|M+|)−1·∑m∈M+

∑
π∈ΠN\{i}

ΓḠ
m,π(i).

Note that the Constrained Exchange Value is equivalent to
the Exchange Value if M = {1, . . . , n− 1}.

4.3. Estimating Exchange Values by sampling coalitions

We can achieve an unbiased estimate of the Constrained
Exchange Value by sampling coalition sizes m uniformly at
random from M and sampling permutations π uniformly at
random from ΠN\{i}, as the Constrained Exchange Value
can also be defined as

γi(Ḡ) = Em∼U(M+),π∼U(ΠN\{i})

[
ΓḠ
m,π(i)

]
.

In the limit of infinite samples, the expectation converges
to the true Constrained Exchange Value. This is relevant
for real datasets, where one may not have samples from all
possible coalitions, but rather a uniformly-sampled subset.

4.4. Estimating Exchange Values with clustering

We now consider the case where we can expect multiple
agents in N to be behaviorally similar, hence having sim-
ilar Exchange Value. To better estimate Exchange Values
in the case of incomplete observations, we propose to as-
sign agents to clusters K = {1, . . . , k − 1}, and then as-
sign equal Exchange Values to all agents in a given cluster.
Specifically, we consider the case where we want to as-
sign n agents to k clusters, i.e., finding cluster assignments
u = {u(0), ..., u(n− 1)} with u(i) ∈ {0, . . . , k − 1}.

We first compute the clustered value ṽ(C) for a coalition
of agents C ⊆ K by averaging over all values for agents
assigned to the same cluster as

ṽ(C) =
1

η

n−1∑
m=0

∑
π∈ΠN

v(Sπ(m)) · 1(u(j) | j ∈ Sπ(m) = C),

(3)

where the normalisation constant is defined as η =∑n−1
m=0

∑
π∈ΠN

1({u(j) | j ∈ Sπ(m)} = C).

Given the clustered value function ṽ(C), we denote the
Exchange Value (see Definition 4.1) of an agent i as γ̃i(G̃),
with G̃ = (K, ṽ).

We propose selecting a cluster assignment u that maximizes
the variance in the Exchange Values (EVs) of all n agents
in N . This objective is motivated by the intuition that as-
signing agents uniformly to clusters minimizes the expected
EV of any cluster, resulting in a variance in EVs that is
minimized. This occurs because each cluster consists of
a combination of agents with both positive and negative
contributions, leading to an expected EV of zero.

We first define the optimal cluster assignments u∗ that max-
imize the variance in EVs as

u∗ ∈ argmaxuVar([γ̃0(G̃), . . . , γ̃n−1(G̃)]). (4)



Figure 1: In the Overcooked environments Cramped Room
(left) and Coordination Ring (right), agents must cooperate
to cook and deliver as many soups as possible within a given
time.

We show (Appendix A.4) that the objective stated in Equa-
tion 4 is equivalent to clustering agents by each agent’s
unobserved trait vi, under the assumption of an inessential
game. In an inessential game, the value of a coalition can
be decomposed as ṽ(C) =

∑
i∈C vi, with the ith agent

contributing a term vi (the unobserved trait).

It then holds that

u∗ ∈argmaxuVar([k0, . . . , kn−1]),

with ki = 1/ϵ ·∑j∈Nvj · 1(u(i) = u(j)),
(5)

where [k0, . . . , kn−1] are the centroids of the clusters that
each agent i ∈ N is assigned to, and ϵ is a normalisation
constant given as

∑
j∈N 1(u(i) = u(j)).

This objective is therefore equivalent to assigning agents
to clusters such that the variance in cluster centroids (cen-
troids computed as the mean of the unobserved traits vi
of all agents assigned to a given cluster) is maximized. In
summary, maximizing the variance in EVs is equivalent
to maximizing the between-cluster variance (in an inessen-
tial game), a common objective in clustering [17], hence
allowing to cluster agents by their unobserved trait vi.

5. Experiments
The environments that we consider only permit certain
coalition sizes, hence only Constrained Exchange Values
(Def. 4.3) are applicable. We simply refer to them as Ex-
change Values (EVs) from here onward. As the considered
environments are stochastic, we use sampling (as introduced
in Section 4.3) to estimate true EVs. We run all experiments
for five random seeds and report mean and standard devi-
ation where applicable. For implementation details please
refer to the appendix.

