
Under review as a conference paper at ICLR 2023

GENERALIZED SUM POOLING FOR METRIC LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

A common architectural choice for deep metric learning is a convolutional neural
network followed by global average pooling (GAP). Albeit simple, GAP is a highly
effective way to aggregate information. One possible explanation for the effective-
ness of GAP is considering each feature vector as representing a different semantic
entity and GAP as a convex combination of them. Following this perspective, we
generalize GAP and propose a learnable generalized sum pooling method (GSP).
GSP improves GAP with two distinct abilities: i) the ability to choose a subset
of semantic entities, effectively learning to ignore nuisance information, and ii)
learning the weights corresponding to the importance of each entity. Formally, we
propose an entropy-smoothed optimal transport problem and show that it is a strict
generalization of GAP, i.e., a specific realization of the problem gives back GAP.
We show that this optimization problem enjoys analytical gradients enabling us to
use it as a direct learnable replacement for GAP. We further propose a zero-shot
loss to ease the learning of GSP. We show the effectiveness of our method with
extensive evaluations on 4 popular metric learning benchmarks. Code is available
at: GSP-DML Framework

1 INTRODUCTION

Distance metric learning (DML) addresses the problem of finding an embedding function such that the
semantically similar samples are embedded close to each other while the dissimilar ones are placed
relatively apart in the Euclidean sense. Although the prolific and diverse literature of DML includes
various architectural designs (Kim et al., 2018; Lin et al., 2018; Ermolov et al., 2022), loss functions
(Musgrave et al., 2020), and data-augmentation techniques (Roth et al., 2020; Venkataramanan et al.,
2022), many of these methods have a shared component: a convolutional neural network (CNN)
followed by a global pooling layer, mostly global average pooling (GAP) (Musgrave et al., 2020).

Common folklore to explain the effectiveness of GAP is considering each pixel of the CNN feature
map as corresponding to a separate semantic entity. For example, spatial extent of one pixel can
correspond to a "tire" object making the resulting feature a representation for "tireness" of the
image. If this explanation is correct, the representation space defined via output of GAP is a convex
combination of semantically independent representations defined by each pixel in the feature map.
Although this folklore is later empirically studied in (Zeiler & Fergus, 2014; Zhou et al., 2016; 2018,
and references therein) and further verified for classification in (Xu et al., 2020), its algorithmic
implications are not clear. If each feature is truly representing a different semantic entity, should
we really average over all of them? Surely, some classes belong to the background and should be
discarded as nuisance variables. Moreover, is uniform average of them the best choice? Aren’t some
classes more important than others? In this paper, we try to answer these questions within the context
of metric learning. We propose a learnable and generalized version of GAP which learns to choose
the subset of the semantic entities to utilize as well as weights to assign them while averaging.

In order to generalize the GAP operator to be learnable, we re-define it as a solution of an optimization
problem. We let the solution space to include 0-weight effectively enabling us to choose subset
of the features as well as carefully regularize it to discourage degenerate solution of using all the
features. Crucially, we rigorously show that the original GAP is a specific case of our proposed
optimization problem for a certain realization. Our proposed optimization problem closely follows
optimal transport based top-k operators (Cuturi et al., 2019) and we utilize its literature to solve it.
Moreover, we present an algorithm for an efficient computation of the gradients over this optimization
problem enabling learning. A critical desiderata of such an operator is choosing subset of features

1

https://drive.google.com/drive/folders/1CSSAKLcTJyK75xV_wMPQmuxkwo_qdtdH?usp=sharing

Under review as a conference paper at ICLR 2023

which are discrimantive and ignoring the background classes corresponding to nuisance variables.
Although supervised metric learning losses provide guidance for seen classes, they carry no such
information to generalize the behavior to unseen classes. To enable such a behavior, we adopt a zero-
shot prediction loss as a regularization term which is built on expressing the class label embeddings
as a convex combination of attribute embeddings (Demirel et al., 2017; Xu et al., 2020).

In order to validate the theoretical claims, we design a synthetic empirical study. The results confirm
that our pooling method chooses better subsets and improve generalization ability. Moreover, our
method can be applied with any DML loss as GAP is a shared component of them. We applied our
method on 6 DML losses and test on 4 datasets. Results show consistent improvements with respect
to direct application of GAP as well as other pooling alternatives.

2 RELATED WORK

We discuss the works which are most related to ours. Briefly, our contributions include that i) we
introduce a general formulation for weighted sum pooling, ii) we formulate local feature selection as
an optimization problem which admits closed form gradient expression without matrix inversion, and
iii) we propose a meta-learning based zero-shot regularization term to explicitly impose unseen class
generalization to the DML problem.

DML. Primary thrusts in DML include i) tailoring pairwise loss terms (Musgrave et al., 2020) that
penalize the violations of the desired intra- and inter-class proximity constraints, ii) pair mining (Roth
et al., 2020), iii) generating informative samples (Ko & Gu, 2020; Liu et al., 2021; Gu et al., 2021;
Venkataramanan et al., 2022), and iv) augmenting the mini-batches with virtual embeddings called
proxies (Wang et al., 2020; Teh et al., 2020). To improve generalization; learning theoretic ideas
(Dong et al., 2020; Lei et al., 2021; Gurbuz et al., 2022), disentangling class-discriminative and class-
shared features (Lin et al., 2018; Roth et al., 2019), intra-batch feature aggregation (Seidenschwarz
et al., 2021), and further regularization terms (Jacob et al., 2019; Zhang et al., 2020; Kim & Park,
2021; Roth et al., 2022) are utilized. To go beyond of a single model, ensemble (Xuan et al., 2018;
Kim et al., 2018; Sanakoyeu et al., 2019; Zheng et al., 2021a;b) and multi-task based approaches
(Milbich et al., 2020; Roth et al., 2021) are also used. Different to them, we propose a learnable
pooling method for the global feature extraction generalizing GAP, a shared component of all of the
mentioned works. Hence, our work is orthogonal to all of these and can be used jointly with any of
them.

Prototype-based pooling. Most related to ours are trainable VLAD (Arandjelovic et al., 2016) and
optimal transport based aggregation (Mialon et al., 2021). Such methods employ similarities to
the prototypes to form a vector of aggregated local features for each prototype and build ensemble
of representations. Similar to us, Mialon et al. (2021) uses optimal transport formulation to select
local features to be pooled for each prototype. That said, such methods map a set of features to
another set of features without discarding any and do not provide a natural way to aggregate the
class-discriminative subset of the features. On the contrary, our pooling machine effectively enables
learning to select discriminative features and maps a set of features to a single feature that is distilled
from nuisance information.

Attention-based pooling. Among the methods that reweights the CNN features before pooling,
CroW (Kalantidis et al., 2016), Trainable-SMK (Tolias et al., 2020), and CBAM (Woo et al., 2018)
build on feature magnitude based saliency, assuming that the backbone functions must be able to
zero-out nuisance information. Yet, such a requirement is restrictive for the parameter space and
annihilation of the non-discriminative information might not be feasible in some problems. Similarly,
attention-based weighting methods DeLF (Noh et al., 2017), GSoP (Gao et al., 2019) do not have
explicit control on feature selection behavior and might result in poor models when jointly trained
with the feature extractor (Noh et al., 2017). Differently, our method unifies attention-based feature
masking practices (e.g. convolution, correlation) with an efficient-to-solve optimization framework
and lets us do away with engineered heuristics in obtaining the masking weights (e.g. normalization,
sigmoid, soft-plus) without restricting the solution space unlike magnitude based methods.

Optimal transport based operators. Optimal transport (OT) distance (Cuturi, 2013) to match local
features is used as the DML distance metric instead of ℓ2 in (Zhao et al., 2021). Despite effective,
replacing ℓ2 with OT increases memory cost for image representation as well as computation cost for

2

Under review as a conference paper at ICLR 2023

the distance computation. Different to them, we shift OT based computation in pooling (i.e., feature
extraction) stage while having OT’s merits and hence, do not affect the memory and computation
costs of the inference by sticking to ℓ2 metric. Moreover, our feature selection and aggregation
formulation has close relation to optimal transport (Cuturi, 2013) based top-k (Xie et al., 2020),
ranking (Cuturi et al., 2019) and aggregation (Mialon et al., 2021) operators. What makes our method
different is the unique way we formulate the feature selection problem to fuse aggregation into it.
Our formulation allows computationally appealing and matrix inversion free gradient computation of
the selection operator unlike optimal transport plan based counterparts (Luise et al., 2018).

3 PRELIMINARIES

Consider the data distribution pXxY over X xY where X is the space of data points and Y is the space
of labels. Given iid. samples from pXxY as {(xi, yi)}, distance metric learning problem aims to find
the parameters θ of an embedding function e(·; θ) : X → IRd such that the Euclidean distance in the
space of embeddings is consistent with the label information where d is the embedding dimension.
More specifically, ∥e(xi; θ)− e(xj ; θ)∥2 is small whenever yi = yj , and large whenever yi ̸= yj . In
order to enable learning, this requirement is represented via loss function l((xi, yi), (xj , yj); θ) (e.g.
contrastive (Wu et al., 2017), triplet (Schroff et al., 2015), multi-similarity (Wang et al., 2019)).

The typical learning mechanism is gradient descent of an empirical risk function defined over a batch
of data points B. To simplify notation throughout the paper, we will use b = {b(i) | xi, yi ∈ B}i to
index the samples in a batch. Then, the typical empirical risk function is defined as:

LDML(b; θ) :=
1

|b|2
∑
i∈b

∑
j∈b

l((xi, yi), (xj , yj); θ) . (3.1)

We are interested specific class of embedding functions where a global average pooling is used.
Specifically, consider the composite function family e = g ◦ f such that g is pooling and f is feature
computation. We assume a further structure over the functions g and f . The feature function f
maps the input space X into IRwxhxd where w and h are spatial dimensions. Moreover, g performs
averaging as;

g(f(x; θ)) =
1

w · h
∑

i∈[w·h]
fi , (3.2)

where [n] = 1, . . . , n and we let fi∈IRd denote ith spatial feature of f(x; θ) to avoid convoluted
notation. In the rest of the paper, we generalize the pooling function g into a learnable form and
propose an algorithm to learn it.

4 METHOD

Consider the pooling operation in Eq. (3.2), it is a simple averaging over pixel-level feature maps (fi).
As we discuss in § 1, one explanation for the effectiveness of this operation is considering each fi as
corresponding to a different semantic entity corresponding to the spatial extend of the pixel, and the
averaging as convex combination over these semantic classes. Our method is based on generalizing
this averaging such that a specific subset of pixels (correspondingly subset of semantic entities) are
selected and their weights are adjusted according to their importance.

We generalize Eq. (3.2) in § 4.1 by formulating a feature selection problem in which we prioritize a
subset of the features that are closest to some trainable prototypes. If a feature is to be selected, its
weight will be high. We then formulate our pooling operation as a differentiable layer so that the
prototypes can be learned along with the rest of the embedding function parameters in § 4.2. We
learn the prototypes with class-level supervision, however in metric learning, learned representations
should generalize to unseen classes. Thus, we introduce a zero-shot prediction loss to regularize
prototype training for zero-shot setting in § 4.3.

3

Under review as a conference paper at ICLR 2023

4.1 GENERALIZED SUM POOLING AS A LINEAR PROGRAM

Consider the pooling function, g, with adjustable weights as g(f(x; θ);ω) =
∑

i∈[n] pifi where
n = w h. Note that, pi = 1/n corresponds to average pooling. Informally, we want to control the
weights to ease the metric learning problem. Specifically, we want the weights corresponding to
background classes to be 0 and the ones corresponding to discriminative features to be high.

If we were given representations of discrimantive semantic entities, we could simply compare them
with the features (fi) and choose the ones with high similarity. Our proposed method is simply
learning these representations and using them for weight computations. We first discuss the weight
computation part before discussing learning the representations of prototypes.

Assume that there are m discrimantive semantic entities which we call prototypes with latent repre-
sentations ω = {ωi}i∈[m] of appropriate dimensions (same as fi). Since we know that not all features
({fi}i∈[n]) are relevant, we need to choose a subset of {fi}i∈[n]. We perform this top-k selection
process by converting it into an optimal transport (OT) problem.

Consider a cost map cij = ∥ω̄i 9 f̄j∥2 which is an m (number of prototypes) by n (number of
features) matrix representing the closeness of prototypes ωi and features fj after some normalization
ū = u/max{1,∥u∥2}. We would like to find a transport map π which re-distributes the uniform mass
from features to prototypes. Since we do not have any prior information over features, we also
consider its marginal distribution (importance of each feature to begin with) to be uniform. As we
need to choose a subset, we set µ∈[0, 1] ratio of mass to be transported. The resulting OT problem is:

ρ∗, π∗ =argmin
ρ,π⩾0

ρj+Σiπij=1/n
Σijπij=µ

∑
ij cijπij . (P1)

Different to typical OT literature, we introduce decision variables, ρ, to represent residual weights to
be discarded. Specifically modelling discarded weight instead of enforcing another marginalization
constraint is beneficial beyond stylistic choices as it allows us to very efficient compute gradients.
When the introduced transport problem is solved, we perform weighting using residual weights as:

g(f(x; θ);ω) =
∑

i pifi =
∑

i

1/n−ρ∗
i

µ fi (4.1)

Given set of prototypes {ωi}i∈[m], solving the problem in (P1) is a strict generalization of GAP since
setting µ = 1 recovers the original GAP. We formalize this equivalence in the following claim.
Claim 4.1. If µ = 1, the operation in Eq. (4.1) reduces to global average pooling in Eq. (3.2).

