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ABSTRACT

Sparse autoencoders (SAEs) provide a powerful mechanism for decomposing the
dense representations produced by Large Language Models (LLMs) into inter-
pretable latent features. We posit that SAEs constitute a natural foundation for
Learned Sparse Retrieval (LSR), whose objective is to encode queries and doc-
uments into high-dimensional sparse representations optimized for efficient re-
trieval. In contrast to existing LSR approaches that project input sequences into
the vocabulary space, SAE-based representations offer the potential to produce
more semantically structured, expressive, and language-agnostic features. By
leveraging recently released open-source SAEs, we show that their latent features
can serve as effective indexing units for representing documents and queries for
sparse retrieval. Our experiments demonstrate that SAE-based LSR models con-
sistently outperform their vocabulary-based counterparts in multilingual and out-
of-domain settings. Finally, we introduce SPLARE, a 7B-parameter multilingual
retrieval model capable of producing generalizable sparse latent embeddings for a
wide range of languages and domains, achieving top results on MMTEB’s multi-
lingual and English retrieval tasks. We also release a more efficient 2B-parameter
variant, offering strong performance with a significantly lighter footprint.

1 INTRODUCTION

Embedding models have become a pivotal tool for search systems, enabling the better capture of
semantic relationships between queries and documents across various domains and modalities. This
trend has been further accelerated by the advent of Retrieval-Augmented Generation (RAG) Lewis
et al. (2020) and agent-based systems, which impose even higher demands on retrieval performance
and robustness. Recently, dense embedding models Reimers & Gurevych (2019); Karpukhin et al.
(2020), which map inputs into single dense vectors, have demonstrated impressive performance on
the (M)MTEB benchmark (Muennighoff et al., 2023; Enevoldsen et al., 2025). Specifically, embed-
ding models relying on large (V)LLM backbones have become the de-facto approach for generalist
multilingual Lee et al. (2025b); Zhang et al. (2025); Wang et al. (2024a); Lee et al. (2025a); Li
et al. (2023b) or even multi-modal models Günther et al. (2025); Faysse et al. (2025); Xu et al.
(2025a)—marking a shift away from encoder-only language models which have defined the state of
the art for years (Izacard et al., 2022; Karpukhin et al., 2020; Xiong et al., 2020).

Learned Sparse Retrieval (LSR) methods (Formal et al., 2021; Mallia et al., 2021; Nguyen et al.,
2023; Kong et al., 2023) have achieved state-of-the-art performance on widely used English-centric
benchmarks (Thakur et al., 2021; Bajaj et al., 2018; Craswell et al., 2021) and have demonstrated
strong generalization when compared to dense embedding models (Formal et al., 2022b; Lupart
et al., 2023; Déjean et al., 2023). Beyond their efficiency, these approaches provide a level of in-
terpretability that is particularly valuable in production systems. Models such as SPLADE (Formal
et al., 2021; 2022a; Lassance et al., 2024) operationalize this idea by representing documents and
queries as sparse, weighted bag-of-words over the vocabulary space of their backbone model. While
originally developed for encoder-only architectures such as BERT (Devlin et al., 2019), recent work
has explored adapting SPLADE to LLM backbones (Qiao et al., 2025; Doshi et al., 2024; Xu et al.,
2025b; Zeng et al., 2025; Soares et al., 2023; Ma et al., 2025). However, these models remain
limited to English-centric contexts and struggle to match state-of-the-art performance on more com-
prehensive benchmarks like MMTEB which place greater emphasis on generalization across novel
domains and languages. Unlike dense retrieval, which models relevance within a continuous em-
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bedding space, LSR methods are inherently constrained by the fixed vocabulary of their underlying
backbone, which incurs issues such as tokenization redundancy Lei et al. (2025). This limitation
also makes it significantly harder to handle multilingual or cross-lingual retrieval Nair et al. (2023;
2022); Lassance (2023)—and even more so when extending to multi-modal settings (Nguyen et al.,
2024). We hypothesize that this is the primary reason why LSR models have recently fallen behind
dense approaches1.

In the context of LLMs, Sparse Autoencoders (SAEs) Makhzani & Frey (2013); Huben et al.
(2024); Bricken et al. (2023) decompose dense token representations into sparse vectors of la-
tent features. These features have been shown to exhibit desirable properties: they are largely
mono-semantic (most features correspond to a single interpretable concept), multilingual (remain-
ing largely language-agnostic), and even multimodal (generalizing across modalities in multimodal
LLMs) (Bricken et al., 2023; Templeton et al., 2024; Lieberum et al., 2024; Huben et al., 2024; He
et al., 2024; Deng et al., 2025). While SAEs have generated significant excitement for mechanistic
interpretability, recent work has also highlighted their limitations, showing that they can struggle to
transfer effectively to certain downstream tasks (Kantamneni et al., 2025; Smith et al., 2025).

In this work, we argue and empirically demonstrate that SAEs are a natural fit for LSR models: their
learned latent features provide a semantically-grounded representation space for sparse retrieval
which is particularly advantageous in domains or languages where vocabulary-based approaches
may underperform. To this end, we propose a new LSR approach that represents queries and docu-
ments as sparse vectors over a latent vocabulary space, by replacing the standard language modeling
(LM) head with pre-trained SAEs such as Llama Scope (He et al., 2024). More specifically, our
contributions are as follows:

• We introduce SPLARE—for SParse LAtent REtrieval—a new LSR approach relying on
pre-trained SAEs;

• We conduct a systematic investigation of the advantages of using a latent vocabu-
lary—compared to the standard LLM vocabulary—across a comprehensive set of bench-
marks spanning diverse tasks, domains, and languages;

• Finally, we introduce a new 7B multilingual latent sparse retriever that support 100+ lan-
guages and achieves competitive results on the MMTEB retrieval benchmark2. SPLARE is
the first LSR model to rival state-of-the-art dense approaches on MMTEB. We additionally
release a compact and efficient 2B counterpart.

2 BACKGROUND

We first provide some background on sparse autoencoders as well as Learned Sparse Retrieval.
SPLARE can be understood as synthesizing these two research directions into a unified framework.

2.1 SPARSE AUTOENCODERS

Given activations x ∈ Rd from a language model, a sparse autoencoder (SAE) is a single hidden
layer model, comprising an encoder and a decoder:

z = f(Wencx+ benc), x̂ = Wdecz + bdec (1)

where z ∈ R|W|, with |W| >> d corresponding to the width of SAE, i.e., the number of features
in the latent space. SAEs, as a class of autoencoders, are trained using a standard reconstruction
objective L = ∥x̂ − x∥2. Sparsity in the decomposition is induced through suitable activation
functions f such as ReLU Bricken et al. (2023), Top-K Makhzani & Frey (2013); Gao et al. (2025) or
JumpReLU Rajamanoharan et al. (2024), and regularization penalties such as ℓ1. Several works have
demonstrated that SAEs can recover highly monosemantic features, many of which are language-
agnostic—responding consistently to the same concepts across languages—and, in some cases, even
multimodal (Huben et al., 2024; Bricken et al., 2023; Templeton et al., 2024; Lieberum et al., 2024;

1For instance, as of the time of writing (November 20, 2025), no sparse retrieval model is listed on the
MTEB (Multilingual, v2) leaderboard.

2Code and models will be released after notification date.
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Figure 1: Overview of SPLARE. A pre-trained SAE can be inserted at any layer l of the LLM to get
sparse latent representations of input tokens. These token-level representations are then aggregated
into a single sparse vector using a pooling mechanism analogous to SPLADE. During training, we
only fine-tune the LLM parameters (via LoRA adapters) while keeping the SAE frozen.

He et al., 2024; Cunningham & Conerly, 2024; Deng et al., 2025). Large sparse autoencoders are
also notoriously hard and costly to train. Recently, high-quality large scale open-source SAEs have
became available to the research community. In particular, we rely in this work on the Llama Scope
series of models He et al. (2024) which offers SAEs trained on Llama-3.1-8B and the Gemma Scope
suite Lieberum et al. (2024) which offers SAEs trained on Gemma-2-2B, 9B and 27B models.