Tragedy of the Commons. The Tragedy of the Com-
mons [11] (ToC) refers to a situation where multiple indi-
viduals deplete or degrade a shared resource, and is a social-
dilemma scenario often used to emphasize the need for
proper regulation to avoid the overexploitation of common
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Figure 2: Colour-coded ordering of EVs for agents with
varying behaviors in Tragedy of the Commons. The brighter,
the higher an agent’s contribution to a given value function.

resources [7, 25]. We model such a scenario as a multi-agent
environment in which agents can consume from a common
pool of resources xt, which grows at a fixed rate g at each
time step t: xt+1 = max ((1 + g) · xt −

∑
icti, 0), with

cti as the consumption of the ith agent at time t. Hence, if
all resources are consumed, none can regrow and no agents
can consume more resources. We generate a simulated
dataset of interactions of agents with varying strategies for
consuming resources (described later in more detail).

Overcooked. Overcooked [4] is a two-player game simu-
lating a cooperative cooking task, where players must pre-
pare as many dishes as possible in a given time, requiring
teamwork and coordination. It is a common testbed in multi-
agent research for studying collaboration [4, 15, 31]. Within
Overcooked, we consider the configurations Cramped Room
and Coordination Ring (displayed in Figure 1). For each
environment configuration, we generate two datasets by
simulating agent behaviors using a near-optimal planning
algorithm [4], where we use a parameter λ to determine an
agent’s behavior, which we refer to as the trait of the agent.
For λ = 1 agents act (near)-optimally, for λ = −1 agents
act adversarially. Each dataset D (defined in Section 3)
is generated by n = 100 agents, and trajectories τ are of
length 400. The adversarial dataset Dadv is comprised of
75% agents executing (near)-optimal policies (λ = 1) and
25% agents executing adversarial policies (λ = −1), while
for the Dλ dataset agents were uniformly sampled between
λ = −1 and λ = 1. We also consider a dataset Dhuman of
humans playing the game (provided by [4]), which is fully
anonymized, hence each human demonstrator appears only
once in the dataset.

5.1. Exchange Values assess an agent’s individual
contribution to a collective value function

In this section we consider the case when the datasets con-
tain demonstrations of all possible coalitions (groups of
agents), which allows us to accurately estimate EVs without
missing coalitions.



Tragedy of the Commons. We consider n = 12 agents
with four different behavior patterns: “Take X” consumes X
units at every timestep, “Take X x-dpl” consumes X units
if this does not deplete the pool of resources, “Take X%”
consumes X% of the available resources, and “ TakeAvg”
consumes the average of the resources consumed by the
other agents at the previous timestep (0 in the first timestep).
Each behavior pattern is followed by 3 agents, with X ∈
{1, 3, 10}. We simulate ToC for coalitions of size three
for 50 time steps, with a starting pool of x0 = 200 re-
sources and a per-timestep growth g of 25%. We evaluate
three DVFs: the final pool size (vfinal), the total resources
consumed (vtotal), and the minimum consumption among
agents (vmin). These represent different interpretations of
social welfare in the game. Figure 2 shows the color-coded
ordering of agents by EV under the three different DVFs,
suggesting that to maximize alignment with given DVF,
agents with lighter colors (higher contributions) should be
imitated. The ordering broadly reflects our intuition: taking
more resources negatively impacts the EVs, and agents con-
suming the average of others have less extreme EVs. Taking
too few resources reverses this trend for vmin.

We now consider imitating the dataset of 12 agents, while
learning three imitation policies aligned with each of the
three DVFs. We compare (a) imitating the behavior of all
agents in the dataset with Behavior Cloning (BC, [28]) and
(b) modifying the BC objective to imitate agents with pos-
itive contributions to the DVF only, which we refer to as
EV-BC. Table 1 demonstrates that EV-BC outperforms stan-
dard behavior cloning by a large margin. This indicates that
considering individual agents’ EVs to a given DVF leads to
improved respective performance of imitation policies.

