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Abstract

Currently, researchers think that the inherent robustness of spiking neural networks
(SNNs) stems from their biologically plausible spiking neurons, and are dedicated
to developing more bio-inspired models to defend attacks. However, most work
relies solely on experimental analysis and lacks theoretical support, and the direct-
encoding method and fixed membrane potential leak factor they used in spiking
neurons are simplified simulations of those in the biological nervous system,
which makes it difficult to ensure generalizability across all datasets and networks.
Contrarily, the biological nervous system can stay reliable even in a highly complex
noise environment, one of the reasons is selective visual attention and non-fixed
membrane potential leaks in biological neurons. This biological finding has inspired
us to design a highly robust SNN model that closely mimics the biological nervous
system. In our study, we first present a unified theoretical framework for SNN
robustness constraint, which suggests that improving the encoding method and
evolution of the membrane potential leak factor in spiking neurons can improve
SNN robustness. Subsequently, we propose a robust SNN (FEEL-SNN) with
Frequency Encoding (FE) and Evolutionary Leak factor (EL) to defend against
different noises, mimicking the selective visual attention mechanism and non-fixed
leak observed in biological systems. Experimental results confirm the efficacy of
both our FE, EL, and FEEL methods, either in isolation or in conjunction with
established robust enhancement algorithms, for enhancing the robustness of SNNs.
Our code is available at https://github.com/zju-bmi-lab/FEEL_SNN.

1 Introduction

In recent years, brain-inspired spiking neural networks (SNNs) [21] have been increasingly prominent.
Unlike traditional artificial neural networks (ANNs), which process a single image using floating-point
values, spiking neural networks encode spatial-pixel image into temporal spike train. Information is
transmitted by the occurrence of spikes (using 0 to signify no spike and 1 to denote a spike) whenever
the membrane potential of a spiking neuron exceeds its threshold, thereby emulating biological
neurons [30, 37, 14]. The distinctive spatio-temporal characteristics, discrete representation, and
event-driven properties of SNNs enable them to operate efficiently on neuromorphic hardware [26, 4,
20, 46]. This makes them increasingly applicable to a variety of tasks [42, 19, 48], such as spatio-
temporal pattern recognition [41] and high-speed detection [15]. As SNNs attract increasing attention
from academia and industry, the issue of security [35] becomes more important. When SNNs are
applied to safety-critical systems, their reliability should be a major concern [10]. While SNNs have
demonstrated better robustness compared to ANNs [11, 32, 31], recent studies have shown that they
are still vulnerable to noise [17, 8]. Among all types of perturbations, adversarial noise [35], which
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(a) Selective visual attention in human brain (b) Non-fixed membrane potential leak in biological neurons
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Figure 1: Illustration of the (a) selective visual attention and (b) non-fixed membrane potential leak in biological
nervous system.

refers to visually imperceptible alterations that can mislead a well-trained network, is particularly
concerning. Therefore, improving the robustness of SNNs is crucial for their real-life deployment.

At present, researchers believe that the inherent robustness of SNN is brought by its more biologically
plausible spiking neurons, and they are dedicated to developing more bio-inspired models to cope with
noise attacks. Among them, some work focuses on SNN robustness analysis. [11] investigates the
SNNs robustness to adversarial attacks with different values of the neuron’s firing voltage thresholds
and time window boundaries. [9] suggests that the utility of spike timing in SNNs could improve
the robustness against attacks. [39, 32, 3] analyze the adversarial accuracy of SNNs trained with
leak factor in LIF spiking neurons. However, these analyses rely solely on experimental analysis
and lack sufficient theoretical support to ensure generalizability across all datasets and networks.
Other work aims to improve the robustness of SNN from biological aspects. [10] further introduces
stochasticity in biological neurons as a stochastic gating mechanism for spiking neurons to enhance
model robustness. However, this may result in the loss of the original information. The noise
environment encountered by the biological nervous system is highly complex, with various types of
noise spanning different frequency ranges [43]. Adversarial noises also exhibit different frequencies
across datasets, rather than being fixed [23, 1]. Despite this complexity, the biological nervous system
maintains robustness. This inspired us to design a highly robust SNN model that more closely mimics
the biological nervous system, allowing it to adapt to and overcome the challenges posed by diverse
and dynamic noise environments.

For the biological brain, as shown in Fig. (1a), there exists the selective visual attention mechanism
that selectively focuses on stimuli of different frequencies over time and can filter out unwanted
information [7, 45]. This aids the biological nervous system in avoiding the instability caused by
noise [44]. Additionally, as shown in Fig. (1b), the changes in membrane potential in biological
neurons are determined by ion concentration inside and outside the cell membrane. Different environ-
ments and types of nerve axon fibers can affect the degree of leak of the membrane potential [38, 13],
which contributes to the biological nervous system’s processing of complex noise [33]. Motivated
by these biological insights, we undertake a theoretical examination of the robustness of SNNs.
We present a unified framework for SNN robustness constraint, which indicates that refining the
encoding technique and evolution of the membrane potential leak factor can enhance SNN robustness.
Subsequently, we propose a robust SNN with Frequency Encoding and Evolutionary Leak factor
(FEEL-SNN) to defend against different noises. Our main contributions are summarized as follows:

• Through analysis of the model’s adversarial loss, we theoretically present a unified frame-
work for SNN robustness. Our findings suggest that enhancing the encoding method and
evolution of the membrane potential leak factor can improve SNN robustness.

• We propose a frequency encoding (FE) method for SNNs. FE captures information of vary-
ing frequencies at different time steps, mimicking the selective visual attention mechanism
observed in biological systems. FE can preserve the original information while suppressing
different frequency range noises, effectively filtering out image noise.

