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Abstract

Multi-camera depth estimation has recently garnered significant attention due to its practi-
cal implications in autonomous driving. While adapting monocular self-supervised methods
to the multi-camera context has demonstrated promise, these techniques often overlook
unique challenges specific to multi-camera setups, hindering the realization of their full
potential. In this paper, we delve into the task of self-supervised multi-camera depth esti-
mation and propose an innovative Transformer-based framework, STViT, featuring several
noteworthy enhancements: 1) The Spatial-Temporal Transformer (STTrans) is designed to
exploit local spatial connectivity and global context within image features, facilitating the
learning of enriched spatial-temporal cross-view correlations and effectively recovering intri-
cate 3D geometries. 2) To alleviate the adverse impact of varying illumination conditions in
photometric loss calculation, we employ a spatial-temporal photometric consistency correc-
tion strategy (STPCC) to adjust the image intensities and maintain brightness consistency
across frames. 3) In recognition of the profound impact of adverse conditions such as rainy
weather and nighttime driving on depth estimation, we propose an Adversarial Geometry
Regularization (AGR) module based on Generative Adversarial Networks. The AGR serves
to provide added spatial positional constraints on depth estimation by leveraging unpaired
normal-condition depth maps, effectively preventing improper model training in adverse con-
ditions. Our approach is extensively evaluated on large-scale autonomous driving datasets,
including Nuscenes and DDAD, demonstrating its superior performance, thus advancing the
state-of-the-art in multi-camera self-supervised depth estimation.

1 Introduction

Depth estimation involves assigning a depth value to each pixel for input RGB images, indicating the distance
of the corresponding 3D point from the camera. This task constitutes a foundational aspect of perceiving
the 3D geometric structure of the environment. It serves as a fundamental technology underpinning critical
applications such as autonomous driving, robotics, drones, VR/AR, etc.

With the advent of the deep learning techniques (Krizhevsky et al., 2012; He et al., 2016), supervised
depth estimation has gained significant attention. These approaches primarily involve the use of high-
precision devices like LiDAR to generate ground truth depth from 3D point clouds, which are then used
to supervise network training. Typically treating depth estimation as a regression (Eigen et al., 2014; Yin
et al., 2019) or classification (Fu et al., 2018; Bhat et al., 2021) problem, these methods have exhibited
impressive performance, thereby propelling advancements in the realm of 3D perception. However, due to
the difficulty and high cost of obtaining LiDAR devices, accurate depth ground truth is rarely available in
practical applications, which impedes the feasibility of supervised depth estimation methods.

Consequently, numerous successful endeavors have emerged in the realm of self-supervised depth estimation.
These methods leverage photometric consistency across consecutive frames as a supervisory signal, concur-
rently optimizing depth and pose estimation. In the general pipeline, a depth network and a pose network
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A: Single-frame Self-supervised Monocular Depth Estimation

B: Multi-frame Self-supervised Monocular Depth Estimation

C: Self-supervised Multi-camera Depth Estimation

D: Multi-frame Self-supervised Multi-camera Depth Estimation
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Figure 1: Comparison of self-supervised depth estimation pipelines under different settings (A: Single-frame
Self-supervised Monocular Depth Estimation; B: Multi-frame Self-supervised Monocular Depth Estimation;
C: Self-supervised Multi-camera Depth Estimation; D: Multi-frame Self-supervised Multi-camera Depth
Estimation). Only depth networks are illustrated and the corresponding pose networks are omitted for
simplicity.

are usually exploited to predict the corresponding depth and pose transformations, which are utilized to
warp the source frame to adjacent frames and thereby optimize the networks by minimizing the photomet-
ric difference between the original images with the warped images. These approaches (Zhou et al., 2017;
Godard et al., 2019; Zhao et al., 2022) employ multiple frames data solely during the training phase for
the loss computation, and merely a single monocular image is taken as input during inference, thus can be
categorized as Single-frame Self-supervised Monocular Depth Estimation methods as shown in Figure 1 A.

To leverage the readily available sequential image data effectively, some methods (Watson et al., 2021;
Guizilini et al., 2022a; Zhang & Zhao, 2023) propose utilizing multi-frame images as input during both train-
ing and inference stages, shown as Figure 1 B. The inter-frame geometric correlations are usually exploited
by constructing cost volumes or correlation layers. These approaches effectively enhance the performance of
self-supervised depth estimation methods by harnessing the temporal multi-frame correlations.

In addition to the continually advancing self-supervised monocular depth estimation techniques, some ap-
proaches (Guizilini et al., 2022b; Wei et al., 2023; Xu et al., 2022a) are now extending monocular methods
to the realm of multi-camera configurations to fulfill the perceptual requirements of autonomous driving
cars encompassing 360-degree surround-view cameras. Based on the monocular counterpart, these methods
additionally allow cross-camera feature interaction and fusion to utilize the overlap among adjacent cameras
and boost the representation learning, shown as Figure 1 C. Taking the multi-camera sequence as input,
the overlap of field-of-view (FoV) not only exists in adjacent cameras but also in adjacent temporal frames,
which can be comprehensively exploited to facilitate depth representation learning, shown as Figure 1 D.

While adapting monocular self-supervised methods to the multi-camera setup has demonstrated promise in
previous methods, some unique challenges specific to multi-camera setups are neglected, impeding further
performance improvement. Self-supervised depth estimation methods highly rely on the co-visible regions
among different frames to compute reprojection errors. Additionally, they assume that the projection pixels
of the same 3D point in different images have identical intensities, which suffer from many violation cases
e.g., illumination variance, extreme weather, occlusions, etc. For the multi-camera setting in large-scale
autonomous driving datasets collected in the wild, e.g., NuScenes and DDAD, the challenges lie in 1) The
overlap between adjacent cameras (like front camera w.r.t. front-left and front-right cameras) is too small
(as low as 10% (Xu et al., 2022a)) to conduct effective image or feature matching for accurate 3D geometry
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recovery; 2) There are various challenging weather or illumination cases including driving scenarios in rainy
days or at night, affecting providing precise photometric supervision for self-supervised depth estimation.
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Figure 2: Illustration of simul-
taneous cross-camera and cross-
frame correlations.