2.2 SPLADE

Learned Sparse Retrieval (LSR) models aim to encode input sequences into high-dimensional sparse
representations. Among these approaches, the SPLADE family of approaches (Formal et al., 2021;
2022a; Lassance et al., 2024) has emerged as the state-of-the-art method, achieving performance
comparable to or exceeding that of dense embedding models in many settings. Given an input
sequence tokenized as t = (t1, t2, . . . , tn) and fed through all the layers of the transformer, SPLADE
generates a sequence of logits (v1, v2, . . . , vn) by projecting each final hidden state (h1, h2, . . . , hn)
onto the vocabulary space V using the language modeling head, i.e., via a linear transformation
based on the token embedding matrix. The weights (vij)j∈V correspond to an unnormalized log-
probability distribution over V for token ti, where each output dimension j is actually associated
with the token it represents. To obtain a single sequence-level representation, SPLADE first applies
a term saturation function, before max-pooling over the sequence:

uj = max
i=1...n

log (1 + ReLU(vij)) , j ∈ V (2)

Given these sparse representations u ∈ R|V| for queries and documents, relevance scores are com-
puted as a sparse dot product s(q, d) =< uq, ud >. This operation can be efficiently supported
using inverted index structures together with specialized query processing techniques (Tonellotto
et al., 2018; Bruch et al., 2024c; Zobel & Moffat, 2006).

3 METHOD

3.1 SPLARE

Conceptually, SPLARE closely parallels SPLADE but operates in the latent representation space.
Rather than projecting the final hidden states of the language model onto the vocabulary space via
the LM head, SPLARE employs sparse autoencoders to transform representations from a selected
layer into a sparse latent space, which can be interpreted as a latent vocabulary.
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Let (Wdec, bdec) in Eq. 1 denote the SAE’s encoder parameters at a given layer l of the transformer3.
Similary to SPLADE, we can obtain sequences of sparse latent logits (w1, w2, . . . , wn) by mapping
the hidden states at layer l with the SAE encoder as illustrated in Figure 1. The weights (wij)j∈W ∈
R|W| contain the sparse list of latent features associated with token i in the input sequence. It can be
used in place of the vocabulary decomposition to compute sequence-level representations for input
queries or documents into a sparse set of latent features using the same type of pooling mechanism
as in Eq. 2—which we refer to as SPLADE-pool in Figure 1.

3.2 TRAINING

Training LSR Models The training procedure for LSR models mirrors that of dense embedding
models. While contrastive learning Oord et al. (2018); Chen et al. (2020) is the de-facto approach
to train state-of-the-art dense models Lee et al. (2025b); Zhang et al. (2025), we instead adopt a
distillation-based approach using a cross-encoder teacher model Nogueira & Cho (2020) to train
our sparse embeddings. Distillation is a common toolbox to train retrieval models (Hofstätter et al.,
2020; Lin et al., 2020), but has been overlooked in the context of LLM-based embeddings. Specifi-
cally, we optimize the Kullback–Leibler divergence between the teacher and student relevance dis-
tributions (Lin et al., 2020). Given a query q, (d1, d2, . . . dm) which contains a positive document
and a pool of hard negatives, (s1, s2, . . . sm) the corresponding teacher scores for documents di with
respect to q, and τ a temperature parameter, the training loss is given by:

LKL =

m∑
i=1

pi (log pi − log p̂i) , p̂i =
es(q,di)/τ∑
j e

s(q,dj)/τ
, pi =

esi∑
j e

sj
(3)

Sparsity To encourage sparsity in query and document representations, LSR models are typi-
cally trained with a sparsity-inducing regularization term, analogous to that used in SAEs. Follow-
ing Porco et al. (2025), we adopt a slight modification of the original FLOPS loss Paria et al. (2020)
employed in SPLADE. The final loss is L = LKL + λqℓ

q
DF-FLOPS + λdℓ

d
DF-FLOPS.

The sparsity of LSR approaches plays a crucial role in determining both effectiveness and computa-
tional efficiency on retrieval benchmarks. However, the sparsity induced by L can vary significantly
depending on the model configuration, backbone architecture, SAE suite, and dataset characteris-
tics. Achieving a desired target sparsity would require continuous adjustment of λd,q . To mitigate
this challenge and establish a more robust training setup, we additionally apply Top-K pooling at
inference time, as illustrated in Figure 1. This strategy allows us to train a single model with mod-
erate sparsity—using fixed, conservative values of λd,q—while systematically studying the effect of
pooling without the need for re-training. Although some prior works have entirely replaced explicit
sparsity regularization with Top-K pooling (Lassance et al., 2023; Doshi et al., 2024), our initial ex-
periments with this approach yielded inferior results. Finally, we note that while SPLARE is initial-
ized with an SAE—which produces inherently sparse token-level representations—sequence-level
sparsity at initialization remains relatively high (e.g., a few thousands non-zero values). As a result,
additional sparsity regularization is required to ensure the model achieves the desired efficiency. It
is also worth noting that LSR models are usually hard to train and require a careful initialization of
the projection head. While the LM head or a SAE can provide a suitable initialization, training an
LSR model entirely from scratch is highly difficult and consistently results in lower performance.

4 EXPERIMENTAL SETUP

Training Data We conduct two large sets of experiments: § 5 contains various ablations and
analyses for models trained on English data on the MS MARCO dataset Bajaj et al. (2018). In § 6,
we further extend training to a larger set of publicly available data, including multi-lingual datasets.
We do not prepend any special instructions or prefix to our input sequences—which could only likely
yield further improvements. To ease reproducibility, we also refrain from any form of pre-finetuning
or synthetic data generation Lee et al. (2025b); Günther et al. (2025); Zhang et al. (2025), both of
which have recently become common practice for achieving top results on the MTEB benchmark.
We detail in Appendix A our two training settings.

3Note that we only rely on the encoder parameters, as we only aim to extract sparse features from represen-
tations. Also note that we consider SAEs trained on the residual streams of the transformer.
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Figure 2: (Left) Performance across layers on Llama Scope (Llama-3.1-8B) and Gemma Scope
(Gemma-2-2B). (Right) Performance with increasing SAE width on Gemma-2. Evaluation done
with Top-K = (40, 400).

Evaluation MTEB Muennighoff et al. (2023) and MMTEB Enevoldsen et al. (2025) are the most
widely adopted benchmarks for evaluating embedding models. Our evaluation focuses only on
the retrieval subsets of these benchmarks, excluding other task categories. In addition to the En-
glish and Multilingual splits, we also report results on domain-specific subsets of MTEB, including
Code, Medical, Law, and Chemical domains. Given SPLARE’s strong performance in multilin-
gual settings, we further place particular emphasis on this aspect by including language-specific
splits of MMTEB for five languages, as well as evaluations on the MIRACL Zhang et al. (2023) and
XTREME-UP Ruder et al. (2023) datasets. The latter introduces a challenging cross-lingual retrieval
task, requiring retrieval from an English corpus using queries from low-resource languages. We also
report results on MS MARCO Bajaj et al. (2018) and BEIR Thakur et al. (2021) (Appendix C).

While our approach is broadly applicable to any pre-trained SAE, we conduct the majority of our ex-
periments using the Llama Scope model suite He et al. (2024), built on Llama-3.1-8B (et al., 2024).
During training, we fine-tune the backbone with LoRA adapters Hu et al. (2022) while keeping SAE
parameters frozen. Preliminary experiments indicated that this strategy not only improves perfor-
mance but also simplifies training. Moreover, it preserves the interpretability of the latent feature
space Lin (2023). As in prior work (Zeng et al., 2025; BehnamGhader et al., 2024; Lei et al., 2025),
we enable bidirectional attention across all backbones and pretrain them with Masked Next Token
Prediction. Following the exact procedure of Zeng et al. (2025), we mask 20% of tokens in the
MS MARCO corpus and train for 10k steps which takes about five hours. Bidirectional attention is
particularly important for LSR models since pooling occurs at every position of the input sequence,
unlike dense models that rely on the <EOS> token. Full details of our experimental hyperparameters
are provided in Appendix B. Unless stated otherwise, retrieval evaluation is performed using Top-K
pooling, with default values of k = 40 for queries and k = 400 for documents. For our multilingual
models (§ 6), we additionally rely on model averaging (Wortsman et al., 2022) from several training
runs, which boosts generalization performance (Lee et al., 2025b; Zhang et al., 2025).