We defer the proof to Appendix. Having generalized GAP to a learnable form, we introduce a method
to learn the prototypes {ωi}i∈[m] in the next section.

4.2 GENERALIZED SUM POOLING AS A DIFFERENTIABLE LAYER

Figure 1: Feature map and
the resultant pooling weights
(higher the darker) of different
problems.

Consider the generalized form of pooling, defined as solution of
(P1), as a layer of a neural network. The input is the feature vectors
{fi}i∈[n], the learnable parameters are prototype representations
{ωi}i∈[m], and the output is residual weights ρ∗. To enable learn-
ing, we need partial derivatives of ρ∗ with respect to {ωi}i∈[m].
However, this function is not smooth. More importantly it requires
the µ parameter to be known a priori.

We use a toy example to set the stage for rest of the formula-
tion. Consider a 10x10x3 feature map visualized as RGB-image
in Fig. 1 and corresponding two prototypes with representations
(1, 0, 0) (red) and (0, 0, 1) (blue). The true µ = 0.5 since the half of
the image corresponds to red and blue, and other half is background
class of green. Consider an under-estimation of µ = 0.2, the global
solution (shown as linear programming) is explicitly ignoring in-
formative pixels (part of red and blue region). To solve this issue,

4

Under review as a conference paper at ICLR 2023

we use entropy smoothing which is first introduced in (Cuturi, 2013) to enable fast computation of
optimal transport. Consider the entropy smoothed version of the original problem in (P1) as:

ρ(ε), π(ε) =argmin
ρ,π⩾0

ρj+Σiπij=1/n
Σijπij=µ

∑
ij cijπij +

1
ε (
∑

ij πij log πij +
∑

j ρj log ρj), (P2)

and obtain pooling weights by replacing ρ∗ with ρ(ε) in Eq. (4.1). When smoothing is high (ε→0),
the resulting solution is uniform over features similar to GAP. When it is low, the result is similar to
top-k like behavior. For us, ε controls the trade-off between picking µ portion of the features that are
closest to the prototypes and including as much features as possible for weight transfer.

We further visualize the solution of the entropy smoothed problem in Fig. 1 showing desirable
behavior even with underestimated µ.

Beyond alleviating the under-estimation of µ problem, entropy smoothing also makes the problem
strictly convex and smooth. Thus, the solution of the problem enables differentiation and in fact,
admits closed-form gradient expression. We state the solution of (P2) and their corresponding
gradients in the following propositions and defer their proofs to Appendix.

Proposition 4.1. Given initialization t(0) = 1, consider the following iteration:

ρ(k+1) = 1/n (1 + t(k) exp(9εc)⊺1m)91, t(k+1) = µ (1⊺
m exp(9εc)ρ(k+1))91

where exp and (·)91 are element-wise and 1m is m-dimensional vector of ones. Then, (ρ(k), t(k))
converges to the solution of (P2) defining transport map via π(k) = t(k) exp(9εc)Diag(ρ(k)).
Proposition 4.2. Consider any differentiable loss function L as a function of (ρ, π). Given gradients
∂L

∂ρ(ε) and ∂L
∂π(ε) , with q = ρ(ε) ⊙ ∂L

∂ρ(ε) + (π(ε) ⊙ ∂L
∂π(ε))

⊺1m and η = (ρ(ε) ⊙ ∂L
∂ρ(ε))

⊺1n 9 n q⊺ρ(ε),
the gradient with respect to c reads:

∂L
∂c

= 9ε
(
π(ε) ⊙ ∂L

∂π(ε)
− nπ(ε)Diag

(
q − η

19µ9nρ(ε)⊺ρ(ε)

)
ρ(ε)

)
, (4.2)

where ⊙ denotes element-wise multiplication.

Proposition 4.1 and 4.2 suggest that our feature selective pooling can be implemented as a differen-
tiable layer. Moreover, Proposition 4.2 gives a matrix inversion free computation of the gradient with
respect to the costs unlike optimal transport based operators (Luise et al., 2018). Thus, the prototypes,
ω, can be jointly learned with the feature extraction efficiently.

4.3 CROSS-BATCH ZERO-SHOT REGULARIZATION

Until now, we formulate a prototype based feature pooling and can learn the prototypes using class
labels with any DML loss. To this end, specializing to classes is a feasible behavior for the prototypes.
On the other hand, we rather want the prototypes to capture transferable attributes so that the learning
can be transferred to the unseen classes as long as the attributes are shared. In other words, learning
with prototype based pooling shapes the embedding geometry in such a way that we have clusters
corresponding to the prototypes in the embedding space. We want such clusters to have transferable
semantics rather than class-specific information. To enable this, we now formulate a mechanism to
predict class embedding vectors from the prototype assignment vectors and use that mechanism to
tailor a loss regularizing the prototypes to have transferable representations.

Our feature selection layer should learn discriminative feature prototypes, ω, using top-down label
information. Consider two randomly selected batches, (b1, b2), of data sampled from the distribution.
If the prototypes are corresponding to discrimantive entities, the weights transferred to them (i.e.,
marginal distribution of prototypes) should be useful in predicting the classes and such behavior
should be consistent between batches for zero-shot prediction. Formally, if one class in b2 does not
exist in b1, a predictor on class labels based on marginal distribution of prototypes for each class of
b1 should still be useful for b2. Sadly, DML losses do not carry such information. We thus formulate
a zero-shot prediction loss to enforce such zero-shot transfer.

We consider that we are given a semantic embedding vector for each of c-many class labels, Υ =
[υi]i∈[c]. We are to predict such embeddings from the marginal distribution of the prototypes. In

5

Under review as a conference paper at ICLR 2023

particular, we use linear predictor, A, to predict label embeddings as υ̂ = Az where z is the
normalized distribution of the weighs on the prototypes;

z = 1
µ

∑
i π

(ε)
i where π(ε) = [π

(ε)
i]i∈[n] . (4.3)

If we consider the prototypes as semantic vectors of some auxiliary labels such as attributes commonly
used in zero-shot learning (ZSL) (Demirel et al., 2017; Xu et al., 2020; Huynh & Elhamifar, 2020),
then we can interpret z as pseudo-attribute predictions. Given pseudo-attribute predictions, {zi}i∈b,
and corresponding class embeddings for a batch, b, we fit the predictor as;

Ab = argmin
A=[ai]i∈[m]

∑
i∈b ∥Azi 9 υyi

∥22 + ϵ
∑

i∈[m] ∥ai∥22 . (P3)

which admits a closed form expression enabling back propagation Ab = Υb (Z
⊺
b Zb + ϵI)91Z⊺

b
where Υb = [υyi

]i∈b, Zb = [zi]i∈b. In practice, we are not provided with the label embeddings,
Υ = [υi]i∈[c]. Nevertheless, having a closed-form expression for Ab enables us to exploit a meta-
learning scheme like (Bertinetto et al., 2018) to formulate a zero-shot prediction loss to learn them
jointly with the rest of the parameters.

Specifically, we split a batch, b, into two as b1 and b2 such that classes are disjoint. We then estimate
attribute embeddings, Abk , according to (P3) using one set and use that estimate to predict the label
embeddings of the other set to form zero-shot prediction loss. Formally, our loss becomes:

LZS(b; θ) =
1

|b2|
∑
i∈b2

log
(
1 +

∑
j∈[c]

e(υj9υyi
)⊺A1 zi

)
+ 1

|b1|
∑
i∈b1

log
(
1 +

∑
j∈[c]

e(υj9υyi
)⊺A2 zi

)
(4.4)

i.e., rearranged soft-max cross-entropy where Ak=Abk with the abuse of notation, and θ = {θf , ω,Υ}
(i.e., CNN parameters, prototype vectors, label embeddings).

We learn attribute embeddings (i.e., columns of A) as sub-task and can define such learning as a
differentiable operation. Thus, our cross-batch zero-shot prediction loss, LZS , is to achieve learning
to learn attribute embeddings for zero-shot prediction. Intuitively, such a regularization should be
useful in better generalization of our pooling operation to unseen classes since pseudo-attribute
predictions are connected to prototypes and the local features. We combine this loss with the metric
learning loss using λ mixing (i.e., (19λ)LDML + λLZS) and jointly optimize.

4.4 IMPLEMENTATION DETAILS

Embedding function. For the embedding function, f(·; θ), we use ResNet20 (He et al., 2016) for
Cifar (Krizhevsky & Hinton, 2009) experiments, and ImageNet (Russakovsky et al., 2015) pretrained
BN-Inception (Ioffe & Szegedy, 2015) for the rest. We exploit architectures until the output before
the global average pooling layer. We add a per-pixel linear transform (i.e., 1x1 convolution), to the
output to obtain the local embedding vectors of size 128.

Pooling layer. For baseline methods, we use global average pooling. For our method, we perform
parameter search and set the hyperparameters accordingly. Specifically, we use 64- or 128-many
prototypes depending on the dataset. We use ε=0.5 for proxy-based losses and ε=5.0 for non-proxy
losses. For the rest, we set µ=0.3, ϵ=0.05, λ=0.1 and we iterate until k=100 in Proposition 4.1.
The embedding vectors upon global pooling are ℓ2 normalized to have unit norm.

Figure 2: Sketch of the method.

6

Under review as a conference paper at ICLR 2023

Figure 3: (a): GAP vs GSP in aggregating features, where tokens denote learned embedding vectors
and samples are obtained by aggregating them. (b): Evaluation on Cifar Collage dataset (b.1), and
(b.2) sample train and test images with their attention maps in terms of pooling weights. Distilled
denotes baseline performance on non-collage dataset (i.e., excluding the shared classes).

5 EXPERIMENTS

We start our empirical study with a synthetic study validating the role of GAP in learning and the
impact of GSP on the feature geometry. We further examine the effectiveness of our generalized
sum pooling in metric learning for various models and datasets. We further perform ablation
studies for the implications of our formulation as well as effects of the hyperparameters. We share
the implementation details as well as complete Tensorflow (Abadi et al., 2016) code base in the
supplemental materials.

5.1 SYNTHETIC STUDY

Figure 4: Comparing the distributions of the
learned 8 prototypes across classes of Ci-
far10 dataset with and without LZS . Pooling
weights are coloured according to the domi-
nant prototype at that location.

We design a synthetic empirical study to evaluate
GSP in a fully controlled manner. We consider 16-
class problem such that classes are defined over
trainable tokens. In this setting, tokens correspond
to semantic entities but we choose to give a specific
working to emphasize that they are trained as part
of the learning. Each class is defined with 4 dis-
tinct tokens and there are also 4 background tokens
shared by all classes. For example, a "car" class
would have tokens like "tire" and "window" as well
as background tokens of "tree" and "road". We sam-
ple class representations from both class specific
and background tokens according to a mixing ratio
µ̃ ∼ N (0.5, 0.1). Such a 50-many feature collec-
tion will correspond to a training sample (i.e., we
are mimicking CNN’s output with trainable tokens).
We then obtain global representations using GAP
and GSP. We visualize the geometry of the embed-
ding space in Fig. 3-(a). With GAP, we observe
overlapping class convex hulls hence classes are not well discriminated. In other other hand, GSP
gives well separated class convex hulls further validation that it learns to ignore background tokens.

We further extend this study to image domain. We consider the 20 super-classes of Cifar100 dataset
where each has 5 sub-classes. For each super-class, we split the sub-classes for train (2), validation
(1), and test (2). We consider 4 super-classes as the shared classes and compose 4x4-stitched collage
images for the rest 16 classes. In particular, we sample an image from a class and then sample 3
images from shared classes. We use ResNet20 backbone pretrained on Cifar100 classification task
and follow the implementation explained in § 4.4. We provide the evaluation results in Fig. 3-(b).
GSP and the proposed zero shot loss effectively increase MAP@R. We also provide sample train and
test images to showcase that our pooling can transfer well to unseen domain.

7

Under review as a conference paper at ICLR 2023

We also evaluate the zero-shot prediction performance of the pseudo-attribute vectors. We train
on Cifar10 dataset with 8 prototypes using ProxyNCA++ Teh et al. (2020) (PNCA) loss with and
without LZS . We then extract pseudo-attribute histograms for each class and visualize them in
Fig. 4. We observe transferable representations with LZS and we visually show in Fig. 4 that the
semantic entities represented by the prototypes transfer across classes. We quantitatively evaluate
such behavior by randomly splitting the classes into half and apply cross-batch zero-shot prediction
explained in § 4.3. Namely, we fit A in (P3) for one subset and use it to predict the class embeddings
for the other set. We pre-compute class embeddings from the dataset as the class mean. To this end,
our evaluation assesses generalization of both the features and the prototypes. We use MAP with
both ℓ2 distance and cosine similarity in our evaluation. We repeat the experiment 1000 times. We
observe in Fig. 4 that zero-shot performance of the prototypes learned with LZS is substantially
superior. We also see that our feature aggregation method enables approximate localization of the
semantic entities. Recent ZSL approaches (Huynh & Elhamifar, 2020; Xu et al., 2020) can provide
attribute localization and share a similar spirit with our method. However, attribute annotations must
be provided for those methods whereas we exploit only class labels to extract attribute-like features.
Our method can be considered as attribute-unsupervised version of these methods.