In this paper, we dig into the Multi-frame Self-supervised Multi-camera
Depth Estimation paradigm and propose novel techniques to mitigate
these challenges and improve performance. We first propose a Spatial-
Temporal Transformer to comprehensively exploit both local connectiv-
ity and the global context of image features, meanwhile learning en-
riched spatial-temporal cross-view correlations to recover 3D geometry.
As shown in Figure 2, we exploit not only cross-camera correlation in
the same frame (denoted by yellow arrows) and cross-frame correlation
of the same camera (displayed as views with the corresponding same
color) but also cross-camera and cross-frame correlation (different cam-
eras in different frames, shown as colorful arrows among different temporal
views) simultaneously. This strategy maximally utilizes the co-visibility
overlap among images, thereby promoting both feature matching and net-
work training. However, the illumination condition and brightness among
cameras and frames could be variant as car driving, which is harmful to
both image correlation acquisition and the projection error calculation in
the self-supervised learning process. We thus leverage a spatial-temporal
photometric consistency correction strategy to adjust the image intensi-
ties and maintain brightness consistency. Besides, we introduce a Generative Adversarial Network-based
geometry regularization module to regularize the prediction weirdness in challenging cases, e.g. Rainy and
Night scenarios.

In summary, the main contributions of this paper are three-fold:

• We focus on the challenging self-supervised multi-camera depth estimation task by developing a
novel Transformer-based framework.

• We propose a Spatial-Temporal Transformer (STTrans) for comprehensive feature extraction with
further exploration of both cross-camera and cross-frame geometric correlations. Together with the
spatial-temporal photometric consistency correction strategy (STPCC), our method can comprehen-
sively utilize spatial-temporal context to enhance the depth and pose learning.

• We introduce an Adversarial Geometry Regularization (AGR) module to provide spatial positional
restrictions for predicted depth maps, mitigating prediction weirdness in challenging cases, e.g. Rainy
and Night scenarios.

• We conduct comprehensive evaluations and ablation studies, demonstrating the effectiveness of our
method. It achieves state-of-the-art results on two large-scale self-supervised multi-camera depth
estimation benchmarks, i.e. NuScenes (Caesar et al., 2020) and DDAD (Guizilini et al., 2020).

2 Related Work

2.1 Monocular Single-Frame Self-supervised Depth Estimation

Research into self-supervised depth estimation initially began with monocular settings, wherein researchers
employed monocular image sequences as training data and estimated depth maps for individual monocular
frames during inference. SfMLearner(Zhou et al., 2017) is one of the first attempts to explore monocular
depth estimation in a self-supervised manner. It exploits predicted depth and pose to warp source im-
ages to reconstruct its adjacent images thereby formulating the learning as a projection error minimization
process. Many subsequent works further improve this paradigm by additionally introducing 3D constraint
(Mahjourian et al., 2018), imposing feature-level consistency (Shu et al., 2020), integrating uncertainty learn-
ing (Poggi et al., 2020; Yang et al., 2020) and incorporating related tasks, e.g., optical flow estimation (Yin
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& Shi, 2018; Zhou et al., 2021; Zhao et al., 2020b) and semantic segmentation (Klingner et al., 2020; Jung
et al., 2021). Monodepth2 (Godard et al., 2019) proposes several schemes to improve the effectiveness of
photometric loss, including a minimum reprojection loss and an auto-masking strategy, yielding more accu-
rate results. Recently, many works ( DIFFNet (Zhou et al., 2021), MonoFormer (Bae et al., 2022), MonoViT
(Zhao et al., 2022) and SRD (Liu et al., 2023)) explore stronger network architectures to enhance the rep-
resentation learning ability including PackNet (Guizilini et al., 2020), HRNet (Sun et al., 2019) and Vision
Transformer (Dosovitskiy et al., 2020), further improves the prediction accuracy. Besides, there is a line
of work devoted to addressing illumination issues in adverse conditions such as nighttime driv-
ing scenarios (Vankadari et al., 2020; Wang et al., 2022; Zheng et al., 2023). Some methods
(Vankadari et al., 2020; Wang et al., 2022) utilize domain adaptation techniques to adapt the
daytime training estimation network to be applicable for the nighttime scenes. STEPS (Zheng
et al., 2023) proposes to jointly learn a nighttime image enhancer and a depth estimator to
overcome the low illumination problems in the depth estimation task, but additional illu-
mination estimation and calibration networks are imposed, increasing computation burdens.

2.2 Monocular Multi-Frame Self-supervised Depth Estimation

Given the availability of image sequences as training data, researchers then embarked on investigating how
to leverage temporal information to further enhance the efficacy of monocular depth estimation. TC-Depth
(Ruhkamp et al., 2021) fused the multi-frame features with proposed spatial and temporal attention modules
to create a multi-frame depth estimation network, which improves the temporal depth stability and accuracy
by combining modules with photometric cycle consistency. Inspired by multi-frame stereo methods (Kendall
et al., 2017; Sun et al., 2018), ManyDepth (Watson et al., 2021) is introduced as an innovative self-supervised
multi-frame depth estimation model that capitalizes on the synergies between monocular and multi-view
depth estimation, incorporating multiple frames during the testing phase. DepthFormer (Guizilini et al.,
2022a) proposed a novel end-to-end transformer, which generates cost volume through multi-view feature
matching via cross- and self-attention with depth-discretized epipolar sampling. IterDepth (Feng et al., 2023)
further improves the multi-frame monocular depth estimation approach with the proposed iterative residual
refinement network, incorporating a gated recurrent depth fusion unit to enable iterative feature fusion and
inverse depth prediction. DS-Depth (Miao et al., 2023) presents a dynamic cost volume leveraging residual
optical flow to improve occlusion handling, further enhanced by a fusion module. Additionally, pyramid
distillation and adaptive photometric error losses are proposed for accuracy improvement.

2.3 Multi-camera Self-supervised Depth Estimation

Multi-camera depth estimation is a long-standing topic, which is usually solved by multi-view stereo, i.e.,
reconstructing 3D information of the scene from pictures of different angles. Multi-view stereo usually needs
a large overlap to conduct image matching and cost volume construction, which is not suitable for driving
scenes. FSM (Guizilini et al., 2022b) extends self-supervised monocular depth estimation to the surround-
ing multi-camera setting to meet the increasing demand in autonomous driving scenarios. FSM focuses on
enhancing the self-supervision signal by leveraging spatial and temporal contexts to enrich the photometric
consistency supervision and imposing pose consistency constraints to learn robust pose estimation. Sur-
roundDepth (Wei et al., 2023) utilizes a shared encoder to extract high-level feature maps for each view
with a cross-view transformer to fuse features and capture cross-view interactions. MCDP (Xu et al., 2022a)
formulate the depth estimation as a weighted combination of depth basis to iteratively update and propagate
to maintain a consistent structure of depth predictions. EGA-Depth (Shi et al., 2023) simplifies the cross-
attention mechanism employed in SurroundDepth by limiting cross-attention to adjacent cameras for each
individual camera. This refinement enables cross-attention to be conducted on higher-resolution features,
further improving the accuracy.
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Figure 3: Overview of our STViT framework. Our STViT is composed of a Depth Network, a Pose Network,
and an Adversarial Geometry Regularization Module. The Depth Network consists of a Spatial-Temporal
Transformer Encoder and a Depth Decoder. The Pose Network is implemented by a lightweight ResNet.
The Depth Network and Pose Network are jointly optimized via the minimization of Spatial-Temporal
Photometric Loss. After predicted depth maps are obtained, they are further regularized and refined in the
Adversarial Geometry Regularization Module.

