

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 HEAD-WISE ADAPTIVE ROTARY POSITIONAL ENCODING FOR FINE-GRAINED IMAGE GENERATION

Anonymous authors

Paper under double-blind review

Figure 1: Qualitative comparison of generated images across three fine-grained challenges: spatial relations (left), color fidelity (middle), and object counting (right). HARoPE consistently outperforms RoPE, adhering more faithfully to prompt specifications (instruction keywords highlighted in red).

ABSTRACT

Transformers rely on explicit positional encoding to model structure in data. While Rotary Position Embedding (RoPE) excels in 1D domains, its application to image generation reveals significant limitations such as fine-grained spatial relation modeling, color cues, and object counting. This paper identifies key limitations of standard multi-dimensional RoPE—rigid frequency allocation, axis-wise independence, and uniform head treatment—in capturing the complex structural biases required for fine-grained image generation. We propose HARoPE, a head-wise adaptive extension that inserts a learnable linear transformation parameterized via singular value decomposition (SVD) before the rotary mapping. This lightweight modification enables dynamic frequency reallocation, semantic alignment of rotary planes, and head-specific positional receptive fields while rigorously preserving RoPE’s relative-position property. Extensive experiments on class-conditional ImageNet and text-to-image generation (Flux and MMDiT) demonstrate that HARoPE consistently improves performance over strong RoPE baselines and other extensions. The method serves as an effective drop-in replacement, offering a principled and adaptable solution for enhancing positional awareness in transformer-based image generative models.

1 INTRODUCTION

Transformers are inherently permutation-invariant and therefore require explicit positional signals to model order and structure in sequential and spatial data Vaswani et al. (2017). Positional embeddings meet this need by mapping position indices to vectors of the same dimensionality as token features, enabling the model to fuse positional and semantic information without architectural changes. Two

broad families are widely used. Absolute positional encodings assign a unique vector to each index, implemented either as fixed sinusoidal functions Vaswani et al. (2017); Chen et al. (2023); Peebles & Xie (2022) or as learned embeddings Gehring et al. (2017). Relative encodings instead inject pairwise offset information directly into the attention mechanism Shaw et al. (2018); Raffel et al. (2020); Dai et al. (2019), often improving structural bias and length generalization. Among these, Rotary Positional Embedding Su et al. (2024); Barbero et al. (2024); Su (2021); Liu et al. (2023) is particularly notable: it represents absolute positions as complex-plane rotations and induces attention scores that depend solely on relative offsets, yielding strong empirical performance and extrapolation-friendly behavior.

Despite its success in one-dimensional settings, RoPE faces fundamental challenges when extended to multi-dimensional data, especially in image generation, which requires fine-grained spatial relations, color-aware cues, and exact object counts (as shown in Figure 1). First, conventional designs partition feature dimensions uniformly across axes and reuse the same frequency spectrum, implicitly assuming comparable complexity, scale, and dynamics along each direction. This rigid allocation is often suboptimal, especially in heterogeneous domains where horizontal and vertical axes (or spatial and temporal dimensions) exhibit different frequency characteristics. Second, standard multi-dimensional constructions implement rotations on fixed, coordinate-indexed planes and enforce axis-wise independence through block-diagonal structures. These choices constrain positional encoding to predefined subspaces that may be misaligned with the model’s learned semantics and suppress cross-dimensional interactions such as diagonal, rotational, or spatiotemporal couplings. Third, applying a single, shared positional mapping across all attention heads overlooks their distinct roles and receptive fields, limiting the emergence of head-level specialization needed to capture multi-scale and anisotropic patterns.

Motivated by these observations, we introduce HARoPE, a head-wise adaptive rotary positional encoding mechanism that preserves RoPE’s relative-offset property while addressing the above limitations in a lightweight and modular manner. The key idea is to insert, immediately before the rotary mapping, a learnable linear transformation parameterized via a singular value decomposition (SVD). By projecting queries and keys through this SVD-based change of basis, HARoPE aligns rotary planes with semantically meaningful directions and facilitates explicit cross-axis mixing. Moreover, endowing each attention head with an independent SVD equips the model with specialized positional receptive fields, promoting complementary multi-scale behaviors. Crucially, using the same adaptation for queries and keys preserves RoPE’s offset equivariance, encouraging that attention depends on positions only through relative differences.

Experiments on the ImageNet generation task demonstrate that HARoPE offers a simple, drop-in mechanism and obtains improved performance compared to naïve multi-dimensional RoPE and recent extensions. When integrated into text-to-image generative models (Flux and MMDiT), HARoPE yields consistent gains, indicating that adaptive, head-wise positional rebasing complements large-scale text-to-image generative architectures.

2 RELATED WORKS

Position Embedding in Transformers. Transformers are permutation-equivariant and therefore require positional signals to model order and structure Vaswani et al. (2017). Early approaches include learned absolute embeddings Chu et al. (2021); Gehring et al. (2017) and fixed sinusoidal encoding Vaswani et al. (2017); Chen et al. (2023); Peebles & Xie (2022), the latter enabling length extrapolation. Relative schemes Shaw et al. (2018); Raffel et al. (2020); Dai et al. (2019) inject pairwise distance information directly into attention, improving structural bias across diverse tasks.

RoPE and its Extensions. RoPE encodes absolute positions via complex-plane rotations while preserving a strict relative-offset property in attention Su et al. (2024). RoPE’s parameter-free, extrapolative design has driven broad adoption in large language models. However, its original 1D formulation is not directly aligned with the multi-dimensional inputs common in vision. Several works extend RoPE beyond 1D: RoPE-ViT generalizes to images Heo et al. (2024), and MRoPE supports 2D/3D and multimodal settings Wang et al. (2024b); Bai et al. (2025). Despite progress, common designs (i) uniformly partition feature dimensions across axes, (ii) enforce axis-wise independence via block-diagonal rotations, and (iii) apply identical positional mappings across

heads—limitations that hinder alignment with learned semantics, cross-axis coupling, and head specialization. Complementary efforts provide broader foundations: RethinkRoPE Liu et al. (2025) offers a systematic mathematical blueprint for higher-dimensional RoPE, and STRING Schenck et al. (2025) introduces learnable matrix generalizations. Building on these insights, we study the learnable-matrix setting and introduce a lightweight, head-specific linear adaptation via SVD parameterization that preserves RoPE’s relative-offset property while enabling semantic alignment, cross-axis mixing, and per-head specialization.