Simulated datasets for Overcooked. We now consider
the two simulated datasets (Dadv and Dλ) to evaluate EVs
in the Overcooked environment. Note that we consider
the human dataset in the next section, as this dataset is in-
complete (does not contain observations for all possible
coalitions). We consider the value function given for Over-
cooked as the DVF, i.e. the number of soups prepared by
both agents within a trajectory. We compute EVs for all
agents in both datasets. Figue 3 (see Appendix) shows that
EVs of individual agents are strongly correlated with the
trait parameter λ of an individual agent, which approximates
how well an agent’s behavior is aligned with the DVF.

5.2. Imitating desired behavior with Exchange Values

We now consider all datasets Dadv, Dλ and Dhuman in both
Overcooked environments. We present results for esti-
mating EVs from incomplete data, especially from fully-
anonymized human datasets in App. A.2. Note that in the
standard Overcooked environment, an adversarial agent is
limited to blocking the other agent, while in many real-world

environments, adversaries are likely to be capable of more
diverse (and possibly severe) actions. We introduce a modi-
fied version of the Overcooked environment in which agents
can take an additional action that lights the kitchen on fire
with a predefined probability, resulting in an episode reward
of −200; we refer to this environment as Overcooked+Fire
and evaluate on equivalent datasets Dadv and Dλ.

We evaluate the performance achieved by agents with re-
spect to the DVF (in this case the environments value func-
tion of maximizing the number of soups) when trained
with different imitation learning approaches on the different
datasets. We use the fully-anonymized datasets and consider
the EVs computed from these using our proposed clustering
approach. We refer to our method as EV-Behavioral Cloning
(EV-BC), as we modify the original Behavior Cloning [28]
objective to only include trajectories from agents with pos-
itive EVs. We also consider the following approaches as
relevant baselines: (1) Vanilla BC, where the full dataset
is used, (2) the offline multi-agent reinforcement learning
algorithm OMAR [27], where we set the reward at the last
timestep to the DVF’s score for a given trajectory (no per-
step reward signal is given by the DVF) and (3) Reward
BC, for which we exclude runs with below mean collec-
tive score. Note that while our method is specific to indi-
vidual agents, this baseline considers the score achieved
by a group of agents. Table 2 shows that EV-BC clearly
outperforms the baseline approaches in both environment
configurations, with the margin being more significant in the
Overcooked+Fire environments where adversarial agents
can take more powerful actions. We further note that EV-
BC significantly outperforms baseline approaches on the
datasets of human-generated behavior, for which EVs were
estimated from a fully-anonymized real-world dataset.

6. Conclusion
Our work presents a method for training AI agents from
diverse datasets of human interactions while ensuring that
the resulting policy is aligned with a given desired value
function. However, it must be noted that quantifying the
desired value function poses a challenging research prob-
lem in itself. Nonetheless, we expect the potential positive
effects of enabling AI designers to align AI agents with
relevant value functions to outweigh the potential negative
effects which could result from alignment with possibly
harmful value functions. Future work may focus on address-
ing the assumption that individual agents behave similarly
across multiple trajectories, by developing methods for a
more fine-grained assessment of desired behavior. Addi-
tionally, exploring how our framework can more effectively
utilize data of undesired behavior is an interesting avenue
for further investigation, e.g., developing policies that are
constrained to not take undesirable actions.



References
[1] Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen,

A., DasSarma, N., Drain, D., Fort, S., Ganguli, D.,
Henighan, T. et al. [2022], ‘Training a helpful and
harmless assistant with reinforcement learning from
human feedback’, arXiv preprint arXiv:2204.05862 .

[2] Beliaev, M., Shih, A., Ermon, S., Sadigh, D. and
Pedarsani, R. [2022], Imitation learning by estimating
expertise of demonstrators, in ‘International Confer-
ence on Machine Learning’, PMLR, pp. 1732–1748.

[3] Cao, Z. and Sadigh, D. [2021], ‘Learning from imper-
fect demonstrations from agents with varying dynam-
ics’, IEEE Robotics and Automation Letters 6(3), 5231–
5238.

[4] Carroll, M., Shah, R., Ho, M. K., Griffiths, T., Seshia,
S., Abbeel, P. and Dragan, A. [2019], ‘On the utility
of learning about humans for human-ai coordination’,
Advances in neural information processing systems 32.