2.4 Self-supervised Depth Estimation with Generative Adversarial Network

Generative Adversarial Network (GAN) (Goodfellow et al., 2014) has drawn broad attention in many vision
tasks including style transfer (Jing et al., 2019; Xu et al., 2021), image-to-image translation (Isola et al., 2017;
Zhu et al., 2017), image editing (Zhu et al., 2016; Chen et al., 2020; 2022), cross-domain image generation
(Bousmalis et al., 2017; Deng et al., 2018), etc. Since our proposed Geometry Regularization Module is
based on a Generative Adversarial Network (GAN), we review the previous self-supervised depth estimation
with GAN. One line of work (CS Kumar et al., 2018; Zhao et al., 2020a; Xu et al., 2022b) utilizes GAN-
based as a robust loss item to distinguish warped images and original images in the self-supervised depth
estimation pipeline. Some other approaches (Zheng et al., 2018; Zhao et al., 2019; Sun et al., 2023) take the
image-to-image translation ability of GAN to either enhance input image quality or transfer synthetic and
realistic images to leverage additional synthetic datasets (Gaidon et al., 2016) to conduct domain adaptation.
Wu et al. (Wu et al., 2019) and Wang et al. (Wang et al., 2021) also design a GAN-based module as a
regularization and refinement. However, the former is dedicated to distinguishing the ground-truth depth
map and the predicted depth map while the latter is devised to constrain the incorrect depth in nighttime
with daytime prediction in an adversarial manner. Our work differs from these works in two aspects 1) We
utilize arbitrary depth maps from other scenes to regularize the depth maps of the corresponding camera
without corresponding ground truth or predictions in specific illumination conditions and 2) We design a
novel depth-aware positional embedding together with predicted depth maps as the input of the discriminator
instead of the corresponding RGB frames or coordinates.

3 Method

3.1 Network Architecture of STViT

3.1.1 Motivation

In self-supervised depth estimation algorithms, there exists no explicit ground truth information, and the
only available supervisory signal relies on photometric consistency across different viewpoints. In the case
of a multi-camera setup with six cameras capturing temporal sequences, a wealth of data is available for
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Figure 4: The architecture of Depth Encoder. It consists of Conv-Stem and Spatial-Temporal Transformer
Layers. Each Transformer layer contains Multi-Scale Patch Embedding, Transformer Blocks, a Convolu-
tional Block, a Global-to-Local Feature Interaction, and a Spatial-Temporal Cross Correlation Module. The
structure of each module is illustrated in blue blocks.

training and inference. Consequently, depth estimation networks must proficiently extract both local and
global features from the input images. This entails not only comprehensive feature extraction from individual
frames but also the acquisition of geometric features across temporally sequential frames and co-observable
regions among different camera viewpoints. Previous multi-camera self-supervised depth estimation meth-
ods typically employed Convolutional Neural Networks (CNNs) to extract features from input images and
subsequently performed cross-attention operations explicitly between these image features. However, due
to the localized nature of convolution operations, CNNs often struggle to capture long-range context simi-
larity and dependencies effectively. Due to the excessively localized nature of the extracted features, which
tend to focus on individual objects or semantic categories, even attempts to capture inter-frame correlations
through subsequent cross-attention mechanisms have proven ineffective. This has hindered the accurate
recovery of the geometric information of the entire scene (Zhao et al., 2022). Therefore, in order to better
extract both global and local geometric features and leverage correlations across different viewpoints and
sequential frames, we introduce the Spatial-Temporal Transformer Framework, referred to as STViT, which
is specifically designed for multi-camera self-supervised depth estimation. The Framework follows the typical
self-supervised depth estimation structure, consisting of a Depth Network and a Pose Network. The Depth
Network is composed of a Spatial-Temporal Transformer and a Decoder.

3.1.2 Depth Network

Similar to prior works, our Depth Network is designed following the encoder-decoder architecture. We will
explain the details of Depth Network in the following sections.

Spatial-Temporal Transformer (STTrans) Previous studies (Guizilini et al., 2020; Zhao et al., 2022)
have highlighted the importance of extracting effective features to improve the performance of depth esti-
mation. Therefore, we enhance the encoder architecture for multi-camera self-supervised depth estimation
by employing powerful vision transformer models. We propose a Spatial-Temporal Transformer to not only
leverage the transformer’s ability to model long-range dependencies, overcoming the locality issue in feature
extraction seen in previous works (Godard et al., 2019; Wei et al., 2023), but also introduce Spatial-Temporal
Cross-Correlation to fully exploit the co-visibility regions across cameras and temporal frames for geometric
structure recovery. Inspired by recent transformer models such as MPViT (Lee et al., 2022) which introduces
the concept of a Multi-Path Transformer Block, we devise a Depth Encoder to capture both local and global
context within images and further exploit the spatial-temporal cross correlations.
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As shown in Figure 4, our Depth Encoder consists of Conv-Stem and Spatial-Temporal Transformer Lay-
ers. Each Transformer layer contains Multi-Scale Patch Embedding, Transformer Blocks, a Convolutional
Block, a Global-to-Local Feature Interaction, and a Spatial-Temporal Cross Correlation Module. The input
multi-camera sequence is fed to a Conv-Stem and then Spatial-Temporal Transformer Layers to obtain the
depth feature. The Spatial-Temporal Transformer layer first embeds the extracted features into
different-sized visual tokens in Multi-Scale Patch Embedding which is formed by several par-
allel convolutional patch embedding layers with different kernel sizes, to exploit both fine- and
coarse-grained visual tokens at the same feature level following MPViT (Lee et al., 2022). After
that, parallel Transformer Blocks and Convolutional Block are leveraged to further process the embedded
tokens. As shown in Figure 4, there are three Transformer Blocks to capture the long-range dependencies and
global context. Each Block contains M Transformer Layers, which consists of a Layer Normalization (Lay-
erNorm) module, a Factorized Multi-head Self Attention (MHSA) layer (Lee et al., 2022), another Layer
Normalization, and a Feed-forward Network (FFN). Parallel to the Transformer Blocks, a Convolutional
Block is used to exploit local connectivity from translation invariance. The Convolutional Block comprises
a sequence of 1 × 1, 3 × 3 depth-wise, and 1 × 1 convolutions. By combining the advantages of Transformer
Blocks and Convolutional Blocks, the modeled feature can capture both local connectivity and global con-
text simultaneously. A subsequent Global-to-Local Feature Interaction is further used to enhance the local
and global feature interactions to obtain enriched representations. We use Encdepth to represent the feature
extraction part of the model:

F = Encdepth([It, ..., It+m]), (1)
where It represents the surrounding six images at timestamp t and m ∈ {−1, 0, 1} means we
take three temporal frames as input in our default setting. Although we can effectively acquire the
image feature, the cross-view correlation among different cameras and different temporal frames is still not
exploited. Thus, we introduce a Spatial-Temporal Cross Correlation module to facilitate correlation learning
and geometry recovery.