Image Generation and Understanding. Diffusion-based text-to-image systems (e.g., DALL·E Ramesh et al. (2021)), DiT Peebles & Xie (2022), Stable Diffusion Rombach et al. (2022), Flux Labs et al. (2025)) achieve state-of-the-art generation by coupling strong text encoders with scalable Transformers. In visual understanding, ViT Dosovitskiy et al. (2020); Heo et al. (2021); Beyer et al. (2023); Li et al. (2024) and Swin Transformer Liu et al. (2021) have largely supplanted convolutional backbones by modeling long-range dependencies and enabling multimodal alignment. In both generation and understanding tasks, effective positional encoding is critical for representing spatial and spatiotemporal structure. The proposed HARoPE method is complementary to these Transformer-based approaches. We demonstrate its efficacy in image generation using Flux and MMDiT, and in image understanding with ViT-Base.

3 METHODOLOGY

We introduce HARoPE (Head-wise Adaptive Rotary Positional Encoding), a drop-in enhancement to RoPE designed to preserve its desirable relative-position property while addressing three core limitations that arise in multi-dimensional settings: rigid frequency allocation, misalignment with learned semantic subspaces, and uniform treatment across attention heads. HARoPE incorporates a lightweight, head-specific linear transformation—parameterized via a singular value decomposition—immediately before the rotary mapping. This adaptation enables (i) dynamic redistribution of positional capacity across axes, (ii) semantic alignment of rotary planes and support for cross-axis interactions, and (iii) specialized positional receptive fields per attention head.

We first review the original RoPE and a common multi-dimensional extension (Section 3.1), then detail the specific limitations of the standard approach (Section 3.2), and finally present the HARoPE formulation and its properties (Section 3.3).

3.1 PRELIMINARY: ROTARY POSITION EMBEDDINGS

One-Dimensional RoPE. RoPE injects position via 2D rotations applied to consecutive feature pairs. For a feature vector $\mathbf{q} \in \mathbb{R}^d$ at position m , define the block-diagonal rotation

$$R_m = \text{diag}\left(\begin{bmatrix} \cos(m\theta_0) & -\sin(m\theta_0) \\ \sin(m\theta_0) & \cos(m\theta_0) \end{bmatrix}, \dots, \begin{bmatrix} \cos(m\theta_{d/2-1}) & -\sin(m\theta_{d/2-1}) \\ \sin(m\theta_{d/2-1}) & \cos(m\theta_{d/2-1}) \end{bmatrix}\right), \quad (1)$$

with frequencies $\theta_i = \theta_{\text{base}}^{-2i/d}$ (typically $\theta_{\text{base}} = 10000$). Rotated queries and keys are $\mathbf{q}' = R_m \mathbf{q}$, $\mathbf{k}' = R_n \mathbf{k}$. A key property is relative-position encoding:

$$(R_m \mathbf{q})^\top (R_n \mathbf{k}) = \mathbf{q}^\top R_{n-m} \mathbf{k}, \quad (2)$$

so attention scores depend on the offset $n - m$ only. Each pair (q_{2i}, q_{2i+1}) forms a 2D plane rotated by phase $m\theta_i$, yielding a multi-frequency spectrum.

A Naïve Multi-dimensional Extension. For 2D positions (x, y) , a standard extension partitions the feature dimensions across axes and applies independent rotations:

$$R_{(x,y)} = \text{diag}(R_x(x), R_y(y)), \quad (3)$$

where $R_x(\cdot)$ and $R_y(\cdot)$ reuse the 1D spectrum. With $\mathbf{q} = [\mathbf{q}_x; \mathbf{q}_y]$, $\mathbf{k} = [\mathbf{k}_x; \mathbf{k}_y]$, the rotated vectors and the score can be written as

$$\mathbf{q}' = \begin{bmatrix} R_x(x) & 0 \\ 0 & R_y(y) \end{bmatrix} \mathbf{q}, \quad \mathbf{k}' = \begin{bmatrix} R_x(x') & 0 \\ 0 & R_y(y') \end{bmatrix} \mathbf{k}, \quad (4)$$

$$162 \quad \mathbf{q}'^\top \mathbf{k}' = \underbrace{\mathbf{q}_x^\top R_x(x)^\top R_x(x') \mathbf{k}_x}_{x\text{-axis}} + \underbrace{\mathbf{q}_y^\top R_y(y)^\top R_y(y') \mathbf{k}_y}_{y\text{-axis}}. \quad (5)$$

$$163$$

$$164$$

165 This separability extends to higher dimensions by adding more axis-specific blocks.

166

167 3.2 LIMITATIONS OF NAÏVE MULTI-DIMENSIONAL ROPE

168

169 **Rigid Frequency Allocation.** Features are split evenly across axes and each axis reuses the same
 170 spectrum $\theta_i = 10000^{-2i/d}$, where the θ_{base} is manually predefined, implicitly assuming equal
 171 complexity and scale across directions. This assumption is often violated (e.g., temporal vs. spatial
 172 variation), leading to suboptimal capacity and frequency coverage.

173

174 **Semantic Misalignment and Axis Independence.** Rotations act on fixed, coordinate-indexed
 175 planes $(q_0, q_1), (q_2, q_3), \dots$, irrespective of the semantic subspaces learned by the model. The
 176 block-diagonal structure further enforces axis-wise independence, suppressing explicit cross-axis
 177 interactions (e.g., diagonal or rotational couplings).

178

179 **Head-Wise Uniformity.** Standard RoPE injects the same positional mapping into every head,
 180 despite evidence that heads specialize in different receptive fields (local vs. long-range). This
 181 uniformity weakens multi-scale, head-specific positional sensitivity.

182

183 3.3 HEAD-WISE ADAPTIVE ROPE

184

185 We propose HARoPE, a head-wise linear adaptation inserted immediately before the rotary mapping.
 186 The adaptation learns a change of basis that (i) reallocates positional capacity across axes, (ii) aligns
 187 rotary planes with semantically meaningful directions and enables cross-axis coupling, and (iii) allows
 188 different attention heads to specialize in distinct positional receptive fields—all while preserving
 189 RoPE’s desirable relative-position property.