[5] Chang, Y.-H., Ho, T. and Kaelbling, L. [2003], ‘All
learning is local: Multi-agent learning in global reward
games’, Advances in neural information processing
systems 16.

[6] Chen, L., Paleja, R. and Gombolay, M. [2021], Learn-
ing from suboptimal demonstration via self-supervised
reward regression, in ‘Conference on robot learning’,
PMLR, pp. 1262–1277.

[7] Dietz, T., Ostrom, E. and Stern, P. C. [2003],
‘The struggle to govern the commons’, science
302(5652), 1907–1912.

[8] (FAIR)†, M. F. A. R. D. T., Bakhtin, A., Brown, N.,
Dinan, E., Farina, G., Flaherty, C., Fried, D., Goff, A.,
Gray, J., Hu, H. et al. [2022], ‘Human-level play in the
game of diplomacy by combining language models
with strategic reasoning’, Science 378(6624), 1067–
1074.

[9] Foerster, J., Farquhar, G., Afouras, T., Nardelli, N. and
Whiteson, S. [2018], Counterfactual multi-agent policy
gradients, in ‘Proceedings of the AAAI conference on
artificial intelligence’, Vol. 32.

[10] Glaese, A., McAleese, N., Trębacz, M., Aslanides,
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and its EV in Overcooked.

Table 1: Achieved relative alignment
with different value functions in ToC,
using either BC or EV-BC.

Method

BC EV-BC (Ours)

vfinal 23.25% 100%
vtotal 12.3% 100%
vmin 1.3% 100%

A. Appendix
A.1. Appendix to methods

A.1.1. DERIVATION OF CLUSTERING OBJECTIVE STATED IN EQ. 5

Inessential games and EVs. The assumption of an inessential game is commonly made to compute Shapley Values
more efficiently2. In an inessential game, the value of a coalition is given by the sum of the individual contributions of
its members, denoted as v(C) =

∑
i∈C vi. We refer to an individual agent’s contribution vi as its unobserved trait. The

Exchange Value (see Definition 4.1) of an individual agent i in an inessential game is given as

γi(G) = vi −
1

|N | − 1
·

∑
j∈N\{i}

vj

=

(
1 +

1

|N | − 1

)
· vi −

1

|N | − 1
·
∑
j∈N

vj ,

This expression represents the difference between the trait (contribution) of agent i, vi, and the average trait of all other
agents. The second term is independent of i and remains constant across all agents.

Derivation of equivalent clustering objective. We now consider the optimization problem defined by Equation 4, which
seeks to find the optimal cluster assignments u∗ that maximize the variance in EVs

u∗ = argmaxuVar([γ̃0(G̃), . . . , γ̃n−1(G̃)]).

Note that under the concept of a clustered value function (see Equation 3), all agents within a cluster are represented as a
single agent. We denote by ki the latent trait of the agent that represents the agents in cluster i. The value ki is defined
as the average trait of all agents assigned to the cluster, i.e. ki = 1

ϵ ·
∑

j∈Nvj · 1(u(i) = u(j)). Here, the normalization
constant is given as ϵ =

∑
j∈N 1(u(i) = u(j)).

Using the concept of the clustered value function ṽ (see Equation 3), we can express the EV of all agents in cluster i as

γ̃i(G̃) =

(
1 +

1

|K| − 1

)
· ki −

1

|K| − 1
·
∑
j∈K

kj .

The second term, which is cluster-independent, can be omitted when computing the variance Var([γ̃0(G̃), . . . , γ̃n−1(G̃)]), as
the variance is agnostic to a shift in the data distribution. We will omit the scaling factor

(
1 + 1

|K|−1

)
from here onwards.

Let nj denote the number of agents assigned to cluster j ∈ K, with
∑K−1

i=0 ni = N . By simplifying Equation 4, we obtain:

2see, e.g., Covert, I. and Lee, S.I., 2020. Improving kernelshap: Practical shapley value estimation via linear regression. arXiv preprint
arXiv:2012.01536.
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Var([γ̃0(G̃), . . . , γ̃n−1(G̃)]) =

K−1∑
i=0

ni ·
(
ki −

∑K−1
j=0 nj · kj

N

)2

.

This allows us to express the objective stated in Equation 5 as

u∗ = argmaxuVar([k0, . . . , kn−1]).

