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ABSTRACT

Antonymic and synonymic pairs may both occur nearby in word embeddings
spaces because they have similar distributional information. Different methods
have been used in order to distinguish them, making the antonymy-synonymy
discrimination a popular NLP task. In this work, we propose the repelling parasi-
amese neural network, a model which considers a siamese network for synonymy
and a parasiamese network for antonymy, both sharing the same base network.
Relying in the antagonism between synonymy and antonymy, the model attempts
to repel siamese and parasiamese outputs making use of the contrastive loss func-
tions. We experimentally show that the repelling parasiamese network achieves
state-of-the-art results on this task.

1 INTRODUCTION

Semantic opposition is a binary relation of central importance in the cognitive baggage of human
languages. It establishes that one term contradicts the other, that both cannot be satisfied simultane-
ously. In the context of lexical semantics, it corresponds to antonyms (e.g. light and dark), whose
recognition is essential for natural language usage. For instance, this capability is crucial for text
entailment and paraphrasing, which are basic abilities for different NLP tasks.

Most of modern NLP is using word embeddings (i.e. vectors for word meanings built from word
contexts and subword information). These word representations have the potential to cluster words
according to their distributional information on a corpus. However, since antonyms tend to occur
in similar contexts, word embeddings may have close vectors in the space. Faced to this problem,
different approaches have been proposed to re-encode the word embeddings in a supervised learning
setup for the antonymy-synonymy discrimination task (Mrkšić et al., 2017; Etcheverry & Wonsever,
2019; Samenko et al., 2020; Xie & Zeng, 2021).

In this work, we deepen in the parasiamese network as an antitransitive relationship learning ap-
proach, and we propose the repelling parasiamese neural network: a model that simultaneously op-
poses the siamese and parasiamese outputs (of a same base network). We present two independent
alternatives to do so: (1) pair and (2) triplet based approaches. We experimentally evaluate differ-
ent alternatives and we introduce a formulation to enforce symmetry through the network structure.
We carry out our experiments in three datasets: the publicly available antonymy-synonymy dataset
introduced by Nguyen et al. (2016), a here introduced dataset confeccionated from Samuel Fallow’s
antonym’s dictionary (accessed through the Gutenberg project) and in a version of the Nguyen et al.
(2016)’s dataset splitted without lexical intersection between train, validation and test introduced
by Xie & Zeng (2021). We show that the repelling parasiamese neural network achieves better per-
formance than its predecessor, the (non-repelling) parasiamese network, and the best performing
models found in the literature.

2 SOME PRELIMINARIES

Before getting into the repelling parasiamese neural network, let’s introduce some preliminary con-
cepts concerning antitransitivity, metric learning for antonymy and the parasiamese network.
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2.1 ANTONYMY AND ANTITRANSITIVITY

Antonymy can be considered as an antitransitive relationship1. If two lexical units are antonyms of a
third (e.g. huge and enormous being opposite of small) then they will not oppose each other; in fact,
they will often present semantic similarity (Edmundson, 1967). In table 1 we sample antonyms for
some words from Fallow’s dictionary. Supporting the claimed antonymy antitransitivity, it can be
seen that the words on each antonymy list (i.e. common antonyms of a word) do not oppose between
them, and many cases of similarity can be detected (e.g. savage and wild).

word antonyms
tame fierce savage wild

compound decompose sift segment
robust feeble puny languid
lose get own possess

authentic false supposititious fictitious

Table 1: Antonymy list of a given word.

