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Abstract

This paper introduces consistency models to the problem of sequential decision-making.
Previous work applying diffusion models to planning within a model-based reinforcement
learning framework often struggles with high computational cost during the inference pro-
cess, primarily due to their reliance on iterative reverse diffusion processes. Consistency
models, known for their computational efficiency, have already shown promise in reinforce-
ment learning within the actor-critic algorithm. Therefore, we combine guided consistency
distillation with a continuous-time diffusion model in the framework of Decision Diffuser.
Our approach, named Consistency Planning, combines the robust planning capabilities of
diffusion models with the speed of consistency models. We validate our method on Gym
tasks in the D4RL framework, demonstrating that, when compared to its diffusion model
counterparts, our method achieves more than a 12-fold increase in speed without any loss
in performance.

1 Introduction

In recent years, significant strides have been made in high-resolution image generation through the advance-
ment of diffusion-based generative models. Similarly, in offline reinforcement learning (RL) settings, deriving
effective policies from pre-existing offline datasets can be simplified to the task of developing a probabilistic
model for trajectory prediction, an area where diffusion-based generative models have proven to be highly
successful. Existing models such as Diffuser (Janner et al., 2022) and Decision Diffuser (Ajay et al., 2022)
underscore the efficacy of applying diffusion models to planning within model-based RL frameworks. In
Diffuser, a diffusion model is trained on the trajectories in offline datasets, and then a separate classifier
model is trained to predict the cumulative rewards of trajectory samples. During the inference process, the
diffusion model, combined with classifier guidance, is employed to sample trajectories with high returns.
Likewise, Decision Diffuser introduces a conditional diffusion model with state sequences as input, utilizing
the return as a conditioning variable for classifier-free guidance during sampling. Moreover, by incorporating
only the state sequence—excluding the action sequence—Decision Diffuser trains an extra inverse dynamic
model to infer actions.

Parallel to these developments, diffusion models have been adapted to model-free reinforcement learning
scenarios, as illustrated by Diffusion-QL (Wang et al., 2022) and further enhanced in the efficient diffusion
policy (EDP) (Kang et al., 2024). Diffusion-QL, utilizing a denoising diffusion probabilistic model (DDPM)
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(Ho et al., 2020), frames the diffusion model as a policy representation, conditioned on states with actions as
outputs. It integrates Q-learning guidance into the reverse diffusion process to seek optimal actions. Despite
its advancements, Diffusion-QL faces limitations in computational efficiency and its exclusive application
within TD3-type algorithms (Fujimoto & Gu, 2021). EDP addresses these issues by introducing an action
approximation trick during training, applying the DPM-solver, and approximating policy likelihood via the
evidence lower bound in the DDPM to overcome the limitations of Diffusion-QL.

Although the integration of diffusion models within both model-based and model-free frameworks in the
offline RL setting has been extensively explored and enhanced, a significant challenge remains in their
application, particularly in real-time decision-making contexts. This challenge stems from the diffusion
models’ reliance on iterative sampling processes, which can be computationally intensive and slow, thus
restricting their use in scenarios that require rapid inference. For instance, in robot arm control (Chi et al.,
2023), standard diffusion-based control can only make decisions at around 10Hz. However, this is insufficient
for tasks requiring agile motion planning at 20Hz (Smith et al., 2023), 30Hz (Peng et al., 2020), or even
higher.

Recent endeavors by Song et al. (2023) have introduced consistency models, a novel class of generative models
that significantly enhance computational efficiency without sacrificing the expressiveness and flexibility that
make diffusion models appealing for reinforcement learning.

In the model-free RL domain, consistency models have demonstrated promising results as policy represen-
tations, particularly in offline and offline-to-online RL settings (Ding & Jin, 2023). These developments un-
derscore consistency models’ capability to effectively navigate the challenges of learning from fixed datasets,
indicating their potential to achieve performance comparable to diffusion-based approaches, while maintain-
ing higher computational efficiency.

However, in offline RL settings, model-free methods using Q-network face challenges due to overestimated
Q-values for out-of-distribution actions (Kumar et al., 2020; Levine et al., 2020). In the context of online
RL, the problem is self-correcting as the policy interacts with the environment; an action perceived as
favorable might receive a low reward, thus adjusting the policy. However, in offline RL, such corrections are
not readily achievable, which often leads the learned Q-function to often guide the diffusion model towards
potentially sub-optimal actions. Therefore, given the computational efficiency of consistency models and the
proven effectiveness of diffusion models in trajectory prediction, this paper aims to explore how consistency
models can augment model-based RL with classifier-free guidance in an offline setting, thereby bypassing
the necessity of learning a Q-function by conditioning the consistency models on returns.