We are mainly interested in comparing SPLARE to current state-of-the-art LSR methods, which
are all vocabulary-based. To this end, we perform controlled comparisons with a SPLADE model
built on the same Llama-3.1-8B backbone—following the methodology of (Doshi et al., 2024; Zeng
et al., 2025)—and trained under identical settings. We refer to this baseline as SPLADE-Llama.

5 ANALYSIS AND DESIGN CHOICES FOR SPLARE MODELS

We first conduct a series of ablation studies in a controlled, English-only setting. At this stage,
our primary objective is to compare SPLARE’s latent representations with traditional vocabulary-
based approaches (i.e., our SPLADE-Llama baseline). Specifically, we aim to address the following
research questions: (i) At which transformer layer depth do we obtain the most effective sparse
latent representations for retrieval? (ii) How does the width of the SAE affect retrieval performance?
(iii) What are the efficiency–effectiveness trade-offs introduced by the latent vocabulary? (iv) Do
the sparse latent features learned by the SAE yield improvements over equivalent SPLADE models?

5
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Figure 3: (Left) Impact of pruning documents with Top-K (with k = 40 for queries). (Right) MS
MARCO index distribution for SPLARE and SPLADE (8.8M documents).

Performance and Layer Depth We train SPLARE models at varying depths on Llama-3.1-8B,
using SAEs from Llama Scope with two widths |W| ∈ {32k, 131k}, and on Gemma-2-2B, using
Gemma Scope with width |W| = 65k, and report the average MTEB (English, v2) performance in
Figure 2 (Left). Interestingly, the highest performance is consistently achieved at about two-thirds
of the model depth, i.e., around layer 20 (out of 32) for Llama Scope and 16 (out of 26) for Gemma
Scope. These findings are consistent with prior work suggesting that intermediate transformer layers
often yield richer representations for retrieval tasks (Skean et al., 2025; Zhuang et al., 2025; Wang
et al., 2025). A further advantage of using intermediate layers is the reduction in retriever size and,
consequently, inference latency—an improvement over SPLADE models, which require processing
through all layers of the LLM (see Appendix F). For the remainder of the paper, our main SPLARE
models are trained at layer 26 of Llama-3.1-8B, yielding a 7B-parameter model (including the SAE
parameters).

How does the width of the SAE affect retrieval performance? Unlike SPLADE models, the
dimensionality of SPLARE’s feature space—determined by the SAE width |W|—is not constrained
by the LLM’s vocabulary size. To study the effect of SAE width on retrieval effectiveness, we train
multiple SPLARE models using Gemma Scope, which offers a broader range of SAE configurations.
Especially, we consider SAEs at layers 12 and 19 of Gemma-2-2B with widths |W| ∈ {214 ≈
16k, 215, . . . , 220 ≈ 1M}. We report the resulting average MTEB (English, v2) performance in
Figure 2 (Right). Our results show a roughly log-linear relationship between SAE width and retrieval
effectiveness, providing a scaling mechanism for improved performance—something not possible
with SPLADE’s fixed vocabulary size. Prior work has shown that SAEs can scale to widths as
large as 14M on very large LLMs (Templeton et al., 2024), though such models remain proprietary.
Llama Scope, while limited to |W| ∈ {32k, 131k}, exhibits the same scaling effect consistently
across layers (Figure 2, (Left)). These experiments also highlight that the approach is transferable
across different backbone architectures. Despite the availability of much wider SAEs in Gemma
Scope, we observe that Llama Scope models achieve superior overall performance. Consequently,
we report results using this model (with |W| = 131k) for all subsequent experiments.

Effectiveness–efficiency trade-off Sparse retrieval methods achieve efficiency through the use of
dedicated inverted index structures and exact (Zobel & Moffat, 2006; Tonellotto et al., 2018) or
approximate (Bruch et al., 2024a) query processing algorithms. In all cases, obtaining highly sparse
representations is critical for achieving low-latency retrieval. While SPLADE has been successfully
adapted to LLM backbones, efficiency considerations have generally been overlooked. As discussed
in § 3.2, LSR models can easily become “dense” in practical scenarios, which undermines their
efficiency.

We study the relationship between SPLARE performance and sparsity by capping, at inference time,
the number of activated features for documents vectors using Top-K pooling. Results are shown in
Figure 3 (Left). SPLARE exhibits substantially greater robustness to document pruning: when in-
dexing only Top-K = 100 document features, its performance drops by merely 2%, compared to
over 6% for SPLADE. This difference can be partially attributed to SPLARE’s more compact and
structured latent feature space as well as the fact that SPLADE models based on LLMs are inher-
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Table 1: Average performance on various MTEB splits. English models are trained on MS MARCO
only (§ 5). Multilingual models are trained on a large-scale multilingual training set (§ 6). Evaluation
done with Top-K = (40, 400).

English Multilingual Code Medical Law ChemTEB

English Models
SPLADE-v3 (Lassance et al., 2024) 50.7 38.1 44.5 44.2 40.4 75.6
Lion-SP-8B (Zeng et al., 2025) 48.5 50.0 53.3 54.4 48.5 71.1
SPLADE-Llama 52.9 54.3 57.3 61.0 49.0 75.9
SPLARE 52.9 56.3 55.1 62.9 51.2 70.0

Multilingual Models
SPLADE-Llama 58.4 60.3 63.6 67.1 57.5 75.7
SPLARE 58.6 60.9 60.7 68.0 58.1 77.2

ently harder to sparsify. As we show in Appendix E, this difference translates into lower query
latency at a given accuracy level, when evaluated using Seismic (Bruch et al., 2024a;b; 2025). For
reference, performing retrieval with SPLARE (Top-K = (40, 400)) on MS MARCO (8.8M doc-
uments) requires only about 5ms per query only—without accounting model inference. Figure 3
(Right) further illustrates the distributions of activated features after training. Notably, SPLARE
utilizes a much larger portion of the available feature space, activating nearly all dimensions, in con-
trast to SPLADE, which relies on fewer than 100k dimensions (out of 128k). Moreover, SPLARE
exhibits a more balanced activation distribution across features. By comparison, SPLADE tends to
over-activate a small subset of dimensions (Mackenzie et al., 2023; Lei et al., 2025).

Comparison of lexical and latent features Finally, we compare the performance of SPLARE
with existing top LSR methods trained on the English MS MARCO dataset. In particular, Lion-SP-
8B Zeng et al. (2025) represents the most effective contemporary SPLADE adaptation for LLM-
based retrieval. We show the results on Table 1 for various splits of MTEB (English Models).
First, notice that SPLADE-Llama (our baseline) already outperforms Lion-SP-8B. We further ob-
serve that SPLARE consistently outperforms competing methods on both multilingual and several
out-of-domain evaluation sets. In particular, it achieves an improvement of roughly two points on
the multilingual split and shows superior performance on the Law and Medical retrieval bench-
marks—though its advantage diminishes on the Code and Chemical splits. The observed multilin-
gual generalization from English-only training is unsurprising, given the language-agnostic nature
of SAE features. With respect to out-of-domain performance, we hypothesize that the decomposi-
tion mechanism of SAEs transfers more effectively across domains, whereas SPLADE-like models
rely on explicit in-domain training to adequately expand their vocabulary representations. Mean-
while, the performance drop on the Code tasks is likely due to the highly domain-specific nature
of code retrieval, which does not align well with the features learned by the SAE (a trend that is
further supported by our observations in § 6). To illustrate this behavior, we provide in Appendix G
(Figures 15-17) several examples where SPLARE underperforms compared to SPLADE on MTEB
Code. In these cases, the top activated features appear overly generic rather than specialized to code
semantics. This suggests that for highly domain-specific scenarios such as code retrieval, dedicated
SAEs trained on code-focused corpora may be more appropriate. We leave this direction for future
work.