190

191 **Head-specific Linear Adaptation.** HARoPE inserts, for each attention head h with per-head
 192 dimension d , a learnable linear transform $A_h \in \mathbb{R}^{d \times d}$ immediately before the rotary map. We
 193 parameterize

$$193 \quad A_h = U_h \Sigma_h V_h^\top, \quad (6)$$

194 where U_h, V_h are orthogonal and Σ_h is diagonal with positive entries. Queries and keys at positions
 195 m and n are mapped as

$$196 \quad \mathbf{q}'_h = R_m A_h \mathbf{q}_h, \quad \mathbf{k}'_h = R_n A_h \mathbf{k}_h. \quad (7)$$

197 This single linear step separates concerns: V_h selects and mixes directions (aligning rotary planes
 198 with learned semantics), Σ_h redistributes effective capacity by reweighting subspaces, and U_h maps
 199 enriched signals back to the model’s native basis. Initializing $A_h = I$ recovers the baseline at step
 200 zero, and keeping singular values near 1 preserves scale.

201 The same A_h is applied to queries and keys, and position dependence remains confined to the rotary
 202 maps, HARoPE preserves strict relative-offset dependence:

$$204 \quad (\mathbf{q}'_h)^\top \mathbf{k}'_h = (R_m A_h \mathbf{q}_h)^\top (R_n A_h \mathbf{k}_h) = \mathbf{q}_h^\top A_h^\top R_{n-m} A_h \mathbf{k}_h. \quad (8)$$

$$205$$

206 So attention scores depend on positions only through the relative offset $n - m$.

207

208 **Multi-Dimensional Extension.** For positions (x_1, \dots, x_p) in p dimensions, let $R_{(x_1, \dots, x_p)}$ be
 209 the block-diagonal rotary map formed by axis-wise rotations. Applying the same head-specific
 210 adaptation,

$$211 \quad \mathbf{q}'_h = R_{(x_1, \dots, x_p)} A_h \mathbf{q}_h, \quad \mathbf{k}'_h = R_{(x'_1, \dots, x'_p)} A_h \mathbf{k}_h, \quad (9)$$

212 yields the score

$$213 \quad (\mathbf{q}'_h)^\top \mathbf{k}'_h = \mathbf{q}_h^\top A_h^\top R_{(\Delta x_1, \dots, \Delta x_p)} A_h \mathbf{k}_h, \quad (10)$$

$$214$$

215 with $\Delta x_i = x'_i - x_i$. Hence, HARoPE preserves relative encoding in multi-dimensional settings
 while allowing learned cross-axis mixing through the dense A_h .

216 **Initialization and stability.** To ensure compatibility with pretrained models and stable optimization,
 217 we initialize $A_h = I$ via $U_h = V_h = I$ and $\Sigma_h = I$. Orthogonality of U_h and V_h can be maintained
 218 by parameterizing them through the matrix exponential of skew-symmetric matrices. The diagonal
 219 of Σ_h is kept positive by softplus and regularized to remain near one to avoid exploding/vanishing
 220 norms and to preserve the variance of queries and keys.

222 **Discussion.** HARoPE can be interpreted as learning a head-specific harmonic coordinate system:
 223 V_h aligns rotary planes with semantically meaningful directions; Σ_h modulates the effective frequency
 224 budget across these directions; and U_h reintegrates the positionally enriched features. By allowing
 225 each head to specialize its positional receptive field, HARoPE overcomes the limitations of rigid
 226 frequency allocation, axis-wise independence, and head-wise uniformity, while rigorously preserving
 227 RoPE’s relative-position equivariance.

229 4 EXPERIMENTS

231 This section evaluates HARoPE across image understanding, class-conditional image generation,
 232 and text-to-image generation. We first describe the experimental protocol (architectures, datasets,
 233 baselines, and metrics), then present comparative results followed by ablations, limitations and future
 234 work discussion.

236 4.1 EXPERIMENTAL SETUPS

238 **Implementation.** We adopt standard backbones and training strategies for each task. For image
 239 understanding, we train ViT-B from scratch with AdamW, learning rate 5×10^{-4} and a 5-epoch
 240 warmup from 1×10^{-6} , batch size 256, and 300 training epochs. For class-conditional image
 241 generation, we use DiT-B/2 with a constant learning rate 1×10^{-4} , no weight decay, batch size 256,
 242 and EMA with decay 0.9999 for evaluation. For text-to-image generation, we fine-tune the pretrained
 243 FLUX.1-dev model for 4,000 iterations using LoRA (rank 32), AdamW with learning rate 2×10^{-5} ,
 244 weight decay 0.01, and batch size 64. All training and testing are performed on a server of eight
 245 NVIDIA H100 GPUs.

246 **Dataset.** Datasets follow conventional practice. Image understanding experiments use ImageNet
 247 at 224×224 with standard resize and center-crop. For ImageNet generation, we encode images
 248 using Stable Diffusion’s VAE into $z \in \mathbb{R}^{H/8 \times W/8 \times 4}$ with $H \in \{128, 256, 512\}$. Text-to-image
 249 experiments with FLUX model use the BLIP30-60k instruction-tuning set of 60k prompt–image pairs.
 250 For MMDiT-based text-to-image generation, we utilize the train split of the MS-COCO dataset Lin
 251 et al. (2014).

253 **Baselines.** We compare against strong positional encoding baselines. For image understanding,
 254 we include absolute positional embeddings (APE), 2D-RoPE in axial and mixed forms (Heo et al.,
 255 2024), STRING (Schenck et al., 2025)/Rethinking RoPE (Liu et al., 2025), and HARoPE. For
 256 class-conditional generation on ImageNet, we evaluate APE, Vanilla RoPE, 2D-RoPE (Axial), Vide-
 257 oRoPE (Wei et al., 2025), STRING/Rethinking RoPE, and HARoPE. For text-to-image generation,
 258 we directly replace RoPE in FLUX with HARoPE and APE in MMDiT for a controlled comparison.

259 **Metrics.** For image understanding, we report Top-1 accuracy. In class-conditional generation, we
 260 adopt ADM’s TensorFlow evaluation suite Dhariwal & Nichol (2021) to report FID-50K (Heusel
 261 et al., 2017), Inception Score (Salimans et al., 2016), and Precision/Recall (Davis & Goadrich, 2006).
 262 For text-to-image generation, we employ GenEval (Ghosh et al., 2023) and DPG-Bench (Hu et al.,
 263 2024) for comprehensive assessment.