• Based on FE, we propose an evolutionary membrane potential leak factor (EL). EL ensures
that different neurons in the network learn the optimal robustness leak factor at different time
steps, which is aimed at learning the correlation between frequencies at different time steps.
It simulates the membrane potential leak in biological neurons and ensures an enhancement
in model robustness.
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• Experimental results validate that both our FE and EL methods can effectively improve the
robustness of SNN to different noises, and can be used in conjunction with other methods to
improve the robustness further.

2 Related Work

[24, 31] demonstrate that compared to ANNs, SNNs exhibit inherent robustness. Currently, re-
searchers consider that this superior robustness of SNNs stems from their more biologically plausible
spiking neurons, and they are dedicated to developing more bio-inspired models to cope with noise
attacks. [11] investigate the security of SNNs from the impact of structural parameters on the robust-
ness of SNNs to adversarial attacks, and demonstrate that the inherent robustness of SNNs is highly
conditioned by the choice of (time window; firing voltage thresholds) combination. [9] systematically
demonstrates that precise spike timing is conducive to improving the robustness of neural networks,
providing opportunities for understanding the robustness of the brain. [32] confirms that the leak
factor in LIF neurons offers an extra knob to control the adversarial perturbation. [3] also investigates
the role played by leak factor and concludes from frequency domain analysis that leak factor can
filter high-frequency components thus improving model robustness. However, the spiking neurons
used in these works only offer a simplified representation of the intricate dynamics of the biological
system [10], and the robustness verification of the above works is mainly carried out experimentally,
lacking a theoretical explanation. It’s doubtful that their conclusion can adapt to other datasets and
varying noises. Then, StoG [10] is proposed to further introduce stochasticity which is observed
in biological neurons into the spiking neurons. The more biologically plausible StoG method can
improve the robustness efficiently, however, it sacrifices a little original accuracy. In contrast to the
aforementioned work, we conducted a theoretical analysis of the robustness of SNNs, showing that it
is constrained by the encoding method and the membrane potential leak factor. We then designed a
frequency encoding and evolutionary leak factor model that closely mimics the biological nervous
system to enhance the robustness of SNNs.

Another method improves the robustness of SNNs by incorporating additional training strategies.
[17] continuously adds newly generated adversarial examples during the training process to improve
the robustness of SNN. [8] proposes a regularized adversarial training scheme by performing the
Lipschitz analysis on model weights. However, these methods are rooted in the concept of adversarial
training [22] in ANNs, and their defense performance can be influenced by downstream tasks.
Furthermore, they all rely on a simplified direct encoding approach (i.e., repeating the original image
T times) as input, which deviates from the visual attention mechanism observed in biological brains.
Developing more biologically plausible models is essential for improving robustness and advancing
SNN applications. In this work, we leverage the selective visual attention mechanism found in
biological brains and introduce a frequency encoding method. This method effectively filters noise in
images, enhancing the robustness of SNNs.

3 Preliminaries

3.1 Spiking Neurons

The most commonly used spiking neuron of SNNs today is the Leaky Integrate-and-Fire (LIF)
spiking neuron [36, 6]. LIF neurons simplify and computationally simulate the three main processes
involved in information transmission in biological neurons: synaptic integration, membrane potential
accumulation and decay, and neuronal firing. The dynamics of LIF spiking neurons in layer l can be
described as follows:

Synaptic integration : mt
l =

{
Wl−1,lO

t
l−1, l > 1

xt. l = 1
(1)

Membrane potential accumulation : utl = λ
t
lu
t−1
l � (1−Ot−1

l ) +mt
l . (2)

Neuronal firing : Ot
l = H(utl − Vth). (3)

In the first layer, the injected electrical signal mt
1 accumulates from the input signal xt. For

subsequent layers l > 1, the electrical signalmt
l is the sum of spike signalsOt

l−1 from the preceding
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layer scaled by weights Wl−1,l. The operator � represents element-wise product. The membrane
potential utl at time step t is the accumulation of the leaked membrane potential ut−1l from the
previous time step and the newly injected signal mt

l . If the membrane potential utl exceeds the
threshold Vth, a spikeOt

l is generated by a Heaviside functionH(·). After spikes are produced, the
membrane potential of the corresponding neurons is reset to 0. Typically, λtl is treated as a constant
value λ ∈ (0, 1] in previous work.

3.2 Adversarial Attacks

Given a classification model f with dataset (x, ytrue), where x is the clean image and ytrue is the
corresponding label. The adversarial attack aims to generate an adversarial example x̂ that satisfies:

f(x̂) 6= f(x) s.t. ||x̂− x||p ≤ ε, (4)

where||·||p is the Lp-norm, we use L∞-norm on our work, and ε limits the strength of the perturbation
to a level that is indistinguishable to the human eye. Here we consider four classic adversarial attack
algorithms: Fast Gradient Sign Method (FGSM) [12], Projected Gradient Descent (PGD) [22], Basic
iterative Method (BIM) [18] and CW [2] attacks. The detailed formulations of these attacks can
be found in the Appendix A.1. The introduction of surrogate functions [25, 47, 41] addresses the
limitation of backpropagating gradients through LIF neurons. This advancement enables effective
adversarial attacks on SNNs using the aforementioned methods.

4 FEEL-SNN: Robust SNNs with Frequency Encoding and Evolutionary
Leak Factor

4.1 The robustness analysis of SNNs

The robustness of the model is quantified as L(x+ ε)−L(x), the difference in loss value before and
after perturbation. Improving robustness entails reducing this perturbation-induced loss difference.
[27] utilizes the local linearity technique to theoretically address this difference, expressed as:

L(x+ ε)− L(x) ≤ |ε�∇xL(x)|1 + g(ε,x), (5)

where g(ε,x) is the residual term, | · |1 is l1 norm for vector. This theoretical framework motivates
research into regularization that minimize |ε�∇xL(x)|1 in ANNs to enhance robustness [18, 29].