2.2 A METRIC FOR ANTONYMS

Siamese networks are among the best performing approaches for text semantic similarity tasks (Tran
et al., 2020; Ranasinghe et al., 2019; Mueller & Thyagarajan, 2016). The properties that similarity
relations tend to have, such as reflexivity, symmetry and transitivity; are suitable for metrics and
particularly for siamese networks. To clarify, suppose a metric d, reflexivity and symmetry arise
directly from the metric definition, precisely from d(x, x) = 0 and d(x, y) = d(y, x). Concerning
transitivity, it is related to triangular inequity. The triangular inequity establishes that for any triplet
(x, y, z) of words:

d(a, c) ≤ d(a, b) + d(b, c) (1)

So, given two pairs of related words (a, b) and (b, c), then due to the triangular inequity, d(a, c) is
bounded by the sum of d(a, b) and d(b, c), which are expected to be low values since (a, b) and
(b, c) are related. This makes the pair (a, b) to tend to be related as well, and therefore, the relation
transitivity.

If instead of a metric for similarity we consider a metric for opposition, e.g. antonyms, the afore-
mentioned regarding triangular inequity is a drawback. The metric function will not be suitable for
the antitransitivity of the opposition relation, tending to return low values (i.e. treat them as related)
for the unrelated pair of words in the anti-transitive triangles. In other words, for each pair of words
with a common antonym (e.g. short and brief as antonyms of long), the metric will tend to wrongly
treat them as antonyms as well.

In conclusion, the triangular inequity is beneficial for transitivity but it is problematic for antitransi-
tivity. In the following section we describe the parasiamese network, a siamese-like neural network
that does not satisfy triangular inequity and is suitable for learning antitransitive relations.

2.3 THE PARASIAMESE NETWORK

The parasiamese network (Etcheverry & Wonsever, 2019) was introduced as inspired by the siamese
network, being better suited for the learning of antitransitive relations. Just like the siamese network,
it consists of a model that consumes two vectors and returns a non-negative value; and it relies on
a base neural network that is applied more than once, sharing its weights, to compute the output.
The parasiamese network differs from the siamese formulation in the fact that the base network is
applied once to one input and twice to the other, instead of once to each input, as in the siamese
network. The double application of the base network in the parasiamese network, imposes that the
base network must have the same dimension for its input and output. The output of the parasiamese
network is the distance between both branches (see Figure 1).

1We remind that a binary relation R is called antitransitive iff ∀a, b, c (a R b ∧ b R c→ a 6R c)
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Figure 1: The siamese network (left) and the parasiamese network (right) diagrams. Fθ corresponds
to a neural network with parameters θ and d a distance function (e.g Euclidean).

Let Fθ : Rn → Rn be a neural network with trainable parameters θ. Then, the parasiamese network
with base network Fθ is defined by

ΦFθ (x, y) = ||Fθ(x)− Fθ(Fθ(y))||2, (2)

where ||.||2 is the Euclidean norm. The model is trained through the contrastive loss function.
Concretely, ΦFθ is trained through mini-batch stochastic gradient descent on:

L =
∑

(x,y)∈P

[ΦFθ (x, y)− µp]+ +
∑

(x′,y′)∈N

[µn − ΦFθ (x
′, y′)]+, (3)

where P and N are, respectively, the positive and negative pairs in the dataset; and µp and µn
are the positive and negative thresholds, respectively. The [.]+ notation corresponds to the ReLU
function. The training attempts to pull closer than µp the related elements and push away unrelated
pairs further than µn.

This definition, unlike the siamese network, does not enforce transitivity even when the parasiamese
output of the two related pairs in the antitransitive triangle are strictly zero. Moreover, the relation
given by ΦFθ and a threshold µ (i.e. RΦFθ ,µ

= {(a, b) : ΦFθ (a, b) ≤ µ}) is benefited concerning
antitransitivity if ΦFθ (w,w) > µ, which is consistent with the fact that antitransitive relations are
necessarily antireflexive2.

In addition, the unrelated pair in the anti-transitive triangles will present a low value for the siamese
formulation using the same base network. If (a, b, c) is an antitransitive triangle with unrelated pair
(a, c), then:

||Fθ(a)− Fθ(c)||2 = ||Fθ(a)− Fθ(c) + Fθ(Fθ(b))− Fθ(Fθ(b))||2
≤ ||Fθ(a)− Fθ(Fθ(b))||2 + ||Fθ(c)− Fθ(Fθ(b))||2

and the parasiamese formulations of (a, b) and (c, b) are expected to output low values since they
are both related.

