

000 001 002 003 004 005 LEARNING RETRIEVAL MODELS WITH SPARSE 006 AUTOENCODERS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

027 ABSTRACT

028 Sparse autoencoders (SAEs) provide a powerful mechanism for decomposing the
029 dense representations produced by Large Language Models (LLMs) into inter-
030 pretable latent features. We posit that SAEs constitute a natural foundation for
031 Learned Sparse Retrieval (LSR), whose objective is to encode queries and doc-
032 uments into high-dimensional sparse representations optimized for efficient re-
033 trieval. In contrast to existing LSR approaches that project input sequences into
034 the vocabulary space, SAE-based representations offer the potential to produce
035 more semantically structured, expressive, and language-agnostic features. By
036 leveraging recently released open-source SAEs, we show that their latent features
037 can serve as effective indexing units for representing documents and queries for
038 sparse retrieval. Our experiments demonstrate that SAE-based LSR models con-
039 sistently outperform their vocabulary-based counterparts in multilingual and out-
040 of-domain settings. Finally, we introduce SPLARE, a 7B-parameter multilingual
041 retrieval model capable of producing generalizable sparse latent embeddings for a
042 wide range of languages and domains, achieving top results on MMTEB’s multi-
043 lingual and English retrieval tasks. **We also release a more efficient 2B-parameter**
044 **variant, offering strong performance with a significantly lighter footprint.**

045 1 INTRODUCTION

046 Embedding models have become a pivotal tool for search systems, enabling the better capture of
047 semantic relationships between queries and documents across various domains and modalities. This
048 trend has been further accelerated by the advent of Retrieval-Augmented Generation (RAG) Lewis
049 et al. (2020) and agent-based systems, which impose even higher demands on retrieval performance
050 and robustness. Recently, dense embedding models Reimers & Gurevych (2019); Karpukhin et al.
051 (2020), which map inputs into single dense vectors, have demonstrated impressive performance on
052 the (M)MTEB benchmark (Muennighoff et al., 2023; Enevoldsen et al., 2025). Specifically, embed-
053 ding models relying on large (V)LLM backbones have become the de-facto approach for generalist
054 multilingual Lee et al. (2025b); Zhang et al. (2025); Wang et al. (2024a); Lee et al. (2025a); Li
055 et al. (2023b) or even multi-modal models Günther et al. (2025); Faysse et al. (2025); Xu et al.
056 (2025a)—marking a shift away from encoder-only language models which have defined the state of
057 the art for years (Izacard et al., 2022; Karpukhin et al., 2020; Xiong et al., 2020).

058 Learned Sparse Retrieval (LSR) methods (Formal et al., 2021; Mallia et al., 2021; Nguyen et al.,
059 2023; Kong et al., 2023) have achieved state-of-the-art performance on widely used English-centric
060 benchmarks (Thakur et al., 2021; Bajaj et al., 2018; Craswell et al., 2021) and have demonstrated
061 strong generalization when compared to dense embedding models (Formal et al., 2022b; Lupart
062 et al., 2023; Déjean et al., 2023). Beyond their efficiency, these approaches provide a level of in-
063 terpretability that is particularly valuable in production systems. Models such as SPLADE (Formal
064 et al., 2021; 2022a; Lassance et al., 2024) operationalize this idea by representing documents and
065 queries as sparse, weighted bag-of-words over the vocabulary space of their backbone model. While
066 originally developed for encoder-only architectures such as BERT (Devlin et al., 2019), recent work
067 has explored adapting SPLADE to LLM backbones (Qiao et al., 2025; Doshi et al., 2024; Xu et al.,
068 2025b; Zeng et al., 2025; Soares et al., 2023; Ma et al., 2025). However, these models remain
069 limited to English-centric contexts and struggle to match state-of-the-art performance on more com-
070 prehensive benchmarks like MMTEB which place greater emphasis on generalization across novel
071 domains and languages. Unlike dense retrieval, which models relevance within a continuous em-

bedding space, LSR methods are inherently constrained by the fixed vocabulary of their underlying backbone, which incurs issues such as tokenization redundancy Lei et al. (2025). This limitation also makes it significantly harder to handle multilingual or cross-lingual retrieval Nair et al. (2023; 2022); Lassance (2023)—and even more so when extending to multi-modal settings (Nguyen et al., 2024). We hypothesize that this is the primary reason why LSR models have recently fallen behind dense approaches¹.

In the context of LLMs, Sparse Autoencoders (SAEs) Makhzani & Frey (2013); Huben et al. (2024); Bricken et al. (2023) decompose dense token representations into sparse vectors of latent features. These features have been shown to exhibit desirable properties: they are largely mono-semantic (most features correspond to a single interpretable concept), multilingual (remaining largely language-agnostic), and even multimodal (generalizing across modalities in multimodal LLMs) (Bricken et al., 2023; Templeton et al., 2024; Lieberum et al., 2024; Huben et al., 2024; He et al., 2024; Deng et al., 2025). While SAEs have generated significant excitement for mechanistic interpretability, recent work has also highlighted their limitations, showing that they can struggle to transfer effectively to certain downstream tasks (Kantamneni et al., 2025; Smith et al., 2025).

In this work, we argue and empirically demonstrate that SAEs are a natural fit for LSR models: their learned latent features provide a semantically-grounded representation space for sparse retrieval which is particularly advantageous in domains or languages where vocabulary-based approaches may underperform. To this end, we propose a new LSR approach that represents queries and documents as sparse vectors over a latent vocabulary space, by replacing the standard language modeling (LM) head with pre-trained SAEs such as Llama Scope (He et al., 2024). More specifically, our contributions are as follows:

- We introduce SPLARE—for SParse LATent RETrieval—a new LSR approach relying on pre-trained SAEs;
- We conduct a systematic investigation of the advantages of using a latent vocabulary—compared to the standard LLM vocabulary—across a comprehensive set of benchmarks spanning diverse tasks, domains, and languages;
- Finally, we introduce a new 7B multilingual latent sparse retriever that support 100+ languages and achieves competitive results on the MMTEB *retrieval* benchmark². SPLARE is the first LSR model to rival state-of-the-art dense approaches on MMTEB. **We additionally release a compact and efficient 2B counterpart.**

2 BACKGROUND

We first provide some background on sparse autoencoders as well as Learned Sparse Retrieval. SPLARE can be understood as synthesizing these two research directions into a unified framework.

2.1 SPARSE AUTOENCODERS

Given activations $x \in \mathbb{R}^d$ from a language model, a sparse autoencoder (SAE) is a single hidden layer model, comprising an encoder and a decoder:

$$z = f(\mathbf{W}_{\text{enc}}x + \mathbf{b}_{\text{enc}}), \quad \hat{x} = \mathbf{W}_{\text{dec}}z + \mathbf{b}_{\text{dec}} \quad (1)$$

where $z \in \mathbb{R}^{|\mathcal{W}|}$, with $|\mathcal{W}| \gg d$ corresponding to the width of SAE, i.e., the number of features in the latent space. SAEs, as a class of autoencoders, are trained using a standard reconstruction objective $\mathcal{L} = \|\hat{x} - x\|^2$. Sparsity in the decomposition is induced through suitable activation functions f such as ReLU Bricken et al. (2023), Top-K Makhzani & Frey (2013); Gao et al. (2025) or JumpReLU Rajamanoharan et al. (2024), and regularization penalties such as ℓ_1 . Several works have demonstrated that SAEs can recover highly monosemantic features, many of which are language-agnostic—responding consistently to the same concepts across languages—and, in some cases, even multimodal (Huben et al., 2024; Bricken et al., 2023; Templeton et al., 2024; Lieberum et al., 2024;

¹For instance, as of the time of writing (November 20, 2025), no sparse retrieval model is listed on the MTEB (Multilingual, v2) leaderboard.

²Code and models will be released after notification date.