5.2 DEEP METRIC LEARNING EXPERIMENTS

5.2.1 SETUP

In order to minimize the confounding of factors other than our proposed method, we keep the
comparisons as fair as possible following the suggestions of recent work explicitly studying the fair
evaluation strategies for metric learning (Roth et al., 2020; Musgrave et al., 2020; Fehervari et al.,
2019). Specifically, we mostly follow the procedures proposed in (Musgrave et al., 2020) to provide
fair and unbiased evaluation of our method as well as comparisons with the other methods. We
additionally follow the relatively old-fashioned conventional procedure (Oh Song et al., 2016) for
the evaluation of our method and provide those results in the supplementary material. We provide
full detail of our experimental setup in the supplementary material for complete transparency and
reproducibility.

Datasets. We use CUB-200-2011 (CUB) (Wah et al., 2011), Cars196 (Krause & Golovin, 2014),
In-shop (Liu et al., 2016), and Stanford Online Products (SOP) (Oh Song et al., 2016) with the data
augmentation from (Musgrave et al., 2020).

Evaluation metrics. We report mean average precision (MAP@R) at R where R is defined for each
query and is the total number of true references of the query.

Hyperparameters. We use Adam (Kingma & Ba, 2014) optimizer with learning rate 1095, weight
decay 1094, batch size 32 (4 per class). We train 4-fold: 4 models (1 for each 3/4 train set partition).

Evaluation. Average performance (128D) where each of 4-fold model is trained 3 times resulting in
realization of 34=81 different model collections. In our results we provide mean of 81 evaluations.

Baselines. We implement our method on top of and compare with Contrastive (C2): Contrastive with
positive margin (Wu et al., 2017), MS: Multi-similarity (Wang et al., 2019), Triplet: Triplet (Schroff
et al., 2015), XBM: Cross-batch memory (Wang et al., 2020) with contrastive loss (Hadsell et al.,
2006), PNCA: ProxyNCA++ (Teh et al., 2020), PAnchor: ProxyAnchor (Kim et al., 2020).

5.2.2 RESULTS

We compare our method (GSP) against direct application of GAP with 6 DML methods in 4 datasets.
We also evaluate 13 additional pooling alternatives on Ciffar Collage and CUB datasets. We provide
the results in supplementary material, Tab. 4. Based on CUB performances, we pick generalized
mean pooling (GeMean) (Radenović et al., 2018) and DeLF (Noh et al., 2017) to compare against
in 4 DML benchmarks. We also evaluate max pooling (GMP) and its combination with GAP as we
typically observe GAP+GMP in the recent works (Venkataramanan et al., 2022; Teh et al., 2020;
Kim et al., 2020; Wang et al., 2020). We also apply our method with GMP (GMP+GSP) and with
GeMean (GeMean+GSP) to show that per channel selection is orthogonal to our approach and thus,
GSP can marginally improve those methods as well.

8

Under review as a conference paper at ICLR 2023

Figure 5: Summary of relative improvements recorded in Table 2.

We provide the detailed evaluation results in supplementary material, Tab. 2 and we summarize the
relative MAP@R orderings of the methods with 128D embeddings in Fig. 5. We observe consistent
improvements upon direct application of GAP in all datasets. On the average, we consistently improve
the baselines ≈1% points in MAP@R. Our improvement margins are superior to ones of attention
based DeLF pooling. We improve state-of-the-art (SOTA) XBM method up to 2% points, which is a
good evidence that application of GSP is not limited to loss terms but can be combined with different
DML approaches. We also consistently improve GMP and GeMean pooling methods in all datasets,
yet another evidence that our method can be combined with max pooling based methods.

We additionally evaluate our method with different architectures and methods in conventional setting
(Oh Song et al., 2016) for the comparison with SOTA. The results are provided in supplementary
material, Tab. 3, where we observe that we achieve SOTA performances with XBM (Wang et al.,
2020) and LIBC (Seidenschwarz et al., 2021) methods.

5.2.3 ABLATIONS

Table 1: Effects of the two components: Zero-shot pre-
diction loss (ZSP) and Generalized Sum Pooling (GSP)

Base Method: C2 MAP@R
Component SOP In-shop CUB Cars196

ZSP GSP 512D 128D 512D 128D 512D 128D 512D 128D

45.85 41.79 59.07 55.38 25.95 20.58 24.38 17.02
✓ 46.78 42.66 59.46 55.50 26.25 20.85 25.54 17.88

✓ 46.60 42.55 59.38 55.43 26.49 21.08 25.54 17.67
✓ ✓ 46.81 42.84 60.01 55.94 27.12 21.52 26.25 18.31

Effect of LZS . We empirically show
the effect of LZS on learned represen-
tations in § 5.1. We further examine
the effect of LZS quantitatively by en-
abling/disabling it in 4 datasets. We also
evaluate its effect without GSP by setting
µ=1 where we use GAP with pseudo-
attribute vectors. The results are summa-
rized in Tab. 1 showing that both com-
ponents improves the baseline and their
combination brings the best improvement. We observe similar behavior in Cifar Collage experiment
(Fig. 3-(b)) where the effect of LZS is more substantial.

Effect of µ. As we discuss in § 4.2, GSP is similar to top-k operator with an adaptive k
thanks to entropy smoothing. We empirically validate such behavior in CUB dataset with

Figure 6: Effect of µ in CUB
dataset with C2 loss. Shaded
regions represent ∓std.

C2 loss by sweeping µ parameter controlling top-k behavior. We
plot the performances in Fig. 6. Relatively lower values of µ per-
forms similarly. As we increase µ, the performance drops towards
GAP due to possibly overestimating the foreground ratio.

6 CONCLUSION

Building on perspective explaining the success of GAP, we pro-
posed a learnable and generalized version. Our proposed general-
ization is a trainable pooling layer that selects the feature subset
and re-weight it during pooling. To enable effective learning of the
proposed layer, we also proposed a regularization loss to improve
zero-shot transfer. With extensive empirical studies, we validated
the effectiveness of the proposed pooling layer in various metric
learning benchmarks.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: a system for large-scale machine learning. In
OSDI, volume 16, pp. 265–283, 2016.

Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pajdla, and Josef Sivic. Netvlad: Cnn architecture for
weakly supervised place recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 5297–5307, 2016.

Heinz H Bauschke and Adrian S Lewis. Dykstras algorithm with bregman projections: A convergence proof.
Optimization, 48(4):409–427, 2000.

Luca Bertinetto, Joao F Henriques, Philip Torr, and Andrea Vedaldi. Meta-learning with differentiable closed-
form solvers. In International Conference on Learning Representations, 2018.

Lev M Bregman. The relaxation method of finding the common point of convex sets and its application to the
solution of problems in convex programming. USSR computational mathematics and mathematical physics, 7
(3):200–217, 1967.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural information
processing systems, 26, 2013.

Marco Cuturi, Olivier Teboul, and Jean-Philippe Vert. Differentiable ranking and sorting using optimal transport.
Advances in neural information processing systems, 32, 2019.

Berkan Demirel, Ramazan Gokberk Cinbis, and Nazli Ikizler-Cinbis. Attributes2classname: A discrimina-
tive model for attribute-based unsupervised zero-shot learning. In Proceedings of the IEEE international
conference on computer vision, pp. 1232–1241, 2017.

M Dong, X Yang, R Zhu, Y Wang, and J Xue. Generalization bound of gradient descent for non-convex metric
learning. Neural Information Processing Systems Foundation, 2020.

Thibaut Durand, Nicolas Thome, and Matthieu Cord. Weldon: Weakly supervised learning of deep convolutional
neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
4743–4752, 2016.

Aleksandr Ermolov, Leyla Mirvakhabova, Valentin Khrulkov, Nicu Sebe, and Ivan Oseledets. Hyperbolic vision
transformers: Combining improvements in metric learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 7409–7419, 2022.

Istvan Fehervari, Avinash Ravichandran, and Srikar Appalaraju. Unbiased evaluation of deep metric learning
algorithms. arXiv preprint arXiv:1911.12528, 2019.

Zilin Gao, Jiangtao Xie, Qilong Wang, and Peihua Li. Global second-order pooling convolutional networks.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3024–3033,
2019.

Geonmo Gu, Byungsoo Ko, and Han-Gyu Kim. Proxy synthesis: Learning with synthetic classes for deep metric
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 1460–1468, 2021.

Yeti Z Gurbuz, Ogul Can, and A Aydin Alatan. Deep metric learning with chance constraints. arXiv preprint
arXiv:2209.09060, 2022.

Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an invariant mapping. In
2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), volume 2,
pp. 1735–1742. IEEE, 2006.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual networks. In
European conference on computer vision, pp. 630–645. Springer, 2016.

Dat Huynh and Ehsan Elhamifar. Fine-grained generalized zero-shot learning via dense attribute-based attention.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 4483–4493,
2020.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International conference on machine learning, pp. 448–456. PMLR, 2015.

10

Under review as a conference paper at ICLR 2023

Pierre Jacob, David Picard, Aymeric Histace, and Edouard Klein. Metric learning with horde: High-order
regularizer for deep embeddings. In The IEEE International Conference on Computer Vision (ICCV), October
2019.

Yannis Kalantidis, Clayton Mellina, and Simon Osindero. Cross-dimensional weighting for aggregated deep
convolutional features. In European conference on computer vision, pp. 685–701. Springer, 2016.

Sungyeon Kim, Dongwon Kim, Minsu Cho, and Suha Kwak. Proxy anchor loss for deep metric learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3238–3247,
2020.

Wonsik Kim, Bhavya Goyal, Kunal Chawla, Jungmin Lee, and Keunjoo Kwon. Attention-based ensemble for
deep metric learning. In Proceedings of the European Conference on Computer Vision (ECCV), pp. 736–751,
2018.

Yonghyun Kim and Wonpyo Park. Multi-level distance regularization for deep metric learning. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 35, pp. 1827–1835, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Byungsoo Ko and Geonmo Gu. Embedding expansion: Augmentation in embedding space for deep metric
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
7255–7264, 2020.

Andreas Krause and Daniel Golovin. Submodular function maximization. In Tractability: Practical Approaches
to Hard Problems, pp. 71–104. Cambridge University Press, 2014.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Technical report,
Citeseer, 2009.

Yunwen Lei, Mingrui Liu, and Yiming Ying. Generalization guarantee of sgd for pairwise learning. Advances in
Neural Information Processing Systems, 34, 2021.

Xudong Lin, Yueqi Duan, Qiyuan Dong, Jiwen Lu, and Jie Zhou. Deep variational metric learning. In
Proceedings of the European Conference on Computer Vision (ECCV), pp. 689–704, 2018.

Chang Liu, Han Yu, Boyang Li, Zhiqi Shen, Zhanning Gao, Peiran Ren, Xuansong Xie, Lizhen Cui, and
Chunyan Miao. Noise-resistant deep metric learning with ranking-based instance selection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6811–6820, 2021.

Ziwei Liu, Ping Luo, Shi Qiu, Xiaogang Wang, and Xiaoou Tang. Deepfashion: Powering robust clothes
recognition and retrieval with rich annotations. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 1096–1104, 2016.

Tzon-Tzer Lu and Sheng-Hua Shiou. Inverses of 2× 2 block matrices. Computers & Mathematics with
Applications, 43(1-2):119–129, 2002.

Giulia Luise, Alessandro Rudi, Massimiliano Pontil, and Carlo Ciliberto. Differential properties of sinkhorn
approximation for learning with wasserstein distance. Advances in Neural Information Processing Systems,
31, 2018.

Grégoire Mialon, Dexiong Chen, Alexandre d’Aspremont, and Julien Mairal. A trainable optimal transport
embedding for feature aggregation and its relationship to attention. In ICLR 2021-The Ninth International
Conference on Learning Representations, 2021.

Timo Milbich, Karsten Roth, Homanga Bharadhwaj, Samarth Sinha, Yoshua Bengio, Björn Ommer, and
Joseph Paul Cohen. Diva: Diverse visual feature aggregation for deep metric learning. In European
Conference on Computer Vision, pp. 590–607. Springer, 2020.

Naila Murray, Hervé Jégou, Florent Perronnin, and Andrew Zisserman. Interferences in match kernels. IEEE
transactions on pattern analysis and machine intelligence, 39(9):1797–1810, 2016.

Kevin Musgrave, Serge Belongie, and Ser-Nam Lim. A metric learning reality check. In European Conference
on Computer Vision, pp. 681–699. Springer, 2020.

Tony Ng, Vassileios Balntas, Yurun Tian, and Krystian Mikolajczyk. Solar: second-order loss and attention for
image retrieval. In European conference on computer vision, pp. 253–270. Springer, 2020.