6 MULTI-LINGUAL MODELS

In § 5, we showed how the latent feature space of the SAE offers some advantages for LSR mod-
els—when compared to the vocabulary space—in a controlled English-based setting. In § 6.1, we
further extend those findings for multilingual models, by training models on a large-scale multilin-
gual dataset and broadening the evaluation to cover a more diverse set of benchmarks, as detailed in
§ 3.2. In § 6.2, we compare SPLARE to concurent models on (M)MTEB and XTREME-UP.
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Table 2: Multilingual comparison of SPLARE and SPLADE (Top-K = (40, 400)).

indic sca deu fra kor XTREME-UP MIRACL

SPLADE-Llama 90.1 70.4 55.4 65.6 73.7 56.3 67.9
SPLARE 91.2 70.4 56.2 65.6 74.9 59.8 69.6

6.1 COMPARING LATENT MODELS TO LEXICON-BASED APPROACHES

Table 1 (Multilingual models) compares the average performance of multi-lingual SPLARE and
SPLADE across the various MTEB splits, with full results provided in Appendix D. Overall,
SPLARE consistently outperforms its vocabulary-based counterpart, with the exception of the Code
split. A closer inspection of individual datasets within the Multilingual split reveals that SPLARE
systematically outperforms SPLADE, a trend further confirmed by Table 9, which highlights the
superior performance of latent-based LSR models in multilingual settings. On XTREME-UP,
SPLARE also maintains its performance advantage. Comprehensive results for both MIRACL and
XTREME-UP, along with comparisons to concurrent approaches, are provided in Appendix D. No-
tably, SPLARE exhibits particularly strong results on the hidden test sets of MIRACL (Table 10)
and the low-ressource languages of XTREME-UP (see also Table 3).

6.2 COMPARING TO TOP MODELS

Finally, we compare SPLARE to top models from the MTEB leaderboard in Table 3. SPLARE
reaches an average score of 60.9 (for the pooled version), making it among the top 10 models on
MTEB(Multilingual, v2) retrieval and the top-1 LSR model. Notably, these results are achieved
without relying on private or synthetic data and without any pre-finetuning. This is also particu-
larly interesting, as open models like gte-Qwen2-7B instruct or NV-Embed-v2 rely on 3584-d (resp.
4096-d) dense vectors to encode queries and documents, while SPLARE⋆ only needs 40 features
(resp. 400) to encode queries (resp. documents) in its high-dimensional feature space. We also
observe an average gain of +1 point for the non-pooled version, albeit at the cost of higher re-
trieval complexity. On the other hand, extremely sparse models (Top-K = (10, 100)) still offer
competitive performance. Note that in practical retrieval scenarios, dense embeddings often require
dimensionality-reduction techniques Kusupati et al. (2022) and/or approximate nearest-neighbor
search algorithms Johnson et al. (2019) algorithms—whose performance degradation is rarely re-
ported on standard benchmarks. In contrast, sparse retrieval methods natively support efficient exact
search without incurring such compromises. Finally, we also report results for a SPLARE model
trained at layer 6 (SPLARE-2B). Although its performance is somewhat lower than that of the full
SPLARE model (7B parameters), it remains strong—particularly on the XTREME-UP dataset. Im-
portantly, this model is substantially more efficient and therefore offers a different, and often attrac-
tive, point on the effectiveness–efficiency trade-off curve.

6.3 INTERPRETABILITY: INSIGHT INTO SPLARE MECHANICS

Finally, we provide interpretability insights for SPLARE. We leverage Neuronpedia (Lin, 2023)
to obtain explanations for individual SAE features—which, as a reminder, remain frozen during
fine-tuning—and list the top features contributing to a document’s relevance with respect to a given
query. For SPLADE, by contrast, we report the tokens with the highest relevance contributions.
Figure 4 illustrates a cross-lingual example from XTREME-UP from Tamil to English. The features
activated by SPLARE align well with meaningful concepts present in both the query and document.
They correspond to coherent, language-agnostic concepts which combine into a comprehensive de-
scription of the data point. In contrast, SPLADE exhibits a higher degree of redundancy (e.g.,
separate activations for “Indian” and “indian”) and predominantly relies on Latin-script tokens—
effectively defaulting to English subword representations—which provide less informative signals
in this setting. Further examples are given in Appendix G.
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Table 3: Average MTEB retrieval performance of SPLARE (Multilingual) against top models. Mul-
tilingual (resp. Eng) refers to (Multilingual, v2) (resp. MTEB(eng, v2)). As of November 20, 2025,
SPLARE⋆ ranks in the top-10 models on MTEB(Multilingual, v2) retrieval. For XTREME-UP
(MRR@10), we report results from (Lee et al., 2025b). Unless specified, evaluation for SPLARE is
done with Top-K = (40, 400).

Eng Multilingual XTREME-UP

Top Open Source models
e5-mistral-7b-instruct (Wang et al., 2024a) 57.6 55.8 -
NV-Embed-v2 (Lee et al., 2025a) 62.8 56.7 -
multilingual-e5-large-instruct (Wang et al., 2024b) 53.5 57.1 18.7
GritLM-7B (Muennighoff et al., 2024) 55.0 58.3 -
SFR-Embedding-Mistral (Meng et al., 2024) 59.3 59.4 -
Linq-Embed-Mistral (Kim et al., 2024) 60.1 58.7 24.6
gte-Qwen2-7B-instruct (Li et al., 2023b) 58.1 60.1 17.4
voyage-3-large (AI, 2025) 53.5 66.1 39.2
jina-embeddings-v4 (Günther et al., 2025) 56.2 66.4 -
inf-retriever-v1 (Yang et al., 2025) 64.1 66.5 -
Qwen-3-Embedding-8B (Zhang et al., 2025) 69.4 70.9 -

Commercial models
Cohere-embed-multilingual-v3.0 (Cohere, 2023) 55.7 59.2 -
text-embedding-3-large (OpenAI, 2024) 58.0 59.3 18.8
gemini-embedding-001 (Lee et al., 2025b) 64.4 67.7 64.3

SPLARE⋆ 58.6 60.9 59.8
SPLARE, no-pooling 59.8 61.9 61.7
SPLARE, Top-K = (20, 200) 55.9 59.3 55.2
SPLARE, Top-K = (10, 100) 50.7 56.2 48.6
SPLARE-2B 55.5 57.6 42.7

Figure 4: Retrieval example from XTREME-UP: Tamil→ English

Query:
Translation: On average, how many Indians died under British rule?
Positive document: Indian Army during World War II: The British Indian Army fought in
Ethiopia against the Italian Army, in Egypt, Libya, Tunisia and Algeria against both the Italian
and German Army, and, after the Italian surrender, against the German Army in Italy. [...]

SPLARE | top features (doc rank = 4) SPLADE | top tokens (doc rank = 23)
Explanation (from Neuronpedia) Lin (2023) % Token %

elements related to historical or cultural contexts 10.5 Indian 12.6
mentions of India and its relation to various contexts 8.7 Indians 11.2
descriptions that contrast traditional experiences with unique local accommodation 7.5 casualties 9.0
mentions of colonial powers, specifically Britain and France 6.6 India 8.5
references to military casualties and losses 6.5 indian 7.6
quantitative statistics and casualties related to wars and conflicts 5.9 British 7.5
information related to economic data and connectivity issues in India 5.2 deaths 6.8
references to protests and civil rights movements 5.0 fatalities 5.3
references to historical events and political movements 4.9 india 4.7
references to corporate structure and business dynamics 4.4 Raj 4.5

7 RELATED WORKS

LLMs and Retrieval Dense embedding models derived from LLMs have demonstrated substan-
tial gains over traditional BERT-style encoders (Lee et al., 2025b; Zhang et al., 2025). Recent
approaches such as LLM2Vec BehnamGhader et al. (2024) or GritLM Muennighoff et al. (2024)
highlight how LLMs can be effectively adapted into powerful text encoders by incorporating bi-
directional attention. Beyond providing stronger backbone architectures, LLMs have also signif-
icantly advanced retrieval model training, enabling the generation of high-quality synthetic data
and improved filtering of training samples (Wang et al., 2024a; Lee et al., 2025a;b; Zhang et al.,
2025; Dai et al., 2023). Nonetheless, despite the impressive progress of dense embeddings, con-
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trolled evaluations have shown that they can still be outperformed by alternative architectures such
as multi-vector models or sparse retrievers (Zeng et al., 2025; Faysse et al., 2025; Chen et al., 2024a).