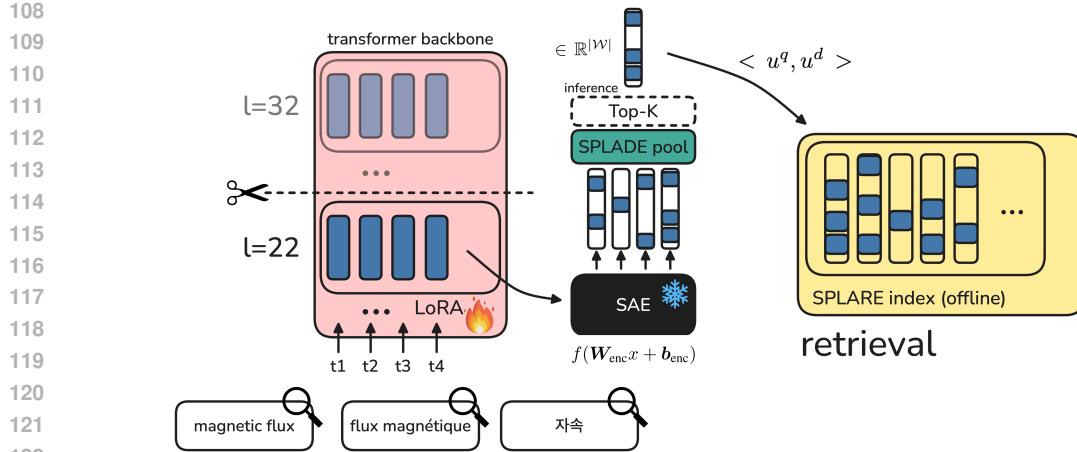


Figure 1: Overview of SPLARE. A pre-trained SAE can be inserted at any layer l of the LLM to get sparse latent representations of input tokens. These token-level representations are then aggregated into a single sparse vector using a pooling mechanism analogous to SPLADE. During training, we only fine-tune the LLM parameters (via LoRA adapters) while keeping the SAE frozen.

He et al., 2024; Cunningham & Conerly, 2024; Deng et al., 2025). Large sparse autoencoders are also notoriously hard and costly to train. Recently, high-quality large scale open-source SAEs have became available to the research community. In particular, we rely in this work on the Llama Scope series of models He et al. (2024) which offers SAEs trained on Llama-3.1-8B and the Gemma Scope suite Lieberum et al. (2024) which offers SAEs trained on Gemma-2-2B, 9B and 27B models.

2.2 SPLADE

Learned Sparse Retrieval (LSR) models aim to encode input sequences into high-dimensional sparse representations. Among these approaches, the SPLADE family of approaches (Formal et al., 2021; 2022a; Lassance et al., 2024) has emerged as the state-of-the-art method, achieving performance comparable to or exceeding that of dense embedding models in many settings. Given an input sequence tokenized as $t = (t_1, t_2, \dots, t_n)$ and fed through all the layers of the transformer, SPLADE generates a sequence of logits (v_1, v_2, \dots, v_n) by projecting each final hidden state (h_1, h_2, \dots, h_n) onto the vocabulary space \mathcal{V} using the language modeling head, i.e., via a linear transformation based on the token embedding matrix. The weights $(v_{ij})_{j \in \mathcal{V}}$ correspond to an unnormalized log-probability distribution over \mathcal{V} for token t_i , where each output dimension j is actually associated with the token it represents. To obtain a single sequence-level representation, SPLADE first applies a term saturation function, before max-pooling over the sequence:

$$u_j = \max_{i=1 \dots n} \log (1 + \text{ReLU}(v_{ij})) , j \in \mathcal{V} \quad (2)$$

Given these sparse representations $u \in \mathbb{R}^{|\mathcal{V}|}$ for queries and documents, relevance scores are computed as a sparse dot product $s(q, d) = \langle u^q, u^d \rangle$. This operation can be efficiently supported using inverted index structures together with specialized query processing techniques (Tonellotto et al., 2018; Bruch et al., 2024c; Zobel & Moffat, 2006).

3 METHOD

3.1 SPLARE

Conceptually, SPLARE closely parallels SPLADE but operates in the latent representation space. Rather than projecting the final hidden states of the language model onto the vocabulary space via the LM head, SPLARE employs sparse autoencoders to transform representations from a selected layer into a sparse latent space, which can be interpreted as a latent vocabulary.

162 Let $(\mathbf{W}_{\text{dec}}, \mathbf{b}_{\text{dec}})$ in Eq. 1 denote the SAE’s encoder parameters at a given layer l of the transformer³.
 163 Similary to SPLADE, we can obtain sequences of sparse latent logits (w_1, w_2, \dots, w_n) by mapping
 164 the hidden states at layer l with the SAE encoder as illustrated in Figure 1. The weights $(w_{ij})_{j \in \mathcal{W}} \in$
 165 $\mathbb{R}^{|\mathcal{W}|}$ contain the sparse list of latent features associated with token i in the input sequence. It can be
 166 used in place of the vocabulary decomposition to compute sequence-level representations for input
 167 queries or documents into a sparse set of latent features using the same type of pooling mechanism
 168 as in Eq. 2—which we refer to as SPLADE-pool in Figure 1.

170 3.2 TRAINING

172 **Training LSR Models** The training procedure for LSR models mirrors that of dense embedding
 173 models. While contrastive learning Oord et al. (2018); Chen et al. (2020) is the de-facto approach
 174 to train state-of-the-art dense models Lee et al. (2025b); Zhang et al. (2025), we instead adopt a
 175 distillation-based approach using a cross-encoder teacher model Nogueira & Cho (2020) to train
 176 our sparse embeddings. Distillation is a common toolbox to train retrieval models (Hofstätter et al.,
 177 2020; Lin et al., 2020), but has been overlooked in the context of LLM-based embeddings. Specifi-
 178 cally, we optimize the Kullback–Leibler divergence between the teacher and student relevance dis-
 179 tributions (Lin et al., 2020). Given a query q , (d_1, d_2, \dots, d_m) which contains a positive document
 180 and a pool of hard negatives, (s_1, s_2, \dots, s_m) the corresponding teacher scores for documents d_i with
 respect to q , and τ a temperature parameter, the training loss is given by:

$$181 \quad \mathcal{L}_{\text{KL}} = \sum_{i=1}^m p_i (\log p_i - \log \hat{p}_i), \quad \hat{p}_i = \frac{e^{s(q, d_i)/\tau}}{\sum_j e^{s(q, d_j)/\tau}}, \quad p_i = \frac{e^{s_i}}{\sum_j e^{s_j}} \quad (3)$$

184 **Sparsity** To encourage sparsity in query and document representations, LSR models are typi-
 185 cally trained with a sparsity-inducing regularization term, analogous to that used in SAEs. Follow-
 186 ing Porco et al. (2025), we adopt a slight modification of the original FLOPS loss Paria et al. (2020)
 187 employed in SPLADE. The final loss is $\mathcal{L} = \mathcal{L}_{\text{KL}} + \lambda_q \ell_{\text{DF-FLOPS}}^q + \lambda_d \ell_{\text{DF-FLOPS}}^d$.

189 The sparsity of LSR approaches plays a crucial role in determining both effectiveness and computa-
 190 tional efficiency on retrieval benchmarks. However, the sparsity induced by \mathcal{L} can vary significantly
 191 depending on the model configuration, backbone architecture, SAE suite, and dataset characteris-
 192 tics. Achieving a desired target sparsity would require continuous adjustment of $\lambda_{d,q}$. To mitigate
 193 this challenge and establish a more robust training setup, we additionally apply Top-K pooling *at*
 194 *inference time*, as illustrated in Figure 1. This strategy allows us to train a single model with mod-
 195 erate sparsity—using fixed, conservative values of $\lambda_{d,q}$ —while systematically studying the effect of
 196 pooling without the need for re-training. Although some prior works have entirely replaced explicit
 197 sparsity regularization with Top-K pooling (Lassance et al., 2023; Doshi et al., 2024), our initial ex-
 198 periments with this approach yielded inferior results. Finally, we note that while SPLARE is initial-
 199 ized with an SAE—which produces inherently sparse token-level representations—sequence-level
 200 sparsity at initialization remains relatively high (e.g., a few thousands non-zero values). As a result,
 201 additional sparsity regularization is required to ensure the model achieves the desired efficiency. It
 202 is also worth noting that LSR models are usually hard to train and require a careful initialization of
 203 the projection head. While the LM head or a SAE can provide a suitable initialization, training an
 204 LSR model entirely from scratch is highly difficult and consistently results in lower performance.