11

Under review as a conference paper at ICLR 2023

Hyeonwoo Noh, Andre Araujo, Jack Sim, Tobias Weyand, and Bohyung Han. Large-scale image retrieval
with attentive deep local features. In Proceedings of the IEEE International Conference on Computer Vision
(ICCV), Oct 2017.

Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. Deep metric learning via lifted structured
feature embedding. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
4004–4012, 2016.

Filip Radenović, Giorgos Tolias, and Ondřej Chum. Fine-tuning cnn image retrieval with no human annotation.
IEEE transactions on pattern analysis and machine intelligence, 41(7):1655–1668, 2018.

Karsten Roth, Biagio Brattoli, and Bjorn Ommer. Mic: Mining interclass characteristics for improved metric
learning. In The IEEE International Conference on Computer Vision (ICCV), October 2019.

Karsten Roth, Timo Milbich, Samarth Sinha, Prateek Gupta, Bjorn Ommer, and Joseph Paul Cohen. Revisiting
training strategies and generalization performance in deep metric learning. In International Conference on
Machine Learning, pp. 8242–8252. PMLR, 2020.

Karsten Roth, Timo Milbich, Bjorn Ommer, Joseph Paul Cohen, and Marzyeh Ghassemi. S2sd: Simultaneous
similarity-based self-distillation for deep metric learning. In ICML 2021: 38th International Conference on
Machine Learning, pp. 9095–9106, 2021.

Karsten Roth, Oriol Vinyals, and Zeynep Akata. Non-isotropy regularization for proxy-based deep metric
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
7420–7430, 2022.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition challenge.
International journal of computer vision, 115(3):211–252, 2015.

Artsiom Sanakoyeu, Vadim Tschernezki, Uta Buchler, and Bjorn Ommer. Divide and conquer the embedding
space for metric learning. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2019.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face recognition
and clustering. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
815–823, 2015.

Jenny Seidenschwarz, Ismail Elezi, and Laura Leal-Taixé. Learning intra-batch connections for deep metric
learning. In Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July
2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research, pp. 9410–9421. PMLR,
2021.

Eu Wern Teh, Terrance DeVries, and Graham W Taylor. Proxynca++: Revisiting and revitalizing proxy
neighborhood component analysis. In European Conference on Computer Vision (ECCV). Springer, 2020.

Giorgos Tolias, Tomas Jenicek, and Ondřej Chum. Learning and aggregating deep local descriptors for instance-
level recognition. In European Conference on Computer Vision, pp. 460–477. Springer, 2020.

Shashanka Venkataramanan, Bill Psomas, Ewa Kijak, laurent amsaleg, Konstantinos Karantzalos, and Yannis
Avrithis. It takes two to tango: Mixup for deep metric learning. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=ZKy2X3dgPA.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd birds-200-
2011 dataset. 2011.

Xun Wang, Xintong Han, Weilin Huang, Dengke Dong, and Matthew R. Scott. Multi-similarity loss with
general pair weighting for deep metric learning. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019.

Xun Wang, Haozhi Zhang, Weilin Huang, and Matthew R Scott. Cross-batch memory for embedding learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6388–6397,
2020.

Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. Cbam: Convolutional block attention
module. In Proceedings of the European conference on computer vision (ECCV), pp. 3–19, 2018.

Chao-Yuan Wu, R Manmatha, Alexander J Smola, and Philipp Krahenbuhl. Sampling matters in deep embedding
learning. In Proceedings of the IEEE International Conference on Computer Vision, pp. 2840–2848, 2017.

12

https://openreview.net/forum?id=ZKy2X3dgPA

Under review as a conference paper at ICLR 2023

Yujia Xie, Hanjun Dai, Minshuo Chen, Bo Dai, Tuo Zhao, Hongyuan Zha, Wei Wei, and Tomas Pfister.
Differentiable top-k with optimal transport. Advances in Neural Information Processing Systems, 33:20520–
20531, 2020.

Wenjia Xu, Yongqin Xian, Jiuniu Wang, Bernt Schiele, and Zeynep Akata. Attribute prototype network for
zero-shot learning. Advances in Neural Information Processing Systems, 33:21969–21980, 2020.

Hong Xuan, Richard Souvenir, and Robert Pless. Deep randomized ensembles for metric learning. In Proceedings
of the European Conference on Computer Vision (ECCV), pp. 723–734, 2018.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In European
conference on computer vision, pp. 818–833. Springer, 2014.

Dingyi Zhang, Yingming Li, and Zhongfei Zhang. Deep metric learning with spherical embedding. Advances in
Neural Information Processing Systems, 33, 2020.

Wenliang Zhao, Yongming Rao, Ziyi Wang, Jiwen Lu, and Jie Zhou. Towards interpretable deep metric learning
with structural matching. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
9887–9896, 2021.

Wenzhao Zheng, Chengkun Wang, Jiwen Lu, and Jie Zhou. Deep compositional metric learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9320–9329, 2021a.

Wenzhao Zheng, Borui Zhang, Jiwen Lu, and Jie Zhou. Deep relational metric learning. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 12065–12074, 2021b.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep features
for discriminative localization. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 2921–2929, 2016.

Bolei Zhou, David Bau, Aude Oliva, and Antonio Torralba. Interpreting deep visual representations via network
dissection. IEEE transactions on pattern analysis and machine intelligence, 2018.

Yuehua Zhu, Muli Yang, Cheng Deng, and Wei Liu. Fewer is more: A deep graph metric learning perspective
using fewer proxies. Advances in Neural Information Processing Systems, 33:17792–17803, 2020.

13

Under review as a conference paper at ICLR 2023

SUPPLEMENTAL MATERIAL FOR "GENERALIZED SUM POOLING FOR METRIC
LEARNING"

1 EXTENDED EMPIRICAL STUDY FOR DEEP METRIC LEARNING

In the following sections, we explain our empirical study in detail and provide additional experiments
on effect of hyperparameters as well as evaluation with the conventional experimental settings.

REPRODUCIBILITY

We provide full detail of our experimental setup and recapitulate the implementation details for the
sake of complete transparency and reproducibility. Code is available at: GSP-DML Framework.

1.1 SETUP

1.1.1 DATASETS

We perform our experiments on 4 widely-used benchmark datasets: Stanford Online Products
(SOP) (Oh Song et al., 2016), In-shop (Liu et al., 2016), Cars196 (Krause & Golovin, 2014) and,
CUB-200-2011 (CUB) (Wah et al., 2011).

SOP has 22,634 classes with 120,053 product images. The first 11,318 classes (59,551 images) are
split for training and the other 11,316 (60,502 images) classes are used for testing.

In-shop has 7,986 classes with 72,712 images. We use 3,997 classes with 25,882 images as the
training set. For the evaluation, we use 14,218 images of 3,985 classes as the query and 12,612
images of 3,985 classes as the gallery set.

Cars196 contains 196 classes with 16,185 images. The first 98 classes (8,054 images) are used for
training and remaining 98 classes (8,131 images) are reserved for testing.

CUB-200-2011 dataset consists of 200 classes with 11,788 images. The first 100 classes (5,864
images) are split for training, the rest of 100 classes (5,924 images) are used for testing.

Data augmentation follows (Musgrave et al., 2020). During training, we resize each image so that its
shorter side has length 256, then make a random crop between 40 and 256, and aspect ratio between
3/4 and 4/3. We resize the resultant image to 227x227 and apply random horizontal flip with 50%
probability. During evaluation, images are resized to 256 and then center cropped to 227x227.

1.1.2 TRAINING SPLITS

Fair evaluation. We split datasets into disjoint training, validation and test sets according to
(Musgrave et al., 2020). In particular, we partition 50%/50% for training and test, and further split
training data to 4 partitions where 4 models are to be trained by exploiting 1/4 as validation while
training on 3/4.

Conventional evaluation. Following relatively old-fashioned conventional evaluation (Oh Song
et al., 2016), we use the whole train split of the dataset for training and we use the test split for
evaluation as well as monitoring the training for early stopping.

Hyperparameter tuning. For the additional experiments related to the effect of hyperparameters,
we split training set into 5 splits and train a single model on the 4/5 of the set while using 1/5 for the
validation.

1.1.3 EVALUATION METRICS

We consider precision at 1 (P@1) and mean average precision (MAP@R) at R where R is defined
for each query1 and is the total number of true references as the query. Among those, MAP@R
performance metric is shown to better reflect the geometry of the embedding space and to be less

1A query is an image for which similar images are to be retrieved, and the references are the images in the
searchable database.

14

https://drive.google.com/drive/folders/1CSSAKLcTJyK75xV_wMPQmuxkwo_qdtdH?usp=sharing

Under review as a conference paper at ICLR 2023

noisy as the evaluation metric (Musgrave et al., 2020). Thus, we use MAP@R to monitor training in
our experiments except for conventional evaluation setting where we monitor P@1.

P@1: Find the nearest reference to the query. The score for that query is 1 if the reference is of the
same class, 0 otherwise. Average over all queries gives P@1 metric.

P@R: For a query, i, find Ri nearest references to the query and let ri be the number of true references
in those Ri-neighbourhood. The score for that query is P@Ri = ri/Ri. Average over all queries gives
P@R metric, i.e., P@R = 1

n

∑
i∈[n]

P@Ri, where n is the number of queries.

MAP@R: For a query, i, we define MAP@Ri := 1
Ri

∑
i∈[Ri]

P (i), where P (i) = P@Ri if ith re-

trieval is correct or 0 otherwise. Average over all queries gives MAP@R metric, i.e., MAP@R =
1
n

∑
i∈[n]

MAP@Ri, where n is the number of queries.

1.1.4 TRAINING PROCEDURE

Fair evaluation. We use Adam (Kingma & Ba, 2014) optimizer with constant 1095 learning rate,
1094 weight decay, and default moment parameters, β1=.9 and β2=.99. We use batch size of 32
(4 samples per class). We evaluate validation MAP@R for every 100 steps of training in CUB and
Cars196, for 1000 steps in SOP and In-shop. We stop training if no improvement is observed for 15
steps in CUB and Cars196, and 10 steps in SOP and In-shop. We recover the parameters with the best
validation performance. Following (Musgrave et al., 2020), we train 4 models for each 3/4 partition
of the train set. Each model is trained 3 times. Hence, we have 34 = 81 many realizations of 4-model
collections. We present the average performance as well as the standard deviation (std) of such 81
models’ evaluations.

Conventional evaluation. We use Adam (Kingma & Ba, 2014) optimizer with default moment
parameters, β1=.9 and β2=.99. Following recent works (Kim et al., 2020), we use reduce on plateau
learning rate scheduler with patience 4. The initial learning rate is 1095 for CUB, and 1094 for Cars,
SOP and In-shop. We use 1094 weight decay for BNInception backbone and 4 1094 wight decay for
ResNet50 backbone. We use batch size of 128 (4 samples per class) for BNInception backbone and
112 (4 samples per class) for ResNet backbone (following (Roth et al., 2020)). We evaluate validation
P@1 for every 25 steps of training in CUB and Cars196, for 250 steps in SOP and In-shop. We stop
training if no improvement is observed for 15 steps in CUB and Cars196, and 10 steps in SOP and
In-shop. We recover the parameters with the best validation performance. We repeat each experiment
3 times and report the best result. For the evaluations on LIBC framework (Seidenschwarz et al.,
2021), we follow their experimental setting.

Hyperparameter tuning. We use Adam (Kingma & Ba, 2014) optimizer with constant 1095 learning
rate, 1094 weight decay, and default moment parameters, β1=.9 and β2=.99. We use batch size of
32 (4 samples per class). We evaluate validation MAP@R for every 100 steps of training in CUB and
Cars196, for 1000 steps in SOP and In-shop. We stop training if no improvement is observed for 10
steps in CUB and Cars196, and 7 steps in SOP and In-shop. We recover the parameters with the best
validation performance. We train a single model on the 4/5 of the training set while using 1/5 for the
validation. We repeat each experiment 3 times and report the averaged result.

1.1.5 EMBEDDING VECTORS

Fair evaluation. Embedding dimension is fixed to 128. During training and evaluation, the em-
bedding vectors are ℓ2 normalized. We follow the evaluation method proposed in (Musgrave et al.,
2020) and produce two results: i) Average performance (128 dimensional) of 4-fold models and
ii) Ensemble performance (concatenated 512 dimensional) of 4-fold models where the embedding
vector is obtained by concatenated 128D vectors of the individual models before retrieval.

Conventional evaluation. Embedding dimension is 512 in BNInception and ResNet50 experiments
for both XBM and LIBC.

Hyperparameter tuning. Embedding dimension is fixed to 128.

15

Under review as a conference paper at ICLR 2023

1.1.6 BASELINES WITH GSP

We evaluate our method with C1+XBM+GSP: Cross-batch memory (XBM) (Wang et al., 2020)
with original Contrastive loss (C1) (Hadsell et al., 2006), C2+GSP: Contrastive loss with positive
margin (Wu et al., 2017), MS+GSP: Multi-similarity (MS) loss (Wang et al., 2019), Triplet+GSP:
Triplet loss (Schroff et al., 2015), PNCA+GSP: ProxyNCA++ loss (Teh et al., 2020), PAnchor+GSP:
ProxyAnchor loss (Kim et al., 2020).