The goal of this paper is to bridge this gap by proposing a novel approach that merges the computational
efficiency of consistency models with the planning capabilities inherent in Decision Diffuser. By integrat-
ing consistency models into the trajectory optimization process, we aim to leverage their computational
advantages to enhance the speed of planning. Our experiments, conducted in offline RL settings, embed
a conditional consistency model in the Decision Diffuser algorithm, evaluating with consistency distillation
methods. Specifically, the Consistency Model employs guided consistency distillation from a score-based
diffusion model (Karras et al., 2022; Ho & Salimans, 2022; Luo et al., 2023) pretrained on offline trajectory
datasets.

In summary, our contribution is proposing Consistency Planning, a novel offline RL algorithm that extends
the applicability of consistency models to model-based RL. We evaluate Consistency Planning on D4RL
benchmark tasks (Fu et al., 2020) for offline RL, demonstrating that this method can achieve performance
comparable to its diffusion model counterparts across the majority of tasks, while offering a notably faster
sampling process.

2 Related Work

2.1 Diffusion Models

Diffusion models have emerged as a powerful approach for generating high-quality image and text data,
as demonstrated by previous studies (Saharia et al., 2022; Nichol & Dhariwal, 2021). The data sampling
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process is formulated as an iterative denoising procedure, introduced by Sohl-Dickstein et al. (2015) and
further developed by Ho et al. (2020). Parameterizing the gradients of the data distribution serves as an
alternative interpretation of this denoising procedure, aiming to optimize the score matching objective, as
elucidated by Hyvärinen & Dayan (2005). This positions the approach within the domain of Energy-Based
Models, as evidenced by the contributions of Du & Mordatch (2019), Nijkamp et al. (2019), and Grathwohl
et al. (2020).

Prior work (Nichol & Dhariwal, 2021) has implemented a classifier to enable the generation of images based
on conditional information (e.g., text), which is called classifier guidance. However, more recent studies (Ho
& Salimans, 2022), propose classifier-free guidance, which relies on the gradients from an implicit classifier,
derived from the score function differences between conditional and unconditional models. This approach
has proven to enhance the quality of conditional samples compared to classifier guidance methods. These
advancements predominantly focus on text and image generation.

2.2 Diffusion Models in Reinforcement Learning

Diffusion models offer a versatile approach for data augmentation in reinforcement learning. SynthER (Lu
et al., 2024) employs unguided diffusion models to enhance both offline and online RL datasets, subsequently
utilized by model-free off-policy algorithms. Although this approach boosts performance, SynthER’s reliance
on unguided diffusion to approximate the behavior distribution faces challenges due to distributional shift.
Similarly, MTDiff (He et al., 2024) implements unguided data generation in multitask environments.

Additionally, diffusion models have been adapted for training world models. For instance, Alonso et al.
(2023) use diffusion to train world models, achieving precise predictions of future observations. However,
this method does not model entire trajectories, leading to compounded errors and lack of policy guidance.
In a related effort, Rigter et al. (2023) integrate policy guidance to enhance a diffusion world model in online
RL. Jackson et al. (2024) concentrate on offline RL, providing a theoretical framework and rationale for the
trajectory distribution shaped by policy guidance.

Diffusion models have also been adapted for policy representation in RL, capturing the multi-modal distri-
butions in offline datasets. Specifically, Diffusion-QL (Wang et al., 2022), applies the diffusion model within
the framework of both Q-learning and Behavior Cloning (BC) for policy representation. However, the main
limitation of Diffusion-QL is that it demonstrates computational inefficiency due to the necessity of process-
ing both forward and backward through the entire Markov chain during training. To alleviate these issues,
Kang et al. (2024) introduce action approximation, eliminating the need to execute the denoising process
during the training process.

Diffusion models have been employed in recent studies for human behavior imitation learning (Pearce et al.,
2023) and trajectory generation in offline RL. Trajectories that include states and actions are generated by
Diffuser (Janner et al., 2022), using an unconditional diffusion model, guided by a reward function trained
on noisy state-action pairs. Decision Diffuser (Ajay et al., 2022) models the trajectories with the dataset
using a unified, conditional generative model, avoiding separate training a classifier for reward functions.