A possible interpretation for the parasiamese definition is thinking the base network F as an oppo-
sition transformation. So, if we consider two opposite terms a and b (i.e. a ∼ ¬b), it is expected that
opposition remains when both terms are negated (i.e. ¬a ∼ ¬¬b), which brings the parasiamese
formulation: F (a) ∼ F (F (b)).

2To support this claim we rely in ΦFθ (a, c) ≤ ΦFθ (a, b) + ΦFθ (b, b) + ΦFθ (b, c).
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3 THE REPELLING PARASIAMESE NETWORK

The repelling parasiamese network is based on contrasting the siamese and parasiamese networks
in a differentiable formulation (Figure 2). By doing this, we consistently observe a performance
improvement in comparison to its predecessor (i.e. the parasiamese network without repelling its
siamese counterpart).

Figure 2: Diagram of the here proposed repelling parasiamese network. d corresponds to a distance
function (e.g Euclidean) and c is a function that contrasts the siamese and parasiamese outputs (e.g.
contrastive loss).

The siamese counterpart of a parasiamese network may reflect the similitude-like relation that
emerges from being opposed to the same elements through the antitransitive relation. Recalling
the case of lexical semantics, the siamese formulation that comes from a parasiamese network that
models antonymy, may be suitable to model synonymy, since the words that share antonyms may
tend to be synonyms. Hence, given the antagonism between antonymy and synonymy, it seems
suitable that both outputs should not be simultaneously low for the same outputs.

Let a, b, c be three inputs with the pairs a, b and b, c being related and therefore returning low parasi-
amese outputs. Then, as commented in the previous section, the output for the siamese formulation
of the same base network for the pair a, c will present a low value. Simultaneously, its parasiamese
output is expected to be greater than the acceptance threshold, because of the antitransitivity. This
suggests contrariness between siamese and parasiamese formulations in the unrelated pairs of anti-
transitive triangles.

Moreover, if a pair (a, b) presents low siamese and parasiamese outputs, it would implies a reflexive
pair within the antitransitive relation, since:

ΦFθ (a, a) = ||Fθ(a)− Fθ(Fθ(a))||2 = ||Fθ(a)− Fθ(Fθ(a)) + Fθ(b)− Fθ(b)||2
≤ ||Fθ(a)− Fθ(b)||2 + ||Fθ(a)− Fθ(Fθ(b))||2

which is inconsistent with antitransitivity. So, it may be suitable to contrast the parasiamese and
siamese outputs (using a same base network) when one of them returns a low value.

To describe the repelling parasiamese network let introduce the following notation:

• Parasiamese left and right branches: We will refer as left and right branches of the
parasiamese network to the transformations applied to the left and right parts of the re-
lationship (that correspond to the left and right terms of the distance in equation 2), and
we will write them as αθα : Rn → Rn and βθβ : Rn → Rn, respectively. So, in the
non-repelling proposal αθ(x) = Fθ(x) and βθ(x) = Fθ(Fθ(x)).
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• Parasiamese output function: We will use the notation Φαθα ,βθβ for to the binary function
that given the left and right branches, αθα and βθβ , returns the distance between them, i.e.
Φαθα ,βθβ (x1, x2) = ||αθα(x1)− βθβ (x2)||22. Notice that Φαθα ,αθα (x1, x2) corresponds to
the siamese network formulation.

3.1 SIAMESE-PARASIAMESE REPULSION

In order to formulate the repelling parasiamese network, lets consider the parasiamese output func-
tion Φαθα ,βθβ as the following two functions:

• Φ
(p)
αθα ,βθβ

: Rd × Rd → R≥0 as a function that returns a low value when the parasiamese
output presents a low value and the siamese network a high value (e.g. higher than a
threshold).