The situation for SNNs differs slightly from that for ANNs [10]. In SNNs, the perturbed input
x̂ = x+ ε is encoded into temporal trains over T time steps. Consequently, the robustness constraint
for SNNs should aim to minimize the term

∑
t |ε(t)�

∂L
∂xt |1 according to Eq. (5), where xt is the input

encoding image at time step t, and ε(t) represents the perturbation of the encoding image xt at time
step t. By applying the BPTT rule [41], we can derive the constraint for the term

∑
t |ε(t)�

∂L
∂xt |1 in

SNNs, as presented in Theorem 1 (The detailed proof is in the Appendix A.2).

Theorem 1 Given an L-layered SNN intended to inference T time-steps with λ as the leak factor,
suppose that there are Nl neurons in layer l for l = 1, 2, . . . L. λl ∈ RNl×T , Wl−1,l ∈ RNl×Nl−1 ,
it satisfies:

min
∑
t

|ε(t)� ∂L
∂xt
|1 = min

∑
t

| 1
L

L∑
l=1

[(

T∏
k=t

ε(t)� λkl )︸ ︷︷ ︸
1©

·
l∏

q=2

Wq−1,q︸ ︷︷ ︸
2©

·
l∏

v=1

∂Ot
v

∂utv︸ ︷︷ ︸
3©

· ∂L
∂OT

l

]|1, (6)

where ε is the perturbation, L is the loss function.

According to Eq. (6), the robustness of SNNs is relative to the perturbation ε and the leak factor λ
in the 1© term, the model weightW in the 2© term, and the ∂Ot

v

∂ut
v

in the 3© term. Eq. (6) presents a
unified framework for SNNs robustness constraint, which helps explain why weight regularization [8]
(the 2© term) and surrogate gradient [40] (the 3© term ) can promote robustness. And the previous
work [39, 32, 3] also analyzes the inherent robustness of SNNs from the leak factor in the 1© term.
However, there is still a lack of work on removing input perturbation and improving leak factors in
the 1© term to enhance the robustness of SNNs.
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Figure 2: Visualization frequency spectrums for data observation. The first column shows three cases of original
CIFAR10 images. The second column shows the corresponding frequency spectrums of the images in the first
column. The third column to the seventh column shows the frequency spectrums of corresponding added noises
to the images in the first column, where added noise maps the difference between the noise image and the
original one. The center of each frequency spectrum represents the low-frequency information, and the edge
area is the high-frequency information.
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Figure 3: Illustration of the proposed FEEL-SNN. (a) Frequency encoding to simulate the selective visual
attention in biological brain and (b) Evolutionary leak factor to simulate the non-fixed membrane potential leak
in biological nervous system.

4.2 Frequency encoding to simulate the selective visual attention in biological brain

According to the 1© term in Eq. (6), reducing input perturbations ε(t) at every time step helps
the model achieve reliable output. However, the encoding method that much of the current work
relies on is the simplified direct encoding approach [11, 9, 10] (i.e., repeating T images), which
repeats the noise T times and inevitably overlooks noise removal. In contrast, the biological nervous
system can maintain stability even in complex noise environments, benefiting from the selective
visual attention mechanism [7, 45] of the brain (as illustrated in Fig. (1a). The brain processes
only a fraction of the information available on the retina at any given time and has the ability to
filter out unwanted information. To simulate the selective visual attention of the biological nervous
system while effectively removing noise at different frequencies, we propose the Frequency Encoding
method (FE) for SNNs. Specifically, given an input image, FE transforms it into the frequency
domain via Discrete Fourier Transform (DFT) [34, 49]. Then, FE suppresses information of different
frequencies at different time steps to decrease ε(t) shown in the 1© term in Eq. (6). Specifically, as
illustrated in Fig. 2, the information of the original image is concentrated in the low-frequency region
(center area of the second column), while the noise information spans from low-frequency (center
area) to high-frequency (edgearea) regions (third to fifth columns). Therefore, to remove as much
frequency noise from the image as possible, the frequency suppression range gradually increases
from high-frequency to low-frequency over time steps. This operator ensures that FE removes various
noises present in the original image while retaining its essential information, as depicted in Fig. (3a).

Formally, denote x ∈ RM×N as the input image and xF ∈ CM×N as its frequency representation,
then the DFT (F) between x and xF is formulated as follows:

xFm,n = F(xm,n) =
M−1∑
a=0

N−1∑
b=0

xa,be
−j2π( m

M a+ n
N b), (7)
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and according to the DFT, the low-frequency parts of the image is in the center of the xF . To suppress
different frequency components at different time steps, for a given time step t, we update xFt as
follows:

xFt ←M� xFt (8)

where � is element-wise multiplication. The matrixM∈ RM×N controls the scaling of different
frequencies. Intuitively,M should be close to 0 for high-frequency components and close to 1 for
low-frequency ones. In this study, we setM to a box window with radius r, defined as:

Mm,n =

{
1, 0 ≤ |m|, |n| ≤ r
0. else

(9)

The overall function of our Frequency Encoding (FE) module at time step t is then defined as:

x̃tri ← F
−1(Mt

ri �F
t(x)), i, t ∈ {1, 2, . . . , T}, (10)

and set
ri > rj , if i < j. (11)

In summary, the proposed FE method, as described in Eq. (10), allows us to control the frequency
mask radius r at each time step, enabling the suppression of different frequency ranges. This
effectively removes noise at various frequencies, thereby enhancing the robustness of SNNs.