Spatial-Temporal Cross Correlation As shown in Figure 4, the interacted features are first split into
different cameras and different temporal frames, e.g. F i

t denoting the feature of the ith camera in timestamps
t. For each feature F i

t , we pre-define the list of views that share overlap regions with feature F i
t . The

overlapped views contain adjacent cameras at the same timestamp, adjacent temporal frames of the same
camera, and simultaneously cross-camera and cross-frame views as well, as shown in Figure 2. Thus, Spatial-
Temporal Cross Correlation is able to learn enriched spatial-temporal cross-view correlations. Specifically,
feature F i

t is leveraged to compute queries, and the features of overlapped views Gx
t+m are used to obtain

keys and values:
Qi

t = F i
tWq

i
t, K

i
t = Gx

t+mWk
i
t, V

i
t = Gx

t+mWv
i
t. (2)

Here, x ∈ [1, N ] and N is the number of cameras. Wq
i
t, Wk

i
t, and Wv

i
t are the learnable projections for query,

key, and value. Thus, the feature after cross correlation is:

F̂ i
t = softmax(Q

i
tK

i
t√
d

)V i
t , (3)

where d denotes the embedding dimension. By interacting with features of both cross-camera and cross-
frame views, features F̂ i

t can learn enriched cross-view context and correspondence, which is beneficial to
accurately inferring 3D geometry.

Depth Decoder Utilizing multi-scale features obtained from the depth encoder, our depth decoder in-
corporates cross-layer and cross-scale connections following Zhao et al. (2022). Recognizing the contextual
distinctions among features at various scales, such as the preference for higher-resolution features for fine-
grained details, we bolster cross-scale feature integration. To achieve this, we employ both spatial and
channel attention mechanisms. Ultimately, the disparity (inverse depth) predictions D under different res-
olutions are handled by four heads comprising two convolutional layers and a Sigmoid activation function.
The prediction of depth maps can be formulated as:

Di
t = Decdepth(F̂ i

t ), (4)

where Decdepth is the decoder of depth network, i denotes the ith camera and t denotes the tth frame.
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3.1.3 Pose Network

Following the common practice of self-supervised depth estimation, we adopt a lightweight ResNet18 (He
et al., 2016) as the encoder Encpose of Pose Network and subsequent convolution layers as the decoder
Decpose to regress the 6 DoF relative poses P between adjacent temporal frames. Specifically, we first take
N pairs of adjacent frames as the input and output a universal pose Pt+m→t for all N cameras (Wei et al.,
2023). Then, the predicted universal pose Ps→t is transformed to each specific camera with its known camera
extrinsic matrix. The whole process of predicting pose can be formulated as:

hi = Encpose([Ii
t , I

i
t+m]),

Pt+m→t = Decpose( 1
N

N∑
i=1

hi),

P i
t+m→t = (T i)−1Pt+m→tT

i,

(5)

where P i
t+m→t is the learned pose for the ith camera and T i is its corresponding extrinsic matrix. The

universal pose prediction manner can naturally ensure geometry consistency among cameras.

3.2 Self-supervised Training

The self-supervised depth estimation problem is formulated to a projection error minimization process,
where the depth network and pose network are jointly optimized. Given the input images, depth maps D
and relative pose transformation P are predicted with depth network and pose network. Then the depth
map and pose are utilized to reproject the source image to reconstruct the target image. The networks are
optimized by minimizing the difference between the synthesized target image and the original target image.

3.2.1 Spatial-Temporal Photometric Loss

The target image can be each frame e.g., Ii
t denoting the image captured by the ith camera at the timestamp t.

To fully exploit the spatial-temporal consistency, the source images include not only the spatial neighborhood,
the temporal neighborhood and also the cross-frame and cross-camera views with overlapped regions. Similar
to the Spatial-Temporal Cross Correlation part, we pre-define a list of views that can be observed co-visible
regions with the target image, e.g., the length of the ith correlation image list is CI. Thus, the photometric
loss ℓp can be formulated as:

ℓp =
N∑

i=1

CI∑
ci=1

ℓph(Ii
t , I

ci
s→t). (6)

The reconstructed target image Ici
s→t is obtained via reprojection with the predicted depth map Di

t and pose
P ci

t→s:
Ici

s→t = Proj(K,P ci
t→s, D

i
t,K

−1, Ii
t), (7)

where K is the camera intrinsic matrix. The typical photometric loss in prior works comprises an SSIM
(Wang et al., 2004) metric and L1 Loss term:

ℓph(Ii
t , I

ci
s→t) = α

1 − SSIM(Ii
t , I

ci
s→t)

2 + (1 − α)||Ii
t − Ici

s→t||. (8)

Moreover, an edge-aware smoothing term is often incorporated to add a regularization on depth maps in
many previous works (Godard et al., 2017; 2019):

ℓsm = |∂xµDt
|e−|∂xIt| + |∂yµDt

|e−|∂yIt|, (9)

where µDt
is the inverse depth normalized by mean depth. ∂xµDt

and ∂xµDt
denote the disparity gradient

among two directions.

3.2.2 Spatial-Temporal Photometric Consistency Correction (STPCC)
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Figure 5: Illustration of the step of histogram adjusting in Spatial-Temporal Photometric Consistency Cor-
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Figure 6: Qualitative display of images before and after Spatial-temporal Photometric
Consistency Correction. The top two rows show the correction effect of three tem-
porally adjacent images. The bottom two rows show the correction effect of spatially
adjacent images in nighttime scenarios. Best viewed with zoom-in.

The photometric
loss is designed
based on the as-
sumption that the
same 3D points have
the same intensity
in diverse projected
views. However, in
practical outdoor
driving scenarios,
the illumination
among different
cameras and differ-
ent timestamps can
vary severely, which
impedes network
learning. There-
fore, we propose
Spatial-Temporal
Photometric Con-
sistency Correction
(STPCC) to en-
force the brightness
consistency of di-
verse views before
the calculation of
photometric loss.