265 4.2 COMPARISON TO EXISTED WORKS

267 **Image Understanding.** Table 1 summarizes ViT-B results trained for 300 epochs. HARoPE
 268 achieves the best Top-1 accuracy of 82.76%, improving upon APE by 2.19% and surpassing the
 269 strongest RoPE variant (2D-RoPE Mixed at 81.51%). These gains indicate that head-wise adaptive
 rotary rebasing applies well to the image understanding task and is also compatible with visual

Position Embedding	Steps	Top-1 Acc (224×224)
APE (Default)	300 epoches	80.57
2D-RoPE (Axial)	300 epoches	81.35
2D-RoPE (Mixed)	300 epoches	81.51
STRING/Rethinking RoPE	300 epoches	80.96
HARoPE	300 epoches	82.76

Table 1: Image understanding with different position embeddings on ViT-Base.

Position Embedding	FID-50k↓	IS↑	Precision↑	Recall↑
APE (Default)	11.47	110.04	0.72	0.54
Vanilla RoPE	9.81	121.75	0.73	0.53
2D-RoPE (Axial)	9.49	124.78	0.74	0.54
VideoRoPE	10.86	118.84	0.71	0.54
STRING/Rethinking RoPE	9.31	125.09	0.74	0.54
HARoPE	8.90	127.01	0.74	0.55

Table 2: Image generation on ImageNet with different position embeddings on DiT-B/2, 1M steps.

Method	Testing FLOPs	GenEval ↑	DPG Bench ↑	FID ↓
<i>256 resolution</i>				
MMDiT (APE)	307G	–	–	6.34
MMDiT (HARoPE)	309G	–	–	5.22
<i>1024 resolution</i>				
FLUX (RoPE)	5T	0.7567	83.26	–
FLUX (HARoPE)	5T	0.7710	83.77	–

Table 3: Performance of HARoPE applied to FLUX.1-dev and MMDiT on 1024 and 256 resolution.

understanding. However, in this paper, we focus on the task of fine-grained image generation, so we do not conduct extensive experimental analysis for visual understanding.

Class-Conditioned ImageNet Generation. On ImageNet with DiT-B/2 (Table 2), HARoPE attains the lowest FID-50k (8.90) and the highest IS (127.01), while matching the strongest Precision (0.74) and achieving the best Recall (0.55). These results reflect improved fidelity and perceptual quality without sacrificing diversity compared to axis-separable or fixed-spectrum designs.

Text-to-Image Generation. Replacing RoPE with HARoPE in FLUX yields consistent improvements on both GenEval and DPG-Bench (Table 3). On GenEval, the overall score increases from 0.7567 to 0.7710, while on DPG-Bench it improves from 83.26 to 83.77. The relative gain is more pronounced on GenEval, which emphasizes fine-grained compositional attributes (e.g., object counting, colors, and spatial relations), aligning with HARoPE’s head-wise adaptive design that enhances spatial discrimination. Applying HARoPE to MMDiT further reduces FID from 6.34 (APE) to 5.22 (HARoPE), indicating improved fidelity. Qualitative comparisons are provided in Figure 2.

4.3 ABLATION STUDY

Different Matrix Parameterizations. We conduct an ablation study to evaluate the impact of the matrix parameterization in HARoPE’s adaptation module. As shown in Table 4, we compare three matrix types: normal matrices (without orthogonality constraints), orthogonal matrices, and our SVD-based parameterization. The baseline RoPE achieves an FID-50k of 9.49. Introducing a single normal matrix improves FID to 9.28, while orthogonal and SVD parameterizations yield 9.31 and 8.93 respectively, demonstrating that constrained matrix structures provide more stable optimization.

Head-wise Specialization. As shown in Table 4, we extend each matrix type to be head-specific, and observe consistent improvements across all matrix parameterizations. The normal matrix with multi-head configuration reduces FID to 9.03, while the orthogonal matrix variant achieves 8.97. Our proposed HARoPE (RoPE + SVD + multi-head) obtains the best performance with FID-50k of 8.90 and IS of 127.01. This trend is corroborated in text-to-image generation with the FLUX model