3 Preliminary

3.1 Reinforcement Learning Problem Setting

The sequential decision-making problem is defined as a Markov decision process (MDP): M =
{S, A, P, R, γ, d0}, where S and A are the state space and the action space respectively, P : S × A → S
represents the transition function, R : S ×A×S → R denotes the reward function, γ ∈ [0, 1) is the discount
factor, d0 is the initial state distribution. The goal of RL is to learn policy πθ (a|s) to maximize the expected
sum of discounted rewards E

[∑∞
k=0γkr (sk, ak)

]
.

3



Published in Transactions on Machine Learning Research (12/2024)

3.2 Consistency Models

Diffusion models operate by introducing Gaussian perturbations to transform data into noise, followed by
generating data samples through a series of sequential denoising steps. Song et al. (2020) introduce a stochas-
tic differential equation (SDE) framework that ensures the maintenance of the desired distribution as sample
x evolves over time. The consistency models proposed by Song et al. (2023) recover the original data sam-
ple by solving a corresponding probability flow ordinary differential equation (ODE): dxt

dt = −t∇ logt pt(x),
where pt(x) = pdata(x) ⊗ N (0, t2I), pdata(x) represents the original data distribution, t ∈ [0, T ] is the time
period. The data generation process in this framework reverses along the trajectory {x̂t}t∈[ϵ,T ] of the ODE,
starting from random initial samples x̂T ∼ N

(
0, T 2I

)
where ϵ is a minimal constant close to 0 to address

numerical issues at the boundary.

To accelerate the sampling process in diffusion models, the consistency model significantly reduces the number
of steps required for sampling compared to the original diffusion model, without substantially compromising
the model’s performance. This is achieved by approximating a parameterized consistency function, fθ :
(xt, t)→ xϵ, which maps a noisy sample xt at step t back to the original sample xϵ.

This approach differs from the diffusion model, which utilizes a step-by-step denoising function pθ (xt−1 | xt),
for the reverse diffusion process. Slightly different from the original consistency model, this paper focuses
on a conditional distribution, so the consistency function is modified to fθ(xt, t, c), where c denotes the
condition variable.

4 Planning with Consistency Model

This paper explores the integration of consistency models, which are trained by distillation from a pre-trained
diffusion model, into the planning architecture of Decision Diffuser. The original consistency models draw
from the principles of score-based diffusion models (Song et al., 2020; Karras et al., 2022), making direct
distillation from the discrete-time model used in Decision Diffuser ineffective. In the following, we discuss how
we use consistency models for the trajectory optimization process. Section 4.1 details the training process
of the diffusion model, followed by an explanation in Section 4.2 of how guided consistency distillation is
applied, and how the consistency model is integrated with the Decision Diffuser framework during inference.

4.1 Diffusion Model Training

Trajectory representation. As outlined by Ajay et al. (2022), the diffusion process encompasses only the
state transitions as described by

xti+1(τ) := (sk, sk+1, . . . , sk+H−1)ti+1 . (1)

In this notation, k indicates the timestep of a state within a trajectory τ , H represents the planning horizon,
and ti+1 is the timestep in the diffusion sequence. Consequently, xti+1(τ) is defined as a noisy sequence of
states, represented as a two-dimensional array where each column corresponds to a different timestep of the
trajectory. In training process, the sub-sequence ti ∈ [ϵ, T ] follows the Karras boundary schedule (Karras
et al., 2022):

ti =
(

ϵ1/ρ + i− 1
N − 1

(
t
1/ρ
N − ϵ1/ρ

))ρ

, (2)

where ϵ = 0.002, tN = 80, and ρ = 7.