205 4 EXPERIMENTAL SETUP

207 **Training Data** We conduct two large sets of experiments: § 5 contains various ablations and
 208 analyses for models trained on English data on the MS MARCO dataset Bajaj et al. (2018). In § 6,
 209 we further extend training to a larger set of publicly available data, including multi-lingual datasets.
 210 We do not prepend any special instructions or prefix to our input sequences—which could only likely
 211 yield further improvements. To ease reproducibility, we also refrain from any form of pre-finetuning
 212 or synthetic data generation Lee et al. (2025b); Günther et al. (2025); Zhang et al. (2025), both of
 213 which have recently become common practice for achieving top results on the MTEB benchmark.
 214 We detail in Appendix A our two training settings.

215 ³Note that we only rely on the encoder parameters, as we only aim to extract sparse features from represen-
 216 tations. Also note that we consider SAEs trained on the residual streams of the transformer.

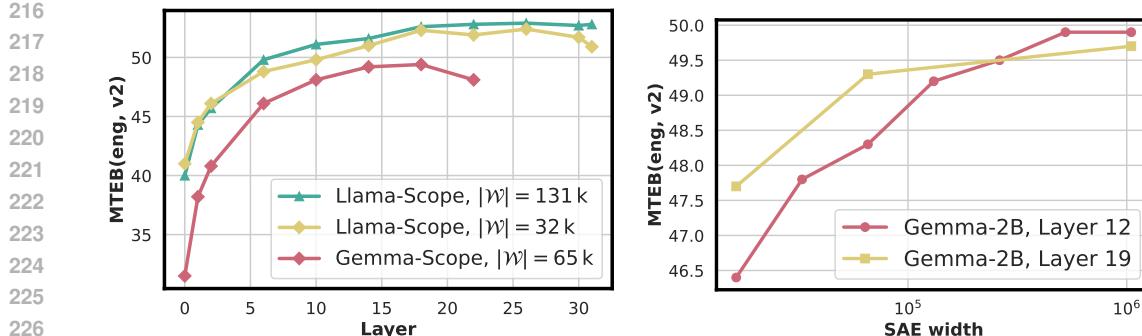


Figure 2: (Left) Performance across layers on Llama Scope (Llama-3.1-8B) and Gemma Scope (Gemma-2-2B). (Right) Performance with increasing SAE width on Gemma-2. Evaluation done with Top-K = (40, 400).

Evaluation MTEB Muennighoff et al. (2023) and MMTEB Enevoldsen et al. (2025) are the most widely adopted benchmarks for evaluating embedding models. Our evaluation focuses only on the *retrieval* subsets of these benchmarks, excluding other task categories. In addition to the English and Multilingual splits, we also report results on domain-specific subsets of MTEB, including Code, Medical, Law, and Chemical domains. Given SPLARE’s strong performance in multilingual settings, we further place particular emphasis on this aspect by including language-specific splits of MMTEB for five languages, as well as evaluations on the MIRACL Zhang et al. (2023) and XTREME-UP Ruder et al. (2023) datasets. The latter introduces a challenging cross-lingual retrieval task, requiring retrieval from an English corpus using queries from low-resource languages. We also report results on MS MARCO Bajaj et al. (2018) and BEIR Thakur et al. (2021) (Appendix C).

While our approach is broadly applicable to any pre-trained SAE, we conduct the majority of our experiments using the Llama Scope model suite He et al. (2024), built on Llama-3.1-8B (et al., 2024). During training, we fine-tune the backbone with LoRA adapters Hu et al. (2022) while keeping SAE parameters frozen. Preliminary experiments indicated that this strategy not only improves performance but also simplifies training. Moreover, it preserves the interpretability of the latent feature space Lin (2023). As in prior work (Zeng et al., 2025; BehnamGhader et al., 2024; Lei et al., 2025), we enable bidirectional attention across all backbones and pretrain them with Masked Next Token Prediction. Following the exact procedure of Zeng et al. (2025), we mask 20% of tokens in the MS MARCO corpus and train for 10k steps which takes about five hours. Bidirectional attention is particularly important for LSR models since pooling occurs at every position of the input sequence, unlike dense models that rely on the <EOS> token. Full details of our experimental hyperparameters are provided in Appendix B. Unless stated otherwise, retrieval evaluation is performed using Top-K pooling, with default values of $k = 40$ for queries and $k = 400$ for documents. For our multilingual models (§ 6), we additionally rely on model averaging (Wortsman et al., 2022) from several training runs, which boosts generalization performance (Lee et al., 2025b; Zhang et al., 2025).

We are mainly interested in **comparing SPLARE to current state-of-the-art LSR methods, which are all vocabulary-based**. To this end, we perform controlled comparisons with a SPLADE model built on the same Llama-3.1-8B backbone—following the methodology of (Doshi et al., 2024; Zeng et al., 2025)—and trained under identical settings. We refer to this baseline as SPLADE-Llama.

5 ANALYSIS AND DESIGN CHOICES FOR SPLARE MODELS

We first conduct a series of ablation studies in a controlled, English-only setting. At this stage, our primary objective is to compare SPLARE’s latent representations with traditional vocabulary-based approaches (i.e., our SPLADE-Llama baseline). Specifically, we aim to address the following research questions: (i) At which transformer layer depth do we obtain the most effective sparse latent representations for retrieval? (ii) How does the width of the SAE affect retrieval performance? (iii) What are the efficiency–effectiveness trade-offs introduced by the latent vocabulary? (iv) Do the sparse latent features learned by the SAE yield improvements over equivalent SPLADE models?

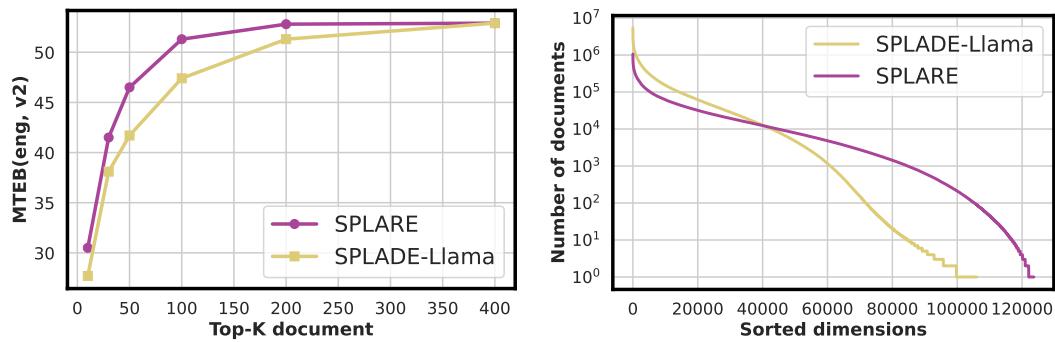


Figure 3: (Left) Impact of pruning documents with Top-K (with $k = 40$ for queries). (Right) MS MARCO index distribution for SPLARE and SPLADE (8.8M documents).