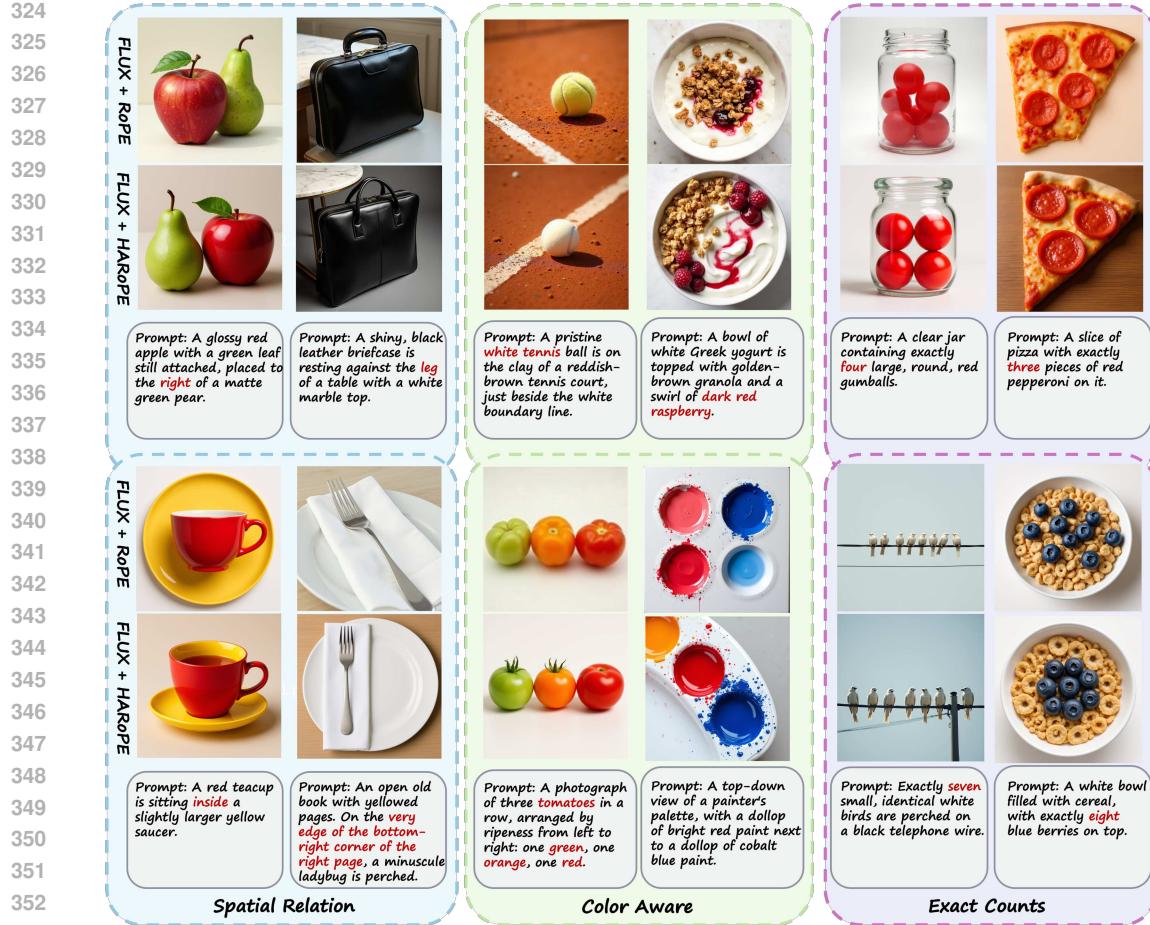


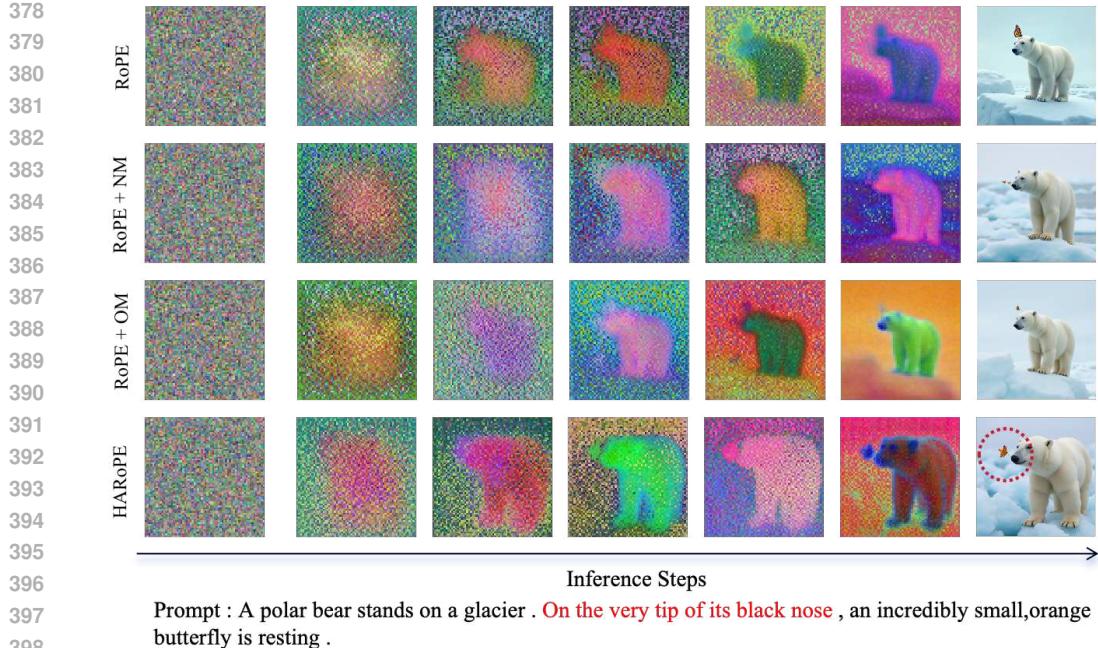
Figure 2: Qualitative comparison on wild prompts, evaluating FLUX models with RoPE and HARoPE positional embeddings.

Position Embedding	Training steps	FID-50k \downarrow	IS \uparrow	Precision \uparrow	Recall \uparrow
RoPE	DIT-B/2,1M	9.49	124.78	0.74	0.54
RoPE + normal-matrix	DIT-B/2,1M	9.28	124.78	0.74	0.53
RoPE + normal-matrix + multi-head	DIT-B/2,1M	9.03	126.89	0.74	0.53
RoPE + orthogonal-matrix	DIT-B/2,1M	9.31	125.09	0.74	0.54
RoPE + orthogonal-matrix + multi-head	DIT-B/2,1M	8.97	127.61	0.74	0.53
RoPE + SVD	DIT-B/2,1M	8.93	126.03	0.74	0.54
RoPE + SVD + multi-head (Ours)	DIT-B/2,1M	8.90	127.01	0.74	0.55

Table 4: Quantitative comparison of different matrix settings (normal, orthogonal and SVD parameterization; with and without multi-head separate learnable matrix) on ImageNet generation task.

(Table 9), where the head-wise variant yields superior scores on both GenEval. To further validate this specialization, we visualize the model weight of learned transformation matrices across different attention heads and transformer blocks in Figure 4. The distinct patterns observed in the heatmaps provide empirical evidence that different heads indeed learn divergent projection strategies, aligning with the intended design of head-wise adaptive positional encoding.

Different Image Resolution. We evaluate the robustness of HARoPE across multiple image resolutions to assess its scalability. As summarized in Table 5, HARoPE is applied to DiT-B/2 models trained for class-conditional generation at resolutions of 128×128 , 256×256 , and 512×512 . The



399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 3: Qualitative comparison of different matrix settings. During the inference steps, we demonstrate the “NM” denotes normal matrix, and “OM” denotes orthogonal matrix.