Inspired by Contrast
Limited Histogram
Equalization (CLHE) (Pizer et al., 1987), we leverage a common mapping function ψ to correct image
brightness and make the image color spatially and temporally consistent. We first compute the histograms
H of input images, which are the frequency distributions of L intensity levels (usually L ∈ {0, 1, ..., 255}) of
images. The histograms of spatially and temporally adjacent images, (taking temporal images as examples,
Ht−1, Ht, Ht+1), are then processed by a normalization operation, H = avg(Ht−1, Ht, Ht+1). Based on the
normalized frequency distribution, by setting a threshold ω, we assume that if a certain intensity level in
the histogram exceeds the threshold, it will be clipped, and the portions exceeding the threshold will be
evenly distributed among the various intensity levels, as shown in Figure 5. After adjusting the Histograms
consistently, the mapped figure (taking I ′

t as an example) can be obtained:

Īt = ψ(H(It)) = CDF (H(It)) − CDFmin

CDFmax − CDFmin
× (|L|), (10)
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where CDF represents the Cumulative Distribution Function. CDFmax and CDFmin are the corresponding
maximum and minimum values of CDF .

In this way, the intensities distribution of spatially and temporally adjacent images can be aligned con-
sistently. Moreover, the brightness of images in adverse illustration conditions i.e., night or dark driving
scenarios can be adjusted with higher visibility. The color correction effect is illustrated in Figure 6. The
top two rows show the correction effect of three temporally adjacent images, which makes the brightness
more consistent. The bottom two rows show the correction effect of spatially adjacent images in nighttime
scenarios, which adjusts and improves the visibility. Note that STPCC is only applied to images before the
photometric loss computation rather than the input for network learning. Therefore, the final photometric
loss is:

ℓp =
N∑

i=1

CI∑
ci=1

ℓph(Īi
t , Ī

ci
s→t). (11)

3.3 Adversarial Geometry Regularization Module (AGR)

In real-world outdoor driving scenarios, adverse conditions such as rainy weather and nighttime driving are
frequently encountered. Under such extreme circumstances, the effectiveness of photometric loss diminishes,
thereby significantly affecting the performance of depth estimation. Therefore, we propose a GAN-based
Adversarial Geometry Regularization Module (AGR) to further constrain the depth estimation, as shown
in the right part of Figure 3. Specifically, we consider the Depth Network as a generator to provide depth
map predictions. And adopt the depth predictions of an arbitrary normal-condition frame as a reference
to regularize the depth distribution. It is observed the depth value distribution has a close relationship
with the pixel positions (Dijk & Croon, 2019). Thus, we use the positional query to scan over the depth
map which serves as key and value. So that we can obtain the depth-aware positional embedding ei

t by
calculating the dot product similarity between the query and keys. In this way, the depth-aware positional
embedding can provide soft geometric correspondence between query positions and depth maps. After
that, the positional embedding is concatenated with the normalized predicted depth maps, denoted as
[ei

t, µ(Di
t)]. Similarly, the arbitrary depth maps are also concatenated with the corresponding positional

embedding, denoted as [eiR
t , µ(DiR

t )]. We use the PatchGAN (Isola et al., 2017) discriminator ΘDis

to distinguish [ei
t, µ(Di

t)] and [eiR
t , µ(DiR

t )], while the depth network tries to make the prediction [ei
t, µ(Di

t)]
indistinguishable with the regularization reference [eiR

t , µ(DiR
t )]. The PatchGAN network consists of

5 layers, which progressively extract features from the input image. Each convolutional layer
is followed by a LeakyReLU activation function, introducing non-linearity to the network.
Batch normalization layers are inserted after every other convolutional layer to stabilize and
speed up training. The final layer of the network is a separate convolutional layer and the
output patch size is 1/8 times the original depth predictions. Overall, the network gradually
reduces the spatial dimensions of the input while increasing the number of feature channels,
culminating in a classification output with two units corresponding to the desired classes.

The optimization objective for AGR can be formulated as:

LDis =1
2EDiR

t
[(ΘDis([eiR

t , µ(DiR
t )]) − 1)2] + 1

2EDi
t
[ΘDis([ei

t, µ(Di
t)])2],

LGen =1
2EDi

t
[(ΘDis([ei

t, µ(Di
t)]) − 1)2],

LAGR = min
Gen

max
Dis

LDis + LGen.

(12)

3.4 Training Loss

To sum up, the final training loss consists of the photometric loss ℓp (Eq. 11), the smoothing loss ℓsm (Eq.
9) and the AGR regularization loss ℓAGR (Eq. 12):

Loss = ℓp + 10−3ℓsm + 5 × 10−4ℓAGR. (13)
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Here, the loss weights of the photometric loss and the smoothing loss are kept the same as the monocular
depth estimation methods while the parameter of the AGR regularization loss is obtained by empirical
experiments.

4 Experiment

4.1 Datasets

Following the common practice in previous multi-camera depth estimation methods, we adopted NuScenes
(Caesar et al., 2020) and DDAD (Guizilini et al., 2020) to evaluate our method. These two recently released
autonomous driving datasets are both with six surrounded cameras and relatively small overlaps among
cameras, which are more challenging than the prior monocular datasets.

NuScenes The NuScenes dataset (Caesar et al., 2020) encapsulates urban driving contexts and is charac-
terized by a coordinated assemblage of imagery acquired from a sextuple-camera configuration. This compi-
lation encompasses 1,000 distinct scenes and boasts an extensive repository of 1.4 million images. Renowned
for its role as a benchmark for diverse tasks encompassing 2D and 3D object detection, alongside semantic
and instance segmentation, this dataset assumes a pivotal position in the domain. Particularly pertinent to
the self-supervised depth estimation task, the NuScenes dataset poses inherent challenges attributed to the
relatively modest image resolution, constrained spatial inter-camera overlap, variegated weather conditions,
diurnal temporal variations, and complex, unstructured settings. The raw image dimensions are specified as
1600 × 900, subsequently downscaled to a resolution of 640 × 352. Captured at a frequency of 30Hz, dataset
samples are annotated at a reduced 2Hz cadence, dictated by keyframes. The temporal interval between
these key frames is appreciably large, precluding the training of deep networks through conventional self-
supervision techniques. Consequently, annotated Sweep data emerge as a viable recourse, furnishing pivotal
supervisory signals in the training process.

DDAD The Dense Depth for Automated Driving (DDAD) dataset (Guizilini et al., 2020) encompasses
urban driving scenarios and has been meticulously recorded through six synchronized cameras, displaying
limited spatial overlap. It is distinguished by its provision of highly precise dense ground-truth depth maps
for evaluative purposes, extending up to an impressive maximum depth range of 250 meters. This dataset
comprises a training subset encompassing 12,650 instances (comprising 63,250 images) and a validation subset
containing 3,950 instances (consisting of 15,800 images). In the training set, the utilization of ground-truth
depth maps is eschewed. Notably, the image resolution is denoted as 1,936 × 1,216, following which, in
consonance with the methodology delineated in [16], input images undergo a downsampling procedure to
achieve a resolution of 640 × 384. Subsequently, during the evaluation phase, image resolution is restored
to its original dimensions through bilinear interpolation.