Performance and Layer Depth We train SPLARE models at varying depths on Llama-3.1-8B, using SAEs from Llama Scope with two widths $|\mathcal{W}| \in \{32k, 131k\}$, and on Gemma-2-2B, using Gemma Scope with width $|\mathcal{W}| = 65k$, and report the average MTEB (English, v2) performance in Figure 2 (Left). Interestingly, the highest performance is consistently achieved at **about two-thirds of the model depth, i.e., around layer 20 (out of 32) for Llama Scope and 16 (out of 26) for Gemma Scope**. These findings are consistent with prior work suggesting that intermediate transformer layers often yield richer representations for retrieval tasks (Skean et al., 2025; Zhuang et al., 2025; Wang et al., 2025). A further advantage of using intermediate layers is the reduction in retriever size and, consequently, inference latency—an improvement over SPLADE models, which require processing through all layers of the LLM (see Appendix F). **For the remainder of the paper, our main SPLARE models are trained at layer 26 of Llama-3.1-8B, yielding a 7B-parameter model (including the SAE parameters).**

How does the width of the SAE affect retrieval performance? Unlike SPLADE models, the dimensionality of SPLARE’s feature space—determined by the SAE width $|\mathcal{W}|$ —is not constrained by the LLM’s vocabulary size. To study the effect of SAE width on retrieval effectiveness, we train multiple SPLARE models using Gemma Scope, which offers a broader range of SAE configurations. Especially, we consider SAEs at layers 12 and 19 of Gemma-2-2B with widths $|\mathcal{W}| \in \{2^{14} \approx 16k, 2^{15}, \dots, 2^{20} \approx 1M\}$. We report the resulting average MTEB (English, v2) performance in Figure 2 (Right). Our results show a roughly log-linear relationship between SAE width and retrieval effectiveness, providing a scaling mechanism for improved performance—something not possible with SPLADE’s fixed vocabulary size. Prior work has shown that SAEs can scale to widths as large as 14M on very large LLMs (Templeton et al., 2024), though such models remain proprietary. Llama Scope, while limited to $|\mathcal{W}| \in \{32k, 131k\}$, exhibits the same scaling effect consistently across layers (Figure 2, (Left)). These experiments also highlight that the approach is transferable across different backbone architectures. Despite the availability of much wider SAEs in Gemma Scope, we observe that Llama Scope models achieve superior overall performance. Consequently, we report results using this model (with $|\mathcal{W}| = 131k$) for all subsequent experiments.

Effectiveness-efficiency trade-off Sparse retrieval methods achieve efficiency through the use of dedicated inverted index structures and exact (Zobel & Moffat, 2006; Tonello et al., 2018) or approximate (Bruch et al., 2024a) query processing algorithms. In all cases, obtaining highly sparse representations is critical for achieving low-latency retrieval. While SPLADE has been successfully adapted to LLM backbones, efficiency considerations have generally been overlooked. As discussed in § 3.2, LSR models can easily become “dense” in practical scenarios, which undermines their efficiency.

We study the relationship between SPLARE performance and sparsity by capping, at inference time, the number of activated features for documents vectors using Top-K pooling. Results are shown in Figure 3 (Left). SPLARE exhibits substantially greater robustness to document pruning: when indexing only Top-K = 100 document features, its performance drops by merely 2%, compared to over 6% for SPLADE. This difference can be partially attributed to SPLARE’s more compact and structured latent feature space as well as the fact that SPLADE models based on LLMs are inher-

324 Table 1: Average performance on various MTEB splits. English models are trained on MS MARCO
 325 only (§ 5). Multilingual models are trained on a large-scale multilingual training set (§ 6). Evaluation
 326 done with Top-K = (40, 400).

	English	Multilingual	Code	Medical	Law	ChemTEB
English Models						
SPLADE-v3 (Lassance et al., 2024)	50.7	38.1	44.5	44.2	40.4	75.6
Lion-SP-8B (Zeng et al., 2025)	48.5	50.0	53.3	54.4	48.5	71.1
SPLADE-Llama	52.9	54.3	57.3	61.0	49.0	75.9
SPLARE	52.9	56.3	55.1	62.9	51.2	70.0
Multilingual Models						
SPLADE-Llama	58.4	60.3	63.6	67.1	57.5	75.7
SPLARE	58.6	60.9	60.7	68.0	58.1	77.2

337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1

378 Table 2: Multilingual comparison of SPLARE and SPLADE (Top-K = (40, 400)).
379

	indic	sca	deu	fra	kor	XTREME-UP	MIRACL
SPLADE-Llama	90.1	70.4	55.4	65.6	73.7	56.3	67.9
SPLARE	91.2	70.4	56.2	65.6	74.9	59.8	69.6

384
385
386 6.1 COMPARING LATENT MODELS TO LEXICON-BASED APPROACHES
387388 Table 1 (Multilingual models) compares the average performance of multi-lingual SPLARE and
389 SPLADE across the various MTEB splits, with full results provided in Appendix D. Overall,
390 SPLARE consistently outperforms its vocabulary-based counterpart, with the exception of the Code
391 split. A closer inspection of individual datasets within the Multilingual split reveals that SPLARE
392 systematically outperforms SPLADE, a trend further confirmed by Table 9, which highlights the
393 superior performance of latent-based LSR models in multilingual settings. On XTREME-UP,
394 SPLARE also maintains its performance advantage. Comprehensive results for both MIRACL and
395 XTREME-UP, along with comparisons to concurrent approaches, are provided in Appendix D. Not-
396 ably, SPLARE exhibits particularly strong results on the hidden test sets of MIRACL (Table 10)
397 and the low-ressource languages of XTREME-UP (see also Table 3).
398399
400 6.2 COMPARING TO TOP MODELS
401402 Finally, we compare SPLARE to top models from the MTEB leaderboard in Table 3. SPLARE
403 reaches an average score of 60.9 (for the pooled version), *making it among the top 10 models on*
404 *MTEB(Multilingual, v2) retrieval and the top-1 LSR model*. Notably, these results are achieved
405 without relying on private or synthetic data and without any pre-finetuning. This is also particu-
406 larly interesting, as open models like gte-Qwen2-7B instruct or NV-Embed-v2 rely on 3584-*d* (resp.
407 4096-*d*) dense vectors to encode queries and documents, while SPLARE* only needs 40 features
408 (resp. 400) to encode queries (resp. documents) in its high-dimensional feature space. We also
409 observe an average gain of +1 point for the non-pooled version, albeit at the cost of higher re-
410 trieval complexity. On the other hand, extremely sparse models (Top-K = (10, 100)) still offer
411 competitive performance. Note that in practical retrieval scenarios, dense embeddings often require
412 dimensionality-reduction techniques Kusupati et al. (2022) and/or approximate nearest-neighbor
413 search algorithms Johnson et al. (2019) algorithms—whose performance degradation is rarely re-
414 ported on standard benchmarks. In contrast, sparse retrieval methods natively support efficient exact
415 search without incurring such compromises. Finally, we also report results for a SPLARE model
416 trained at layer 6 (SPLARE-2B). Although its performance is somewhat lower than that of the full
417 SPLARE model (7B parameters), it remains strong—particularly on the XTREME-UP dataset. Im-
418 portantly, this model is substantially more efficient and therefore offers a different, and often attrac-
419 tive, point on the effectiveness–efficiency trade-off curve.
420421
422 6.3 INTERPRETABILITY: INSIGHT INTO SPLARE MECHANICS
423424 Finally, we provide interpretability insights for SPLARE. We leverage Neuronpedia (Lin, 2023)
425 to obtain explanations for individual SAE features—which, as a reminder, remain frozen during
426 fine-tuning—and list the top features contributing to a document’s relevance with respect to a given
427 query. For SPLADE, by contrast, we report the tokens with the highest relevance contributions.
428 Figure 4 illustrates a cross-lingual example from XTREME-UP from Tamil to English. The features
429 activated by SPLARE align well with meaningful concepts present in both the query and document.
430 They correspond to coherent, language-agnostic concepts which combine into a comprehensive de-
431 scription of the data point. In contrast, SPLADE exhibits a higher degree of redundancy (e.g.,
432 separate activations for “Indian” and “indian”) and predominantly relies on Latin-script tokens—
433 effectively defaulting to English subword representations—which provide less informative signals
434 in this setting. Further examples are given in Appendix G.