A.2. Estimating EVs from incomplete data

Estimation error for different dataset sizes. We now turn to realistic settings with missing data where EVs are estimated
by sampling coalitions (see Section 4.3). For both ToC and Overcooked, we compute the estimation error in EVs for
different dataset sizes. We first compute ground truth EVs using observations of all coalitions according to Def. 4.3 and then
compute the mean estimation error if only a fraction of the possible coalitions is contained in the dataset. As expected, we
observe in Figure 4 that the mean estimation error generally increases as the fraction of observed coalitions decreases. We
also investigate fully anonymized datasets and find that these have the largest estimation error (see Figure 4 – single-obs).

Estimating EVs from fully-anonymised datasets. As estimating EVs from fully-anonymized datasets is a degenerate
problem (see App. A.4 for explanation), we combine behavior information, contained in the trajectories τ in D, with the
variance maximization objective introduced in Equation 4, and show that this allows clustering agents by their unobserved
trait. See Appendix A.4 for an ablation study. Specifically, we first compute initial cluster assignments from agents’
low-level behavior, which we then use to imply a soft constraint to the objective of maximizing variance in estimated EVs.

In Overcooked, we first generate an embedding vector per agent by concatenating the agent’s empirical action probabilities
for the 200 states most frequently observed in a given dataset. This results in a 1000 dimensional embedding that contains
information about the agent’s behavior only, while discarding other trajectory features which may result from other agents’
policies. We then apply dimensionality reduction (PCA, [12]) and k-means clustering [23] (choosing the number of clusters
using the ELBOW [34] method), to arrive at behavior-based cluster assignments. In ToC, the behavior-based clusters can be
achieved by clustering of action frequencies. We next jointly optimize cluster assignments of individual agents and estimated
EVs by maximizing the variance in estimated EVs (see Equation 4), using the previously computed behavior-based cluster
assignments to constrain the solution space. We optimize the objective stated in Equaiton 4 using a non-linear constrained
optimization solver (SLSQP, [19]), which we initialize with the behavior-based cluster assignments. We further add a small
L2 loss term that penalizes solutions that deviate from the behavior-based clusters (see appendix A.4 for implementation
details). We find that this results in a significant decrease in the estimation error of EVs (see Figure 4 – single-obs clustered).



Table 2: Resuling performance with respect to the DVF for different imitation learning methods in the Overcooked
environments Cramped Room (top) and Coordination Ring (bottom). We find that our approach outperforms the relevant
baselines.

Overcooked Overcooked+Fire

Imitation method Dλ Dadv Dhuman Dλ Dadv

vanilla BC [28] 10.8 ± 2.14 40.8 ± 12.7 153.34 ± 11.5 -13.35 ± 24.5 -20.12 ± 18.5
reward-BC 54.2 ± 5.45 64.8 ± 7.62 163.34 ± 6.08 24.89 ± 16.25 0.9 ± 13.98
Offline RL (OMAR [27]) 6.4 ± 3.2 25.6 ± 8.9 12.5 ± 4.5 5.0 ± 12.5 -3.4 ± 12.8
EV-BC (ours) 91.6 ± 12.07 104.2 ± 10.28 170.89 ± 6.8 86.2 ± 13.02 98.3 ± 12.48

vanilla BC [28] 15.43 ± 4.48 10.4 ± 6.8 104.89 ± 12.44 -16.45 ± 15.6 -40 ± 14.6
reward-BC 24 ± 4.69 14.6 ± 2.48 102.2 ± 6.19 -8 ± 8.59 -51.8 ± 11.4
Offline RL (OMAR [27]) 12.43 ± 3.35 9.5 ± 3.5 12.4 ± 6.0 -0.8 ± 5.4 -1.2 ± 5.6
EV-BC (ours) 30.2 ± 6.91 12.4 ± 2.65 114.89 ± 5.08 32.64 ± 7.14 12.5 ± 4.32