Sparse Autoencoders and Retrieval Sparse autoencoders have primarily been employed in In-
formation Retrieval (IR) to approximate dense representations for efficient nearest-neighbor search.
Given a dense embedding model, these approaches learn to map query and document vectors into
sparse latent representations that preserve the structure of the original embedding space (Lassance
et al., 2021; Borges et al., 2023; Park et al., 2025; Kang et al., 2025; Wen et al., 2025). SAEs
have also been used to interpret dense emebddings in both IR O’Neill et al. (2024) and Recom-
mender Systems (Kasalický et al., 2025; Klenitskiy et al., 2025). Most closely related to our work
is (Park et al., 2025), which shows that SAE-derived features can serve as effective indexing units.
However, all prior studies train SAEs on top of an already-trained dense retriever. In contrast, our
approach leverages pre-trained SAEs on the base LLM and fine-tunes an LSR model directly in a
SPLADE-like fashion, allowing for tighter integration of relevance and sparsity when training the
sparse representations.

8 CONCLUSION

In this work, we investigated two complementary research directions: Sparse autoencoders and
Learned Sparse Retrieval models. We demonstrated that SAEs provide a natural foundation for
LSR by yielding semantically rich and multilingual latent features that overcome the vocabulary de-
pendence of traditional LSR approaches. Our experiments show that SAE-based LSR models con-
sistently outperform vocabulary-based counterparts, particularly in multilingual and out-of-domain
scenarios. Finally, we introduced SPLARE, a competitive 7B-parameter multilingual model capa-
ble of producing generalizable sparse latent embeddings, thereby paving the way for more robust,
versatile, and cross-lingual retrieval across diverse domains and modalities.
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A EXPERIMENTAL SETTING

We detail below the training sets used for the English and Mutlilingual settings.

English Setting For our ablation study, we restrict training to the MS MARCO dataset, given the
computational cost associated with training 7B-parameter models. Our experimental setup closely
follows that of SPLADE-v3 (Lassance et al., 2024). For each training query, we mine hard negatives
using a SPLADE model and derive distillation targets from reranking scores produced by an open-
source DeBERTa-v3 reranker (Déjean et al., 2024). This controlled setting is designed to enable
a direct and fair comparison between SPLARE and its vocabulary-based counterpart, SPLADE-
Llama.

Multilingual Setting In this more compute-intensive setting, we use the same training set em-
ployed for the bge-multilingual-gemma2 model (Li et al., 2025)4. This corpus includes several
English-centric public datasets (e.g., MS MARCO Bajaj et al. (2018), NQ Kwiatkowski et al. (2019),
and HotPotQA Yang et al. (2018)), a large collection of Chinese retrieval datasets, and two multi-
lingual benchmarks: MIRACL Zhang et al. (2023) and Mr.TyDi (Zhang et al., 2021). Since we rely
on distillation for training, we only keep samples from this dataset which were annotated using the
BGE multilingual reranker Chen et al. (2024b); Li et al. (2023a)5. After filtering, the final training
set comprises approximately 1.3M queries with hard negatives. Notably, some of these datasets
correspond to training splits of several MTEB benchmark tasks. While this may constrain the strict
evaluation of generalization, this practice has become standard in prior work on general-purpose
embedding models (Lee et al., 2025a; Wang et al., 2024a; BehnamGhader et al., 2024).

B HYPER-PARAMETERS

Table 4 gives the hyper-parameters used to train and evaluate SPLARE models and other baselines.
Note that the temperature parameters τ is critical and needs to be adapted to each SAE suite. For
instance, the optimal τ is different between Llama Scope or Gemma Scope. This depends on the
scale of the logits and the initial sparsity of the SAE. For ill-suited τ , it can happen that models
actually diverge—for instance, collapse of the ℓ0. To determine the optimal temperature, we ran
a grid search over the values {1, 10, 20, 40, 50, 80, 100}, and used NanoBEIR6’nDCG@10 as an
evalution criterion for all models.

SAE choice Gemma-scope contains multiple SAEs for the same layer and width, but with dif-
ferent ℓ0. In practice, we observed that the initial SAE’s ℓ0 had no critical effect on final perfor-
mance—most likely because we fine-tune the backbone LLM. We use SAEs with ℓ0 closest to 100
throughout the paper. Additionally, Llama and Gemma Scope contain residual SAEs as well as MLP
and attention stream SAEs. We only used residual SAEs in this paper.

C ENGLISH-ONLY SPLARE FULL RESULTS

We evaluate models from Section 5 (trained on English data only) on several benchmarks, and
provide results in Table 1. We show in Table 5 additional evaluation results comparing SPLARE
to SPLADE-Llama. We report MRR@10 on MS MARCO Bajaj et al. (2018) and nDCG@10 on
TRECDL 19 and TRECDL 20 Craswell et al. (2021) and on all BEIR datasets (Thakur et al., 2021).

D FULL RESULTS

Tables 6—9 provide the full results of several MTEB datasets: English, Multilingual, and various
domains and languages.

4hanhainebula/bge-multilingual-gemma2-datadata
5BAAI/bge-reranker-v2-m3reranker
6https://huggingface.co/collections/zeta-alpha-ai/

nanobeir-66e1a0af21dfd93e620cd9f6
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Table 4: Hyperparameters.

Component Value

LoRA rank r 64
Max training sequence length (english models) 128
Max training sequence length (multilingual models) 256
Epochs 1
Batch size 128
Learning rate 5× 10−5

Warmup ratio 0.01
Weight decay 0.
Nb negatives per query 8
λd 0.0001
λq 0.0001
τ SPLARE (LLama Scope) 80
τ SPLARE (Gemma Scope) 50
τ (SPLADE-LLama) 10
Evaluation max context size 512
Adam βs 0.9, 0.999

Dataset SPLARE SPLADE-Llama

arguana 16.0 16.2
climate-fever 18.3 18.0
dbpedia 44.3 44.8
fever 76.0 75.8
fiqa 42.4 42.3
hotpotqa 66.8 67.6
nfcorpus 37.3 36.4
nq 61.6 61.2
quora 87.3 87.9
scifact 72.5 72.9
trec-covid 84.7 82.4
webis 27.2 26.9
scidocs 17.5 17.3

Average 50.2 50.0

MS MARCO (MRR@10) 40.8 40.0
TRECDL 19 77.4 76.3
TRECDL 20 77.3 75.9

Table 5: Full results (nDCG@10 unless specified) on BEIR, MS MARCO and TREC DL for
English-based SPLARE and SPLADE-Llama models. Evaluation done with Top-K = (40, 400).

Table 10 compares the SPLARE results on the MIRACL dataset with top multilingual dense retriev-
ers—baseline results are taken from Chen et al. (2024b). On this benchmark, SPLARE obtains an
average score of 69.6, only 1.9 points below M3-embeddings (hybrid: dense+sparse) Chen et al.
(2024a). Notably, SPLARE is state-of-the-art in English, Finnish, Russian, German and Yoruba,
once again indicating its ability to generalize to diverse languages. Note in particular that German
and Yoruba are the “secret” languages of MIRACL which were released later without associated
training data.

E LATENCY MEASURES

We provide per-query retrieval latency as measured on MS MARCO (retrieval from a collection of
8.8M documents) for SPLARE and SPLADE-Llama in Figure 5. To measure this, we first index

21
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Task Name SPLARE SPLADE-Llama

ArguAna 59.1 64.0
CQADupstackGamingRetrieval 61.6 58.5
CQADupstackUnixRetrieval 44.5 44.1
ClimateFEVERHardNegatives 31.5 38.0
FEVERHardNegatives 89.4 90.4
FiQA2018 53.6 56.4
HotpotQAHardNegatives 77.1 74.0
SCIDOCS 20.4 19.7
TRECCOVID 83.4 81.1
Touche2020Retrieval.v3 65.0 57.6

Average 58.6 58.4

Table 6: Full results of SPLARE and SPLADE-Llama on MTEB(Eng, v2). Evaluation done with
Top-K = (40, 400).

Task Name SPLARE SPLADE-Llama

AILAStatutes 33.8 34.1
ArguAna 59.1 64.0
BelebeleRetrieval 83.5 82.4
CovidRetrieval 80.6 78.0
HagridRetrieval 98.9 98.6
LEMBPasskeyRetrieval 38.8 38.8
LegalBenchCorporateLobbying 95.3 95.1
MIRACLRetrievalHardNegatives 70.7 68.8
MLQARetrieval 83.2 80.3
SCIDOCS 20.4 19.7
SpartQA 3.6 4.2
StackOverflowQA 86.0 90.2
StatcanDialogueDatasetRetrieval 36.7 32.2
TRECCOVID 83.4 81.1
TempReasonL1 2.4 4.0
TwitterHjerneRetrieval 74.4 75.3
WikipediaRetrievalMultilingual 90.9 89.9
WinoGrande 53.8 48.5

Average 60.9 60.3

Table 7: Full results of SPLARE and SPLADE-Llama on MTEB(Multilingual, v2). Evaluation done
with Top-K = (40, 400).

the collection using Seismic Bruch et al. (2024c), and then perform single-threaded retrieval on the
saved index. Seeking a very optimal sparse retrieval setup is difficult in general; here we use the
very optimized Seismic library without any further tuning. Parameters used to index and retrieve
and obtain these latency measurements are given in Table 12.