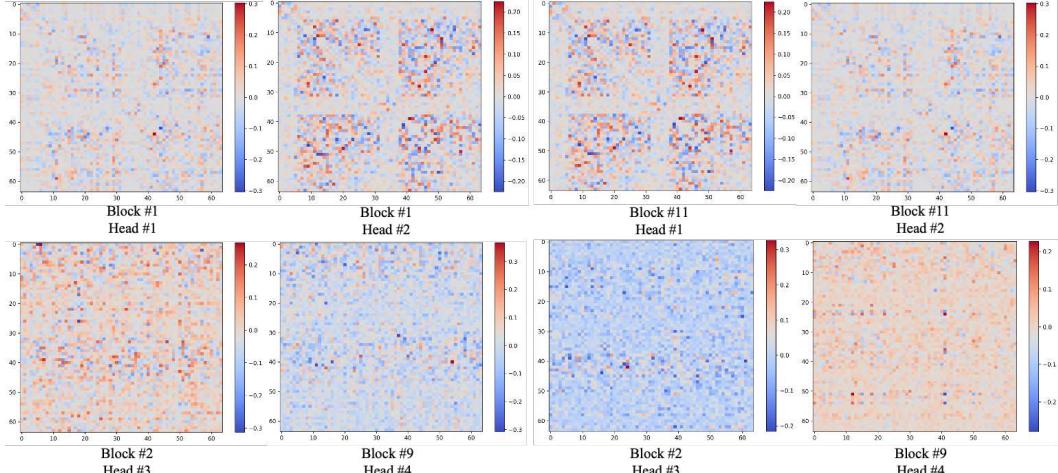


Figure 4: Model weight in heatmap of different learned matrices in different attention heads and different blocks.

results demonstrate that HARoPE consistently outperforms both Absolute Positional Embeddings and the standard RoPE baseline across all resolutions, achieving the best FID and IS scores. Furthermore, as shown in Table 3, when integrated into the large-scale FLUX model for text-to-image generation at a high resolution of 1024×1024 , HARoPE again yields improved performance on both the GenEval and DPG-Bench metrics compared to the original RoPE.

Extrapolation. To assess the robustness of positional encodings, we evaluate their extrapolation capability—the ability to handle resolutions unseen during training. Models are trained on the standard ImageNet-1k resolution of 224×224 and tested at progressively larger resolutions. As shown in Table 6, HARoPE consistently achieves the highest accuracy across all evaluated resolutions.

432

433

training steps	RoPE + SVD	RoPE + SVD + Multi-head (ours)
500	0.7234	0.7292
1000	0.7206	0.7388

434

435

Figure 5: Comparing the performance of RoPE + SVD and RoPE + SVD + Multi-head on GenEval benchmark, FLUX model, 1024×1024 resolution.

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

Model	Position Embedding	FID-50k \downarrow	IS \uparrow	Precision \uparrow	Recall \uparrow
DiT-B/2, 128×128	Absolution Embedding	16.43	58.30	0.61	0.56
DiT-B/2, 128×128	RoPE	14.32	66.13	0.62	0.57
DiT-B/2, 128×128	HARoPE	13.73	68.14	0.63	0.57
DiT-B/2, 256×256	Absolution Embedding	11.47	110.04	0.72	0.54
DiT-B/2, 256×256	RoPE	9.49	124.78	0.74	0.54
DiT-B/2, 256×256	HARoPE	8.90	127.01	0.74	0.55
DiT-B/2, 512×512	Absolution Embedding	18.28	81.62	0.77	0.53
DiT-B/2, 512×512	RoPE	14.57	95.41	0.79	0.53
DiT-B/2, 512×512	HARoPE	14.36	96.25	0.80	0.54

453

454

Table 5: Image Generation Results on different image resolutions with our proposed HARoPE.

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

Table 6: Extrapolation results of different position embedding methods in image understanding task.

474

Notably, at the extreme extrapolation size of 512×512 , HARoPE maintains a strong accuracy of 82.88%, significantly outperforming other positional encoding methods.

Efficiency and Training Stability. As shown in Table 3, the TFLOPS introduced by the learnable matrices of HARoPE during inference can be very small compared to the entire model. The training process remains stable, as evidenced by the smooth and convergent loss curves during the fine-tuning of large models like FLUX (Figure 6).

5 CONCLUSION

475

476

477

478

479

480

481

482

483

484

485

Standard multi-dimensional extensions of RoPE face limitations in handling complex data like images, due to their rigid axis-wise feature partitioning, fixed rotation planes misaligned with semantic subspaces, and uniform application across attention heads. To overcome these issues, we introduced HARoPE, a head-wise adaptive rotary positional encoding that enhances RoPE through a lightweight, learnable linear transformation applied before the rotary mapping. Parameterized via singular value decomposition, this adaptation enables dynamic redistribution of positional capacity, semantic alignment of rotary planes with support for cross-axis interactions, and specialized positional receptive fields per attention head—all while preserving RoPE’s strict relative-position encoding property. Extensive experiments on image understanding, class-conditional generation, and text-to-image synthesis demonstrate that HARoPE consistently outperforms existing positional encoding methods, confirming its effectiveness as a drop-in improvement for transformer-based generative models. These results highlight the value of adaptive, head-wise positional reasoning in capturing fine-grained structural and semantic patterns image generative models.

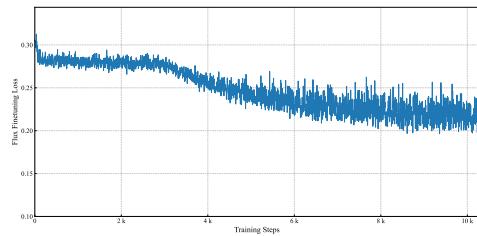


Figure 6: Training loss of the FLUX model during finetuning, showing stable and progressive convergence with HARoPE.