4.3 Evolutionary leak factor to simulate the non-fixed membrane potential leak in biological
nervous system

Recalling the 1© term in Eq. (6), in addition to the proposed frequency encoding, the selection of
the leak factor λ is also crucial for improving the robustness of SNNs. However, most existing
work overlooks this aspect [8, 17]. They often assume that all neurons in the SNN adopt the same
fixed leak factor at all time steps, which contradicts the membrane potential leak mechanism of the
biological nervous system. In the biological nervous system, neuron membrane potential exhibits
varying degrees of leak due to different environmental conditions and axon fibers [38, 13], aiming to
enhance the processing of useful information [33], as illustrated in Fig. (1b). Therefore, in this study,
we draw inspiration from the biological membrane potential leak and propose a method for training
SNNs with an evolutionary membrane potential leak factor (EL).

According to 1© term in Eq. (6), a smaller leak λ can better constrain robustness. However, excessive
leak can lead to a significant loss of effective information and a decrease in original accuracy. Thus,
in our approach, we aim for EL to learn the correlation between frequencies at different time steps,
building upon the foundation of FE to ensure effective information utilization. We propose a trainable
leak factor training scheme instead of the leak factor regularization term in our work. Specifically,
leveraging the frequency-encoded input, we assign trainable leak factors to different neurons within a
layer across time steps to mitigate the propagation of noise information, as shown in Fig. (3b).

Formally, the neurons in the convolutional and fully-connected layers are defined by the LIF, as
illustrated in Eq. (1)(2)(3), and finally the leak factor update is computed as:

λtl = λ
t
l − η4λtl , (12)

4λtl =
∂L
∂λtl

=
∂L
∂Ot

l

· ∂O
t
l

∂utl
· ∂u

t
l

∂λtl
=

∂L
∂Ot

l

· ∂O
t
l

∂utl
· ut−1l , (13)

L = LCE(x, y,W ,λ), (14)

where ∂Ot
l

∂ut
l

is estimated by the surrogate gradient, ∂O
t
l

∂ut
l
= 1

γ2 max(0, γ − |utl − Vth|). γ denotes the
constraint factor that determines the sample range to activate the gradient. LCE is the commonly
used Cross-Entroy loss.

To sum up, our FEEL-SNN focuses on the 1© term of Eq. (6). Here, FE serves to attenuate the impact
of input noise ε(t) during each time step, while EL facilitates the continual learning of information
correlations across varying time steps. This concerted effort enables a more effective utilization of
useful information, thereby enhancing the robustness of the model.
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Figure 4: Performance of the proposed FE and FEEL under different white-box attacks. The attack perturbation
ε = 4/255 for all attacks, iterative step k = 4, and step size α = 0.01 for PGD, BIM.
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Figure 5: Performance of the proposed FE and FEEL under different black-box attacks. The attack perturbation
ε = 4/255 for all attacks, and iterative step k = 4 for PGD, BIM.

5 Experiments

5.1 Experimental settings

The datasets we used are CIFAR-10, CIFAR-100 [16], and Tiny-ImageNet [5]. The network ar-
chitectures include VGG11, WideResNet16, and ResNet19. We set γ = 1.0 in surrogate gradient
and threshold Vth = 1.0 in Eq. (3) following the general settings [6]. We adopted four training
strategies to determine the effectiveness of the proposed FEEL method. The first is a vanilla training
scheme (BPTT), directly using raw images for training [41]. The second is an adversarial training
strategy, which uses examples from white-box (WB) PGD attacks (ε = 2/255, iterative step k = 2)
for training [12] (abbreviated as AT). The third is to add a Lipschitz penalty proposed in [8] to
the weights under the adversarial training setting (abbreviated as RAT). The fourth introduces the
stochastic gating mechanisms to spike firing [10] (abbreviated as StoG). For all four strategies, we
test their robustness with and without the proposed FE and FEEL methods. The attack methods
include adversarial attacks (i.e., FGSM [12], PGD with random start [22], BIM [18], and CW [2], for
both white-box and black-box attacks) and common noise attack (i.e., gaussian noise, GN). Since
the DFT (F), IDFT (F−1) (Eq. (7) and Eq. (10)) and frequency mask operation (M� xFt , Eq.
(8)) are differentiable, the FE module can be directly utilized to generate adversarial perturbations.
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Table 1: Performance of the proposed FE and FEEL with different training strategies. The perturbation
ε = 8/255 for all attacks, and iterative step k = 7, step size α = 0.01 for PGD, BIM. The dataset is CIFAR100
with T = 8, the network is VGG11. The improvement brought by our method is shown in parentheses.

Methods clean GN FGSM PGD BIM CW

Vanilla 72.93 68.93 4.91 0.16 0.14 6.53
Vanilla+FE (Ours) 72.67 (-0.26) 69.40 (+0.47) 5.18 (+0.27) 0.31 (+0.15) 0.24 (+0.10) 7.63 (+1.10)

Vanilla+FEEL (Ours) 73.79 (+0.86) 68.05(-0.88) 9.60 (+4.69) 2.04 (+1.88) 1.81 (+1.57) 6.66 (+0.13)

AT [12] 69.14 68.27 17.21 8.63 8.13 16.54
AT+FE (Ours) 69.34 (+0.20) 68.67 (+0.40) 17.65 (+0.44) 8.92 (+0.29) 8.33 (+0.20) 21.49 (+4.95)

AT+FEEL (Ours) 69.79 (+0.65) 69.02 (+0.75) 18.67 (+1.46) 11.07 (+2.44) 10.56 (+2.43) 21.78 (+5.24)