Acting with inverse dynamics. To derive actions from the states generated by the diffusion model,
we employ an inverse dynamics model (Agrawal et al., 2016; Pathak et al., 2018), denoted as hφ, trained
using the same dataset as the diffusion model. Actions can be obtained via the inverse dynamics model by
extracting the consecutive state sk and sk+1 at diffusion timestep t0:

ak = hφ(sk, sk+1). (3)
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Combined training of diffusion models and inverse dynamics. Given a dataset D consisting of
trajectories, each labeled with its respective return, the combined training of the diffusion model (denoted
by Dϕ) and the inverse dynamics model is conducted using the following loss:

L(ϕ, φ) :=Eσ∼ptrain,τ∼D,n∼N (0,σ2I),β∼Bern(p)

[
∥Dϕ(xσ(τ), (1− β)c(τ) + β∅, σ)− x0(τ)∥2

2

]
+ E(s,a,s′ )∼D

[∥∥∥a− hφ(s, s
′
)
∥∥∥2

2

]
,

(4)

where ptrain is a log-normal distribution using the design choice from Karras et al. (2022), β is sampled
from a Bernoulli distribution with probability p. Namely, the condition information c(τ) is ignored with
probability p, which is manifested by the condition information being an empty set ∅.

We employ returns R(τ) under trajectories as the conditioning information c(τ), normalized such that
R(τ) ∈ [0, 1]. We map it into a latent variable c ∈ Rh using a multi-layer perceptron. In cases where
R(τ) = ∅, the components of c are set to zero. During the inference time, sampling trajectories with high
returns corresponds to conditioning on R(τ) = 1.

4.2 Consistency Distillation

Guided Consistency Distillation. Incorporating classifier-free guidance is essential for synthesizing high-
return trajectories. Considering the computational demands and potential for error accumulation associated
with two-stage distillation methods (Meng et al., 2023), we opt for a one-stage guided distillation approach
as proposed by Luo et al. (2023).

Algorithm 1 Consistency Distillation with guidance
1: Input: dataset D, intial consistency model parameter θ, learning rate η, ODE solver Φ (·, ·, ·; ϕ), distance

metric d (·, ·), EMA rate µ, noise schedule ti, guidance schedule [ωmin, ωmax].
2: Initialize target consistency model θ− ← θ
3: repeat
4: Sample trajectory and condition (x, c) ∼ D, n ∼ U [1, N − 1] and guidance ω ∼ U [ωmin, ωmax]
5: Sample noised trajectory xtn+1 ∼ N (x; t2

n+1I)
6: x̂ϕ,ω

tn
← xtn+1 +

[
(ω + 1)Φ(xtn+1 , c, tn+1; ϕ)− ωΦ(xtn+1 , ∅, tn+1; ϕ)

]
// Classifier-free guidance

7: L(θ, θ−; ϕ)← d
(

fθ(xtn+1 , ω, c, tn+1), fθ−(x̂ϕ,ω
tn

, ω, c, tn)
)

// Calculate consistency distillation loss
8: θ ← θ − η∇θL(θ, θ−; ϕ) // Update consistency model parameter
9: θ− ← stopgrad(µθ− + (1− µ)θ) // Update target consistency model parameter

10: until convergence

The consistency function fθ : (xt, ω, c, t)→ x0 is parameterized to transform state xt at time t directly into
the original state x0. We parameterize fθ in the same way as Song et al. (2023), except that we consider the
influences of guidance scale ω and conditioning variable c:

fθ(x, ω, c, t) = cskip(t)x + cout(t)Fθ(x, ω, c, t), (5)

where Fθ is a free-form neural network with an output that matches the dimensionality of x, cskip(ϵ) = 1
and cout(ϵ) = 0 so that fθ satisfies boundary condition fθ(x, ω, c, ϵ) ≡ x. During the distillation process,
the guidance scale ω and n are sampled uniformly from the intervals [ωmin, ωmax] and {1, · · · , N − 1},
respectively. The trajectory and returns tuple (x, c) are sampled from the dataset. Then, x̂ϕ,ω

tn
is estimated

by employing an ODE solver Φ:

x̂ϕ,ω
tn
− xtn+1 ≈

[
(ω + 1)Φ(xtn+1 , c, tn+1; ϕ)− ωΦ(xtn+1 , ∅, tn+1; ϕ)

]
. (6)
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Finally, we minimize the consistency distillation loss (Song et al., 2023; Luo et al., 2023) used for guided
distillation:

L(θ, θ−; ϕ) = Ex,c,ω,n

[
d

(
fθ(xtn+1 , ω, c, tn+1), fθ−(x̂ϕ,ω

tn
, ω, c, tn)

)]
, (7)

where d is squared ℓ2 distance d(x, y) = ∥(x− y)∥2
2.

The pseudo-code for guided consistency distillation adapted for trajectory generation is shown in Algorithm
1.