With the obtained SPLARE models and this simple setup, retrieval takes around 5ms per query with
maximal accuracy. In low-latency regime (<4ms), SPLARE can be used with higher accuracy.

F SPLADE LAYER ABLATION

We showed in § 5 that SPLARE models are usually more effectivte at intermediate layer represen-
tations, providing a latency advantage compared to SPLADE. Yet, it is in principle possible to train
SPLADE models using intermediate representations as well, by simplify apply the LM head on the
intermediate representations. We show results of such a training procedure in Table 13.
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Task Name SPLARE SPLADE-Llama

ChemTEB
ChemHotpotQARetrieval 89.3 82.1
ChemNQRetrieval 65.1 69.2

Average 77.2 75.7
Code

AppsRetrieval 22.6 29.5
COIRCodeSearchNetRetrieval 61.0 72.7
CodeEditSearchRetrieval 72.9 74.4
CodeFeedbackMT 50.3 49.4
CodeFeedbackST 76.3 77.9
CodeSearchNetCCRetrieval 60.4 65.1
CodeSearchNetRetrieval 83.4 86.5
CodeTransOceanContest 81.6 86.6
CodeTransOceanDL 36.3 32.0
CosQA 30.2 30.9
StackOverflowQA 86.0 90.2
SyntheticText2SQL 67.5 67.9

Average 60.7 63.6
Medical

CUREv1 63.7 56.3
CmedqaRetrieval 28.0 32.2
MedicalQARetrieval 74.8 75.2
NFCorpus 40.0 38.7
PublicHealthQA 85.7 86.0
SciFact 77.8 77.1
SciFact-PL 75.6 73.7
TRECCOVID 83.4 81.1
TRECCOVID-PL 82.8 83.5

Average 68.0 67.1
Law

AILACasedocs 36.2 36.5
AILAStatutes 33.8 34.1
GerDaLIRSmall 27.5 27.6
LeCaRDv2 62.1 58.6
LegalBenchConsumerContractsQA 86.9 84.6
LegalBenchCorporateLobbying 95.3 95.1
LegalQuAD 55.4 55.2
LegalSummarization 67.8 68.4

Average 58.1 57.5

Table 8: Full results of SPLARE and SPLADE-Llama on MTEB domain specific datasets. Evalua-
tion done with Top-K = (40, 400).

G RETRIEVAL EXAMPLES

We provide in Figures 6—14 multiple examples of scores and explanations obtained for positive
documents for some queries on English, Multilingual and multi-domain datasets. We also pro-
vide examples on the code domain (Figures 15—17), which highlight some of the limitations on
SPLARE on specific domains which might require dedicated SAEs. Notably, in Figure 14 which
shows a Tamil example, the document and query representations coincide for only 6 tokens, fur-
ther highlighting SPLADE multilingual limitations. Note that the explanations we used, taken from
Neuronpedia, are mostly annotated by LLMs provided with examples of context with features acti-
vations. As such, these explanations may remain inaccurate or incomplete.
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Task Name SPLARE SPLADE-Llama

MTEB(deu, v1)
GerDaLIR 13.6 13.6
GermanDPR 88.0 85.1
GermanQuAD-Retrieval 95.9 94.9
XMarket 27.2 27.8

Average 56.2 55.4
MTEB(Scandinavian, v1)

DanFeverRetrieval 41.6 41.5
NorQuadRetrieval 24.7 27.5
SNLRetrieval 98.0 98.3
SweFaqRetrieval 77.9 76.9
SwednRetrieval 82.4 79.9
TV2Nordretrieval 94.2 93.7
TwitterHjerneRetrieval 74.4 75.3

Average 70.5 70.4
MTEB(fra, v1)

AlloprofRetrieval 56.1 56.9
BSARDRetrieval 66.7 57.7
MintakaRetrieval 47.0 58.6
SyntecRetrieval 90.1 89.1
XPQARetrieval 68.0 65.5

Average 65.6 65.6
MTEB(kor, v1)

Ko-StrategyQA 83.3 82.4
MIRACLRetrieval 66.6 64.9

Average 74.9 73.7

Table 9: Full results of SPLARE and SPLADE-Llama on MTEB language-specific benchmarks.
Evaluation done with Top-K = (40, 400).

Model ar bn en es fa fi fr hi id ja ko ru sw te th zh de† yo† Avg

Baselines (Prior Work)

BM25 39.5 48.2 26.7 7.7 28.7 45.8 11.5 35.0 29.7 31.2 37.1 25.6 35.1 38.3 49.1 17.5 12.0 56.1 31.9
mDPR 49.9 44.3 39.4 47.8 48.0 47.2 43.5 38.3 27.2 43.9 41.9 40.7 29.9 35.6 35.8 51.2 49.0 39.6 41.8
mContriever 52.5 50.1 36.4 41.8 21.5 60.2 31.4 28.6 39.2 42.4 48.3 39.1 56.0 52.8 51.7 41.0 40.8 41.5 43.1
mE5large 76.0 75.9 52.9 52.9 59.0 77.8 54.5 62.0 52.9 70.6 66.5 67.4 74.9 84.6 80.2 56.0 56.4 78.3 66.6
E5mistral-7b 73.3 70.3 57.3 52.2 52.1 74.7 55.2 52.1 52.7 66.8 61.8 67.7 68.4 73.9 74.0 54.0 54.1 79.7 63.4
Gemini Embedding 78.3 79.0 58.7 57.0 60.9 78.0 55.6 65.4 54.3 75.1 68.9 73.4 81.0 80.5 80.8 65.7 59.8 88.8 70.1
M3-Emb (Sparse) 67.1 68.9 43.8 38.6 45.1 65.4 35.3 48.2 48.9 56.1 61.5 44.5 57.9 79.1 70.9 36.1 32.5 70.0 53.9
M3-Emb (All) 80.2 81.5 59.6 59.7 63.4 80.4 61.2 63.3 59.0 75.2 72.1 71.7 79.6 88.1 83.7 64.9 59.8 83.5 71.5

SPLADE-Llama 76.9 70.7 57.7 55.6 57.5 78.9 57.1 60.3 57.2 73.0 64.5 71.1 78.7 77.9 78.8 89.8 60.2 56.8 67.9
SPLARE 79.2 72.2 62.0 58.4 59.5 80.5 58.4 62.2 55.5 75.1 66.8 73.8 78.9 75.7 80.8 62.8 61.3 89.1 69.6

Table 10: Multi-lingual retrieval performance on MIRACL dev (nDCG@10). Baseline results are
taken from Chen et al. (2024b) and (Lee et al., 2025b). † denotes the two hidden test sets of MIR-
ACL. Evaluation for SPLARE and SPLADE-Llama done with Top-K = (40, 400).
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Model MRR@10

SPLARE 59.8
SPLARE (Eng Only) 41.6
SPLADE-Llama 56.3
SPLADE-Llama (Eng Only) 30.5

Gemini Embedding 64.3
Gemini Embedding (Eng Only) 49.3
Gecko i18n Embedding 35.0
voyage-3-large 39.2
Linq-Embed-Mistral 24.6
multilingual-e5-large-instruct 18.7
gte-Qwen2-7B-instruct 17.4
text-embedding-3-large 18.8

Table 11: XTREME-UP dataset (MRR@10) - Average Scores. Baselines taken from (Lee et al.,
2025b). Evaluation for SPLARE done with Top-K = (40, 400).
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Figure 5: Retrieval Latency (ms) when pooling documents (Left) or query (Right) representations
with Top-K. In low-latency settings, SPLARE enables higher accuracy for a given level of latency.

Parameter Value

k 1000
query cut 30
heap factor 0.5
n knn 0
sorted False
num threads 1

Table 12: Seismic retrieval parameters used to measure latency.