4.2 Evaluation Metrics

The evaluation metrics for multi-camera depth estimation are the same as its monocular counterpart. Four
error metrics: Abs Rel for Absolute Relative Error, Sq Rel for Square Relative Error, RMSE for Root
Mean Square Error, RMSE log for Root Mean Square Logarithmic Error and three accuracy metrics are
included:

• Abs Rel = (1/n)
∑

i∈n((|di − d∗
i |)/di),

• Sq Rel = (1/n)
∑

i∈n((||di − d∗
i ||2)/di),

• RMSE = ((1/n)
∑

i∈n ||di − d∗
i ||2)1/2,

• RMSE log = ((1/n)
∑

i∈n ||log(di) − log(d∗
i )||2)1/2

• Accuracy: % of di s.t. max((di/d
∗
i ), (d∗

i /di)) = δ < δn,
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Methods Resolution Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

Monodepth2 (Godard et al., 2019) 352 × 640 0.287 3.349 7.184 0.345 0.641 0.845 0.925
PackNet-SfM (Guizilini et al., 2020) 352 × 640 0.309 2.891 7.994 0.345 0.547 0.796 0.899

FSM* (Guizilini et al., 2022b) 352 × 640 0.334 2.845 7.786 0.406 0.508 0.761 0.894
SurroundDepth (Wei et al., 2023) 352 × 640 0.245±0.002 3.067±0.006 6.835±0.004 0.321±0.001 0.719±0.002 0.878±0.001 0.935±0.001

MCDP (Xu et al., 2022a) 448 × 768 0.237 3.030 6.822 - 0.719 - -
EGA-Depth (Shi et al., 2023) 352 × 640 0.239 2.357 6.801 0.317 0.723 0.880 0.936

STViT (single) 352 × 640 0.235±0.001 2.934±0.005 6.736±0.003 0.315±0.001 0.724±0.001 0.877±0.001 0.936±0.001
STViT 352 × 640 0.233±0.001 2.815±0.004 6.681±0.003 0.312±0.001 0.724±0.001 0.878±0.001 0.937±0.001

Table 1: Quantitative evaluation of self-supervised multi-camera depth estimation on nuScenes (Caesar et al.,
2020). The best results are highlighted in bold. The row of FSM* shows the results of FSM reproduced by
(Wei et al., 2023). The best results in each column are highlighted in bold, while the second-best ones are
underlined. The error bar is displayed in red color, summarized from 5 times inference.

where n is the total number of pixels in the ground truth depth map, di and d∗
i represent the predicted and

ground truth depth value of pixel i. δn denotes a threshold, which is usually set to 1.251, 1.252 and 1.253.

4.3 Implementation Details

We implement our STViT in Pytorch. The model is trained for 5 epochs on the NuScenes dataset (Caesar
et al., 2020) and 20 epochs on the DDAD dataset (Guizilini et al., 2020) using AdamW as the optimizer and
a batch size set to 6. The initial learning rate for PoseNet and depth decoder is 10−4, while the Transformer-
based depth encoder is trained with an initial learning rate of 5 × 10−5. Both the pose encoder and depth
encoder are pre-trained on ImageNet (Dosovitskiy et al., 2020). We use 4 A100 GPUs for the experiments on
Nuscenes and 8 GPUs for experiments on DDAD. In our experiments, we adopt the same data augmentation
detailed in (Godard et al., 2019; Zhao et al., 2022). For our default setting, we use 3 temporal frames as
input and we also test the version with a single temporal input.

4.4 Comparison with the state-of-the-arts

We conduct extensive quantitative evaluations on two large-scale autonomous driving datasets, i.e., Nuscenes
(Caesar et al., 2020) and DDAD (Guizilini et al., 2020) datasets. Our method is compared with two ap-
proaches adapted from monocular depth estimation methods (Godard et al., 2019; Guizilini et al., 2020)
and four state-of-the-art multi-camera-based methods (Guizilini et al., 2022b; Wei et al., 2023; Xu et al.,
2022a; Shi et al., 2023). The detailed evaluation results are presented in Tables 1 and 2. In comparison with
recent state-of-the-art methods (Wei et al., 2023; Xu et al., 2022a; Shi et al., 2023), our approach demon-
strates superior performance across most evaluation metrics, achieving the best results in five out of seven
metrics on Nuscenes and four out of seven on DDAD. Our method leverages multiple temporal sequences
input in the Spatial-Temporal Transformer, and for completeness, we also showcase its performance with a
single temporal input (six camera figures at the same timestamp). Despite a slight performance degradation
without temporal input and modeling, our single-input version still delivers promising results compared to
other advanced methods.

4.5 Ablation Study

4.5.1 Performance of individual cameras

To provide a comprehensive understanding of inference performance, we present an extensive presentation of
evaluation results concerning the six individual cameras in both the Nuscenes and DDAD datasets, detailed
in Tables 3 and 4, respectively. The experiment reveals that self-supervised depth estimation performs
exceptionally well on front views compared to back views. Furthermore, the inference results in the left
view significantly outperform their right counterpart. This divergence might be attributed to the inherent
dissimilarities in scenes captured on opposing sides, signifying the sensitivity of the model to the specific
spatial characteristics within its field of vision. This detailed examination and analysis may shed light on
the intricacies of its responses to diverse perspectives, contributing valuable insights for future refinement in
model designation and learning strategies.

12



Under review as submission to TMLR

Methods Resolution Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

Monodepth2 (Godard et al., 2019) 384 × 640 0.217 3.641 12.962 0.323 0.699 0.877 0.939
PackNet-SfM (Guizilini et al., 2020) 384 × 640 0.234 3.802 13.253 0.331 0.672 0.860 0.931

FSM* (Guizilini et al., 2022b) 384 × 640 0.229 4.589 13.520 0.327 0.677 0.867 0.936
SurroundDepth (Wei et al., 2023) 384 × 640 0.200±0.002 3.392±0.004 12.270±0.004 0.301±0.002 0.740±0.001 0.894±0.001 0.947±0.001

MCDP (Xu et al., 2022a) 384 × 640 0.193 3.111 12.264 - 0.811 - -
EGA-Depth (Shi et al., 2023) 384 × 640 0.195 3.211 12.117 0.297 0.743 0.896 0.947

STViT (single) 384 × 640 0.193±0.001 3.093±0.002 12.206±0.002 0.295±0.001 0.735±0.001 0.895±0.001 0.948±0.001
STViT 384 × 640 0.192±0.001 2.965±0.002 12.156±0.003 0.293±0.001 0.734±0.001 0.895±0.001 0.949±0.001

Table 2: Quantitative evaluation of self-supervised multi-camera depth estimation on DDAD (Guizilini et al.,
2020). The best results are highlighted in bold. The row of FSM* shows the results of FSM reproduced by
(Wei et al., 2023). The best results in each column are highlighted in bold, while the second-best ones are
underlined. The error bar is displayed in red color, summarized from 5 times inference.