1.1.7 HYPERPARAMETERS

For the hyperparameter selection, we exploit the recent work (Musgrave et al., 2020) that has
performed parameter search via Bayesian optimization on variety of losses. We further experiment
the suggested parameters from the original papers and official implementations. We pick the best
performing parameters. We perform no further parameter tuning for the baseline methods’ parameters
when applied with our method to purely examine the effectiveness of our method.

C1: We adopted XBM’s official implementation for fair comparison. We use 0.5 margin for all
datasets.

C2: C2 has two parameters, (m+,m−): positive margin, m+, and negative margin. We set (m+,m−)
to (0, 0.3841), (0.2652, 0.5409), (0.2858, 0.5130), (0.2858, 0.5130) for CUB, Cars196, In-shop and
SOP, respectively.

Triplet: We set its margin to 0.0961, 0.1190, 0.0451, 0.0451 for CUB, Cars196, In-shop and SOP,
respectively.

MS: MS has three parameters (α, β, λ). We set (α, β, λ) to (2, 40, 0.5), (14.35, 75.83, 0.66),
(8.49, 57.38, 0.41), (2, 40, 0.5) for CUB, Cars196, In-shop and SOP, respectively.

ProxyAnchor: We set its two paremeters (δ, α) to (0.1, 32) for all datasets. We use 1 sample per
class in batch setting (i.e., 32 classes with 1 samples per batch), we perform 1 epoch warm-up training
of the embedding layer, and we apply learning rate multiplier of 100 for the proxies during training.
For SOP dataset, we use 5 1096 learning rate.

ProxyNCA++: We set its temperature parameter to 0.11 for all datasets. We use 1 sample per class
in batch setting (i.e., 32 classes with 1 samples per batch), we perform 1 epoch warm-up training of
the embedding layer, and we apply learning rate multiplier of 100 for the proxies during training.

XBM: We evaluate XBM with C1 since in the original paper, contrastive loss is reported to be the
best performing baseline with XBM. We set the memory size of XBM according to the dataset. For
CUB and Cars196, we use memory size of 25 batches. For In-shop, we use 400 batches and for SOP
we use 1400 batches. We perform 1K steps of training with the baseline loss prior to integrate XBM
loss in order to ensure XBM’s slow drift assumption.

GSP: For the hyperparameters of our method, we perform parameters search, details of which are
provided in § 1.6. We use 64-many prototypes in CUB and Cars, and 128-many prototypes in SOP
and In-shop. We use ε=0.5 for proxy-based losses and ε=5.0 for non-proxy losses. For the rest,
we set µ=0.3, ϵ=0.05, and we iterate until k=100 in Proposition 4.1. For zero-shot prediction loss
coefficient (i.e., (19λ)LDML + λLZS), we set λ=0.1.

1.2 FAIR EVALUATION

We compare our method (GSP) against direct application of GAP with 6 DML methods in 4 datasets.
We also compare our method with generalized mean pooling (GeMean) (Radenović et al., 2018) and
DeLF (Noh et al., 2017), based on the results of evaluation 13 additional pooling alternatives on
Ciffar Collage and CUB datasets (Tab. 4). We also evaluate max pooling (GMP) and its combination
with GAP as we typically observe GAP+GMP in the recent works (Venkataramanan et al., 2022; Teh
et al., 2020; Kim et al., 2020; Wang et al., 2020). We also apply our method with GMP (GMP+GSP)
and with GeMean (GeMean+GSP) to show that per channel selection is orthogonal to our approach
and thus, GSP can marginally improve those methods as well.

We observe consistent improvements upon direct application of GAP in all datasets. Predominantly,
we achieve more improvement in MAP@R metric than R@1 (P@1) which is shown to be a noisy

16

Under review as a conference paper at ICLR 2023

Table 2: Comparison with the existing methods for the retrieval task on SOP, In-shop, CUB, Cars
datasets. Experimental setting follows § 1.1-Fair evaluation. ∓ denotes 1 std margin. Red: the best,
Blue: the second best, Bold: the loss term specific best.

Dataset→ SOP In-shop CUB Cars196

Dim. → 512D 128D 512D 128D 512D 128D 512D 128D

Method↓ P@1 MAP@R P@1 MAP@R P@1 MAP@R P@1 MAP@R P@1 MAP@R P@1 MAP@R P@1 MAP@R P@1 MAP@R

C1+

GAP 69.29
∓0.11

40.40
∓0.15

65.15
∓0.10

36.50
∓0.11

80.11
∓0.19

50.32
∓0.14

75.83
∓0.14

46.42
∓0.13

63.32
∓0.57

23.49
∓0.31

56.34
∓0.35

19.37
∓0.29

78.01
∓0.38

22.87
∓0.33

65.61
∓0.59

16.06
∓0.14

XBM+GAP 76.54
∓0.32

48.58
∓0.47

73.22
∓0.48

44.55
∓0.57

87.76
∓0.26

57.53
∓0.41

85.26
∓0.37

54.40
∓0.45

65.56
∓0.48

25.65
∓0.24

57.48
∓0.41

20.27
∓0.19

83.55
∓0.35

27.53
∓0.22

72.17
∓0.30

18.98
∓0.17

XBM+GSP 77.88
∓0.18

50.65
∓0.28

74.84
∓0.19

46.69
∓0.28

88.33
∓0.19

58.55
∓0.29

85.95
∓0.21

55.30
∓0.21

67.00
∓0.49

26.05
∓0.15

58.89
∓0.49

20.60
∓0.16

83.31
∓0.22

27.88
∓0.23

73.04
∓0.39

19.26
∓0.19

C2+

GAP 74.20
∓0.23

45.85
∓0.31

70.54
∓0.19

41.79
∓0.26

86.47
∓0.15

59.07
∓0.21

83.42
∓0.12

55.38
∓0.13

67.35
∓0.50

25.95
∓0.21

58.87
∓0.36

20.58
∓0.13

80.96
∓0.48

24.38
∓0.58

69.55
∓0.42

17.02
∓0.31

GSP 74.91
∓0.12

46.81
∓0.17

71.43
∓0.11

42.84
∓0.14

86.90
∓0.17

60.01
∓0.29

83.57
∓0.18

55.94
∓0.17

68.85
∓0.41

27.12
∓0.27

60.42
∓0.36

21.52
∓0.16

82.83
∓0.27

26.25
∓0.34

71.40
∓0.27

18.31
∓0.22

DeLF 74.59
∓0.15

46.54
∓0.19

45.53
∓0.18

42.47
∓0.17

86.65
∓0.16

59.20
∓0.22

83.51
∓0.09

55.36
∓0.12

68.66
∓0.32

27.06
∓0.18

59.85
∓0.18

21.42
∓0.16

81.85
∓0.41

24.77
∓0.38

69.95
∓0.38

17.32
∓0.25

GeMean 74.92
∓0.13

46.99
∓0.15

71.53
∓0.11

43.12
∓0.12

86.62
∓0.15

59.12
∓0.19

83.83
∓0.09

55.70
∓0.12

68.79
∓0.36

27.12
∓0.19

60.37
∓0.30

21.50
∓0.15

82.43
∓0.60

25.27
∓0.63

70.23
∓0.55

17.41
∓0.45

GeMean+GSP 75.32
∓0.08

47.69
∓0.13

71.93
∓0.10

43.71
∓0.13

86.94
∓0.15

59.98
∓0.21

84.35
∓0.19

56.34
∓0.14

69.11
∓0.49

27.56
∓0.18

60.81
∓0.34

21.84
∓0.19

83.62
∓0.36

26.98
∓0.31

72.38
∓0.28

19.05
∓0.22

GMP 74.09
∓0.15

46.13
∓0.19

69.68
∓0.20

41.31
∓0.22

86.38
∓0.12

59.04
∓0.10

83.04
∓0.13

54.89
∓0.07

68.13
∓0.40

26.43
∓0.21

58.99
∓0.34

20.66
∓0.18

81.83
∓0.62

25.11
∓0.72

69.05
∓0.61

17.08
∓0.47

GMP+GAP 74.71
∓0.11

46.70
∓0.15

70.83
∓0.10

42.38
∓0.15

86.58
∓0.16

59.22
∓0.18

83.41
∓0.12

55.37
∓0.15

67.88
∓0.48

26.63
∓0.23

59.24
∓0.32

20.88
∓0.17

82.14
∓0.40

25.66
∓0.44

69.81
∓0.38

17.62
∓0.32

GMP+GSP 75.08
∓0.1

47.12
∓0.17

71.18
∓0.15

42.80
∓0.18

86.79
∓0.16

59.43
∓0.28

83.86
∓0.15

55.76
∓0.19

68.47
∓0.58

27.49
∓0.36

60.19
∓0.41

21.69
∓0.35

82.54
∓0.46

26.30
∓0.43

71.03
∓0.48

18.24
∓0.29

MS+

GAP 72.81
∓0.14

44.19
∓0.21

69.09
∓0.10

40.34
∓0.16

87.01
∓0.20

58.79
∓0.37

83.87
∓0.21

54.85
∓0.34

65.43
∓0.46

24.95
∓0.15

57.57
∓0.27

20.13
∓0.12

83.73
∓0.34

27.16
∓0.43

72.54
∓0.43

18.73
∓0.31

GSP 73.05
∓0.11

44.72
∓0.17

69.44
∓0.15

40.87
∓0.19

88.28
∓0.21

60.49
∓0.24

85.28
∓0.19

56.62
∓0.26

65.50
∓0.33

25.09
∓0.21

57.39
∓0.15

20.34
∓0.22

84.27
∓0.35

28.58
∓0.40

73.74
∓0.32

19.91
∓0.31

Triplet+

GAP 74.54
∓0.24

45.88
∓0.30

69.41
∓0.38

40.01
∓0.39

85.99
∓0.36

59.67
∓0.46

81.75
∓0.38

54.25
∓0.45

64.11
∓0.66

23.65
∓0.40

55.62
∓0.46

18.54
∓0.31

77.58
∓0.60

22.67
∓0.58

64.61
∓0.59

15.74
∓0.34

GSP 75.59
∓0.23

47.35
∓0.32

70.65
∓0.20

41.38
∓0.22

86.75
∓0.27

60.85
∓0.47

82.74
∓0.33

55.54
∓0.46

66.09
∓0.52

24.80
∓0.33

57.12
∓0.42

19.38
∓0.25

78.93
∓0.30

23.44
∓0.29

65.81
∓0.35

16.14
∓0.21

PNCA+

GAP 75.18
∓0.15

47.11
∓0.16

72.15
∓0.06

43.57
∓0.08

87.26
∓0.14

57.43
∓0.14

84.86
∓0.08

54.41
∓0.10

65.74
∓0.51

25.27
∓0.23

58.19
∓0.36

20.63
∓0.20

82.33
∓0.25

26.21
∓0.22

70.75
∓0.18

18.61
∓0.08

GSP 75.68
∓0.11

47.74
∓0.14

72.37
∓0.06

43.95
∓0.06

87.35
∓0.10

57.65
∓0.12

85.13
∓0.10

54.68
∓0.08

65.80
∓0.38

25.48
∓0.25

58.20
∓0.22

20.75
∓0.19

82.70
∓0.27

26.93
∓0.18

71.55
∓0.32

19.20
∓0.17

DeLF 75.29
∓0.09

47.44
∓0.11

72.05
∓0.06

43.62
∓0.07

87.19
∓0.11

57.44
∓0.16

84.55
∓0.04

54.13
∓0.10

65.42
∓0.34

25.31
∓0.16

57.98
∓0.24

20.51
∓0.14

82.37
∓0.35

26.63
∓0.22

71.06
∓0.27

18.81
∓0.14

GeMean 75.64
∓0.09

47.82
∓0.09

72.75
∓0.07

44.43
∓0.06

87.63
∓0.10

57.88
∓0.13

85.48
∓0.14

55.14
∓0.12

66.33
∓0.33

25.74
∓0.20

58.52
∓0.39

20.71
∓0.20

83.83
∓0.29

27.44
∓0.15

72.14
∓0.28

19.16
∓0.12

GeMean+GSP 75.89
∓0.11

48.17
∓0.12

72.91
∓0.04

44.61
∓0.06

87.64
∓0.10

58.12
∓0.16

85.58
∓0.07

55.25
∓0.08

67.39
∓0.53

26.19
∓0.26

59.39
∓0.40

21.31
∓0.21

83.09
∓0.25

27.96
∓0.30

71.95
∓0.27

19.74
∓0.19

GMP 74.43
∓0.08

46.33
∓0.08

70.80
∓0.07

42.24
∓0.08

86.94
∓0.13

56.79
∓0.13

84.53
∓0.08

53.86
∓0.09

65.74
∓0.51

25.36
∓0.29

57.61
∓0.38

20.33
∓0.29

83.06
∓0.33

26.96
∓0.27

71.19
∓0.25

18.92
∓0.15

GMP+GAP 75.19
∓0.09

47.26
∓0.11

71.97
∓0.04

43.55
∓0.06

87.21
∓0.14

57.34
∓0.15

84.95
∓0.09

54.42
∓0.10

65.91
∓0.35

25.56
∓0.26

57.92
∓0.37

20.68
∓0.20

82.92
∓0.41

26.92
∓0.36

71.33
∓0.22

18.95
∓0.19

GMP+GSP 75.41
∓0.12

47.50
∓0.12

72.10
∓0.07

43.73
∓0.09

87.43
∓0.10

57.68
∓0.14

85.10
∓0.10

54.70
∓0.08

66.14
∓0.48

25.85
∓0.23

58.12
∓0.32

20.96
∓0.18

83.46
∓0.31

27.12
∓0.21

72.04
∓0.39

19.38
∓0.20

PAnchor+

GAP 76.48
∓0.19

48.08
∓0.26

73.50
∓0.14

44.33
∓0.20

88.02
∓0.21

58.02
∓0.25

85.83
∓0.18

54.98
∓0.22

68.04
∓0.41

26.20
∓0.21

59.91
∓0.34

20.94
∓0.15

85.26
∓0.31

27.14
∓0.20

75.08
∓0.23

19.15
∓0.13

GSP 77.13
∓0.16

49.05
∓0.22

74.07
∓0.13

45.07
∓0.17

88.10
∓0.11

58.44
∓0.14

85.97
∓0.06

55.34
∓0.13

68.40
∓0.45

26.59
∓0.25

60.80
∓0.31

21.44
∓0.17

86.46
∓0.39

28.43
∓0.33

75.88
∓0.25

19.90
∓0.20

measure for DML evaluation (Musgrave et al., 2020). On the average, we consistently improve the
baselines ≈1% points in MAP@R. Our improvement margins are superior to ones of attention based
DeLF pooling. We improve state-of-the-art (SOTA) XBM method up to 2% points, which is a good
evidence that application of GSP is not limited to loss terms but can be combined with different DML
approaches. We also consistently improve GMP and GeMean pooling methods in all datasets, yet
another evidence that our method can be combined with max pooling based methods.