432 Table 3: Average MTEB retrieval performance of SPLARE (Multilingual) against top models. Multilingual (resp. Eng) refers to (Multilingual, v2) (resp. MTEB(eng, v2)). As of November 20, 2025,
 433 SPLARE* ranks in the top-10 models on MTEB(Multilingual, v2) retrieval. For XTREME-UP
 434 (MRR@10), we report results from (Lee et al., 2025b). **Unless specified, evaluation for SPLARE is**
 435 **done with Top-K = (40, 400).**

		Eng	Multilingual	XTREME-UP
Top Open Source models				
e5-mistral-7b-instruct (Wang et al., 2024a)		57.6	55.8	-
NV-Embed-v2 (Lee et al., 2025a)		62.8	56.7	-
multilingual-e5-large-instruct (Wang et al., 2024b)		53.5	57.1	18.7
GritLM-7B (Muennighoff et al., 2024)		55.0	58.3	-
SFR-Embedding-Mistral (Meng et al., 2024)		59.3	59.4	-
Linq-Embed-Mistral (Kim et al., 2024)		60.1	58.7	24.6
gte-Qwen2-7B-instruct (Li et al., 2023b)		58.1	60.1	17.4
voyage-3-large (AI, 2025)		53.5	66.1	39.2
jina-embeddings-v4 (Günther et al., 2025)		56.2	66.4	-
inf-retriever-v1 (Yang et al., 2025)		64.1	66.5	-
Qwen-3-Embedding-8B (Zhang et al., 2025)		69.4	70.9	-
Commercial models				
Cohere-embed-multilingual-v3.0 (Cohere, 2023)		55.7	59.2	-
text-embedding-3-large (OpenAI, 2024)		58.0	59.3	18.8
gemini-embedding-001 (Lee et al., 2025b)		64.4	67.7	64.3
SPLARE*		58.6	60.9	59.8
SPLARE, no-pooling		59.8	61.9	61.7
SPLARE, Top-K = (20, 200)		55.9	59.3	55.2
SPLARE, Top-K = (10, 100)		50.7	56.2	48.6
SPLARE-2B		55.5	57.6	42.7

460 **Figure 4: Retrieval example from XTREME-UP: Tamil → English**

461 **Query:** அங்கிலேயர்கள் ஆட்சியில் சராசரியாக எத்தனை இந்தியர்கள் இறந்தனர்

462 **Translation:** On average, how many Indians died under British rule?

463 **Positive document:** Indian Army during World War II: The British Indian Army fought in
 464 Ethiopia against the Italian Army, in Egypt, Libya, Tunisia and Algeria against both the Italian
 465 and German Army, and, after the Italian surrender, against the German Army in Italy. [...]

SPLARE top features (doc rank = 4)		SPLADE top tokens (doc rank = 23)	
Explanation (from Neuronpedia) Lin (2023)	%	Token	%
elements related to historical or cultural contexts	10.5	„Indian	12.6
mentions of India and its relation to various contexts	8.7	„Indians	11.2
descriptions that contrast traditional experiences with unique local accommodation	7.5	„casualties	9.0
mentions of colonial powers, specifically Britain and France	6.6	„India	8.5
references to military casualties and losses	6.5	„Indian	7.6
quantitative statistics and casualties related to wars and conflicts	5.9	„British	7.5
information related to economic data and connectivity issues in India	5.2	„Deaths	6.8
references to protests and civil rights movements	5.0	„fatalities	5.3
references to historical events and political movements	4.9	„India	4.7
references to corporate structure and business dynamics	4.4	„Raj	4.5

477 7 RELATED WORKS

478 **LLMs and Retrieval** Dense embedding models derived from LLMs have demonstrated substantial
 479 gains over traditional BERT-style encoders (Lee et al., 2025b; Zhang et al., 2025). Recent
 480 approaches such as LLM2Vec BehnamGhader et al. (2024) or GritLM Muennighoff et al. (2024)
 481 highlight how LLMs can be effectively adapted into powerful text encoders by incorporating bi-
 482 directional attention. Beyond providing stronger backbone architectures, LLMs have also signif-
 483 icantly advanced retrieval model training, enabling the generation of high-quality synthetic data
 484 and improved filtering of training samples (Wang et al., 2024a; Lee et al., 2025a;b; Zhang et al.,
 485 2025; Dai et al., 2023). Nonetheless, despite the impressive progress of dense embeddings, con-

486 trolled evaluations have shown that they can still be outperformed by alternative architectures such
 487 as multi-vector models or sparse retrievers (Zeng et al., 2025; Faysse et al., 2025; Chen et al., 2024a).
 488

489 **Sparse Autoencoders and Retrieval** Sparse autoencoders have primarily been employed in In-
 490 formation Retrieval (IR) to approximate dense representations for efficient nearest-neighbor search.
 491 Given a dense embedding model, these approaches learn to map query and document vectors into
 492 sparse latent representations that preserve the structure of the original embedding space (Lassance
 493 et al., 2021; Borges et al., 2023; Park et al., 2025; Kang et al., 2025; Wen et al., 2025). SAEs
 494 have also been used to interpret dense emebddings in both IR O’Neill et al. (2024) and Recom-
 495 mender Systems (Kasalický et al., 2025; Klenitskiy et al., 2025). Most closely related to our work
 496 is (Park et al., 2025), which shows that SAE-derived features can serve as effective indexing units.
 497 However, all prior studies train SAEs on top of an *already-trained dense retriever*. In contrast, our
 498 approach leverages pre-trained SAEs on the base LLM and fine-tunes an LSR model directly in a
 499 SPLADE-like fashion, allowing for tighter integration of relevance and sparsity when training the
 500 sparse representations.

501 8 CONCLUSION

502 In this work, we investigated two complementary research directions: Sparse autoencoders and
 503 Learned Sparse Retrieval models. We demonstrated that SAEs provide a natural foundation for
 504 LSR by yielding semantically rich and multilingual latent features that overcome the vocabulary de-
 505 pendence of traditional LSR approaches. Our experiments show that SAE-based LSR models con-
 506 sistently outperform vocabulary-based counterparts, particularly in multilingual and out-of-domain
 507 scenarios. Finally, we introduced SPLARE, a competitive 7B-parameter multilingual model capa-
 508 ble of producing generalizable sparse latent embeddings, thereby paving the way for more robust,
 509 versatile, and cross-lingual retrieval across diverse domains and modalities.

512 REFERENCES

514 Voyage AI. Voyage-3 large. [https://blog.voyageai.com/2025/01/07/](https://blog.voyageai.com/2025/01/07/voyage-3-large/)
 515 voyage-3-large/, January 2025. Accessed: 2025-09-24.

516 Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Ma-
 517 jumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica,
 518 Saurabh Tiwary, and Tong Wang. Ms marco: A human generated machine reading comprehension
 519 dataset, 2018. URL <https://arxiv.org/abs/1611.09268>.

520 Parishad BehnamGhader, Vaibhav Adlakha, Marius Mosbach, Dzmitry Bahdanau, Nicolas Chap-
 521 ados, and Siva Reddy. LLM2vec: Large language models are secretly powerful text encoders. In
 522 *First Conference on Language Modeling*, 2024. URL [https://openreview.net/forum?](https://openreview.net/forum?id=IW1PR7vEBf)
 523 [id=IW1PR7vEBf](https://openreview.net/forum?id=IW1PR7vEBf).

524 Luís Borges, Bruno Martins, and Jamie Callan. Kale: Using a k-sparse projector for lexical ex-
 525 pansion. In *Proceedings of the 2023 ACM SIGIR International Conference on Theory of In-*
 526 *formation Retrieval, ICTIR ’23*, pp. 13–22, New York, NY, USA, 2023. Association for Com-
 527 puting Machinery. ISBN 9798400700736. doi: 10.1145/3578337.3605131. URL <https://doi.org/10.1145/3578337.3605131>.

528 Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Con-
 529 erly, Nick Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu,
 530 Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex
 531 Tamkin, Karina Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter,
 532 Tom Henighan, and Christopher Olah. Towards monosematicity: Decomposing language
 533 models with dictionary learning. *Transformer Circuits Thread*, 2023. <https://transformer->
 534 [circuits.pub/2023/monosemantic-features/index.html](https://transformer-circuits.pub/2023/monosemantic-features/index.html).

535 Sebastian Bruch, Franco Maria Nardini, Cosimo Rulli, and Rossano Venturini. Efficient inverted
 536 indexes for approximate retrieval over learned sparse representations. In *Proceedings of the 47th*
 537 *International ACM SIGIR Conference on Research and Development in Information Retrieval*,
 538 pp. 152–162, 2024a.