Cameras Resolution Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

Front 352 × 640 0.153 1.845 7.108 0.245 0.803 0.928 0.968
Front-Left 352 × 640 0.231 2.186 6.322 0.313 0.710 0.868 0.931
Back-Left 352 × 640 0.231 2.233 5.825 0.312 0.727 0.869 0.930

Back 352 × 640 0.193 2.277 7.286 0.292 0.741 0.901 0.954
Back-Right 352 × 640 0.304 4.372 6.569 0.358 0.676 0.846 0.918
Front-Right 352 × 640 0.286 3.980 6.974 0.352 0.688 0.858 0.922

All 352 × 640 0.233 2.815 6.681 0.312 0.724 0.878 0.937

Table 3: Quantitative evaluation of corresponding six cameras of self-supervised multi-camera depth estima-
tion on Nuscenes (Caesar et al., 2020).

4.5.2 Ablation study for proposed contributions

To demonstrate the effectiveness of each component of our methods, we conduct thorough ablation studies
on both the Nuscenes and DDAD datasets, with detailed findings presented in Table 5 and Table 6. Utilizing
SurroundDepth as our baseline, we systematically introduce and evaluate each augmentation, including the
Spatial-Temporal Transformer (STTrans), Spatial-Temporal Photometric Consistency Correction (STPCC),
and the Adversarial Geometry Regularization module (AGR). The performance trends observed across the
datasets exhibit consistent variations. The Spatial-Temporal Transformer notably enhances depth estima-
tion outcomes, leveraging improved feature extraction and spatial-temporal cross-view feature interaction.
STPCC, augmenting the photometric loss calculation through adjustments in the alignment of multiple
spatial-temporal input images, brings further enhancements, as evidenced in Table 5 and Table 6. Moreover,
the Adversarial Geometry Regularization module, denoted as AGR, significantly reduces prediction errors,
validating its efficacy. To offer a more vivid illustration of the impact of AGR, we conduct a qualitative
ablation by visualizing predicted depth maps both with and without the inclusion of AGR in the model, as
depicted in Figure 7. The comparison showcases that the model without AGR tends to generate artifacts
in challenging conditions such as low-illumination regions. In contrast, our complete model incorporating
AGR effectively mitigates these issues, underscoring the crucial role of AGR in enhancing the robustness of
the model, especially in adverse conditions.

Cameras Resolution Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

Front 384 × 640 0.130 2.699 13.219 0.216 0.845 0.945 0.977
Front-Left 384 × 640 0.186 2.745 11.845 0.294 0.745 0.898 0.948
Back-Left 384 × 640 0.199 2.885 11.419 0.301 0.729 0.891 0.944

Back 384 × 640 0.188 3.062 14.027 0.292 0.717 0.900 0.956
Back-Right 384 × 640 0.224 3.021 10.874 0.331 0.683 0.866 0.935
Front-Right 384 × 640 0.224 3.377 11.552 0.327 0.684 0.867 0.934

All 384 × 640 0.192 2.965 12.156 0.293 0.734 0.895 0.949

Table 4: Quantitative evaluation results of corresponding six cameras of self-supervised multi-camera depth
estimation on DDAD (Guizilini et al., 2020).
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Methods Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log↓
Baseline 0.245 3.067 6.835 0.321

+ STTrans 0.238 2.889 6.732 0.316
+ STTrans + STPCC 0.236 2.864 6.709 0.315

+ STTrans + STPCC + AGR 0.233 2.815 6.681 0.312

Table 5: Ablation study on Nuscenes (Caesar
et al., 2020). STTrans denotes the Spatial-Temporal
Transformer framework and AGR represents our
Adversarial Geometry Regularization module.

Methods Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log↓
Baseline 0.200 3.392 12.270 0.301

+ STTrans 0.195 3.126 12.204 0.297
+ STTrans + STPCC 0.194 3.103 12.189 0.295

+ STTrans + STPCC + AGR 0.192 2.965 12.156 0.293

Table 6: Ablation study on DDAD (Guizilini
et al., 2020). STTrans denotes the Spatial-Temporal
Transformer framework and AGR represents our
Adversarial Geometry Regularization module.
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Figure 7: Qualitative ablation of AGR. Regions with large differences are highlighted with green
boxes. The visualization comparison can demonstrate the effectiveness of AGR in constraining
prediction weirdness in low-illumination and nighttime driving scenarios.

4.5.3 Ablation study for Spatial-Temporal Transformer (STTrans)

Ablation study of structure. The ablation study conducted on the Spatial-Temporal Transformer
(STTrans) structure, detailed in Table 7 and Table 8, provides insights into the critical components influenc-
ing its performance. The variants explored include modifications to the structure components as illustrated
in Figure 4, including Convolutional Block (CNN Path), Transformer Block (Trans. Path), adjustments in
the number of Transformer Block Paths, and alterations in the structure of the Spatial-Temporal Cross-
Correlation (STCC). Examining Table 7, it is evident that both the Convolutional Block and Transformer
Block significantly contribute to the feature extraction process.

Ablation study of spatial-temporal cross correlation. In Table 8, specific analyses involve the re-
moval of the full STCC, spatial cross-correlation (SCC), and temporal cross-correlation (TCC). The out-
comes underscore the indispensability of both spatial and temporal cross-correlation mechanisms. Notably,
the Convolutional Block and Transformer Block act as pivotal elements in shaping the feature representa-
tion, while the inclusion of spatial and temporal cross-correlation mechanisms enhances the model’s capacity
for capturing intricate spatial-temporal dependencies. These findings emphasize the separate effectiveness
and interplay of components within the STTrans architecture, highlighting its holistic design for effective
multi-camera depth estimation in driving scenarios.
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Methods Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓
CNN Path only 0.256 3.418 8.675 0.301

Trans. Path only 0.248 3.272 8.016 0.398
1 Trans. Path 0.246 3.165 7.693 0.346
2 Trans. Path 0.243 3.134 7.238 0.325

STTrans 0.233 2.815 6.681 0.312

Table 7: Ablation study of Spatial-Temporal Trans-
former (STTrans) on Nuscenes (Caesar et al., 2020).
CNN Path and Trans. Path denote the Convolu-
tional Block and Transformer Block, respectively.