RAT [8] 70.03 69.26 18.88 8.87 7.93 20.79
RAT+FE (Ours) 69.74 (-0.29) 68.35 (-0.91) 18.74 (-0.14) 9.70 (+0.83) 8.91 (+0.98) 27.16 (+6.37)

RAT+FEEL (Ours) 69.80 (-0.23) 68.46 (-0.80) 19.08 (+0.20) 12.36 (+3.49) 11.96 (+4.03) 25.52 (+4.73)

StoG [10] 72.22 61.63 5.92 0.26 0.20 19.87
StoG+FE (Ours) 73.13 (+0.91) 67.65 (+6.02) 6.95 (+1.03) 0.22 (-0.04) 0.25 (+0.05) 23.02 (+3.15)

StoG+FEEL (Ours) 72.13 (-0.09) 65.96 (+4.33) 9.15 (+3.23) 0.55 (+0.29) 0.31 (+0.11) 24.79 (+4.92)

AT+StoG 69.24 63.35 19.64 9.77 3.23 44.79
AT+StoG+FE (Ours) 69.45 (+0.21) 68.83 (+5.48) 20.06 (+0.42) 10.69 (+0.92) 3.24 (+0.01) 38.56 (-6.23)

AT+StoG+FEEL (Ours) 69.53 (+0.29) 68.47 (+5.12) 18.27 (-1.37) 11.52 (+1.75) 3.90 (+0.67) 45.18 (+0.39)

RAT+StoG 69.12 68.37 29.25 15.43 6.91 32.08
RAT+StoG+FE (Ours) 68.97 (-0.15) 68.52 (+0.15) 31.65 (+2.40) 17.49 (+2.06) 8.57 (+1.66) 47.16 (+15.08)

RAT+StoG+FEEL (Ours) 69.97 (+0.85) 68.15 (-0.22) 31.68 (+2.43) 18.07 (+2.64) 8.89 (+1.98) 50.56 (+18.48)

Therefore, the adversarial perturbations are applied to the image domain before FE. In our study,
for CIFAR10 and CIFAR100 dataset with T = 4, we set r = [16, 14, 12, 10]. For CIFAR10 and
CIFAR100 dataset with T = 8, we set r = [16, 14, 12, 10, 8, 6, 4, 2]. For Tiny-ImageNet with T = 4,
we set r = [32, 30, 28, 26]. The impact of the frequency masking radius r on robustness is detailed in
Section 5.3. More detailed experimental settings can be found in Appendix A.3.

5.2 Overall performance for various attack types

White-box attack. First, we integrate the proposed FE and FEEL methods into the standard training
(vanilla) of SNNs. We present experimental results for our method on various datasets (i.e., CIFAR-
10, CIFAR-100, and Tiny-ImageNet) using different networks (i.e., VGG11, WideResNet16, and
ResNet19) under white-box attacks, as summarized in Fig. 4. Our findings demonstrate that across all
attacks, FE and FEEL can enhance model robustness and maintain the original accuracy. Specifically,
on VGG11 with CIFAR-10, compared to the vanilla method (shown in blue bar), FEEL enhances
model robustness by up to 15% and 6% against PGD and CW attacks, respectively, at time step
4. Similar trends are observed across other datasets and networks. Moreover, it is clear from the
Fig. 4 that simple FE application can effectively improve the robustness of SNN, and EL can further
effectively improve the robustness based on FE.

Black-box attack. We utilize a model trained with a different seed to generate perturbed images
for black-box attacks. The efficacy of our FE and FEEL method under various attacks is illustrated
in Fig. 5. Across all models and datasets, the same observation can be obtained as the white-box
performance. FE and FEEL consistently outperform vanilla training. Notably, with T = 8, FEEL
enhances robustness (attacked by CW) by up to 4.27% compared to the vanilla approach, when on
WideResNet16 with CIFAR100.

Comparison with state-of-the-art work on robustness of SNN. To further evaluate the effective-
ness of our FE and FEEL methods, we compare it with state-of-the-art (SOTA) robust SNN methods,
namely AT [12], RAT [8], and StoG [10] in Tab. 1. From Tab. 1, we observe that FE and FEEL can en-
hance the original accuracy and robustness of these SOTA methods. For example, when under attack
by PGD, SNN-RAT improves the robustness of the original model (Vanilla) from 0.16% to 8.87%,
our FE (RAT+FE) enhances the robustness of RAT (RAT) to 9.70%. FEEL further enhances the
robustness of RAT (RAT+FEEL) to 12.36%. These experimental results underscore the effectiveness
of our FE and FEEL methods.

More experimental results of our FE, EL, and FEEL with different time steps, datasets, and networks
can be found in Appendix. A.4.
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5.3 Ablation study

Performance under different ε and iterative step k. We plot the accuracy of the white-box and
black-box scenarios under PGD attack with varying ε and iterative step k in Fig. 6 and Fig. 7,
respectively. The results indicate that the accuracy of our FEEL models decreases slowly compared
to that of vanilla models.
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Figure 6: Performance of the white-box (WB) and black-box (BB) scenarios under PGD attack with different
perturbation ε, the iterative step k = 4, the network is VGG11.
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Figure 7: Performance of the white-box (WB) and black-box (BB) scenarios under PGD attack with different
iterative step k, the perturbation ε = 4/255, the network is VGG11.