540 Sebastian Bruch, Franco Maria Nardini, Cosimo Rulli, and Rossano Venturini. Pairing clustered
 541 inverted indexes with κ -nn graphs for fast approximate retrieval over learned sparse represen-
 542 tations. In *Proceedings of the 33rd International ACM Conference on Information and Knowl-
 543 edge Management (CIKM)*, pp. 3642–3646. ACM, 2024b. doi: 10.1145/3627673.3679977. URL
 544 <https://doi.org/10.1145/3627673.3679977>.

545 Sebastian Bruch, Franco Maria Nardini, Cosimo Rulli, and Rossano Venturini. Efficient inverted
 546 indexes for approximate retrieval over learned sparse representations. In *Proceedings of the 47th
 547 International ACM SIGIR Conference on Research and Development in Information Retrieval
 548 (SIGIR)*, pp. 152–162. ACM, 2024c. doi: 10.1145/3626772.3657769. URL <https://doi.org/10.1145/3626772.3657769>.

550 Sebastian Bruch, Franco Maria Nardini, Cosimo Rulli, Rossano Venturini, and Leonardo Venuta.
 551 Investigating the scalability of approximate sparse retrieval algorithms to massive datasets. In *Ad-
 552 vances in Information Retrieval*, pp. 437–445. Springer Nature Switzerland, 2025. doi: 10.1007/978-3-031-88714-7_43.
 553 URL https://doi.org/10.1007/978-3-031-88714-7_43.

555 Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. Bge m3-embedding:
 556 Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge dis-
 557 tillation, 2024a.

559 Jianlyu Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. M3-embedding:
 560 Multi-linguality, multi-functionality, multi-granularity text embeddings through self-knowledge
 561 distillation. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the As-
 562 sociation for Computational Linguistics: ACL 2024*, pp. 2318–2335, Bangkok, Thailand, August
 563 2024b. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.137. URL
 564 <https://aclanthology.org/2024.findings-acl.137/>.

565 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
 566 contrastive learning of visual representations. In *International conference on machine learning*,
 567 pp. 1597–1607. PMLR, 2020.

569 Cohere. Introducing embed v3. <https://cohere.com/blog/introducing-embed-v3>,
 570 November 2023. Accessed: 2025-09-24.

571 Nick Craswell, Bhaskar Mitra, Emine Yilmaz, and Daniel Campos. Overview of the trec 2020 deep
 572 learning track, 2021. URL <https://arxiv.org/abs/2102.07662>.

574 Hoagy Cunningham and Tom Conerly. Comparing topk and gated saes to standard saes. *Trans-
 575 former Circuits Thread*, 2024. URL <https://transformer-circuits.pub/2024/june-update/index.html#topk-gated-comparison>.

577 Zhuyun Dai, Vincent Y Zhao, Ji Ma, Yi Luan, Jianmo Ni, Jing Lu, Anton Bakalov, Kelvin Guu,
 578 Keith Hall, and Ming-Wei Chang. Promptagator: Few-shot dense retrieval from 8 examples.
 579 In *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=gml46Ympu2J>.

582 Hervé Déjean, Stephane Clinchant, Carlos Lassance, Simon Lupart, and Thibault Formal. Bench-
 583 marking middle-trained language models for neural search. In *Proceedings of the 46th Interna-
 584 tional ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR
 585 '23*, pp. 1848–1852, New York, NY, USA, 2023. Association for Computing Machinery. ISBN
 586 9781450394086. doi: 10.1145/3539618.3591956. URL <https://doi.org/10.1145/3539618.3591956>.

588 Boyi Deng, Yu Wan, Baosong Yang, Yidan Zhang, and Fuli Feng. Unveiling language-specific
 589 features in large language models via sparse autoencoders. In Wanxiang Che, Joyce Nabende,
 590 Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meet-
 591 ing of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 4563–4608,
 592 Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-
 593 251-0. doi: 10.18653/v1/2025.acl-long.229. URL <https://aclanthology.org/2025.acl-long.229/>.

594 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
 595 deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
 596 Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chapter of
 597 the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
 598 and Short Papers)*, pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for Com-
 599 putational Linguistics. doi: 10.18653/v1/N19-1423. URL <https://aclanthology.org/N19-1423/>.
 600

601 Meet Doshi, Vishwajeet Kumar, Rudra Murthy, Vignesh P, and Jaydeep Sen. Mistral-splade: Llms
 602 for better learned sparse retrieval, 2024. URL <https://arxiv.org/abs/2408.11119>.
 603

604 Hervé Déjean, Stéphane Clinchant, and Thibault Formal. A thorough comparison of cross-encoders
 605 and llms for reranking splade, 2024. URL <https://arxiv.org/abs/2403.10407>.
 606

607 Kenneth Enevoldsen, Isaac Chung, Imene Kerboua, Márton Kardos, Ashwin Mathur, David Stap,
 608 Jay Gala, Wissam Siblini, Dominik Krzemíński, Genta Indra Winata, Saba Sturua, Saiteja Ut-
 609 pala, Mathieu Ciancone, Marion Schaeffer, Diganta Misra, Shreeya Dhakal, Jonathan Rystrøm,
 610 Roman Solomatin, Ömer Veysel Çağatan, Akash Kundu, Martin Bernstorf, Shitao Xiao, Ak-
 611 shita Sukhlecha, Bhavish Pahwa, Rafał Poświaty, Kranthi Kiran GV, Shawon Ashraf, Daniel
 612 Auras, Björn Plüster, Jan Philipp Harries, Loïc Magne, Isabelle Mohr, Dawei Zhu, Hippolyte
 613 Gisserot-Boukhlef, Tom Aarsen, Jan Kostkan, Konrad Wojtasik, Taemin Lee, Marek Suppa,
 614 Crystina Zhang, Roberta Rocca, Mohammed Hamdy, Andrianos Michail, John Yang, Manuel
 615 Faysse, Aleksei Vatolin, Nandan Thakur, Manan Dey, Dipam Vasani, Pranjal A Chitale, Simone
 616 Tedeschi, Nguyen Tai, Artem Snegirev, Mariya Hendriksen, Michael Günther, Mengzhou Xia,
 617 Weijia Shi, Xing Han Lù, Jordan Clive, Gayatri K, Maksimova Anna, Silvan Wehrli, Maria
 618 Tikhonova, Henil Shalin Panchal, Aleksandr Abramov, Malte Ostendorff, Zheng Liu, Simon
 619 Clematide, Lester James Validad Miranda, Alena Fenogenova, Guangyu Song, Ruqiya Bin Safi,
 620 Wen-Ding Li, Alessia Borghini, Federico Cassano, Lasse Hansen, Sara Hooker, Chenghao Xiao,
 621 Vaibhav Adlakha, Orion Weller, Siva Reddy, and Niklas Muennighoff. MMTEB: Massive mul-
 622 tilingual text embedding benchmark. In *The Thirteenth International Conference on Learning
 623 Representations*, 2025. URL <https://openreview.net/forum?id=z13pfz4VCV>.
 624

625 Aaron Grattafiori et al. The llama 3 herd of models, 2024. URL <https://arxiv.org/abs/2407.21783>.
 626

627 Manuel Faysse, Hugues Sibille, Tony Wu, Bilel Omrani, Gautier Viaud, CELINE HUDELOT,
 628 and Pierre Colombo. Colpali: Efficient document retrieval with vision language models. In
 629 *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=ogjBpZ8uSi>.
 630

631 Thibault Formal, Benjamin Piwowarski, and Stéphane Clinchant. Splade: Sparse lexical and ex-
 632 pansion model for first stage ranking. In *Proceedings of the 44th International ACM SIGIR
 633 Conference on Research and Development in Information Retrieval*, SIGIR '21, pp. 2288–2292,
 634 New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450380379. doi:
 635 10.1145/3404835.3463098. URL <https://doi.org/10.1145/3404835.3463098>.
 636

637 Thibault Formal, Carlos Lassance, Benjamin Piwowarski, and Stéphane Clinchant. From distillation
 638 to hard negative sampling: Making sparse neural ir models more effective. In *Proceedings of
 639 the 45th International ACM SIGIR Conference on Research and Development in Information
 640 Retrieval*, SIGIR '22, pp. 2353–2359, New York, NY, USA, 2022a. Association for Computing
 641 Machinery. ISBN 9781450387323. doi: 10.1145/3477495.3531857. URL <https://doi.org/10.1145/3477495.3531857>.
 642

643 Thibault Formal, Benjamin Piwowarski, and Stéphane Clinchant. Match your words! a study of
 644 lexical matching in neural information retrieval. In *Advances in Information Retrieval: 44th
 645 European Conference on IR Research, ECIR 2022, Stavanger, Norway, April 10–14, 2022,
 646 Proceedings, Part II*, pp. 120–127, Berlin, Heidelberg, 2022b. Springer-Verlag. ISBN 978-3-
 647 030-99738-0. doi: 10.1007/978-3-030-99739-7_14. URL https://doi.org/10.1007/978-3-030-99739-7_14.
 648

648 Leo Gao, Tom Dupre la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya Sutskever,
 649 Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. In *The Thirteenth Inter-*
 650 *national Conference on Learning Representations*, 2025. URL [https://openreview.net/](https://openreview.net/forum?id=tcsZt9ZNKD)
 651 [forum?id=tcsZt9ZNKD](https://openreview.net/forum?id=tcsZt9ZNKD).