Algorithm 2 Planning with Consistency Model
1: Input: consistency model fθ, inverse dynamics hφ, guidance scale ω, history length C, condition c,

sequence of time points t1 > t2 > ... > tN−1, initial noise xT , fixed small positive number ϵ.
2: Initialize history h← Queue(length = C), t← 0. // Keep a history with a maximum length C
3: while not done do
4: Observe state s; h.insert(s);
5: Initialize x(τ)← fθ(xT , ω, c, T ), xT ∼ N (0, T 2I) // Generate samples and evaluate the consistency

model in a single step
6: for n = 1 to N − 1 do // Evaluate the consistency model in multiple steps
7: x(τ)[:, length(h)]← h // Ensure the trajectory aligns with the history
8: x̂tn

(τ)← x(τ) +
√

t2
n − ϵ2z, z ∼ N (0, I)

9: x(τ)← fθ(x̂tn(τ), ω, c, tn)
10: end for
11: Extract state tuple (sk, sk+1) from generated trajectory x(τ)
12: Execute action ak = hφ(sk, sk+1)
13: end while

Consistency Model Inference. During the inference process, we first observe a state s in the environment
and sample an initial trajectory xT . Then, our consistency model, conditioned on returns c, guidance scale
ω and history of last C states observed, iteratively predicts the denoised trajectories from the noisy inputs
x̂tn

(τ)← x(τ) +
√

t2
n − ϵ2z along the probability flow ODE trajectory at step n ∈ [N ], with Gaussian noise

z ∼ N (0, I). For the single-step version of Consistency Inference, {tn | n = 0, 1} = {ϵ, T}. Finally, we extract
states (sk, sk+1) from denoised trajectory and get the action ak via our inverse dynamics model hφ. The
algorithm of Consistency Planning is provided in Algorithm 2 and visualized in Figure 1. For the architecture
and implementation details, please refer to Appendix.

consistency model with guidance scale

... ...

... ...

inverse dynamics

returns

pre-trained diffusion model

guided 

consistency 

distillation

Figure 1: Consistency Planning. Given the current state sk, conditioning variable and guidance scale ω,
Consistency Planning generate a sequence of future states with planning horizon H. Then the inverse
dynamics model is used to extract and execute the action ak from sk and sk+1
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5 Experiment

In our experiment section, we evaluate the performance of the Consistency Planning on offline RL settings
and its computational efficacy in Section 5.1, and provide a detailed ablation study to test the effectiveness
of the inverse dynamic model hφ and the guidance scale ω in Section 5.2.

5.1 Offline Reinforcement Learning

The diffusion model, inverse dynamics model, and consistency model are trained using publicly available
D4RL datasets and subsequently evaluated on a range of Gym tasks, including HalfCheetah, Hopper,
Walker2d, and Maze2D, within the D4RL benchmark suite (Fu et al., 2020). These tasks are character-
ized by continuous state and action spaces and are conducted under offline reinforcement learning settings.
Details of the dataset size are provided in Appendix.

We compare the performance of our method with those of both behavior-cloning methods, i.e., Consistency-
BC (C-BC) (Ding & Jin, 2023), Diffusion-BC (D-BC) (Wang et al., 2022), actor-critic methods, i.e.,
Consistency-AC (C-AC) (Ding & Jin, 2023), Diffusion-QL (D-QL) (Wang et al., 2022) algorithms, and
model-based methods, i.e., Diffuser (Janner et al., 2022), Decision-Diffuser (DD) (Ajay et al., 2022) in Table
1. For evaluation, results for our method correspond to the average over 150 planning seeds. By default, our
consistency model applies the number of denoising steps N = 2 with saturated performance on most tasks,
while the diffusion policy uses N = 5 (Wang et al., 2022), Diffuser and Decision Diffuser use N = 20 and
N = 40, respectively (Janner et al., 2022; Ajay et al., 2022). For the performance metric, we use normalized
average returns (Fu et al., 2020) for all tasks.

Table 1 shows that although our method achieves a slightly lower average score (82.2) than Diffusion-QL
(87.9) and Consistency-AC (85.1), as a model-based planning model, it outperforms its diffusion counterparts,
i.e., Diffuser (75.3) and Decision Diffuser (81.8), with the reduction of denoising steps in the inference stages.