Rationality of FE method. To further verify the effectiveness of FE which crops information
from high-frequency to low-frequency over time steps, we compare it with an alternative strategy,
Inverse-FE (IFE), which crops information from low-frequency to high-frequency over time steps. As
shown in Tab. 2, IFE causes a significant drop in clean accuracy (64.81% vs. vanilla 92.64%). This
demonstrates that a substantial amount of valid information is lost, verifying that valid information is
concentrated in the low-frequency area. In contrast, FE not only effectively removes noise (21.56%
vs. vanilla 15.59% when under PGD attack) but also minimizes the loss of valid information (92.26%
vs. vanilla 92.64%).

Table 2: Performance (%) of the proposed Frequency Encoding (FE) and the alternative strategy Inverse-FE
(IFE). The perturbation ε = 4/255 for all attacks, and iterative step k = 4, step size α = 0.01 for PGD. The
dataset is CIFAR10 with time step T = 4, the network is VGG11.

Method Clean GN FGSM PGD BIM CW

Vanilla 92.64 91.28 35.47 15.59 14.95 6.92
IFE 64.81 64.48 12.33 4.44 4.25 4.18
FE 92.26 92.02 39.67 21.56 21.05 10.12

Effect of frequency masking radius r on robustness. We investigate the frequency masking radius
r on robustness to SNNs, defined in Eq. (9), which governs the degree of frequency suppression
at each time step. We present three different strategies to illustrate the superiority of our method
as shown in Tab. 3. The first strategy employs a direct encoding method, wherein the frequency
information outside a fixed radius r is removed from each original image, followed by T-step image
replication (using a different r for each image, akin to data augmentation), as depicted in the first row
of Tab. 3. The second strategy utilizes FE but with a uniform radius r across all time steps, as shown
in rows 2 to 5 of Tab. 3. The third strategy is the FE method proposed in this study, where a different
r is applied to each time step to remove as many noise frequencies as possible, as depicted in the last
row of Tab. 3. From Tab. 3, we observe that across various r selections, our method outperforms the
first and second strategies in all attack scenarios.

Rationality of EL method. According to Eq. (2), the leak factor controls the residual membrane
potential between time steps. A smaller leak factor may lead to a weakened temporal modeling
capability of the SNN, leading to a decline in network performance [28]. Considering the leak factor’s
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Table 3: Effect of frequency masking radius r on robustness. The attack is PGD with perturbation ε = 4/255,
iterative step α = 0.01, and iterative step k = 4. The dataset is CIFAR10 with T = 4, the network is VGG11.
r0 = 16, r1 = 14, r2 = 12, r3 = 10, r4 = 6

Encode r clean GN FGSM PGD BIM CW

Direct [r0]4, [r1]4, [r2]4, [r3]4 70.88 69.73 14.43 4.33 4.19 6.21
FE [r4]4 62.01 60.73 9.47 2.28 2.17 4.79
FE [r3]]4 68.78 67.55 13.62 4.74 4.35 6.37
FE [r2]4 69.96 69.26 14.60 5.38 5.20 6.87
FE [r1]4 70.95 70.39 15.72 5.41 5.22 7.45

FE (Ours) [r0, r1, r2, r3] 71.40 70.59 16.80 6.89 6.62 8.09

dual role in original information transmission (Eq. (2)) and robustness enhancement (Eq. (6)), we
propose EL. The EL dynamically learns the optimal robustness leak factor across different time
steps and neurons, which also increases the expression capability of SNN, helping maintain clean
accuracy and improving robustness. We further compare EL with two alternative strategies. The first
strategy sets all leak factors to 0. The second strategy, termed Reg-EL (REL), adds L2 regularization
to the EL to further constrain the leak factor. As shown in Tab. 6 in Appendix. A.4, a small leak
factor significantly reduces clean accuracy (vanilla 92.64% vs. REL 88.52% vs. EL with λ = 0.0 at
81.76%), consistent with analysis above. Besides, a small leak factor does increase the robustness
of SNN (e.g., under PGD attack, EL with λ = 0.0 is 63.80%, REL is 29.98%, compared to vanilla
15.59%). This also aligns with the proposed robustness framework (Eq. (6)) by demonstrating that
controlling the leak factor improves robustness. And our EL method ensures improvements in both
robustness and original accuracy (e.g., the PGD defense accuracy of EL is 30.27%, compared to
15.59% for vanilla, and the clean accuracy of EL is 92.73%, compared to 92.64% for vanilla). In
Appendix. A.4, we further verify the proposed EL does not destroy the impact of other terms in Eq.
(6) on the robustness of SNN.

All the above experimental results illustrate the rationality and effectiveness of our method.

6 Conclusions and Discussions

Conclusion: In this study, drawing inspiration from the selective visual attention and dynamic
membrane potential leak observed in biological nervous systems, we introduce a robust SNN with
Frequency Encoding and Evolutionary membrane potential Leak factor (FEEL-SNN). Specifically,
our approach theoretically presents a unified framework for SNN robustness, demonstrating that
refining the encoding technique and evolving the membrane potential leak factor can enhance SNN
robustness. Then we propose a novel image encoding method for SNNs, termed frequency encoding
(FE). FE captures information of varying frequencies at different time steps, which preserves the
original information while suppressing different frequency range noises, effectively filtering out
image noise. Building upon FE, we propose an evolutionary leak factor (EL). EL ensures that different
neurons in the network learn the optimal robustness leak factor at different time steps. It facilitates
the continual learning of information correlations across varying time steps, enabling more effective
utilization of pertinent information and thereby enhancing SNN robustness. Experimental results
validate that both our FE and EL methods can effectively improve the robustness of SNN to different
noises, and can be used in conjunction with other methods to improve the robustness further.

Limitation: Our focus has been primarily on static datasets. In future work, how to propose a reliable
and effective encoding method for the DVS datasets is a topic worthy of study.