652 Michael Günther, Saba Sturua, Mohammad Kalim Akram, Isabelle Mohr, Andrei Ungureanu,
 653 Bo Wang, Sedigheh Eslami, Scott Martens, Maximilian Werk, Nan Wang, and Han Xiao.
 654 jina-embeddings-v4: Universal embeddings for multimodal multilingual retrieval, 2025. URL
 655 <https://arxiv.org/abs/2506.18902>.

656 Zhengfu He, Wentao Shu, Xuyang Ge, Lingjie Chen, Junxuan Wang, Yunhua Zhou, Frances Liu,
 657 Qipeng Guo, Xuanjing Huang, Zuxuan Wu, Yu-Gang Jiang, and Xipeng Qiu. Llama scope:
 658 Extracting millions of features from llama-3.1-8b with sparse autoencoders, 2024. URL <https://arxiv.org/abs/2410.20526>.

659 Sebastian Hofstätter, Sophia Althammer, Michael Schröder, Mete Sertkan, and Allan Hanbury. Im-
 660 proving efficient neural ranking models with cross-architecture knowledge distillation. *arXiv*
 661 *preprint arXiv:2010.02666*, 2020.

662 Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 663 and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International Con-*
 664 *ference on Learning Representations*, 2022. URL [https://openreview.net/forum?](https://openreview.net/forum?id=nZeVKeFYf9)
 665 [id=nZeVKeFYf9](https://openreview.net/forum?id=nZeVKeFYf9).

666 Robert Huben, Hoagy Cunningham, Logan Riggs Smith, Aidan Ewart, and Lee Sharkey. Sparse
 667 autoencoders find highly interpretable features in language models. In *The Twelfth International*
 668 *Conference on Learning Representations*, 2024. URL [https://openreview.net/forum?](https://openreview.net/forum?id=F76bwRSLeK)
 669 [id=F76bwRSLeK](https://openreview.net/forum?id=F76bwRSLeK).

670 Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand
 671 Joulin, and Edouard Grave. Unsupervised dense information retrieval with contrastive learn-
 672 ing. *Transactions on Machine Learning Research*, 2022. ISSN 2835-8856. URL <https://openreview.net/forum?id=jKN1pXi7b0>.

673 Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs. *IEEE*
 674 *Transactions on Big Data*, 7(3):535–547, 2019.

675 Hao Kang, Tevin Wang, and Chenyan Xiong. Interpret and control dense retrieval with sparse latent
 676 features. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Proceedings of the 2025 Conference*
 677 *of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human*
 678 *Language Technologies (Volume 2: Short Papers)*, pp. 700–709, Albuquerque, New Mexico, April
 679 2025. Association for Computational Linguistics. ISBN 979-8-89176-190-2. doi: 10.18653/v1/2025.nacl-short.58. URL <https://aclanthology.org/2025.nacl-short.58/>.

680 Subhash Kantamneni, Joshua Engels, Senthooran Rajamanoharan, Max Tegmark, and Neel Nanda.
 681 Are sparse autoencoders useful? a case study in sparse probing. In *Forty-second International*
 682 *Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=rNfzT8YkgO>.

683 Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
 684 Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In Bonnie
 685 Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), *Proceedings of the 2020 Conference on*
 686 *Empirical Methods in Natural Language Processing (EMNLP)*, pp. 6769–6781, Online, November
 687 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.550.
 688 URL <https://aclanthology.org/2020.emnlp-main.550/>.

689 Petr Kasalický, Martin Spišák, Vojtěch Vančura, Daniel Bohuněk, Rodrigo Alves, and Pavel Kordík.
 690 The future is sparse: Embedding compression for scalable retrieval in recommender systems.
 691 In *Proceedings of the Nineteenth ACM Conference on Recommender Systems*, RecSys '25,
 692 pp. 1099–1103, New York, NY, USA, 2025. Association for Computing Machinery. ISBN
 693 9798400713644. doi: 10.1145/3705328.3748147. URL <https://doi.org/10.1145/3705328.3748147>.

702 Junseong Kim, Seolhwa Lee, Jihoon Kwon, Sangmo Gu, Yejin Kim, Minkyung Cho, Jy yong Sohn,
 703 and Chanyeol Choi. Linq-embed-mistral:elevating text retrieval with improved gpt data through
 704 task-specific control and quality refinement. Linq AI Research Blog, 2024. URL <https://getling.com/blog/ling-embed-mistral/>.
 705

706 Anton Klenitskiy, Konstantin Polev, Daria Denisova, Alexey Vasilev, Dmitry Simakov, and Gleb
 707 Gusev. Sparse autoencoders for sequential recommendation models: Interpretation and flexible
 708 control, 2025. URL <https://arxiv.org/abs/2507.12202>.
 709

710 Weize Kong, Jeffrey M. Dudek, Cheng Li, Mingyang Zhang, and Michael Bendersky. Sparseembed:
 711 Learning sparse lexical representations with contextual embeddings for retrieval. In *Proceedings
 712 of the 46th International ACM SIGIR Conference on Research and Development in Information
 713 Retrieval*, SIGIR '23, pp. 2399–2403, New York, NY, USA, 2023. Association for Computing
 714 Machinery. ISBN 9781450394086. doi: 10.1145/3539618.3592065. URL <https://doi.org/10.1145/3539618.3592065>.
 715

716 Aditya Kusupati, Gantavya Bhatt, Aniket Rege, Matthew Wallingford, Aditya Sinha, Vivek Ra-
 717 manujan, William Howard-Snyder, Kaifeng Chen, Sham Kakade, Prateek Jain, et al. Matryoshka
 718 representation learning. In *Advances in Neural Information Processing Systems*, December 2022.
 719

720 Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
 721 Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
 722 Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
 723 Petrov. Natural questions: A benchmark for question answering research. *Transactions of the
 724 Association for Computational Linguistics*, 7:452–466, 2019. doi: 10.1162/tacl_a_00276. URL
 725 <https://aclanthology.org/Q19-1026/>.
 726

727 Carlos Lassance. Extending english ir methods to multi-lingual ir, 2023. URL <https://arxiv.org/abs/2302.14723>.
 728

729 Carlos Lassance, Thibault Formal, and Stéphane Clinchant. Composite code sparse autoencoders for
 730 first stage retrieval. In *Proceedings of the 44th International ACM SIGIR Conference on Research
 731 and Development in Information Retrieval*, SIGIR '21, pp. 2136–2140, New York, NY, USA,
 732 2021. Association for Computing Machinery. ISBN 9781450380379. doi: 10.1145/3404835.
 733 3463066. URL <https://doi.org/10.1145/3404835.3463066>.
 734

735 Carlos Lassance, Simon Lupart, Hervé Déjean, Stéphane Clinchant, and Nicola Tonello. A static
 736 pruning study on sparse neural retrievers. In *Proceedings of the 46th International ACM SIGIR
 737 Conference on Research and Development in Information Retrieval*, SIGIR '23, pp. 1771–1775,
 738 New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9781450394086. doi:
 739 10.1145/3539618.3591941. URL <https://doi.org/10.1145/3539618.3591941>.
 740