However, it is worth noting that our model exhibits a more pronounced performance gap in the half-
cheetah environment compared to the hopper and walker2d environments compared with Diffusion-QL and
Consistency-AC. This can be attributed to several factors. While our model employs classifier-free guidance,
it lacks the value function estimation provided by Q-networks in Consistency-AC and Diffusion-QL. These
Q-network-based methods explicitly optimize for cumulative rewards, allowing them to perform better in
environments like half-cheetah, where subtle variations in action sequences can have a significant impact
on long-term returns. Moreover, half-cheetah presents a higher degree of control complexity and a more
dynamic action space compared to hopper and walker2d. The need for precise coordination among multiple
joints makes it more challenging for generative models like ours, which rely purely on the consistency model
and classifier-free guidance, to generate optimal action sequences. In contrast, Q-network-based methods
are better equipped to navigate this complexity by explicitly evaluating state-action pairs in terms of their
future rewards.

To validate the long-horizon planning capabilities of Consistency Planning, we conduct an evaluation in the
Maze2D environment (Fu et al., 2020), where the task involves navigating to a specific goal location, with a
reward of 1 assigned only upon reaching the goal. Since it requires hundreds of steps to reach the goal, even
the most advanced model-free algorithms struggle with effective credit assignment and consistently reaching
the goal. As shown in Table 2, Consistency Planning achieved scores exceeding 100 across all maze sizes,
indicating that it outperforms the reference expert policy.

To assess the computational efficiency of Consistency Planning and its diffusion model counterparts, Decision
Diffuser, we conduct experiments to measure inference time (ms per sample) in the hopper-medium-expert-v2
on our server. Both the consistency model and the diffusion model, as generative models based on probability
flow, have computational times that are directly dependent on the number of denoising steps N . The results
in Figure 2 show that N = 2 for Consistency-Planning, and N = 20 for Decision Diffuser, are the values
where each algorithm achieves its saturated performance in hopper-medium-expert. The mean and standard
deviation of results are calculated over five random seeds.
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Table 1: The average scores of vanilla BC (with Gaussian), Diffuser, Decision Diffuser, Diffusion-BC,
Consistency-BC, Diffusion-QL, Consistency-AC and our method on D4RL Gym tasks are shown, with stan-
dard deviation reported for Consistency Planning. All results are quoted from Ding & Jin (2023) and Ajay
et al. (2022).

Dataset BC Diffuser DD D-BC C-BC D-QL C-AC Ours

Halfcheetah-me 55.2 79.8 90.6 90.8 32.7 96.8 84.3 94.0± 1.3
Hopper-me 52.5 107.2 111.8 107.6 90.6 111.1 100.4 107.5± 1.8
Walker2d-me 107.5 108.4 108.8 108.9 110.4 110.1 110.4 109.8±0.5

Halfcheetah-m 42.6 44.2 49.1 45.4 31.0 51.1 69.1 46.8± 1.2
Hopper-m 52.9 58.5 79.3 65.3 71.7 90.5 80.7 87.8± 1.6
Walker-m 75.3 79.7 82.5 81.2 83.1 87.0 83.1 80.5± 0.8

Halfcheetah-mr 36.6 42.2 39.3 41.7 34.4 47.8 58.7 40.6± 0.9
Hopper-mr 18.1 96.8 100 67.9 99.7 101.3 99.7 97.8± 0.8
Walker2d-mr 26.0 61.2 75 77.5 73.3 95.5 79.5 75.3± 1.1

Average 51.9 75.3 81.8 76.3 69.7 87.9 85.1 82.2

Figure 2: Comparison of average norm score vs. N for Decision Diffuser and Consistency Planning on the
task hopper-medium-expert-v2

Since the computational time for these models is directly tied to N , and the consistency model is designed to
require fewer denoising steps to achieve similar generative performance, we claim our model has achieved more
than a 12-fold increase in speed without any loss in performance. More detailed information concerned the
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Table 2: The performance of Consistency Planning, Diffuser, and previous model-free algorithms in the
Maze2D environment, which tests long-horizon planning due to its sparse reward structure. Consistency
Planning’s performance is comparable to that of Diffuser, with diffusion steps N = 2. All results are derived
from the data provided in Janner et al. (2022).