SPLADE-Llama at intermediate layers

Layer No. 18 22 26 31
MTEB(Eng, v2) 0. 43.6 44.5 52.9

Table 13: Training SPLADE-Llama models at intermediate layers leads to strong deterioration. At
layer < 22, models collapse during training.
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Figure 6: Retrieval example from BEIR/Scifact

Query: Flexible molecules experience greater steric hindrance in the tumor microenviroment
than rigid molecules.
Positive document: A solid tumor is an organ composed of cancer and host cells embedded
in an extracellular matrix and nourished by blood vessels. A prerequisite to understanding tumor
pathophysiology is the ability to distinguish and monitor each component in dynamic studies.
Standard fluorophores hamper simultaneous intravital imaging of these components. Here, we
used multiphoton microscopy techniques and transge [. . . ]

SPLARE | top features (doc rank = 3) SPLADE | top tokens (doc rank = 6)
Explanation (from Neuronpedia) Lin (2023) % Token %

references to tumors and their related biological processes 8.6 tumor 12.7
terms related to drug delivery and cellular mechanisms 7.5 tumors 8.1
terms related to cancer research and metastasis 5.5 cancer 7.3
medical conditions and diseases, particularly types of cancer and their characteristics 4.8 tum 6.3
concepts related to flexibility in various contexts 4.8 nanoparticles 5.3
terms related to cellular processes and immune system functions 4.2 Cancer 4.9
references to experimental methods and cell-related terminology 4.0 nanop 4.4
terms related to microscopy and micro-level scientific analysis 4.0 nan 3.0
variations of the word ”tumble” or its related forms 3.6 solid 2.6
terms related to cancer and tumors 3.5 malignant 2.6

Figure 7: Retrieval example from BEIR/Scifact

Query: PPAR-RXRs are inhibited by PPAR ligands.
Positive document: Heterodimerization is a common paradigm among eukaryotic transcrip-
tion factors. The 9-cis retinoic acid receptor (RXR) serves as a common heterodimerization
partner for several nuclear receptors, including the thyroid hormone receptor (T3R) and retinoic
acid receptor (RAR). This raises the question as to whether these complexes possess dual
hormonal responsiveness. We devised a strategy to examine . . .

SPLARE | top features (doc rank = 5) SPLADE | top tokens (doc rank = 18)
Explanation (from Neuronpedia) Lin (2023) % Token %

terms related to gene transcription regulation 6.2 heter 6.2
mathematical variables and expressions 4.3 RX 6.0
terms related to dopamine and receptor interactions in the context of medicine and psycho . . . 4.2 rx 5.2
abbreviations or terms related to programming and data structures 4.2 RX 5.0
references to QR codes and VR technologies 4.2 receptor 4.9
information about medications used for treating acne 3.8 receptors 4.3
references to proteins and their biological functions 3.1 nuclear 3.8
terminology related to pharmaceuticals and drug development 2.8 Rx 3.7
terms related to cellular functions and regulatory mechanisms 2.8 transcription 3.6
terms related to medical and biological concepts, particularly hormones and their effects 2.8 rx 3.6

Figure 8: Retrieval example from BEIR/Climate-Fever

Query: Ocean acidification is the terrifying threat whereby all that man-made CO2 we’ve been
pumping into the atmosphere may react with the sea to form a sort of giant acid bath.
Positive document: A greenhouse gas ( abbrev . GHG ) is a gas in an atmosphere that
absorbs and emits radiation within the thermal infrared range . This process is the fundamental
cause of the greenhouse effect . The primary greenhouse gases in Earth ’s atmosphere are
water vapor , carbon dioxide , methane , nitrous oxide , and ozone . Without greenhouse gases
, the average temperature of Earth ’s surface would be a . . .

SPLARE | top features (doc rank = 6) SPLADE | top tokens (doc rank = 20)
Explanation (from Neuronpedia) Lin (2023) % Token %

references to climate change and its associated causes 6.3 CO 8.2
statements and discussions regarding climate change-related issues 5.0 atmosphere 7.7
terms related to climate change and its impacts 4.4 greenhouse 7.3
content related to environmental impacts, particularly concerning carbon dioxide and food . . . 4.1 climate 5.7
terms related to carbon emissions and environmental impacts 4.1 carbon 5.6
mentions of carbon dioxide and its related metrics or expressions 3.9 dioxide 4.7
references to carbon dioxide and its implications in various contexts 3.3 anthrop 4.2
references to environmental impact and sustainability 3.2 Climate 3.6
references to human activity and its impact on the environment 3.0 atmospheric 3.6
mentions of sustainability and environmental impact 3.0 Carbon 3.5
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Figure 9: Retrieval example from BEIR/Climate-fever

Query: No state generates as much solar power as California, or has as many people whose
jobs depend on it.
Positive document: California is the most populous state in the United States and the
third most extensive by area . Located on the western ( Pacific Ocean ) coast of the U.S. ,
California is bordered by the other U.S. states of Oregon , Nevada , and Arizona and shares an
international border with the Mexican state of Baja California . The state capital is Sacramento .
Los A . . .

SPLARE | top features (doc rank = 2) SPLADE | top tokens (doc rank = 6)
Explanation (from Neuronpedia) Lin (2023) % Token %

references to financial or budgetary topics 7.0 California 8.5
references to California 6.8 california 6.3
regional references and mentions of cities or places 5.7 CA 6.1
references to California and its locations or institutions 4.9 Calif 4.9
mentions of political entities and territories 4.3 state 4.7
references to political figures and legislation related to California 3.9 Californ 4.7
references to geographic locations and regions in California, particularly related to agri . . . 3.8 California 4.6
references to governance, laws, and political contexts 3.3 ifornia 3.6
positive descriptions and references to favorable weather conditions 3.2 CAL 3.3
references to California’s environmental regulatory bodies and legislation 3.2 State 3.2

Figure 10: Retrieval example from BEIR/Hotpotqa

Query: The Death of Cook depicts the death of James Cook at a bay on what coast?
Positive document: Kealakekua Bay is located on the Kona coast of the island of Hawaii
about 12 mi south of Kailua-Kona.

SPLARE | top features (doc rank = 3) SPLADE | top tokens (doc rank = 17)
Explanation (from Neuronpedia) Lin (2023) % Token %

references to ”Bay” or similar geographical features 11.9 Hawaii 9.9
references to a specific geographical location or name containing ”Bay.” 10.7 bay 9.7
geographical features and safe navigation routes 9.5 Hawai 9.1
references to health and community support systems 9.5 Bay 8.2
historical references and significant events 9.3 Ke 7.9
references to coastal regions and their characteristics 7.6 Ke 5.4
references to historical sites and landmarks 5.4 Bay 5.1
references to specific geographical locations and their significance in the context of li . . . 5.2 Hawaiian 5.0
information related to marine and coastal ecosystems 4.7 bay 4.5
references to sailing, ships, and boating experiences 4.2 Haw 4.0

Figure 11: Retrieval example from MIRACL/Swahili

Query: Kiongozi wa chama cha Orange Democratic Movement ni nani?
Positive document: Orange Democratic Movement Katika uchaguzi wa rais Raila Odinga
alitangazwa kuwa ameshindwa na rais Kibaki kwa kura 230,000. Lakini watazamaji wengi
waliona kasoro katika hesabu ya kura na ODM ilidai kuwa Odinga ni mshindi halali. ODM ilifaulu
vizuri upande wa viti vya bunge la Kenya. Ilipata karibu nusu ya wabunge wote yaani 99 kati ya
120 ikawa kubwa katika bunge baada ya uchaguzi wa Desemba 200 . . .

SPLARE | top features (doc rank = 5) SPLADE | top tokens (doc rank = 8)
Explanation (from Neuronpedia) Lin (2023) % Token %

mentions of ”Orange” or related terms and concepts 8.9 Rail 9.3
references to events or occurrences in the future 6.4 Orange 8.5
prominent political figures and their involvement in elections 6.0 Kenya 7.1
references to the abbreviation ”OD” and variations of it, typically related to a specific . . . 5.8 Rail 6.3
terms associated with political events and discussions 5.4 OD 5.7
references to business strategies and company operations 5.1 OD 5.5
references to DMCA regulations and related legal terms 4.1 Orange 4.8
references to places in Kenya 4.0 movement 4.2
information related to notable historical figures and their relationships 3.6 leader 4.0
references to political candidates and their activities within the Democratic Party 3.3 orange 3.5
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Figure 12: Retrieval example from MIRACL/Bengali

Query (translated from Bengali): What is the name of the first band in Bangladesh?
Positive document (translated from Bengali): Obscure (Bangla Band) — Obscure
is one of the notable bands in the history of Bangladeshi band music. In the 1980s, Sayed
Hasan Tipu took the initiative to establish this band. On March 15, 1985, Tipu founded Obscure
in Khulna. During the 1980s, Obscure’s first album was released from Sargam Studio. That
first self-titled album, “Obscure Volume 1,” released in 1986, earned a permanent place in the
history of Bangla band music.