Fully-anonymised human-generated dataset for Overcooked. In contrast to the simulated datasets, no ground truth EVs
can be computed for the human-generated datasets, as these are fully anonymized. Also, no latent trait λ is given, which
could indicate how well a human participant is aligned with the DVF (maximizing the number of soups cooked). To evaluate
the goodness of the estimated EVs for the human dataset, we use the keystrokes per second as a proxy for the latent trait
(as proposed by Carroll et al. [4]), referring to this value as λhuman. We compute EVs for all human participants using the
clustering approach described in the previous section. It can be observed in Figure 5 (top row) that the behavior-clusters in
Cramped Room (Overcooked) yields a reasonable separation by λhuman. The bottom row shows improved cluster assignments
after maximizing variance in EVs. Relative to the average within-cluster variance under random cluster assignments, the
initial behavior clustering reduces within-cluster variance by 16% and 25% percent in Cramped Room and Coordination
ring, respectively, while the final clustering step that maximizes between-cluster variance reduces the within-cluster variance
by another 34% and 48% percent, respectively. These findings validate that maximizing variance in EVs allows clustering
agents by their unobserved traits, which in this case correspond to λhuman (keystrokes per second).

A.3. Overcooked experimental details

Datasets. We generate the simulated datasets using the planning algorithm given in [4]3. To be able to simulate agents
with different behavior (from adversarial to optimal), we first introduc a latent trait parameter, λ, which determines the level
of adversarial or optimal actions for a given agent. A value of λ = 1 represents a policy that always chose the best action
with certainty. As λ decreased, agents are more likely to select non-optimal actions. For λ < 0, we invert the cost function
to create agents with adversarial behavior. Notably, we assign a high cost (or low cost when inverted) to occupying the cell
next to the counter in the Overcooked environment. Occupying the cell next to the counter enables adversarial agents to
block other agents in the execution of their tasks.

For human gameplay datasets, we utilized the raw versions of the Overcooked datasets.4 These datasets were used as-is,
without manual pre-filtering.

Exchange Values. To estimate agents’ Exchange Values according to Section 4.3, we used either the full set of all possible
coalitions or a fraction of it (see Figure 4 for the relationship between dataset size and EV estimation error). For each
observed coalition, we conducted 10 rollouts in the environment and calculated the average score across these rollouts to
account for stochasticity in the environment.

Imitation learning. For EV-BC, we modify the standard Behavior Cloning approach [28] by only training on data of
agents with a positive estimated EV. As for the BC baseline, we used the complete dataset. In the case of reward-BC, we
exclusively utilized data with an above-median return (DVF). For EV-BC, BC, and reward-BC we used the implementation

3https://github.com/HumanCompatibleAI/overcooked_ai
4https://github.com/HumanCompatibleAI/human_aware_rl/tree/master/human_aware_rl/data/

human/anonymized

https://github.com/HumanCompatibleAI/overcooked_ai
https://github.com/HumanCompatibleAI/human_aware_rl/tree/master/human_aware_rl/data/human/anonymized
https://github.com/HumanCompatibleAI/human_aware_rl/tree/master/human_aware_rl/data/human/anonymized
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Figure 6: Within-cluster variance in relation to fraction of observations for simulated data in Cramped Room and Coor-
dination Ring (Overcooked). Two clustering methods shown (Behavior clustering and Variance Clustering). In the case
of random cluster assignments, the within-cluster variance is 5.11 ± 0.11, while under optimal cluster assignments, the
variance is 0.156. See section A.4 for details.

of Behavior Cloning in Overcooked as given by the authors of [4]5. We implement the offline multi-agent reinforcement
learning method OMAR [27] using the author’s implementation.6 For the OMAR baseline, we set the reward at the last
timestep to the DVF’s score for a given trajectory, as our work assumes that no per-step reward signal is given, in contrast to
the standard offline-RL framework. We conducted a hyperparameter sweep for the following parameters: learning rate with
options {0.01, 0.001, 0.0001}, Omar-coe with options {0.1, 1, 10}, Omar-iters with options {1, 3, 10}, and Omar-sigma
with options {1, 2, 3}. The best-performing parameters were selected based on the evaluation results.

Implementation of Overcooked+Fire. We introduce an additional adversarial action, “light kitchen on fire,” to the
environment. To account for this action in the planning algorithm, we assigned it the highest possible cost. Taking this
action had a 50% chance of resulting in an episode return of −200, regardless of the other agent’s performance.