Dataset MPPI CQL IQL Diffuser Ours

Maze2D U-Maze 33.2 5.7 47.4 113.9± 3.1 122.7±2.7
Maze2D Medium 10.2 5.0 34.9 121.5±2.7 121.4±4.1
Maze2D Large 5.1 12.5 58.6 123.0±6.4 119.5± 7.5

Average 16.2 7.7 47.0 119.5 121.2

Table 3: Ablation study on inverse dynamics.
Hopper-* Consistency Planning w/o inverse dynamics Ours

Med-Expert 105.9± 1.7 110.4± 2.4
Medium 78.3± 2.4 88.7± 2.2
Med-Replay 89.4± 3.8 96.7± 1.6

inference time v.s. N across the other hopper environments, halfcheetah-medium-expert-v2 and walker2d-
medium-expert-v2 shown in Appendix.

5.2 Ablation Study

Inverse dynamics. To evaluate the role of inverse dynamics in our approach, we conducted a compara-
tive analysis with Consistency Planning models that exclude the inverse dynamics component, where the
trajectories consist of both state and action sequences. The performance results are presented in Table 3.
Our findings indicate that incorporating inverse dynamics leads to better performance across all three hop-
per environments, consistently outperforming the variant without inverse dynamics. This demonstrates the
effectiveness of inverse dynamics in improving the model’s ability to generate action sequences, contributing
enhanced planning performance.

Guidance Scale. In our experiments, we examine the impact of guidance scale ω on the performance of our
consistency models during planning. The guidance scale controls the weight of the guidance signal during
the planning process, and its effect on performance can vary significantly depending on the characteristics
of the offline dataset. To assess the sensitivity of our model to ω, we conducted experiments across different
types of datasets, including hopper medium-expert, hopper medium, and hopper medium-replay.

For the hopper medium-expert dataset, our results in Figure 3 indicate that varying the guidance scale ω
does not lead to substantial differences in performance. This can be attributed to the relatively high-quality
data in the medium-expert dataset. As a result, the model performs well across a wide range of ω values,
and the influence of the guidance signal is less pronounced.

However, when applied to hopper medium and medium-replay datasets, we observe a marked difference in
performance based on the choice of ω. Specifically, larger guidance scales (e.g., ω = 0.8) consistently result
in better outcomes compared to smaller scales (e.g., ω = 0). This is particularly evident in the medium
setting, where the dataset contains suboptimal trajectories alongside more desirable ones. In such cases, the
stronger guidance provided by larger ω helps the model better navigate the diverse quality of trajectories,
ultimately leading to more consistent and improved performance. On the other hand, smaller ω values
may not provide sufficient signal strength to guide the model away from suboptimal decisions, resulting in
degraded performance.
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Figure 3: Ablation study on different guidance scales ω across 3 hopper environments. Larger ω leads to
better sample quality.

6 Conclusion

By combining the score-based diffusion model proposed by Karras et al. (2022), one-stage guided distillation
(Luo et al., 2023), and conditional model-based generative model for sequential decision making (Ajay et al.,
2022), the consistency model in this paper achieves comparable performance in gym tasks with its diffusion
model counterparts, Diffuser and Decision Diffuser, and obtains a significant speedup during inference in
offline settings. While our work increases the inference speed compared with its diffusion models counterpart
(Ajay et al., 2022), there still exists some potential challenges of applying the approach to scenarios where
quick, real-time decision making is critical.

One key challenge is scalability and model complexity. As consistency models are applied to larger and more
complex environments, such as autonomous driving or stock market trading, the number of variables and
possible future states grows exponentially. Managing this complexity in real-time, while ensuring consistent
and reliable outcomes, presents a significant challenge without the use of advanced computational techniques.
Another challenge involves data availability. Effective real-time decision-making requires access to up-to-date
and accurate data streams. In an online setting, the Consistency Planning method requires completing an
entire episode to collect the trajectory before updating the model, which can lead to suboptimal results in
dynamic environments. This data collection process introduces delays that may hinder the effectiveness of
real-time applications.