486 REFERENCES
487

- 488 P-A Absil, Robert Mahony, and Rodolphe Sepulchre. *Optimization algorithms on matrix manifolds*.
489 Princeton University Press, 2008.
- 490 Joshua Ainslie, James Lee-Thorp, Michiel De Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
491 Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints.
492 *arXiv preprint arXiv:2305.13245*, 2023.
- 493 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
494 and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization,
495 text reading, and beyond. *arXiv preprint arXiv:2308.12966*, 2023.
- 496 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
497 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
498 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
499 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. *arXiv*
500 *preprint arXiv:2502.13923*, 2025.
- 501 Federico Barbero, Alex Vitvitskyi, Christos Perivolaropoulos, Razvan Pascanu, and Petar Veličković.
502 Round and round we go! what makes rotary positional encodings useful. *arXiv preprint*
503 *arXiv:2410.06205*, 2024.
- 504 Yoshua Bengio and Yann LeCun. Scaling learning algorithms towards AI. In *Large Scale Kernel*
505 *Machines*. MIT Press, 2007.
- 506 Lucas Beyer, Pavel Izmailov, Alexander Kolesnikov, Mathilde Caron, Simon Kornblith, Xiaohua
507 Zhai, Matthias Minderer, Michael Tschannen, Ibrahim Alabdulmohsin, and Filip Pavetic. Flexivit:
508 One model for all patch sizes. In *IEEE Conference on Computer Vision and Pattern Recognition*
509 (*CVPR*), 2023.
- 510 Juhai Chen, Zhiyang Xu, Xichen Pan, Yushi Hu, Can Qin, Tom Goldstein, Lifu Huang, Tianyi
511 Zhou, Saining Xie, Silvio Savarese, et al. Blip3-o: A family of fully open unified multimodal
512 models-architecture, training and dataset. *arXiv preprint arXiv:2505.09568*, 2025.
- 513 Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
514 Kwok, Ping Luo, Huchuan Lu, et al. Pixart-alpha : Fast training of diffusion transformer for
515 photorealistic text-to-image synthesis. *arXiv preprint arXiv:2310.00426*, 2023.
- 516 Xiangxiang Chu, Zhi Tian, Bo Zhang, Xinlong Wang, and Chunhua Shen. Conditional positional
517 encodings for vision transformers. *arXiv preprint arXiv:2102.10882*, 2021.
- 518 Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdinov.
519 Transformer-xl: Attentive language models beyond a fixed-length context. *arXiv preprint*
520 *arXiv:1901.02860*, 2019.
- 521 Jesse Davis and Mark Goadrich. The relationship between precision-recall and roc curves. In
522 *International Conference on Machine Learning (ICML)*, 2006.
- 523 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
524 hierarchical image database. In *IEEE Conference on Computer Vision and Pattern Recognition*
525 (*CVPR*), 2009.
- 526 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
527 bidirectional transformers for language understanding. In *Proceedings of the North American*
528 *chapter of the association for computational linguistics: human language technologies*, 2019.
- 529 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Neural*
530 *Information Processing Systems (NeurIPS)*, 2021.
- 531 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
532 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
533 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
534 *International Conference on Learning Representations (ICLR)*, 2020.

- 540 Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Convolutional
 541 sequence to sequence learning. In *International Conference on Machine Learning (ICML)*, 2017.
 542
- 543 Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
 544 key-value memories. *arXiv preprint arXiv:2012.14913*, 2020.
- 545 Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework
 546 for evaluating text-to-image alignment. *Neural Information Processing Systems (NeurIPS)*, 2023.
 547
- 548 Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. *Deep learning*. MIT Press,
 549 2016.
- 550 Rhys Gould, Euan Ong, George Ogden, and Arthur Conmy. Successor heads: Recurring, interpretable
 551 attention heads in the wild. *arXiv preprint arXiv:2312.09230*, 2023.
- 552
- 553 Adi Haviv, Ori Ram, Ofir Press, Peter Izsak, and Omer Levy. Transformer language models without
 554 positional encodings still learn positional information. *arXiv preprint arXiv:2203.16634*, 2022.
- 555
- 556 Byeongho Heo, Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Junsuk Choe, and Seong Joon Oh.
 557 Rethinking spatial dimensions of vision transformers. In *IEEE Conference on Computer Vision
 558 and Pattern Recognition (CVPR)*, 2021.
- 559
- 560 Byeongho Heo, Song Park, Dongyoon Han, and Sangdoo Yun. Rotary position embedding for vision
 561 transformer. In *European Conference on Computer Vision (ECCV)*, 2024.
- 562
- 563 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
 564 trained by a two time-scale update rule converge to a local nash equilibrium. *Neural Information
 565 Processing Systems (NeurIPS)*, 2017.
- 566
- 567 Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algorithm for deep belief
 568 nets. *Neural Computation*, 2006.
- 569
- 570 Xiwei Hu, Rui Wang, Yixiao Fang, Bin Fu, Pei Cheng, and Gang Yu. Ella: Equip diffusion models
 571 with llm for enhanced semantic alignment. *arXiv preprint arXiv:2403.05135*, 2024.
- 572
- 573 Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024.
- 574
- 575 Black Forest Labs, Stephen Batifol, Andreas Blattmann, Frederic Boesel, Saksham Consul, Cyril
 576 Diagne, Tim Dockhorn, Jack English, Zion English, Patrick Esser, Sumith Kulal, Kyle Lacey, Yam
 577 Levi, Cheng Li, Dominik Lorenz, Jonas Müller, Dustin Podell, Robin Rombach, Harry Saini, Axel
 578 Sauer, and Luke Smith. Flux.1 kontext: Flow matching for in-context image generation and editing
 579 in latent space, 2025. URL <https://arxiv.org/abs/2506.15742>.
- 580
- 581 Yanwei Li, Chengyao Wang, and Jiaya Jia. Llama-vid: An image is worth 2 tokens in large language
 582 models. In *European Conference on Computer Vision (ECCV)*, 2024.
- 583
- 584 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 585 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *European
 586 Conference on Computer Vision (ECCV)*, 2014.
- 587
- 588 Haiping Liu, Lijing Lin, Jingyuan Sun, Zhegong Shangguan, Mauricio A. Alvarez, and Hongpeng
 589 Zhou. Rethinking rope: A mathematical blueprint for n-dimensional positional embedding. *arXiv
 590 preprint arXiv:2504.06308*, 2025.
- 591
- 592 Xiaoran Liu, Hang Yan, Shuo Zhang, Chenxin An, Xipeng Qiu, and Dahua Lin. Scaling laws of
 593 rope-based extrapolation. *arXiv preprint arXiv:2310.05209*, 2023.
- 594
- 595 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
 596 Swin transformer: Hierarchical vision transformer using shifted windows. In *IEEE International
 597 Conference on Computer Vision (ICCV)*, 2021.
- 598
- 599 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint
 600 arXiv:1711.05101*, 2017.