• Φ
(s)
αθα ,βθβ

: Rd × Rd → R≥0 as a function that returns low value when the siamese net-
work presents a low value and the parasiamese network a high value (e.g. higher than a
threshold).

So, Φ
(p)
αθα ,βθβ

and Φ
(s)
αθα ,βθβ

are the parasiamese and siamese networks, respectively, with its respec-
tive counterparts repelled on its formulation; using both the same base network. While the parasi-
amese network will be suitable to learn antitransitive relations (or anti-Euclidean in case of non-
symmetry), its siamese counterpart will be useful to learn the similitude-like relation that emerges
from the former. The training is performed through the minimization of the following loss function:

∑
(x,y)∈P

Φ
(p)
α,β(x, y) +

∑
(x′,y′)∈N

Φ
(s)
α,β(x′, y′),

where P and N are antonymy and synonymy instances, respectively. Notice that contrast details
and thresholds (if some) are delegated to each Φ function definition.

We propose two formulations inspired and aligned to two of the main approaches to deep met-
ric learning: pair and triplet based. Essentially, both formulations consider the same informa-
tion, the outputs of the parasiamese and siamese networks, but the repelling is driven in slightly
different ways. Given the branches α and β and the input (x, y), the pair based approach mini-
mizes (α(x), β(y)) maximizing (α(x), α(y)), while the triplet based approach considers the triplet
(α(x), β(y), α(y)) attempting to get (α(x), β(y)) closer than (α(x), α(y)).

3.1.1 PAIR BASED

This approach considers positive and negative pairs, pretending the distance between related pairs
to be lower than a given threshold µp and the distance between unrelated pairs to be higher than a
threshold µn, by terms of hinge expression. The pair based Φ functions are written as:

Φ
(p)
αθα ,βθβ

(x1, x2) = [Φαθα ,βθβ (x1, x2)− µp]+ + [µn − Φαθα ,αθα (x1, x2)]+

Φ
(s)
αθα ,βθβ

(x1, x2) = [Φαθα ,αθα (x1, x2)− µp]+ + [µn − Φαθα ,βθβ (x1, x2)]+;

where µp and µn are the positive and negative margins, respectively. A disadvantage of this formu-
lation is that the same margin is applied to every pair. This is addressed, theoretically, by means of
the triplet loss function (Musgrave et al., 2020) that we consider in the following section.

3.1.2 TRIPLET BASED

The triplet loss is based on the triplet network concept (Hoffer & Ailon, 2015). Given a set T of
triplets of elements (a, p, n) where p is related to a and n unrelated to a, the triplet loss function
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attempts to make the distance between a and p smaller than the distance between a and n by a
margin µ, through minimizing:

∑
(a,p,n)∈T

[||a− p||2 − ||a− n||2 + µ]+

For the triplet based Φ
(p)
α,β and Φ

(s)
α,β functions, given a pair (x, y), we consider the triplets:

(α(x), β(y), α(y)) and (α(x), α(y), β(y)), respectively. Hence, the triplet based Φ functions are
written as:

Φ
(p)
α,β(x, y) = [Φα,β(x, y)− Φα,α(x, y) + µt]+

Φ
(s)
α,β(x, y) = [Φα,α(x, y)− Φα,β(x, y) + µt]+

where µt is the separation between the positive and negative samples.

3.2 PARASIAMESE BRANCHING

The repelling between the outputs of the parasiamese and the siamese networks does not rely on any
particular way of the right branch of the parasiamese network. The base network double application
is just an alternative that allows to share the weights between both branches and it is inspired in the
logic negation, but only is needed to have both branches distinguished. In the following we detail
the two variants that we consider in this work.

• (Standard) Parasiamese: Corresponds to the original formulation of the parasiamese net-
work, where αθ(x) = Fθ(x) and βθ(x) = Fθ(Fθ(x)).