SPLARE | top features (doc rank = 3) SPLADE | top tokens (doc rank = 20)
Explanation (from Neuronpedia) Lin (2023) % Token %

references to specific individuals and groups within a social or cultural context 6.2 Bangladesh 9.8
references to musical bands or groups 6.2 band 8.5
mentions of bands and musical groups 5.5 Bang 7.9
repeated or emphasized mentions of specific entities or concepts 4.8 Bang 5.8
references to iconic rock bands and their legacy 4.7 bang 5.5
occurrences of the country name ”Bangladesh.” 4.7 Band 5.3
references to musical bands and collaborations 4.5 band 4.8
elements related to music and musicians 3.4 bands 4.2
descriptors related to music and performance quality 3.3 bang 3.8
proper names and the mention of individuals in the text 3.2 -band 3.3

Figure 13: Retrieval example from MIRACL/French

Query: Qui est le mathématicien le plus célèbre au monde?
Positive document: Nira Chamberlain En 2017, il intervient dans l’atelier du New Scientist
”Le monde mathématique”. En 2018, il est nommé ”mathématicien le plus intéressant du
monde” par le ”Big Internet Math Off” organisé par le site ”Aperiodical”. En 2019, il donne une
conférence à la ”Maxwell Society” sur ”Les mathématiques qui peuvent arrêter une apocalypse
de l’IA”. Il fait des apparitions dans les médias brita . . .

SPLARE | top features (doc rank = 5) SPLADE | top tokens (doc rank = 11)
Explanation (from Neuronpedia) Lin (2023) % Token %

concepts related to mathematics and quantitative analysis 9.7 mathematic 19.7
terms and phrases related to mathematics 9.0 Mathematic 15.3
elements related to academic papers and research acknowledgments 8.5 maths 10.3
references to the concept of ”world” in various contexts 8.3 math 10.2
references to mathematical concepts and theorems 6.8 Math 8.1
discussions about artistic individuals or the concept of creativity 6.6 ian 7.9
terms and references related to mathematics and mathematicians 6.2 world 6.6
references to mathematical concepts and terms 6.1 monde 5.9
terms related to academic professionals and researchers across various fields 5.1 mathematical 4.4
references to notable individuals and their contributions or warnings in the field of arti . . . 5.0 ematik 3.9

Figure 14: Retrieval example from XTREME-UP: Tamil→ English

Query:
Translation: On average, how much temperature can a human withstand?
Positive document: Cold and heat adaptations in humans The human body always works
to remain in homeostasis. One form of homeostasis is thermoregulation. Body temperature
varies in every individual, but the average internal temperature is 37.0 °C (98.6 °F). Stress from
extreme external temperature can cause the human body to shut down [...]

SPLARE | top features (document rank = 2) SPLADE | top tokens (document rank = 73)
Explanation (from Neuronpedia) Lin (2023) % Token %

references to ”human beings” and related concepts 12.3 human 29.3
terms related to temperature variations and environmental conditions 11.9 Human 21.5
terms related to fever and its physiological effects 10.3 average 20.7
terms related to biological concepts and interactions 9.6 humans 20.3
references to averages or average values in contexts related to statistics or metrics 9.2 withstand 3.8
specific guidelines and recommendations related to health and wellness 8.6 endurance 2.4
phrases related to summer and heat conditions 8.2 limit 2.1
specific temperature values and their measurements 6.8
references to bodily systems and their components 6.7
quantitative data related to spending and financial metrics 5.9
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Figure 15: from CodeEditSearchRetrieval

Query: Add totally untested pools ;)
Positive document: ---
+++
@@ -1,4 +1,6 @@
-import abc
+from multiprocessing import Pool as ProcessPool
+from multiprocessing.dummy import Pool as ThreadPool
+from multiprocessing import cpu count
def do flow(flow, result=None):
@@ -8,19 +10,41 @@
return result
+class PoolAPI(object):
+ def map(self, *args, **kw):
+ return self.pool.map(*args, **kw)
+
+
+class ThreadPool(PoolAPI):
+
+ de ...

SPLARE | top features (document rank = 10) SPLADE | top tokens (document rank = 3)
Explanation (from Neuronpedia) Lin (2023) % Token %

references to ”pool” and related concepts in various contexts 32.4 pool 17.0
aspects of vacation experiences related to comfort and amenities 28.0 pools 15.1
references to specific events or actions occurring in a timeline or sequence 7.1 Pool 14.5
topics related to punk culture and its influence on music and community 6.9 pool 8.9
references to the term ”stream” or its variations within contexts related to art and medi . . . 5.8 Pool 8.8
comments about changes and improvements, particularly in processes, products, or performa . . . 5.5 pooling 6.6
references to swimming pools and related recreational facilities 3.8 pool 3.9
references to programming tasks and contributions related to software development 3.7 patch 3.7
references to programming interfaces and database management 3.2 improvements 3.1
expressions of sports performance and competition 1.4 patches 2.4

Figure 16: from CodeEditSearchRetrieval

Query: Make sure that the interests register tables are created
Nose tries to run the interests register tests, but they will
fail unless the interest register app is added to INSTALLED APPS,
because its ta ...
Positive document: ---
+++
@@ -8,7 +8,8 @@
’pombola.place data’,
’pombola.votematch’,
’speeches’,
- ’pombola.spinner’ ) + \
+ ’pombola.spinner’,
+ ’pombola.interests register’) + \
APPS REQUIRED BY SPEECHES
# create the ENABLED FEATURES hash that is used to toggle features on
and off.

SPLARE | top features (document rank = 14) SPLADE | top tokens (document rank = 1)
Explanation (from Neuronpedia) Lin (2023) % Token %

keywords related to the concept of registration in various contexts 9.5 apps 5.7
phrases relating to various aspects of ”interest” in different contexts 9.2 register 5.3
mentions of applications or software-related terminology 5.9 register 5.2
features related to software libraries and their installation 4.7 interest 5.1
mentions of interest in various contexts or subjects 4.0 register 5.0
instances of the word ”create” and its variations, indicating a focus on creation and gen . . . 3.9 Interest 4.8
issues related to coding and technical errors in query parameters 3.9 interests 4.6
phrases related to registration and enrollment 3.0 apps 4.5
elements related to importing and structuring code within modules 2.8 interest 3.7
control keywords related to system configuration and management 2.8 interest 3.7
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Figure 17: from CodeEditSearchRetrieval

Query: Update variables names in exam tests
Positive document: ---
+++
@@ -17,16 +17,16 @@
def test create biopsy exam(self):
from biopsy.models import Biopsy
- specific exam = create specific exam(’Biopsy’)
+ biopsy exam = create specific exam(’Biopsy’)
- specific exam | should | be kind of(Biopsy)
+ biopsy exam | should | be kind of(Biopsy)
def test create necropsy exam(self):
from necropsy.mod ...

SPLARE | top features (document rank = 19) SPLADE | top tokens (document rank = 1)
Explanation (from Neuronpedia) Lin (2023) % Token %

terms associated with analysis and examination in a specialized medical context 19.8 exam 12.4
instances of the word ”exam.” 17.2 tests 9.0
occurrences of the word ”test” and its variations in various contexts 16.9 Exam 8.9
references to exams and testing processes 15.2 exams 7.4
references to testing and test cases in programming contexts 10.2 exam 6.4
references to unit testing and its associated concepts 9.6 test 6.2
references to notable figures or characters in a narrative context 3.2 Exam 5.3
technical terms and keywords related to programming and computer science 2.6 exam 4.6
references to institutions or organizations in a structured context 2.1 examination 4.3
numerical values and measurements 1.7 tests 4.0
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