1.3 CONVENTIONAL EVALUATION

We additionally follow the relatively old-fashioned conventional procedure (Oh Song et al., 2016)
for the evaluation of our method. We use BN-Inception (Ioffe & Szegedy, 2015) and ResNet50
(He et al., 2016) architectures as the backbones. We obtain 512D (BN-Inception and ResNet50)
embeddings through linear transformation after global pooling layer. Aligned with the recent
approaches (Venkataramanan et al., 2022; Teh et al., 2020; Kim et al., 2020; Wang et al., 2020), we
use global max pooling as well as global average pooling. The rest of the settings are disclosed in
§ 1.1.

17

Under review as a conference paper at ICLR 2023

Table 3: Comparison with the existing methods for the retrieval task in conventional experimental
settings with BN-Inception and ResNet50 backbones where superscripts denote embedding size. Red:
the best. Blue: the second best. Bold: previous SOTA. †Results obtained from (Seidenschwarz
et al., 2021).

(a)

Backbone→ BN-Inception-512D
Dataset→ CUB Cars196 SOP In-shop
Method ↓ R@1 R@1 R@1 R@1

C1+XBM
(Wang et al., 2020)

65.80 82.00 79.50 89.90

ProxyAnchor
(Kim et al., 2020)

68.40 86.10 79.10 91.50

DiVA
(Milbich et al., 2020)

66.80 84.10 78.10 -

ProxyFewer
(Zhu et al., 2020)

66.60 85.50 78.00 -

Margin+S2SD
(Roth et al., 2021)

68.50 87.30 79.30 -

C1+XBM 64.32
(23.59)

77.63
(21.67)

79.29
(52.59)

90.16
(61.39)

C1+XBM+GSP 64.99
(25.35)

79.07
(22.51)

79.59
(52.70)

90.92
(63.25)

(b)

Backbone→ ResNet50
Dataset→ CUB Cars196 SOP In-shop
Method ↓ R@1 R@1 R@1 R@1

C1+XBM128

(Wang et al., 2020)
- - 80.60 91.30

ProxyAnchor512
(Kim et al., 2020)

69.70 87.70 80.00† 92.10†

DiVA512

(Milbich et al., 2020)
69.20 87.60 79.60 -

ProxyNCA++512

(Teh et al., 2020)
66.30 85.40 80.20 88.60

Margin+S2SD512

(Roth et al., 2021)
69.00 89.50 81.20 -

LIBC512

(Seidenschwarz et al., 2021)
70.30 88.10 81.40 92.80

MS+Metrix512

(Venkataramanan et al., 2022)
71.40 89.60 81.00 92.20

PAnchor+DIML128

(Zhao et al., 2021)
66.46
(25.58)

86.13
(28.11)

79.22
(43.04)

-

LIBC+GSP512 70.70 88.43 81.65 93.30
C1+XBM512 66.68

(25.38)
82.83
(25.34)

81.44
(55.66)

91.56
(64.00)

C1+XBM+GSP512 66.63
(25.51)

82.60
(25.76)

81.54
(55.91)

91.75
(64.43)

We evaluate our method with XBM. We provide R@1 results in Tab. 3 for the comparison with
SOTA. In our evaluations, we also provide MAP@R scores in parenthesis under R@1 scores. We
also provide baseline XBM evaluation in our framework. The results are mostly consistent with the
ones reported in the original paper (Wang et al., 2020) except for CUB and Cars datasets. In XBM
(Wang et al., 2020), the authors use proxy-based trainable memory for CUB and Cars datasets. On
the other hand, we use the official implementation provided by the authors, which does not include
such proxy-based extensions.

We observe that our method improves XBM and XBM+GSP reaches SOTA performance in large
scale datasets. With that being said, the improvement margins are less substantial than the ones in
fair evaluation. Such a result is expected since training is terminated by early-stopping which is a
common practice to regularize the generalization of training (Dong et al., 2020; Lei et al., 2021). In
conventional evaluation, early-stopping is achieved by monitoring the test data performance, enabling
good generalization to test data. Therefore, observing less improvement in generalization with GSP
is something we expect owing to generalization boost that test data based early-stopping already
provides.

We also observe that in a few cases, the R@1 performance of GSP is slightly worse than the baseline.
Nevertheless, once we compare the MAP@R performances, GSP consistently brings improvement
with no exception. We should recapitulate that R@1 is a myopic metric to assess the quality of the
embedding space geometry (Musgrave et al., 2020) and hence, pushing R@1 does not necessarily
reflect the true order of the improvements that the methods bring.

As we observe from MAP@R comparisons in Table 2, the methods sharing similar R@1 (i.e., P@1)
performances can differ in MAP@R performance relatively more significantly. In that manner, we
firmly believe that comparing MAP@R performances instead of R@1 technically sounds more in
showing the improvements of our method.

Finally, we also apply our method with LIBC (Seidenschwarz et al., 2021) to further show wide
applicability of our method. We use the official implementation of LIBC and follow their default
experimental settings. The evaluations on 4 benchmarks show that GSP improve LIBC by ≈ 0.5pp
R@1.

18

Under review as a conference paper at ICLR 2023

Table 4: Evaluation of feature pooling methods on Cifar Collage and CUB datasets with Contrastive
and ProxyNCA++ losses for DML task. Red: the best, Blue: the second best, Bold: the third best.

128D - MAP@R

Dataset→ Cifar Collage CUB
Method↓ Loss→ Contrastive ProxyNCA++ Contrastive ProxyNCA++

CBAM (Woo et al., 2018) 7.87 10.99 18.45 18.21
CroW (Kalantidis et al., 2016) 10.09 11.48 20.88 20.42

DeLF (Noh et al., 2017) 11.44 24.83 21.42 20.51
GeMax Murray et al. (2016) 7.04 7.83 18.85 17.83

GeMean Radenović et al. (2018) 10.97 10.60 21.50 20.71
GSoP (Gao et al., 2019) 11.15 17.73 20.52 15.72

OTP (Mialon et al., 2021)
8x16|64x128

7.02 11.55 15.19 | 20.88 13.57 | 20.48

SOLAR (Ng et al., 2020) 17.30 20.36 19.89 20.14
T-SMK (Tolias et al., 2020) 9.21 13.15 21.01 20.23

VLAD (Arandjelovic et al., 2016)
8x16|64x128

21.73 19.68 15.19 | 16.67 13.08 | 16.53

WELDON (Durand et al., 2016) 13.81 20.38 20.67 20.31
GAP 8.09 10.68 20.58 20.63
GMP 9.53 11.25 20.66 20.33

GMP+GAP 10.01 11.85 20.88 20.68
GSP 22.68 27.61 21.52 20.75

1.4 EVALUATION OF OTHER POOLING ALTERNATIVES

We evaluate 13 additional pooling alternatives on Ciffar Collage and CUB datasets with contrastive
(C2) and Proxy-NCA++ (PNCA) losses. We pick contrastive since it is one of the best performing
sample-based loss. We pick Proxy-NCA++ since most of the pooling methods are tailored for
landmark-based image retrieval and use classification loss akin to Proxy-NCA++. We particularly
consider Cifar Collage dataset since the images of different classes share a considerable amount
of semantic entities, enabling us to assess the methods with respect to their ability to discard the
nuisance information.

In addition to our method (GSP) and global average pooling (GAP), we consider: i) global max
pooling (GMP), ii) GAP+GMP (Kim et al., 2020), iii) CBAM (Woo et al., 2018), iv) CroW
(Kalantidis et al., 2016), v) DeLF (Noh et al., 2017), vi) generalized max pooling (GeMax) (Murray
et al., 2016), vii) generalized mean pooling (GeMean) (Radenović et al., 2018), viii) GSoP (Gao
et al., 2019), ix) optimal transport based aggregation (OTP) (Mialon et al., 2021), x) SOLAR (Ng
et al., 2020), xi) trainable SMK (T-SMK) (Tolias et al., 2020), xii) NetVLAD (Arandjelovic et al.,
2016), and xiii) WELDON (Durand et al., 2016). Among those, OTP and VLAD are ensemble based
methods and typically necessitate large embedding dimensions. Thus, we both experimented their
128 dimensional version -(8x16) (8 prototypes of 16 dimensional vectors) and 8192 dimensional
version -(64x128) (64 prototypes of 128 dimensional vectors).

For CUB dataset, the experimental setting follows § 1.1-Fair evaluation and we report MAP@R
performance of the 4-model average at 128 dimensional embeddings each. For Cifar Collage dataset,
the experimental setting follows § 2.2 and we report MAP@R performance. We provide the results
in Tab. 4.

Evaluations show that our method is superior to other pooling alternatives including prototype based
VLAD and OTP. Predominantly, for 128 dimensional embeddings, our method outperforms prototype
based methods by large margin. In CUB dataset, the pooling methods either are inferior to or perform
on par with GAP. The performance improvements of the superior methods are less than 1%, implying
that our improvements in the order of 1-2% reported in Table 2 is substantial. On the other hand, the
methods that mask the feature map outperform GAP by large margin in Cifar Collage dataset. That
being said, our method outperforms all the methods except for Contrastive+VLAD by large margin
in Cifar Collage dataset, yet another evidence for better feature selection mechanism of our method.

19

Under review as a conference paper at ICLR 2023

For instance in CUB dataset, DeLF and GeMean are on par with our method which has slightly better
performance. Yet, our method outperforms both methods by large margin in Cifar Collage dataset.

Comparing to CroW, T-SMK and CBAM, our method outperforms those methods by large margin.
Those methods are the built on feature magnitude based saliency, assuming that the backbone
functions must be able to zero-out nuisance information. Yet, such a requirement is restrictive for
the parameter space and annihilation of the non-discriminative information might not be feasible
in some problems. We experimentally observe such a weakness of CroW , T-SMK and CBAM
in Cifar Collage dataset where the nuisance information cannot be zeroed-out by the backbone.
Our formulation do not have such a restrictive assumption and thus substantially superior to those
methods.

Similarly, attention-based weighting methods, DeLF and GSoP, do not have explicit control on feature
selection behavior and might result in poor models when jointly trained with the feature extractor
(Noh et al., 2017), which we also observe in Cifar Collage experiments. On the contrary, we have
explicit control on the pooling behavior with µ parameter and the behavior of our method is stable
and consistent across datasets and with different loss functions.

Moreover, attention-based methods DeLF, GSoP, and SOLAR typically introduce several con-
volution layers to compute the feature weights. We only introduce an m-kernel 1x1 convolu-
tion layer (i.e., m-many trainable prototypes) and obtain better results. We should note that our
pooling operation is as simple as performing a convolution (i.e., distance computation) and al-
ternating normalization of a vector and a scalar. That being said, we are able to incorporate
a zero-shot regularization loss into our problem naturally by using the prototype assignment
weights. We can as well incorporate such a loss in DeLF which has 1x1 convolution to compute

Figure 7: Comparing closed-form gra-
dient with automatic differentiation
through analyzing the effect of k on com-
putation in CUB dataset with C2 loss.
Shaded regions represent ∓std.

prototype similarities. However, we first need a mecha-
nism to aggregate the per prototype similarities (e.g. sum
and normalization). Indeed, normalizing the similarities
channel-wise and spatially summing them correspond to
solving our problem with µ = 1.