Broader Impact: In neuroscience, the selective visual attention and non-fixed membrane potential
leak are considered to contribute to the robustness of biological nervous systems. By using SNN as a
research tool, computational modeling of biological nervous systems can be further facilitated. We
can contribute valuable insights to ongoing discussions in neuroscience regarding robustness.
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A Appendix

A.1 The attacks we used in this study

Given a classification model f with dataset (x, ytrue), where x is the clean image and ytrue is the
corresponding correct label. The formulations of the attacks we used in this study are described as
follows:

FGSM. FGSM aims to perturb the original data x along the sign direction of the gradient on loss
function with one step to increase the perturbed linear output, thus fool the network, it can be
formalized as follows:

x̂ = x+ εsign(∇xL(f(x), ytrue)), (15)
where sign(·) is an odd mathematical function that extracts the sign of a real number.

PGD. PGD attack is the iterative variant of FGSM. It first starts from a random perturbation in the
Lp-norm constraint around the original sample x, then takes a gradient iteration step in the sign
direction to achieve the greatest loss output, it can be formalized as follows:

x̂0 = x+ U(−ε,+ε), (16)

x̂k+1 = Clipx,ε{x̂k + α · sign(∇x̂kL(f(x̂k), ytrue))}, (17)

where k is the iterative step, α is step size for each attack iteration, ε controls the perturbation level.
U(·) is a uniform function, Clipx,ε{x} is the function which performs per-pixel clipping of the image
x̂, so the result will be in L∞-norm ε-neighbourhood of the original image x.

BIM. Both BIM and PGD attacks are iterative attacks. Different from PGD attacks, BIM updates the
adversarial samples starting from the original image.

CW. CW attack is different from previous gradient-based attack methods. It is based on model
optimization to generate adversarial samples. Its optimization function is as follows:

minimize||1
2
(tanh(W ) + 1)− x||22 + c · f(tanh(W ) + 1), (18)

where f defined as

f(x̂) = max(max{Z(x̂)i : i 6= j} − Z(x̂)j ,−k), (19)

where c is a parameter to control the perturbation, Z(·)i represents the logits output on label yi.

A.2 Proof for Theorem 1

Proof for Theorem 1 is given as follows:

Proof. By applying the spatial-temporal backpropagation (STBP) rule [41], we have
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A.3 More experimental settings

In our work, the training process lasts for 300 epochs for all experiments. Batch normalization are
used in the network to overcome the gradient vanishing or explosion. SGD optimizer is deployed, and
the initial learning rate is set to 0.1. The learning rate uses a cosine annealing schedule with Tmax
equaling the max number of epochs. All the experiments are conducted on the PyTorch platform on
NVIDIA RTX 3090.

A.4 More experimental results

In Tab. 4, we integrate the proposed FE and FEEL methods into the standard training (vanilla) of
SNNs. The same as the results in the main paper, we can see from Tab. 4 that in different datasets
(i.e., CIFAR-10, CIFAR-100, and Tiny-ImageNet), different networks (i.e., VGG11, WideResNet16,
and ResNet19) and different time steps (T = 4, 8), both FE and FEEL can effectively and stably
improve the robustness of the vanilla model to different attacks. This further verify the effectiveness
of our method.

Table 4: Performance of the proposed FE and FEEL under different white-box attacks. The attack perturbation
ε = 4/255 for all attacks, iterative step k = 4, and step size α = 0.01 for PGD, BIM. ‘WR16’ represents
WideResNet16 and ‘R19’ represents ResNet19.

Datasets networks T method clean GN FGSM PGD BIM CW

CIFAR10
VGG11

4
Vanilla 92.64 92.28 35.47 15.59 14.95 6.92

+FE (Ours) 92.26 92.02 39.67 21.56 21.05 10.12
+FEEL (Ours) 92.73 92.59 44.25 30.27 29.34 12.39

8
Vanilla 93.35 92.72 34.15 13.12 12.29 7.11

+FE (Ours) 92.92 92.04 38.34 19.45 18.59 8.94
+FEEL (Ours) 93.29 92.12 44.96 28.35 27.18 12.19

WR16 8
Vanilla 94.19 92.24 23.01 1.43 1.28 3.48

+FE (Ours) 94.15 92.40 24.59 2.11 1.87 3.69
+FEEL (Ours) 91.65 91.13 27.58 5.88 5.54 3.92

CIFAR100
VGG11

4
Vanilla 72.11 71.30 15.26 5.30 5.01 7.01

+FE (Ours) 71.40 70.59 16.80 6.89 6.62 8.09
+FEEL (Ours) 72.40 70.63 23.63 14.07 13.62 7.78

8
Vanilla 72.93 71.75 14.51 4.48 4.26 6.66

+FE (Ours) 72.67 71.78 15.70 6.37 5.87 7.63
+FEEL (Ours) 73.79 73.28 20.78 12.35 12.01 6.53

WR16 8
Vanilla 74.51 68.24 10.41 0.81 0.73 1.87

+FE (Ours) 73.97 68.71 12.24 1.31 1.58 3.44
+FEEL (Ours) 74.23 66.76 11.82 3.05 2.67 4.85

Tiny-ImageNet R19 4
Vanilla 43.72 42.64 7.98 2.91 2.94 16.48

+FE (Ours) 44.46 44.22 8.01 3.79 3.62 15.63
+FEEL (Ours) 43.83 43.34 9.59 4.53 4.22 18.21

Performance when using the EL method alone. We have included the performance of our EL
combined with the vanilla and SOTA robust methods in Tab. 5. Combined with Tab. 1. It is evident
that both FE and EL effectively enhance the robustness of the original methods, with FEEL further
improving robustness on this foundation. For instance, under a PGD attack, the original AT method
achieves 8.63% accuracy, while our FE increases robustness to 9.70%, EL to 11.15%, and FEEL to
12.36%. This illustrates the effectiveness of each module of our method.