- 594 William Peebles and Saining Xie. Scalable diffusion models with transformers. *arXiv preprint*
 595 *arXiv:2212.09748*, 2022.
 596
- 597 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 598 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
 599 transformer. *Journal of Machine Learning Research*, 2020.
- 600
- 601 Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
 602 and Ilya Sutskever. Zero-shot text-to-image generation. In *International Conference on Machine
 603 Learning (ICML)*, 2021.
- 604
- 605 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 606 resolution image synthesis with latent diffusion models. In *IEEE Conference on Computer Vision
 607 and Pattern Recognition (CVPR)*, 2022.
- 608
- 609 Anian Ruoss, Grégoire Delétang, Tim Genewein, Jordi Grau-Moya, Róbert Csordás, Mehdi Bennani,
 610 Shane Legg, and Joel Veness. Randomized positional encodings boost length generalization of
 611 transformers. *arXiv preprint arXiv:2305.16843*, 2023.
- 612
- 613 Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
 614 Improved techniques for training gans. *Neural Information Processing Systems (NeurIPS)*, 2016.
- 615
- Connor Schenck, Isaac Reid, Mithun George Jacob, Alex Bewley, Joshua Ainslie, David Rendleman,
 616 Deepali Jain, Mohit Sharma, Avinava Dubey, Ayzaan Wahid, et al. Learning the ropes: Better 2d
 617 and 3d position encodings with string. *arXiv preprint arXiv:2502.02562*, 2025.
- 618
- Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representations.
 619 *arXiv preprint arXiv:1803.02155*, 2018.
- 620
- Jianlin Su. Transformer update path. <https://kexue.fm/archives/8265>, 2021.
- 621
- Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
 622 transformer with rotary position embedding. *Neurocomputing*, 2024.
- 623
- Hugo Touvron, Matthieu Cord, and Hervé Jégou. Deit iii: Revenge of the vit. In *European Conference
 624 on Computer Vision (ECCV)*, 2022.
- 625
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 626 Kaiser, and Illia Polosukhin. Attention is all you need. *Neural Information Processing Systems
 627 (NeurIPS)*, 2017.
- 628
- Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
 629 Haiming Zhao, Jianxiao Yang, et al. Wan: Open and advanced large-scale video generative models.
 630 *arXiv preprint arXiv:2503.20314*, 2025.
- 631
- Jie Wang, Tao Ji, Yuanbin Wu, Hang Yan, Tao Gui, Qi Zhang, Xuanjing Huang, and Xiaoling
 632 Wang. Length generalization of causal transformers without position encoding. *arXiv preprint
 633 arXiv:2404.12224*, 2024a.
- 634
- Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 635 Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
 636 Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model's
 637 perception of the world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024b.
- 638
- Xilin Wei, Xiaoran Liu, Yuhang Zang, Xiaoyi Dong, Pan Zhang, Yuhang Cao, Jian Tong, Haodong
 639 Duan, Qipeng Guo, Jiaqi Wang, et al. Videorope: What makes for good video rotary position
 640 embedding. *arXiv preprint arXiv:2502.05173*, 2025.

648
649

A APPENDIX

650
651

A.1 LIMITATIONS AND FUTURE WORKS

652
653
654
655
656

While HARoPE demonstrates consistent improvements across image understanding and generation tasks, this work has certain limitations that merit discussion. Our evaluation is primarily confined to the image domain due to our computational constraints; the generalizability of the approach to other multi-dimensional data modalities, such as video, audio, or 3D content, remains an open question for empirical validation.

657
658
659
660
661

Another consideration is the static nature of the learned transformation matrices, which are fixed after training. Although the head-wise specialization is beneficial, the adaptation process is not input-conditional. Exploring dynamic transformations that can adapt based on input content or evolve during inference could further enhance the flexibility and performance of the positional encoding mechanism.

662

A.2 ADDITIONAL QUALITATIVE RESULTS

663
664
665

We provide supplementary visual comparisons to illustrate the empirical effects of HARoPE:

666
667
668
669
670

Figure 7 shows qualitative comparisons on GenEval prompts using FLUX with RoPE vs. HARoPE, highlighting improvements in spatial relations, color fidelity, and object counts. Figure 8 demonstrates text-to-image examples on MS-COCO using MMDiT, comparing APE/RoPE baselines and HARoPE. The results illustrate gains in fidelity and compositional consistency. Figure 9 visualizes HARoPE with and without head-wise specialization in FLUX.

671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
705
706
707
708
709
710

711 a photo of **three** hot dogs a photo of a **yellow**
712 suitcase and a **brown** bus a photo of a cat **below**
713 a backpack a photo of an orange donut
714 and a yellow **stop** sign

715
716
717
718
719
720
721
722
723
724
725
726
727

728 a photo of **a white banana**
729 and a black elephant a photo of a white pizza
730 and a **green umbrella** a photo of a **zebra left**
731 of an elephant
732
733
734
735
736
737

738
739
740
741
742
743
744
745

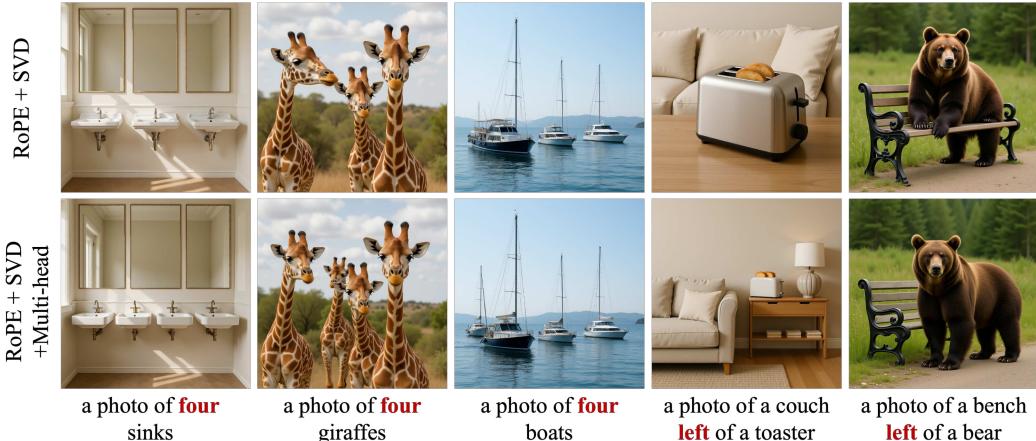
746 Figure 7: Qualitative Comparison on the GenEval Benchmark, evaluating FLUX models with RoPE
747 and HARoPE positional embeddings.

748
749
750
751
752
753
754
755

756
757
758
759
760
761 A photo of stop sign. A photo of giraffe
762 eating leaves. A photo of tidy kitchen. A photo of pizza.
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778

779 Figure 8: Text-to-image generation on MS-COCO. evaluating MMDiT models with RoPE and
780 HARoPE positional embeddings.

781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809



804 Figure 9: Visualization comparison of HARoPE with and with head-wise specialization, tested using
805 Flux on the text-to-image generation task.