• Half-twin Parasiamese: This formulation completely unties the weights between both
branches. Both branches consist on entirely different networks, without shared weights.
Accordingly, αθα(x) = Fθα(x) and βθβ (x) = Gθβ (x).

Notice that both definitions are suitable for the previously introduced repulsion formulations. In the
case of the half-twin parasiamese case, the siamese network (for repelling) corresponds to the left
branch.

3.3 SYMMETRIC PARASIAMESE NETWORK

The parasiamese network is not symmetric. Etcheverry & Wonsever (2019) included symmetry
driven by data, by augmenting the dataset with the reversed pair of each instance, showing that the
model performance is improved when symmetryzed pairs are seen during training.

In this work, we propose to enforce symmetry through the architecture definition. We refer as right
(left) parasiamese to the formulation with the right (left) branch distinguished (by double application
or different base network in the half-twin parasiamese case). The parasiamese network can be
formulated as a symmetric function if the two versions of the parasiamese network (left and right)
are combined to be minimized. We experiment through adding them. In section 4.3, we compare
the performance of the symmetric and non-symmetric variants showing in most of cases a better
performance for the symmetric in the antonymy detection task.

parasiamese
< µ > µ

siamese < µ (1) synonyms
> µ antonyms (2)

Table 2: Antonymy and synonymy classification alternatives according to the outputs of the siamese
and parasiamese sub-networks of a repelling parasiamese network. The acceptance threshold is µ.
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3.4 PARASIAMESE AND SIAMESE SUB-NETWORKS

The here presented repelling parasiamese network has been designed to discern opposite from sim-
ilar elements. However, it is possible to afford unrelated pairs (i.e. neither similar nor opposite
terms) with it, when both sub-networks, the parasiamese and siamese outputs, present high values,
suggesting that the elements of the candidate pair are neither similar nor opposite.

The table 2 shows the antonymy-synonymy classification using the repelling parasiamese network
according to the parasiamese and siamese sub-networks outputs. Besides antonymy and synonymy
regions, the region denoted by (1) refers to pairs that are simultaneously synonymic and antonymic
or a self-antonymic term (e.g. rent). And the region (2) belongs to pairs that are neither synonyms
nor antonyms.

As a future work we comment that a 3-way loss could be defined considering opposition, similar-
ity and unrelatedness. A challenge on this direction is the unrelated pairs mining strategy, which
contains a large space of possibilities.

4 EXPERIMENTS AND DISCUSSION

In the following we detail the settings and results of the experiments we conducted, in the antonymy-
synonymy discrimination task using general purpose pre-trained word embeddings as input.

4.1 DATASETS AND WORD EMBEDDINGS

To perform our experiments we need a number of words pairs, labelled with if they are synonyms
or antonyms. The datasets we consider are split into train, validation and test. We consider the
following datasets:

• Nguyen’s: This dataset was built by Nguyen et al. (2016) using WordNet (Miller, 1995)
and Wordnik3. It consists of 15, 632 pairs of words with a balanced amount of synonyms
and antonyms, over a vocabulary of 9, 405 words.

• Fallows’s: We introduced a dataset for synonym/antonym distinction from the book "Com-
plete Dictionary of Synonyms and Antonyms", by Samuel Fallows; available through the
Gutenberg project4. We automatically processed the electronic version of the book, obtain-
ing a number of 25, 419 antonym and 32, 302 synonym pairs, with a vocabulary of 15, 698
distinct words with 5, 810 in common to Nguyen’s dataset.

• Xie’s: This dataset was built by Xie & Zeng (2021) using Nguyen et al. (2016)’s dataset
but split (into train,validation and test) without any word in common between each part (i.e.
without lexical intersection). It consists of 12, 732 pairs of words with a balanced amount
of synonyms and antonyms, over a vocabulary of 9, 404 words.