A.4. Clustering of agents in Overcooked

Degeneracy of credit assignment problem for fully-anonymised datasets. In Definition 4.1, Exchange Values are
defined by comparing the value of the coalitions that include a given agent to those that do not. However, when not all
coalitions are observed, the exchange value (EV) of an agent can be estimated by sampling coalitions, as discussed in
Section 4.3. The estimate is given by

γi(Ḡ) = Em∼U(M+),π∼U(ΠN\{i})

[
ΓḠ
m,π(i)

]
.

This can be rewritten as:

γi(Ḡ) = Em∼U(M+),π∼U(ΠN\{i})

[
v(Sπ(m− 1) ∪ {i})]− Em∼U(M+),π∼U(ΠN\{i})

[
v(Sπ(m))

]
.

Here, the first term estimates the value of a coalition that includes agent i, while the second term estimates the value of
a coalition that does not include agent i. In the case of a fully-anonymized dataset, each agent is observed only once as
part of one multi-agent trajectory. Consequently, the first term must be estimated from a single sample, representing the
DVF’s score observed for the one appearance of agent i. This leads to a high variance in the estimation of EVs and results in
the degeneracy of the problem in attributing contributions to individual agents. Specifically, due to the fact that a single

5https://github.com/HumanCompatibleAI/overcooked_ai/tree/master/src/human_aware_rl/
imitation

6https://github.com/ling-pan/OMAR

https://github.com/HumanCompatibleAI/overcooked_ai/tree/master/src/human_aware_rl/imitation
https://github.com/HumanCompatibleAI/overcooked_ai/tree/master/src/human_aware_rl/imitation
https://github.com/ling-pan/OMAR


score is shared among all agents within one multi-agent trajectory, all agents in that multi-agent trajectory (coalition) are
assigned equal EVs. As a result, in the case of a fully-anonymized dataset, it becomes impossible to assign credit specifically
to individual agents within a coalition. To mitigate this problem, we propose clustering agents, which we describe in
Section A.2. Through clustering, we can assign equal EVs to agents that are similar, in contrast to assigning equal EVs to all
agents in a given coalition.

Behavior clustering. The behavior clustering process in the Overcooked environment involves the following steps.
Initially, we identify the 200 states that are most frequently visited by all agents in a given set of observations. As the action
space in Overcooked is relatively small (<7 actions), we calculate the empirical action distribution for each state for every
agent. These 200 action distributions are then concatenated to form a behavior embedding for each agent. To reduce the
dimensionality of the embedding, we apply Principal Component Analysis (PCA), transforming the initial embedding space
into three dimensions. Subsequently, we employ the k-means clustering algorithm to assign agents to behavior clusters. The
number of clusters (7 for Overcooked) is determined using the ELBOW method [34], while linear kernels are utilized for
both PCA and k-means. It is noteworthy that the results are found to be relatively insensitive to the parameters used in the
dimensionality reduction and clustering steps, thus standard implementations are employed for both methods. Importantly,
this clustering procedure focuses exclusively on the observed behavior of agents, specifically the actions taken in specific
states, and is independent of the scores assigned to trajectories by the DVF.

Variance clustering. In contrast to behavior clustering, variance clustering (see Section 4.4) focuses solely on the scores
assigned to trajectories by the DVF and disregards agent behavior. The objective of variance clustering is to maximize
the variance of the clustered EVs, as stated in Equation 4. To optimize this objective, we utilize the SLSQP non-linear
constrained optimization solver [19].

We employ soft cluster assignments and enforce constraints to ensure that the total probability is equal to 1 for each agent.
The solver is initialized with a uniform distribution and runs until convergence or for a maximum of 100 steps. Given that
the optimization problem may have local minima, we perform 500 random initializations and optimizations, selecting the
solution with the lowest loss (i.e. the highest variance).

As described in Section A.2, behavior clustering (which utilizes behavior information but disregards DVF scores) and
variance clustering (which utilizes DVF scores but disregards behavior information) can be combined. To accomplish this,
we initialize the SLSQP solver with the cluster assignments obtained from behavior clustering and introduce a small loss
term in the objective function of Equation 4. This additional l2 loss term, weighted by 0.1 (selected in a small sensitivity
analysis), penalizes deviations from the behavior clusters. Similar to before, we perform 500 iterations while introducing a
small amount of noise to the initial cluster assignments at each step. The solution with the highest variance is then selected.