Other pooling methods, i.e., GAP, GMP, GAP+GMP,
GeMax, GeMean, WELDON, VLAD, OTP, do not build
on discriminative feature selection. Thus, our method
substantially outperforms those.

1.5 COMPUTATIONAL ANALYSIS

Forward and backward computation of proposed GSP
method can be implemented using only matrix-vector
products. Moreover, having closed-form matrix-
inversion-free expression for the loss gradient enables
memory efficient back propagation since the output of
each iteration must be stored otherwise.

We perform k iterations to obtain the pooling weights
and at each iteration, we only perform matrix-vector
products. In this sense, the back propagation can be
achieved using automatic-differentiation. One problem
with automatic differentiation is that the computation
load increases with increasing k. On the other hand,
with closed-form gradient expression, we do not have
such issue and in fact we have constant back propagation
complexity. Granted that the closed-form expression
demands exact solution of the problem (i.e., k → ∞),
forward computation puts a little computation overhead
and is memory efficient since we discard the intermediate
outputs. Moreover, our initial empirical study show that
our problems typically converges for k > 50 and we
observe similar performances with k ⩾ 25.

20

Under review as a conference paper at ICLR 2023

The choice of k is indeed problem dependent (i.e., size of the feature map and number of prototypes).
Thus, it is important to see the effect of k on computation load. We analyze the effect of k with
automatic differentiation and with our closed-form gradient expression. We provide the related
plots in Fig. 7. We observe that with closed-form gradients, our method puts a little computation
overhead and increasing k has marginal effect. On the contrary, with automatic differentiation, the
computational complexity substantially increases.

1.6 HYPERPARAMETER SELECTION

(a) (b)

Figure 8: Parameter search for m : number of prototoypes and ε: entropy smoothing coefficient. We
fix µ = 0.3 and λ = 0.1. (a) Searching m − ε space in CUB dataset. (b) Effect of m once we fix
ε = 5 for Contrastive (C2) and ε = 0.5 for Proxy NCA++ (PNCA).

Table 5: Initial 2-level fractional facto-
rial screening experiments for hyper-
parameter tuning (conducted in CUB).

Setting MAP@R
m µ ε λ C2 PNCA

16 0.3 0.5 0.1 40.63 40.59
16 0.7 0.5 0.5 40.41 40.34
128 0.3 0.5 0.5 40.22 40.35
128 0.7 0.5 0.1 40.07 40.85
16 0.3 20 0.5 36.11 40.51
16 0.7 20 0.1 39.11 39.88
128 0.3 20 0.1 39.61 39.12
128 0.7 20 0.5 35.36 39.92

Baseline 39.77 39.90

We first perform a screening experiment to see the effect
of the parameters. We design a 2-level fractional factorial
(i.e., a subset of the all possible combinations) experiment.
We provide the results in Tab. 5. In our analysis, we find
that lower the better for λ and µ. Thus, we set µ = 0.3 and
λ = 0.1. ε is observed to have the most effect and num-
ber of prototypes, m, seems to have no significant effect.
Nevertheless, we jointly search for m and ε. To this end,
we perform grid search in CUB dataset with Contrastive
(C2) and Proxy NCA++ (PNCA) losses. We provide the
results in Fig. 8-(a). We see that both losses have their best
performance when m = 64. On the other hand, ε = 5.0
works better for C2 while ε = 0.5 works better for PNCA.
We additionally perform a small experiment to see whether
ε = 0.5 is the case for Proxy Anchor loss as well and ob-
serve that ε = 0.5 is a better choice over ε = 5.0. As the
result of m-ε search, we set ε = 5.0 for non-proxy based
losses and ε = 0.5 for proxy-based losses.

Fixing µ = 0.3, λ = 0.1, ε = 0.5(or 5.0), we further experiment the effect of number of prototypes,
m, in large datasets (i.e., SOP and In-shop). We provide the corresponding performance plots in
Fig. 8-(b). Supporting our initial analysis, m seemingly does not have a significant effect once it is
not small (e.g. m ⩾ 64). We observe that any choice of m ⩾ 64 provides performance improvement.
With that being said, increasing m does not bring substantial improvement over relatively smaller
values. Considering the results of the experiment, we set m = 128 for SOP and In-shop datasets
since both C2 and PNCA losses perform slightly better with m = 128 than the other choices of m.

2 DETAILS OF THE OTHER EMPIRICAL WORK

2.1 SYNTHETIC STUDY

We design a synthetic empirical study to evaluate GSP in a fully controlled manner. We consider
16-class problem such that classes are defined over trainable tokens. In this setting, tokens correspond
to semantic entities but we choose to give a specific working to emphasize that they are trained as

21

Under review as a conference paper at ICLR 2023

part of the learning. Each class is defined with 4 distinct tokens and there are also 4 background
tokens shared by all classes. For example, a "car" class would have tokens like "tire" and "window"
as well as background tokens of "tree" and "road".

We sample class representations from both class specific and background tokens according to
a mixing ratio µ̃ ∼ N (0.5, 0.1). We sample a total of 50 tokens and such a 50-many feature
collection will correspond to a training sample (i.e., we are mimicking CNN’s output with trainable
tokens). For instance, given class tokens for class-c, ν(c) = {ν(c)1 , ν

(c)
2 , ν

(c)
3 , ν

(c)
4 } and shared

tokens, ν(b) = {ν(b)1 , ν
(b)
2 , ν

(b)
3 , ν

(b)
4 }; we first sample µ = 0.4 and then sample 20 tokens from

ν(c) with replacement, and 30 tokens from ν(b), forming a feature collection for a class-c, i.e.,
f (c) = {ν(c)3 , ν

(c)
1 , ν

(c)
1 , ν

(c)
3 , . . . , ν

(b)
4 , ν

(b)
3 , ν

(b)
4 , ν

(b)
1 , . . .} We then obtain global representations

using GAP and GSP.

We do not apply ℓ2 normalization on the global representations. We also constrain the range of the
token vectors to be in between [90.3, 0.3] to bound the magnitude of the learned vectors. We use
default Adam optimizer with 1094 learning rate and perform early stopping with 30 epoch patience
by monitoring MAP@R. In each batch, we use 4 samples from 16 classes.

2.2 CIFAR COLLAGE

Figure 9: Illustration of a sample generation for
Cifar Collage dataset.

We consider the 20 super-classes of Cifar100
dataset (Krizhevsky & Hinton, 2009) where
each has 5 sub-classes. For each super-class,
we split the sub-classes for train (2), validation
(1), and test (2). We consider 4 super-classes
as the shared classes and compose 4x4-stitched
collage images for the rest 16 classes. In par-
ticular, we sample an image from a class and
then sample 3 images from shared classes. We
illustrate a sample formation process in Fig. 9.

We should note that the classes exploited in
training, validation and test are disjoint. For
instance, if a tree class is used as a shared class
in training, then that tree class does not ex-
ist in validation or test set as a shared feature.
Namely, in our problem setting, both the back-
ground and the foreground classes are disjoint across training, validation and test sets. Such a setting
is useful to analyze zero-shot transfer capability of our method.

We use ResNet20 (i.e., 3 stages, 3 blocks) backbone pretrained on Cifar100 classification task. We
use ℓ2 normalization on global representations. We use default Adam optimizer with initial 0.001
learning rate. We use reduce on plateau with 0.5 decay factor and 5 epochs patience. For GSP, we set
m = 128, µ = 0.2, ε = 10, λ = 0.5. We use 4 samples from 16 classes in a batch.

2.3 EVALUATION OF ZERO-SHOT PREDICTION LOSS

We train on Cifar10 (Krizhevsky & Hinton, 2009) dataset with 8 prototypes using ProxyNCA++ (Teh
et al., 2020) (PNCA) loss with and without LZS . We then use test set to compute pseudo-attribute
histograms for each class. Namely, we aggregate the marginal transport plans of each sample in a
class to obtain the histogram. Similarly, for each class, we compute the mean embedding vector (i.e.,
we average embedding vectors of the samples of a class). Our aim is to fit a linear predictor to map
attribute vectors to the mean embeddings.

To quantify the zero-shot prediction performance, we randomly split the classes into half and apply
cross-batch zero-shot prediction. Specifically, we fit a linear predictor using 5 classes and then use
that transformation to map the other 5 classes to their mean embeddings. We then compute pairwise
distance between the predicted means and the true means. We then evaluate the nearest neighbour
classification performance. We use both ℓ2 distance and cosine distance while computing the pairwise
distances. We repeat the experiment 1000 times with different class splits.

22

Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 PROOF FOR CLAIM 4.1

Proof. ρ∗ is obtained as the solution of the following optimal transport problem:

ρ∗, π∗ =argmin
ρ,π⩾0

ρj+Σiπij=1/n
Σijπij=µ

∑
ij cijπij .

Given solutions (ρ∗, π∗), for µ=1, from the 3rd constraint, we have Σijπ
∗
ij=1. Then, using the 2nd

constraint, we write: ∑
j ρ

∗
j +

∑
j

∑
i π

∗
ij =

∑
j

1
n

where j∈[n] for n-many convolutional features. Hence, we have
∑

j ρ
∗ = 0 which implies ρ∗=0

owing to non-negativity constraint. Finally, pooling weights becomes pi =
1/n−��ρ

∗
i

µ
=1

= 1/n.

A.2 PROOF FOR PROPOSITION 4.1

Before starting our proof, we first derive an iterative approach for the solution of (P2). We then prove
that the iterations in Proposition 4.1 can be used to obtain the solution.

We can write (P2) equivalently as:

ρ(ε), π(ε) =argmin
ρ,π⩾0

ρj+Σiπij=1/n
Σijπij=µ

∑
ij cijπij +

1
ε (
∑

ij πij log πij +
∑

j ρj log ρj)

+
∑

j 0ρj −
∑

ij πij −
∑

j ρj +
∑

ij e
9εcij +

∑
j e

9ε0

Rearranging the terms we get:

ρ(ε), π(ε) =argmin
ρ,π⩾0

ρj+Σiπij=1/n
Σijπij=µ

∑
ij πij log

πij

e9εcij
+
∑

j ρj log
ρj

e9ε0 −
∑

ij πij−
∑

j ρj +
∑

ij e
9εcij +

∑
j e

9ε0

which is generalized Kullback–Leibler divergence (KLD) between (ρ, π) and (exp (9ε0), exp (9εc)).
Hence, we reformulate the problem as a KLD prjoection onto a convex set, which can be solved by
Bregman Projections (i.e., alternating projections onto constraint sets) (Bregman, 1967; Bauschke &
Lewis, 2000). Defining C1 := {(ρ, π) | ρj +

∑
ij πij = 1/n ∀j} and C2 := {(ρ, π) |

∑
ij πij = µ},

and omitting constants, we can write the problem as:

ρ(ε), π(ε) = argmin
ρ,π⩾0

(ρ,π)∈C1∩C2

∑
ij πij(log

πij

e9εcij
9 1) +

∑
j ρj(log

ρj

e9ε0 9 1) (P2′)

Given, (ρ(k), π(k))), at iteration k, KLD projection onto C1, i.e., (ρ(k+1), π(k+1)) :=
PKL
C1

(ρ(k), π(k)), reads:

ρ
(k+1)
j = 1/n(ρ

(k)
j +

∑
i π

(k)
ij)91ρ

(k)
j ,

π(k+1) = 1/n(ρ
(k)
j +

∑
i π

(k)
ij)91π

(k)
ij

where the results follow from method of Lagrange multipliers. Similarly, for PKL
C2

(ρ(k), π(k)), we
have:

ρ(k+1) = ρ(k) , π(k+1) = µ∑
ij π

(k)
ij

π(k) .

Given initialization, (ρ(0), π(0)) = (1n, exp(9εc)), we obtain the pairs (ρ(k), π(k)) for k = 0, 1, 2, . . .
as:

ρ(k+1) = 1/n(ρ(k) + π(k)⊺1m)91 ⊙ ρ(k) , π(k+1) = µ(1⊺
mπ̂1n)

91π̂

where π̂ = π(k)Diag
(
1/n(ρ(k) + π(k)⊺1m)91

) (A.1)

23

Under review as a conference paper at ICLR 2023

Proof. We will prove by induction. From Proposition 4.1, we have

ρ(k+1) = 1/n (1 + t(k) exp(9εc)⊺1m)91, t(k+1) = µ (1⊺
m exp(9εc)ρ(k+1))91

and π(k) = t(k) exp(9εc)Diag(ρ(k)). It is easy to show that the expressions hold for the pair
(ρ(1), π(1)). Now, assuming that the expressions also holds for arbitrary (ρ(k

′), π(k′)). We have

ρ(k
′+1) = 1/n(ρ(k

′) + π(k′)⊺1m)91 ⊙ ρ(k
′)

Replacing π(k′) = t(k
′) exp(9εc)Diag(ρ(k

′)) we get:

ρ(k
′+1) = 1/n(ρ(k

′) +Diag(ρ(k
′))t(k

′) exp(9εc)⊺1m)91 ⊙ ρ(k
′)

where ρ(k
′) terms cancel out, resulting in:

ρ(k
′+1) = 1/n(1 + t(k

′) exp(9εc)⊺1m)91.