We perform all our experiments using the word embeddings from the pretrained fastText (Joulin
et al., 2016) model for English available in the fastText site5. This model was trained using
Wikipedia6 and Common Crawl7. The resulting vectors are in dimension 300 and there are not
any out of vocabulary word over any dataset since fastText considers subword information.

4.2 EVALUATION PROCEDURE

On recent works, deep metric learning advances have been criticized for its evaluation methodol-
ogy (Musgrave et al., 2020; Fehervari et al., 2019). It has been detected unsuitable hyperparameter
settings, leading to unfair comparisons. In order to avoid that, we perform an independent random
search over each model to obtain a suitable hyperparameter configuration against the validation set.
Then, we report the results of the best performing configuration against the test set.

3https://www.wordnik.com/
4https://www.gutenberg.org/ebooks/51155
5https://fasttext.cc/docs/en/crawl-vectors.html
6https://www.wikipedia.org/
7https://commoncrawl.org/
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Model

Random Split
Nguyen’s Fallows’s

Adjective Verb Noun Mixed
P R F P R F P R F P R F

Xie & Zeng (2021) .878 .907 .892 .895 .920 .908 .841 .900 .869 - - -
Ali et al. (2019) .854 .917 .884 .871 .912 .891 .823 .866 .844 - - -
Etcheverry & Wonsever (2019) .855 .857 .856 .864 .921 .891 .837 .859 .848 .847 .886 .866
Siamese .607 .868 .714 .695 .927 .794 .682 .929 .787 .455 .927 .611
Half-twin .788 .881 .832 .785 .830 .807 .758 .839 .796 .816 .863 .839
Parasiamese* .821 .889 .854 .831 .899 .863 .813 .851 .831 .819 .890 .853
P-R-Parasiam .919 .860 .889 .885 .918 .901 .897 .820 .857 .903 .886 .894
P-R-Parasiam HTwin .865 .825 .844 .826 .877 .850 .807 .814 .811 .918 .872 .894
P-R-Parasiam Sym .927 .863 .894 .914 .916 .915 .876 .820 .847 .869 .943 .904
P-R-Parasiam Sym HTwin .922 .878 .899 .910 .934 .922 .877 .855 .866 .913 .914 .914
T-R-Parasiam .871 .874 .872 .841 .919 .878 .808 .839 .823 .877 .874 .876
T-R-Parasiam HTwin .867 .840 .853 .830 .870 .849 .816 .784 .800 .873 .875 .874
T-R-Parasiam Sym .924 .831 .875 .898 .910 .904 .862 .806 .833 .896 .870 .883
T-R-Parasiam Sym HTwin .920 .886 .903 .874 .919 .896 .853 .851 .852 .915 .869 .892

Lexical Split (Xie’s dataset)
Adjective Verb Noun

P R F P R F P R F
Xie & Zeng (2021) .808 .810 .809 .830 .693 .753 .846 .722 .776 - - -
P-R-Parasiam Sym HTwin .735 .885 .803 .725 .904 .804 .752 .870 .807 - - -

Table 3: Table showing the results of the repelling parasiamese network and related works. We
include results from the pair and triplet based repelling parasiamese networks (denoted as P-R-
Parasiam and T-R-Parasiam, respectively); regular and symmetric variants (marked as Sym); and
half-twin repelling parasiamese branching (marked as HTwin). Previous work results are exposed
in the first block. Best results reached using a siamese, half-twin and parasiamese* networks are
exposed in the second block. Parasiamese* stands for the original non-symmetric and non-repelling
parasiamese proposal by Etcheverry & Wonsever (2019) without pretraining. Third and fourth
blocks correspond to pair and triplet based repelling parasiamese networks, respectively. Finally,
the part of the table below the "lexical split" label corresponds to the results obtained using Xie
& Zeng (2021)’s lexically split dataset. We compare Xie & Zeng (2021)’s results against "P-R-
Parasiam Sym HTwin" one of the best performing repelling parasiamese models in the random split
datasets.