Ablation study. In this section, we present an ablation study to examine the impact of different components in the
clustering approach discussed in Section A.2. We proposed two sequential clustering methods: behavior clustering and
variance clustering. This ablation study investigates the performance of both clustering steps when performed independently,
also under the consideration of the fraction of the data that is observed. We assess performance as the within-clsuter variance
in the unobserved agent-specific latent trait variable λ, where lower within-cluster variance indicates higher performance. It
is important to note that λ is solely used for evaluating the clustering steps and not utilized during the clustering process.

The results of the ablation study are depicted in Figure 6. Providing context, the within-cluster variance under random
cluster assignments is 5.11± 0.11, while the within-cluster under optimal cluster assignments is 0.156.

We first discuss variance clustering. Clustering agents based on EVs (variance clustering) as introduced in Seciton 4.4
generally leads to a significant decrease in within-cluster variance in the unobserved variable λ. More specifically, the
proposed variance clustering approach (when 50% of data is observed), results in a ∼ 89% reduction of the within-cluster
variance in λ, which validates the approach of clustering agents by their unobserved traits by maximizing the variance in
estimated EVs. However, we observe in Figure 6 that, as the fraction of observed data decreases, the within-cluster variance
increases, indicating a decrease in the quality of clustering. The highest within-cluster variance is observed when using only
a single observation (’single-obs’), which corresponds to a fully-anonymized dataset. This finding is consistent with the fact
that a fully-anonymized dataset presents a degenerate credit assignment problem, as discussed earlier in Section A.4.

We now discuss behavior clustering. Figure 6 shows that behavior clustering generally results in a very low within-cluster
variance. However, it is important to note that these results may not directly translate to real-world data, as the ablation



study uses simulated trajectories. Note that such an ablation study cannot be conducted for the given real-wold human
datasets, as these are fully anonymized. In Section A.2, we demonstrate that behavior clustering alone may not be sufficient
for fully-anonymized real-world human datasets. Instead, a combination of both behavior clustering and variance clustering
yields superior results.

A.5. Tragedy of the Commons experiments

The Tragedy of the Commons (ToC) scenario involves 12 agents. Each agent exhibits one of four behavior patterns: “Take
X”, which consumes X units at each time step; “Take X x-dpl”. which consumes X units as long as it does not deplete
the pool of resources; “Take X%”, which consumes X% of the available resources; and “TakeAvg”, which consumes the
average of the resources consumed by the other agents in the previous time step (0 in the first time step).

For each behavior pattern, we consider three agents, with X values selected from the set 1, 3, 10. To generate a population of
agents, we replicate each agent type 5 times. We simulate the ToC scenario for coalitions of size three, spanning 50 time
steps. The initial pool of resources is x0 = 200, and the resources grow at a rate of 25% per time step.

Due to the continuous nature of the state and action spaces in ToC, we first discretize both and then apply the same clustering
methods used in the Overcooked scenario. We proceed by computing Exchange Values (EVs) for all agents as done in
Overcooked (see Figure 4 for results).

Implementation of Behavior Cloning (BC) and EV-BC. We implement imitation policies by replicating the averaged
action distributions in the discretized states. In Table 1, we present the results obtained using the full dataset (averaging over
all agents), as well as using data solely from agents with positive EVs. For each DVF in Table 1 we report the score relative
to the maximum achieved score across both methods (BC and EV-BC). In all cases, BC achieves a fraction of the score
achieved by EV-BC.

A.6. Computational demand and reproducibility

We used an Intel(R) Xeon(R) Silver 4116 CPU and an NVIDIA GeForce GTX 1080 Ti (only for training BC, EV-BC,
reward-BC, and OMAR policies). In Overcooked, generating a dataset took a maximum of three hours, and estimating EVs
from a given dataset takes a few seconds. Behavior clustering consumes a couple of minutes, while Variance clustering took
up to two hours per configuration (note that it is run 500 times). Training of the BC, reward-BC, and EV-BC policies took
no more than 30 minutes (using a GPU), while the OMAR baseline was trained for up to 2 hours. In Tragedy of Commons,
each rollout only consumes a couple of seconds. Clustering times were comparable to those in Overcooked. Computing
imitation policies is similarly only a matter of a few minutes.