Methods Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓
w/o STCC 0.242 2.986 6.985 0.321
w/o SCC 0.238 2.956 6.893 0.318
w/o TCC 0.235 2.934 6.736 0.315
STTrans 0.233 2.815 6.681 0.312

Table 8: Ablation study of Spatial-Temporal Trans-
former (STTrans) on Nuscenes (Caesar et al., 2020).
SCC and TCC denote the spatial cross-correlation
and temporal cross-correlation, respectively.

Ablation study of overlapping proportion. Overlap regions are very critical in self-supervised
depth estimation in two aspects, cross-view correlation and photometric loss calculation. To
explore the significance of overlapping regions, we conduct an ablation experiment by applying
a mask to exclude different proportions of the overlap area. As shown in Figure 4.5.3, we
illustrate the overlap region with red lines and the applied mask with blue blocks, taking
1/3 masking in Front-Left, Front, and Front-right cameras as an example. According to the
experiment results in Table 4.5.3, model performance degrades as the proportion of the overlap
area decreases, verifying the value of view overlaps.

1/3 mask

Figure 8: Illustration of spatial overlap re-
gions (red lines) and the applied masks (blue
block).

Overlap Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓

0 0.248 3.028 7.013 0.336
1/3 0.240 2.962 6.906 0.320
2/3 0.236 2.952 6.738 0.317

1 0.233 2.815 6.681 0.312

Table 9: Ablation study of remained overlap-
ping proportions, including 0%, 1/3, 2/3 and
100%, after being excluded with masks.

4.5.4 Ablation study for Adversarial Geometry Regularization (AGR)

We extend our exploration to the position embedding approach within the Adversarial Geometry Regulariza-
tion (AGR) module, conducting an insightful ablation study. In our analysis, we introduce a variant denoted
as AGR (w/ concat), inspired by the methodology presented in the work by (Wang et al., 2021). This variant
integrates arbitrary depth maps and 2D pixel coordinates through a concatenation process. The ablation
results, outlined in Table 10, showcase the distinct performances of these approaches. Notably, our proposed
depth-aware positional embedding operation demonstrates superior efficacy compared to the simpler con-
catenation strategy, affirming the significance of our design choice in enhancing the overall performance of
the AGR module. This observation reinforces the critical role of thoughtful positional embedding strategies
in optimizing depth estimation under adverse conditions within the self-supervised multi-camera context.

4.6 Qualitative Evaluation Results

In Figure 9, we present the qualitative evaluation results, showcasing the effectiveness of our proposed
method. The top four rows depict input images and the corresponding predicted depth maps from the
Nuscenes dataset, while the bottom four rows showcase analogous results from the DDAD dataset. The
visual inspection of these results underscores the capability of our method to generate high-quality depth
maps. Notably, our approach excels in capturing fine contextual details and delineating clear borders around
objects. This qualitative assessment provides a compelling visual demonstration of the robustness and
accuracy of our depth estimation method across diverse scenes and datasets.
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Figure 9: Qualitative evaluation results and comparison with other state-of-the-art methods on
Nuscenes (top three rows) and DDAD (bottom six rows). For each scene, we show the front,
front-left, back-left, back, back-right, and front-right camera views from left to right. The
predicted depth maps of our methods on both datasets display flatter ground, clearer object
contour, and finer texture details, as highlighted in green boxes.

Methods Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓
AGR (w/ concat) 0.235 2.851 6.697 0.314

AGR 0.233 2.815 6.681 0.312

Table 10: Ablation study of AGR on Nuscenes (Cae-
sar et al., 2020). AGR (w/ concat) means directly
using the concatenation of depth maps and posi-
tions.

Methods Abs Rel ↓ RMSE ↓ GFLOPs ↓
SurroudDepth 0.245 6.835 132.32

SurroudDepth-T 0.368 7.315 220.15
EGA-Depth 0.239 6.801 64.94

EGA-Depth-T 0.237 6.769 91.56
Ours(single) 0.235 6.736 68.66

Ours 0.233 6.681 96.80

Table 11: Comparison of model computational
efficiency.

4.7 Model Computational Efficiency

To investigate the impact of model computational requirements on model performance, we
compare our method with other state-of-the-art methods in Table 11. “SurroudDepth-T” and

16



Under review as submission to TMLR

“EGA-Depth-T” are the corresponding variants of state-of-the-art methods utilizing multiple
temporal frames. According to the results in Table 11, our method can achieve better perfor-
mance (4% and 36% improvement on SurroundDepth and SurroundDepth-T; 1.6% and 1.7%
improvement on EGA-Depth and EGA-Depth-T) without comparable computation require-
ments.

5 Conclusion

This paper has addressed the intricate challenges of self-supervised multi-camera depth estimation in the
context of autonomous driving, presenting a novel approach through our proposed Transformer-based frame-
work, STViT. Our framework’s Spatial-Temporal Transformer (STTrans) effectively harnesses local spatial
connectivity and global context to recover rich spatial-temporal cross-view correlations, facilitating the in-
tricate task of 3D geometry recovery. The incorporation of a spatial-temporal photometric consistency
correction strategy (STPCC) further enhances performance by mitigating the impact of varying illumina-
tion conditions. Moreover, our Adversarial Geometry Regularization (AGR) module, rooted in Generative
Adversarial Networks, introduces valuable spatial positional constraints, significantly improving depth map
predictions in challenging scenarios, such as adverse weather and night driving conditions. The demonstrated
superior performance of our method on large-scale datasets, including NuScenes and DDAD, reaffirms its
efficacy and places it at the forefront of self-supervised multi-camera depth estimation techniques. Through
extensive evaluations and ablation studies, we have substantiated the contributions of each component of
our framework, providing a comprehensive understanding of its strengths. As autonomous driving systems
continue to evolve, our work presents valuable insights toward more accurate and robust depth estimation,
crucial for the safety and reliability of such systems in diverse real-world scenarios.

Broader Impact Statement

While our work on self-supervised multi-camera depth estimation, embodied in the STViT framework,
represents a substantial stride in enhancing depth perception for applications like autonomous driving,
it is imperative to consider potential repercussions and societal impacts. Firstly, as with any technology
deployed in real-world scenarios, our model’s performance may be influenced by specific conditions, such as
extreme weather or low-light environments. Users should be aware that while our Adversarial Geometry
Regularization Module (AGR) significantly improves robustness, there may still be limitations in adverse
conditions that could affect the reliability of depth estimations. Additionally, given the nature of self-
supervised learning and its reliance on diverse datasets, there is a need for vigilance regarding potential biases
that could inadvertently impact the model’s behavior in different scenarios. Furthermore, the application of
such technologies in safety-critical domains, like autonomous driving, underscores the importance of continual
monitoring and updates to ensure the model’s adaptability to evolving real-world conditions. We emphasize
the necessity for transparent and ethical deployment practices to mitigate any unforeseen consequences and
ensure the responsible use of advanced depth estimation models in practical settings.
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