The hyperparameter space is considerably complex in these models. We divide it on three classes of
hyperparameters: parasiamese, base network and training. The parasiamese hyperparameters corre-
sponds to each margin values (e.g. positive, negative and acceptance). The branching type (vanilla,
half-twin), model symmetry and the repelling type (pair or triplet) are considered as different mod-
els instead of hyperparameters; to compare results between them. Regarding the base network, in
our experiments the considered base networks are feed forward networks. The base network hy-
perparameters corresponds to number of layers, each layer size and activation function. Finally,
the training hyperparameters include the optimization algorithm, learning rate and batch size. We
include the random search details in Appendix A. As evaluation metrics we use precision, recall and
F1 scores.

4.3 RESULTS

We present the obtained results on antonym-synonym distinction task in Table 3. We compare the
repel-parasiamese network to its predecessor, the (non-repelling) parasiamese network (Etcheverry
& Wonsever, 2019), the Distiller (Ali et al., 2019), and MoE-ASD8 (Xie & Zeng, 2021). We con-
sider half-twin variants for the repelling and non-repelling networks; and we include the best result
obtained using a siamese network for comparison purposes.

8We do not consider dLCE vectors (Nguyen et al., 2016), since those are already specialized to antonyms
and synonyms.
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It can be observed that the repelling parasiamese network consistently outperforms its non-repelling
predecessor. Regarding symmetry, the symmetric variants obtains the best results; and the half-
twin branching improves the results for the symmetric formulations, while it degrades for the non-
symmetric variants.

In comparison to the other reported methods, the repelling parasiamese network achieved better
results at least in two of the three sub-sets of Nguyen’s dataset (original and lexically splitted).
Compared to MoE-ASD it is worth mentioning that the repelling parasiamese network reach com-
petitive results without explicitly considering that the antonymic salient dimensions in the semantic
space may vary for different antonymic pairs.

4.3.1 ANTITRANSITIVE LINKS

Since the main design consideration of the model is concerning antitransitivity, in Table 4 we show
the model sub-network outputs (i.e. parasiamese and siamese) on antitransitive triplets (i.e. two
words having an antonym in common).

word1 word2 Φ(p) Φ(s)

real aerial 3.24 4.12
real notional 2.88 7.24
aerial notional 7.84 4.45
valid bad 2.60 4.49
valid false 2.18 5.03
bad false 12.43 0.79
bottom lateral 2.30 4.47
bottom top 3.41 6.09
lateral top 6.60 3.04
realistic fantastic 3.96 4.01
realistic utopian 3.46 4.68
fantastic utopian 6.60 4.48

Table 4: Samples of pairs forming antitransitive triangles with the respective outputs of the parasi-
amese and siamese Φ functions of the repelling parasiamese network. The acceptance threshold is
4.0.

We expose parasiamese and siamese outputs for pairs taken from the validation dataset partition of
Fallow’s dataset. Each block in the table contains three pairs that form triangles where antitransitive
property should be satisfied. For example, in the triplet (real, aerial,notional) the parasiamese output
represents the antitransitivity (see psiam column) and the siamese output is not below the acceptance
margin in any case, which is correct according to the dataset, since none of them are marked as
synonyms. In the triplet (valid, bad,false), the antitransitivity is stated by the parasiamese output
and the siamese output correctly indicates similarity between bad and false. The triplet (bottom,
lateral,top) may be debatable. The model inferred it as antitransitive as in the dataset, and similarity
between lateral and top is slightly high which we take as a mistake. Lastly, for the triplet (realistic,
fantastic, utopian), the antitransitivity is also represented (rightly according to the dataset) and any
of the pairs is stated as similar by the siamese network.