Future work should include: 1) combining improved techniques in training consistency models (Song &
Dhariwal, 2023), such as designing a changing weighting function and noise schedule more suitable for
reinforcement learning scenarios; 2) combining the consistency inference process with changing guidance
schedule (Ma et al., 2023) to improve the quality of trajectory sampling; and 3) investigating online learning
strategies to reduce delays and improve performance in real-time scenarios.
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A Appendix

Table 4 is a full list of dataset size. We use the latest version of dataset in D4RL (Fu et al., 2020). Our
experiments utilize D4RL datasets comprising three distinct data types for the Hopper, HalfCheetah, and
Walker environments: medium-expert, medium, and medium-replay. The medium-expert datasets contain
trajectories generated through a combination of medium-level and expert-level policies, offering a blend
of both optimal and suboptimal actions. The medium datasets are produced exclusively by medium-level
policies and therefore exhibit a greater proportion of suboptimal actions compared to the medium-expert
datasets. The medium-replay datasets represent the replay buffer of a medium-level agent, encompassing a
diverse range of suboptimal actions along with exploration noise.

The results in Table 5 show the relationship between the computational time, denoised steps N and corre-
sponding performance of Consistency Planning and Decision Diffuser on the task hopper-medium-expert-v2.
The results in Table 6 show the inference time and corresponding performance of Consistency Planning and
Decision Diffusuer in different datasets, i.e, hopper-mr, hopper-m, halfcheetah-me and walker2d-me, with
diffusion steps N = 100 for Decision Diffuser and N = 2 for Consistency Planning. The choice of diffusion
steps in Table 6 depends on the default training hyperparamters in Ajay et al. (2022) which claims all tasks
suffer no performance loss with N = 100. Each cell contains the mean and standard deviation over 5 ran-
dom seeds in the same server. As demonstrated in Table 5, we achieved more than 12-fold increase in speed
without any loss in performance with N=2 for Consisitency Planning and N=20 for Decision Diffuser.

Table 4: Size for each dataset is provided. The number of samples indicates the total count of environment
transitions recorded in the dataset (Fu et al., 2020).

Dataset Samples

Hopper-me 2× 106

Hopper-m 106

Hopper-mr 402000
Halfcheetah-me 2× 106

Halfcheetah-m 106

Halfcheetah-mr 202000
Walker-me 2× 106

Walker-m 106

Walker-mr 302000
Maze2D U-Maze 106

Maze2D Medium 2× 106

Maze2D Large 4× 106

In the next section, we describe various architectural and hyper-parameter details:

• We parameterize the diffusion model and consistency model with a temporal U-Net architecture, a
neural network consisting of repeated convolutional residual blocks from Janner et al. (2022), with
2nd order Heun as ODE solver, the inverse dynamics hφ using the structure of Ajay et al. (2022).

• We train diffusion model using learning rate of 1e− 4 and batch size of 512 for 2e5 train steps with
Adam optimizer.

• We choose the probability p of removing the conditioning information to be 0.25.

• We use N = 2 for consistency inference.

• We use a planning horizon H of 32, context length C of 8 in all tasks.

• We use a guidance scale ωmax = 1, ωmin = 0 in guided consistency distillation.
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Table 5: Comparison of computational time for Decision Diffuser and Consistency Planning on the task
hopper-medium-expert-v2 (Ajay et al., 2022).

Method N Inference Time (ms per sample) Avg. Norm Score

Decision Diffuser

40 837.6± 8.4 110.0± 0.4
20 427.7± 3.9 110.1± 0.5
10 216.8± 1.2 104.0± 18.9
5 107.3± 0.5 71.5± 20.2
2 44.5± 0.3 12.6± 0.5
1 23.1± 0.4 11.1± 0.5

Consistency Planning

40 752.1± 2.0 112.2± 1.5
20 331.9± 1.9 110.4± 0.3
10 167.3± 0.9 110.8± 1.0
5 80.58± 0.7 111.3± 0.4
2 33.2± 0.3 108.7± 0.9
1 16.8± 0.2 24.1± 0.7

Table 6: Comparison of inference time for Decision Diffuser and Consistency Planning on the different
datasets with respective default diffusion steps (Ajay et al., 2022).

Method Dataset Inference Time (ms per sample) Avg. Norm Score

Decision Diffuser

Hopper-m 1954.3± 5.4 79.1± 3.6
Hopper-mr 1938.5± 3.7 100.5± 0.4

Halfcheetah-me 1920.4± 4.5 89.2± 1.2
Walker2d-me 1899.9± 7.8 107.5± 2.1

Consistency Planning

Hopper-m 33.5± 1.8 88.6± 1.1
Hopper-mr 33.7± 1.1 96.9± 1.3

Halfcheetah-me 33.1± 2.1 94.1± 0.9
Walker2d-me 32.9± 0.8 108.5± 0.7
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