Similarly, we express π̂ as:

π̂ = t(k
′) exp(9εc)Diag(ρk

′
)Diag

(
1/n

(
ρ(k

′) +Diag(ρ(k
′))t(k

′) exp(9εc)⊺1m

)91)
again ρ(k

′) terms cancel out, resulting in:

π̂ = t(k
′) exp(9εc)Diag(1/n(1 + t(k

′) exp(9εc)⊺1m)91) = t(k
′) exp(9εc)Diag(ρ(k

′+1)).

Hence, π(k′+1) becomes:

π(k′+1) = µ(1⊺
mt(k

′) exp(9εc)Diag(ρ(k
′+1))1n)

91t(k
′) exp(9εc)Diag(ρ(k

′+1))

= 1
t(k′) µ(1

⊺
m exp(9εc)ρ(k

′+1))91︸ ︷︷ ︸
=t(k′+1)

t(k
′) exp(9εc)Diag(ρ(k

′+1))

= t(k
′+1) exp(9εc)Diag(ρ(k

′+1)),

meaning that the expressions also hold for the pair (ρ(k
′+1), π(k′+1)).

A.3 PROOF FOR PROPOSITION 4.2

Proof. We start our proof by expressing (P2′) in a compact form as:

x(ε) = argmin
x⩾0
Ax=b

c̄⊺x+ 1
εx

⊺(log x− 1(m+1)n)

where x denotes the vector formed by stacking ρ and the row vectors of π, c̄ denotes the vector
formed by stacking n-dimensional zero vector and the row vectors of c, and A and b are such that
Ax = b imposes transport constraints as:

A =

[
Inxn

m︷ ︸︸ ︷
Inxn · · · Inxn

0⊺
n 1⊺

mn

]
, b = [1/n1⊺

n µ]⊺

From Lagrangian dual, we have:

x(ε) = exp(9ε(c̄+A⊺λ∗))

where λ∗ is the optimal dual Lagrangian satisfying:

A exp(9ε(c̄+A⊺λ∗)) = b

Defining [∂x∂c]ij :=
∂xj

∂ci
, we have;

∂x(ε)

∂c = −εĪ(I + ∂λ∗

∂c̄ A)Diag(x(ε))

where Ī := [0(mn)xn I(mn)x((m+1)n)]. Similarly, for the dual variable, we have:

−ε(I + ∂λ∗

∂c̄ A)Diag(x(ε))A⊺ = 0⇒ ∂λ∗

∂c̄ = 9Diag(x(ε))A⊺(ADiag(x(ε))A⊺)91.

24

Under review as a conference paper at ICLR 2023

Putting back the expression for ∂λ∗

∂c̄ in ∂x(ε)

∂c , we obtain:

∂x(ε)

∂c = −εĪ
(
Diag(x(ε))−Diag(x(ε))A⊺(ADiag(x(ε))A⊺)91ADiag(x(ε))

)
,

which includes (m+1) by n matrix inversion, H := ADiag(x(ε))A⊺. We now show that H91 can
be obtained without explicit matrix inversion.

H can be expressed as:

H =

[
1/nI 1/n− ρ

1/n− ρ⊺ µ

]
H is Hermitian and positive definite. Using block matrix inversion formula for such matrices
(Corrolary 4.1 of (Lu & Shiou, 2002)), we obtain the inverse as;

H91 =

[
nI + k91ρ̂ρ̂⊺ −k91ρ̂
−k91ρ̂⊺ k91

]
where k = 1− µ− nρ(ε)⊺ρ(ε) and ρ̂ = 1− nρ(ε).

Given ∂L
∂x(ε) , i.e., (∂L

∂ρ(ε) ,
∂L

∂π(ε)), the rest of the proof to obtain ∂L
∂c follows from right multiplying the

Jacobian, i.e., ∂L
∂c = ∂x(ε)

∂c
∂L

∂x(ε) and rearranging the terms.

B OPTIMAL TRANSPORT BASED OPERATORS

In this section, we briefly discuss optimal transport based aggregation and selection operators. We
provide their formulations to show how our formulation differs from them.

B.1 FEATURE AGGREGATION

Given a cost map cij = ∥ωi 9 fj∥2 which is an m (number of prototypes) by n (number of features)
matrix representing the closeness of prototypes ωi and features fj , Mialon et al. (2021) consider the
following optimal transport problem:

π∗ =argmin
π⩾0

Σiπij=1/n
Σjπij=1/m

∑
ij cijπij (P4)

and defines their aggregated feature as:

g =
√
m[f1 | f2 | · · · | fn]π⊺ . (B.1)

Namely, g is an ensemble of m vectors each of which is the weighted aggregation of {fi}i∈[n] with
the weights proportional to the assignment weights to the corresponding prototype. In this ensemble
representation, g, there is no feature selection mechanism and thus, all features are somehow included
in the image representation.

If we further sum these m vectors of g to obtain a single global representation, we end up with global
average pooling: g⊺1m =

√
m[f1 | f2 | · · · | fn]π⊺1m =

√
m/n[f1 | f2 | · · · | fn]1n =

√
m/nΣifi.

Briefly, Mialon et al. (2021) map a set of features to another set of features without discarding any
and do not provide a natural way to aggregate the class-discriminative subset of the features. Such a
representation is useful for structural matching. On the contrary, our formulation effectively enables
learning to select discriminative features and maps a set of features to a single feature that is distilled
from nuisance information.

B.2 TOP-k SELECTION

Given n-many scalars as x = [xi]i∈[n] and m-many scalars as y = [yi]i∈[m] with y is in an increasing
family, i.e., y1<y2 < . . ., Xie et al. (2020) consider the following optimal transport problem:

π∗ =argmin
π⩾0

Σiπij=qj
Σjπij=pi

∑
ij cijπij (P5)

25

Under review as a conference paper at ICLR 2023

where cij = |yi − xj | and p is m-dimensional probability simplex, i.e., p ∈ {p ∈ IRm
≤0 | Σipi = 1}.

Then, top-k selection is formulated with the setting q = 1/n1n, y = [0, 1] and p = [kn
n9k
n]⊺.

Similarly, sorted top-k selection is formulated with the setting y = [k] and p = [1n · · ·
1
n

n9k
n]⊺.

Solving the same problem in (P5), Cuturi et al. (2019) formulate top-k ranking by letting q and p be
any probability simplex of the proper dimension and y be in an increasing family.

Such top-k formulations are suitable for selecting/ranking scalars. In our problem, the aim is to select
a subset of features that are closest to the prototypes which are representatives for the discriminative
information. Namely, we have a problem of subset selection from set-to-set distances. If we had our
problem in the form of set-to-vector, then we would be able to formulate the problem using (P5).
However, there is no natural extension of the methods in (Xie et al., 2020; Cuturi et al., 2019) to
our problem. Therefore, we rigorously develop an optimal transport based formulation to express a
discriminative subset selection operation analytically in a differentiable form.

With that being said, our formulation in (P1) differs from the typical optimal transport problem
exploited in (P5). In optimal transport, one matches two distributions and transports all the mass
from one to the other. Differently, we transport µ portion of the uniformly distributed masses to the
prototypes that have no restriction on their mass distribution. In our formulation, we have a portion
constraint instead of a target distribution constraint, and we use an additional decision variable, ρ,
accounting for residual masses. If we do not have ρ and set µ = 1, then the problem becomes a
specific case of an optimal transport barycenter problem with 1 distribution.

Our problem can be expressed in a compact form by absorbing ρ into π with zero costs associated in
the formulation, which is indeed what we do in the proof of Proposition 4.2 (Appendix A.3). We
choose to explicitly define ρ in the problem (P1) to show its role and avoid convoluted notation.
We believe its residual mass role is more understandable this way. The benefits of our formulation
include that we can perform feature selection operation with matrix inversion free Jacobian and we
can change the role of the prototypes as background representatives simply by using ρ to weight the
features instead of 1/n− ρ in Eq. (4.1). Our specific formulation further allows us to tailor a zero-shot
regularization loss built on the learned prototypes within our pooling layer.

26

Under review as a conference paper at ICLR 2023

C IMPLEMENTATIONS WITH PSEUDO CODES

Algorithm 1 Deep Metric Learning Loss with GSP and ZSR

input: (X,Y) = ({xi}, {yi})i∈b // a batch of image-label pairs
F ← Backbone(X) // a CNN backbone such as BN-Inception, ResNet
(Xp, Z)← {GSP(f)}f∈F // get pooled features and attribute predictions, see Algorithm 2
LZSR ← ZSR(Z, Y) // compute ZSR loss, see Algorithm 4
LDML ← LossDML(Xp, Y) // a DML loss such as contrastive, triplet, XBM, LIBC, ...
L ← (19λ)LDML + λLZSR // we set λ=0.1

return L

Algorithm 2 GSP(f)
trainable parameters: ω = {ωi}i∈[m] // m-many prototypes

input: f = {fi}i∈[n] // feature map, n = w h (i.e., widthxheight)
ω̄i ← ωi/max{1,∥ωi∥2} ∀i∈[m], f̄j ← fj/max{1,∥fj∥2} ∀j∈[n]
cij ← ∥ω̄i 9 f̄j∥2 // cost map, c = {cij}(i,j)∈[m]x[n]

ρ, π ←WeightTransport(c) // see Algorithm 3
f ← 19nρ

µ ⊙ f // re-weight features, ⊙: element-wise multiplication
xp ← (1n

∑
i∈[n]

fp
i)

1/p // pooled feature, GSP for p=1, GeMean+GSP for p>1

zi ← 1
µ

∑
j∈[n]

πij ∀i∈[m] // pseudo-attribute predictions, z = {zi}i∈[m]

return xp, z

Algorithm 3 WeightTransport(c)
hyperparameters: µ : transport ratio, ε : entropy regularization weight, k : number of iterations

forward: gets cost map, c, returns residual weights, ρ, and transport plan π

input: c = {cij}(i,j)∈[m]x[n] // cost map of m-many prototypes and n-many features
κ← exp(9εc), t← 1 // exp is element-wise
repeat k times

ρ← 1/n(1 + t κ⊺1m)91 // A⊺1m: sum A along rows, (·)91 is element-wise
t← µ(1⊺

mκ ρ)91

return ρ, t κDiag(ρ) // π ← t κDiag(ρ)

backward: gets the solution (ρ, π) and the gradients (∂L∂ρ ,
∂L
∂π), returns ∂L

∂c

input: ρ, π, ∂L
∂ρ ,

∂L
∂π

// results of forward pass and the loss gradient w.r.t. them
q ← ρ⊙ ∂L

∂ρ + (π ⊙ ∂L
∂π)

⊺1m // A⊺1m: sum A along rows, ⊙: element-wise multiplication
η ← (ρ⊙ ∂L

∂ρ)
⊺1n 9 n q⊺ρ

∂L
∂c ← 9ε

(
π ⊙ ∂L

∂π − nπDiag
(
q − η

19µ9nρ⊺ρ

)
ρ
)

return ∂L
∂c

27

Under review as a conference paper at ICLR 2023

Algorithm 4 ZSR(Z, Y)
trainable parameters: Υ = {υi}i∈[#classes] // a semantic embedding vector for each class label

input: Z={zi}i∈b, Y={yi}i∈b // a batch, b, of attribute prediction vectors, zi, and their labels, yi
(b1, b2)← split b into two class-disjoint halves s.t. {yi}i∈b1∩{yi}i∈b2 = ∅
Υk ← [υyi]i∈bk for k=1, 2 // label embedding matrix for batch-k, i.e., prediction targets
Zk ← [zi]i∈bk for k=1, 2 // attribute prediction matrix for batch-k, i.e., prediction inputs
Ak ← Υk(Z

⊺
kZk+ϵI)91Z⊺

k for k=1, 2 // fit label embedding predictor for batch-k, ϵ=0.05

Υ̂1 ← A2Z1, Υ̂2 ← A1Z2 // use predictor for bk to predict the label embeddings of bk′

Υ̂← [Υ̂1 | Υ̂2] // concatenate predictions
S ← SoftMax(Υ̂⊺Υ) // similarity scores between predictions and label embeddings
LZSR ← CrossEntropy(S, Y)

return LZSR

28

	Introduction
	Related Work
	Preliminaries
	Method
	Generalized Sum Pooling as a Linear Program
	Generalized Sum Pooling as a Differentiable Layer
	Cross-batch Zero-shot Regularization
	Implementation Details

	Experiments
	Synthetic Study
	Deep Metric Learning Experiments
	Setup
	Results
	Ablations

	Conclusion
	Extended Empirical Study for Deep Metric Learning
	Setup
	Datasets
	Training Splits
	Evaluation Metrics
	Training Procedure
	Embedding vectors
	Baselines with GSP
	Hyperparameters

	Fair Evaluation
	Conventional Evaluation
	Evaluation of Other Pooling Alternatives
	Computational Analysis
	Hyperparameter Selection

	Details of the Other Empirical Work
	Synthetic Study
	Cifar Collage
	Evaluation of Zero-shot Prediction Loss

	Appendix
	Proof for Claim 4.1
	Proof for Proposition 4.1
	Proof for Proposition 4.2

	Optimal Transport Based Operators
	Feature Aggregation
	Top-k Selection

	Implementations with Pseudo Codes