EL does not destroy the impact of other terms in Eq. (6) on the robustness of SNN. We would
like to discuss how the leak factor affects other terms in Eq. (6) in two cases: 1) leak factor λ
as a hyperparameter predefined before neural network training and 2) leak factor λ as a learnable
parameter during neural network training (the proposed EL implementation).

1). In the first case, λ is a fixed number during neural network training (similar to ε in 1© term). Hence,
it will not affect other terms in Eq. (6)) at all. To validate the correctness of our theoretical framework
(i.e., smaller 1© term results in less perturbation in the output), we conduct additional experiments,
i.e., training different neural networks with different fixed λ (keep the remaining settings exactly
the same as that reported in experimental settings in the main paper). As results shown in Tab. 6, a
smaller λ results in a more robust model, indicating that smaller 1© term results in less perturbation in
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Table 5: Performance (%) of EL under different attacks. * represents black-box attack performance. ‘WR16’
represents WideResNet16 and ‘R19’ represents ResNet19. ‘GP’ represents gradient penalty regularization.

ε = 4/255, k = 4, α = 0.01

Setting method clean FGSM PGD BIM CW

CIFAR10, VGG11, T4 Vanilla+EL 91.24 42.63 27.69 26.41 11.43
CIFAR10, VGG11, T4 Vanilla+EL* 92.24 60.26 55.37 56.86 71.91
CIFAR10, VGG11, T8 Vanilla+EL 92.69 41.22 25.39 23.97 9.95
CIFAR10, WR16, T8 Vanilla+EL 91.57 23.89 3.11 2.78 3.06

CIFAR100, VGG11, T4 Vanilla+EL 70.13 21.03 11.89 11.44 6.79
CIFAR100, VGG11, T8 Vanilla+EL 72.41 22.03 12.95 12.16 6.98
CIFAR100, WR16, T8 Vanilla+EL 73.20 10.87 2.14 2.12 3.86
CIFAR100, WR16, T8 Vanilla+EL* 74.20 29.22 19.53 19.0 55.6

Tiny-ImageNet, R19, T4 Vanilla+EL 45.15 9.69 4.43 4.27 21.95
CIFAR10, VGG11, T4 GP+EL 90.53 41.72 26.33 25.09 20.21

ε = 8/255, k = 7, α = 0.01

CIFAR100, VGG11, T8 Vanilla+EL 71.41 9.16 1.29 1.16 6.98
CIFAR100, VGG11, T8 AT+EL 69.56 19.68 11.15 10.13 20.91
CIFAR100, VGG11, T8 RAT+EL 69.47 19.71 11.39 10.65 24.10
CIFAR100, VGG11, T8 StoG+EL 72.58 8.98 0.58 0.28 23.54

Table 6: Performance (%) of the proposed evolutionary leak factor λ (EL) with other strategies, where ‘FEEL,
(‖λ‖2)’ represents EL with L2 norm regularization, ‘GP’ represents gradient penalty, which adds L2 norm
constraint to the model gradient. The perturbation ε = 4/255 for all attacks, and iterative step k = 4, step size
α = 0.01 for PGD. The dataset is CIFAR10 with T = 4, the network is VGG11.

Method Clean FGSM PGD BIM CW

Vanilla 92.64 35.47 15.59 14.95 6.92
FEEL (λ = 1.0) or FE 92.26 39.67 21.56 21.05 10.12

FEEL (λ = 0.8) 92.45 39.83 23.19 22.40 11.04
FEEL (λ = 0.5) 90.31 42.72 24.05 23.12 11.71
FEEL (λ = 0.3) 89.26 52.20 38.02 37.01 12.35
FEEL (λ = 0.0) 81.76 62.84 63.80 63.09 12.46
FEEL, (‖λ‖2) 88.52 44.41 29.98 29.14 13.89

FEEL (learnable λ) or Ours 92.73 44.25 30.27 29.34 12.39

GP 92.63 38.77 17.53 16.60 8.07
GP+EL 90.53 41.72 26.33 25.09 20.21

GP+FEEL 92.53 48.46 32.83 31.94 20.75

the output in this case. As can also be observed from Tab. 6, a smaller λ could also bring performance
degradation for clear inputs, i.e., from 92.26% at λ = 1.0 to 81.76% at λ = 0.0. To mitigate the
performance degradation, we implement the leak factor as a learnable parameter.

2). In the second case, it is difficult to directly analyze the influence of λ on other terms in Eq. (6)
due to their complex relationship. Therefore, we analyze the influence by validating whether 1©
term for robustness improvement affects 2© term or 3© term’s effectiveness for the same goal. To
be specific, as analyzed in main paper, RAT (weights regularization) is essentially minimizing 2©
term. And we now add a gradient constraint via the L2 norm (gradient penalty regularization (GP)) to
minimize 3© term. We conduct additional comparisons with these two methods to two alternatives of
our methods. These two alternatives are implemented by additionally optimizing λ for methods RAT
and GP (keeping remaining parts unchanged), represented as RAT+EL and GP+EL, respectively. As
shown in Tab. of the main paper and Tab. 5 and Tab. 6, RAT+EL and GP+EL significantly improve
the robustness of RAT and GP, across different attack types and datasets, respectively. These results
show that leveraging 1© term for robustness improvement does not interfere with 2© term or 3© term’s
effectiveness for the same goal, indicating that the leak factor does not affect other terms in Eq. (6).

In summary, results in both cases indicate that the rationality of the theoretical framework and the
leak factor does not affect other terms in Eq. (6) on SNN robustness.
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