5 CONCLUSION

In this work we deepen the parasiamese network and we introduce the repelling parasiamese net-
work. We show that it is beneficial, in the parasiamese formulation, to repel the siamese counterpart
using the same base network; to distinguish antonyms and synonyms. The model achieves better
results than its predecessor, using the weights of one (or two in the case of half-twin formulations)
few-layered fully connected feed forward network. We perform our experiments in the Nguyen
et al. (2016) publicly available dataset, the lexically split version provided by Xie & Zeng (2021),
and we introduced a new dataset built from Samuel Fallow’s antonym’s dictionary accessed through
the Gutenberg project. We show that the model performs well, encoding meaningful information in
terms of opposition and similarity.
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A RANDOM SEARCH DETAILS

This appendix includes random search set up and the best hyperparameter configuration obtained
for each model. Each run was early stopped with a patience chosen between 3 or 5. Every model
was trained using adam (Kingma & Ba, 2014) and a learning rate chosen from [0.0001, 0.001, 0.01].
The batch size is 64 for every case. We perform 100 trials to search for the hyperparameters of each
model.

Regarding the margins, they were selected using the following criteria:

• Positive margin is uniformly chosen from [0, 0.2, 0.5, 1.0, 1.25, 1.5, 2.0].
• Negative margin is uniformly chosen from the values of

[.5, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5.] that are greater than the previously chosen posi-
tive margin.

• Acceptance margin is the result of multiplying the negative margin with a factor uniformly
chosen from [.75, 1., 1.25, 1.75].

In Table 5 we detail the parameters obtained from the random search.

base network margins training
model sym htwin ds layers act pos neg accept opt lr

Siamese False False ng [300,200,200,300] tanh 2.0 4.0 4.0 Adam .001
Siamese False False fl [300, 600, 300] tanh 0 1.5 1.875 Adam .001
Half-twin False True ng [300, 600, 300] tanh 1.5 5.0 3.75 Adam .001
Half-twin False True fl [300, 600, 300] tanh 0.5 4.5 3.375 Adam .001
Parasiamese False False ng [300, 600, 300] tanh 2.0 2.5 2.5 Adam .001
Parasiamese False False fl [300, 200, 200, 300] tanh 0.5 1.0 1.0 Adam .001
R-Psiam Pair False False ng [300, 600, 300] tanh 1.5 3.5 3.5 Adam .001
R-Psiam Pair False False fl [300, 200, 200, 300] tanh 1.0 3.5 2.625 Adam .001
R-Psiam Pair False True ng [300, 200, 300] tanh 0 4.0 5.0 Adam .001
R-Psiam Pair False True fl [300, 200, 300] tanh 1.0 4.5 3.375 Adam .001
R-Psiam Pair True False ng [300, 600, 300] tanh 1.0 2.0 1.5 Adam .001
R-Psiam Pair True False fl [300, 600, 300] tanh 1.5 3.0 3.75 Adam .001
R-Psiam Pair True True ng [300, 600, 300] tanh 2.0 4.0 4.0 Adam .001
R-Psiam Pair True True fl [300, 600, 300] tanh 2.0 3.0 2.25 Adam .001
R-Psiam Trip False False ng [300, 200, 200, 300] tanh 0 2.0 3.5 Adam .001
R-Psiam Trip False False fl [300, 200, 200, 300] tanh 0.2 2.0 2.0 Adam .001
R-Psiam Trip False True ng [300, 200, 200, 300] tanh 0.5 4.5 4.5 Adam .001
R-Psiam Trip False True fl [300, 200, 200, 300] tanh 0.2 1.0 1.25 Adam .001
R-Psiam Trip True False ng [300, 600, 300] tanh 0.2 5.0 6.25 Adam .001
R-Psiam Trip True False fl [300, 200, 200, 300] tanh 1.0 2.5 3.125 Adam .001
R-Psiam Trip True True ng [300, 600, 300] tanh 1.0 2.0 3.5 Adam .001
R-Psiam Trip True True fl [300, 200, 200, 300] tanh 0.2 2.5 2.5 Adam .001

Table 5: Hyperparameters obtained as result of the random search,
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