741 Carlos Lassance, Hervé Déjean, Thibault Formal, and Stéphane Clinchant. Splade-v3: New base-
 742 lines for splade. *arXiv preprint arXiv:2403.06789*, 2024.
 743

744 Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad Shoeybi, Bryan Catan-
 745 zaro, and Wei Ping. NV-embed: Improved techniques for training LLMs as generalist embedding
 746 models. In *The Thirteenth International Conference on Learning Representations*, 2025a. URL
 747 <https://openreview.net/forum?id=lgsyLSSdRe>.
 748

Jinhyuk Lee, Feiyang Chen, Sahil Dua, Daniel Cer, Madhuri Shanbhogue, Iftekhar Naim, Gustavo Hernández Ábreo, Zhe Li, Kaifeng Chen, Henrique Schechter Vera, Xiaoqi Ren, Shanfeng Zhang, Daniel Salz, Michael Boratko, Jay Han, Blair Chen, Shuo Huang, Vikram Rao, Paul Suganthan, Feng Han, Andreas Doumanoglou, Nithi Gupta, Fedor Moiseev, Cathy Yip, Aashi Jain, Simon Baumgartner, Shahrokh Shahi, Frank Palma Gomez, Sandeep Mariserla, Min Choi, Parashar Shah, Sonam Goenka, Ke Chen, Ye Xia, Koert Chen, Sai Meher Karthik Duddu, Yichang Chen, Trevor Walker, Wenlei Zhou, Rakesh Ghiya, Zach Gleicher, Karan Gill, Zhe Dong, Mojtaba Seyedhosseini, Yunhsuan Sung, Raphael Hoffmann, and Tom Duerig. Gemini embedding: Gener-
 749 alizable embeddings from gemini, 2025b. URL <https://arxiv.org/abs/2503.07891>.
 750

751

752

753

754

755

756 Yibin Lei, Tao Shen, Yu Cao, and Andrew Yates. Enhancing lexicon-based text embeddings with
 757 large language models. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Moham-
 758 mad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Com-
 759 putational Linguistics (Volume 1: Long Papers)*, pp. 18986–19001, Vienna, Austria, July 2025.
 760 Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.
 761 acl-long.930. URL <https://aclanthology.org/2025.acl-long.930/>.

762 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
 763 Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe
 764 Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks. In *Proceedings of the*
 765 *34th International Conference on Neural Information Processing Systems*, NIPS ’20, Red Hook,
 766 NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

767 Chaofan Li, Zheng Liu, Shitao Xiao, and Yingxia Shao. Making large language models a better
 768 foundation for dense retrieval, 2023a.

769 Chaofan Li, Minghao Qin, Shitao Xiao, Jianlyu Chen, Kun Luo, Defu Lian, Yingxia Shao, and
 770 Zheng Liu. Making text embedders few-shot learners. In *The Thirteenth International Confer-
 771 ence on Learning Representations*, 2025. URL <https://openreview.net/forum?id=wfLuiDjQ0u>.

772 Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang. Towards
 773 general text embeddings with multi-stage contrastive learning, 2023b. URL <https://arxiv.org/abs/2308.03281>.

774 Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant
 775 Varma, Janos Kramar, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open sparse
 776 autoencoders everywhere all at once on gemma 2. In Yonatan Belinkov, Najoung Kim, Jaap
 777 Jumelet, Hosein Mohebbi, Aaron Mueller, and Hanjie Chen (eds.), *Proceedings of the 7th Black-
 778 boxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP*, pp. 278–300, Miami,
 779 Florida, US, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
 780 blackboxnlp-1.19. URL <https://aclanthology.org/2024.blackboxnlp-1.19/>.

781 Johnny Lin. Neuronpedia: Interactive reference and tooling for analyzing neural networks, 2023.
 782 URL <https://www.neuronpedia.org>. Software available from neuronpedia.org.

783 Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin. Distilling dense representations for ranking
 784 using tightly-coupled teachers. *arXiv preprint arXiv:2010.11386*, 2020.

785 Simon Lupart, Thibault Formal, and Stéphane Clinchant. Ms-shift: An analysis of ms marco
 786 distribution shifts on neural retrieval. In *Advances in Information Retrieval: 45th Euro-
 787 pean Conference on Information Retrieval, ECIR 2023, Dublin, Ireland, April 2–6, 2023,
 788 Proceedings, Part I*, pp. 636–652, Berlin, Heidelberg, 2023. Springer-Verlag. ISBN 978-3-
 789 031-28243-0. doi: 10.1007/978-3-031-28244-7_40. URL https://doi.org/10.1007/978-3-031-28244-7_40.

790 Guangyuan Ma, Yongliang Ma, Xuanrui Gou, Zhenpeng Su, Ming Zhou, and Songlin Hu. Lightre-
 791 triever: A llm-based hybrid retrieval architecture with 1000x faster query inference, 2025. URL
 792 <https://arxiv.org/abs/2505.12260>.

793 Joel Mackenzie, Andrew Trotman, and Jimmy Lin. Efficient document-at-a-time and score-at-a-time
 794 query evaluation for learned sparse representations. *ACM Trans. Inf. Syst.*, 41(4), March 2023.
 795 ISSN 1046-8188. doi: 10.1145/3576922. URL <https://doi.org/10.1145/3576922>.

796 Alireza Makhzani and Brendan Frey. K-sparse autoencoders. *arXiv preprint arXiv:1312.5663*, 2013.

797 Antonio Mallia, Omar Khattab, Torsten Suel, and Nicola Tonello. Learning passage impacts for
 798 inverted indexes. In *Proceedings of the 44th International ACM SIGIR Conference on Research
 799 and Development in Information Retrieval*, pp. 1723–1727, 2021.

800 Rui Meng, Ye Liu, Shafiq Rayhan Joty, Caiming Xiong, Yingbo Zhou, and Semih Yavuz. Sfr-
 801 embedding-mistral:enhance text retrieval with transfer learning. Salesforce AI Research Blog,
 802 2024. URL <https://www.salesforce.com/blog/sfr-embedding/>.

810 Niklas Muennighoff, Nouamane Tazi, Loic Magne, and Nils Reimers. MTEB: Massive text em-
 811 bedding benchmark. In Andreas Vlachos and Isabelle Augenstein (eds.), *Proceedings of the 17th*
 812 *Conference of the European Chapter of the Association for Computational Linguistics*, pp. 2014–
 813 2037, Dubrovnik, Croatia, May 2023. Association for Computational Linguistics. doi: 10.18653/
 814 v1/2023.eacl-main.148. URL <https://aclanthology.org/2023.eacl-main.148/>.

815 Niklas Muennighoff, Hongjin Su, Liang Wang, Nan Yang, Furu Wei, Tao Yu, Amanpreet Singh,
 816 and Douwe Kiela. Generative Representational Instruction Tuning, February 2024. URL <http://arxiv.org/abs/2402.09906>. arXiv:2402.09906 [cs].

817 Suraj Nair, Eugene Yang, Dawn J. Lawrie, James Mayfield, and Douglas W. Oard. Learning a sparse
 818 representation model for neural clir. In *DESIRÉS*, pp. 53–64, 2022. URL <https://ceur-ws.org/Vol-3480/paper-06.pdf>.

819 Suraj Nair, Eugene Yang, Dawn Lawrie, James Mayfield, and Douglas W. Oard. Blade: Combin-
 820 ing vocabulary pruning and intermediate pretraining for scaleable neural clir. In *Proceedings*
 821 *of the 46th International ACM SIGIR Conference on Research and Development in Informa-
 822 tion Retrieval, SIGIR '23*, pp. 1219–1229, New York, NY, USA, 2023. Association for Com-
 823 puting Machinery. ISBN 9781450394086. doi: 10.1145/3539618.3591644. URL <https://doi.org/10.1145/3539618.3591644>.

824 Thong Nguyen, Sean MacAvaney, and Andrew Yates. A unified framework for learned sparse re-
 825 trieval. In *Advances in Information Retrieval: 45th European Conference on Information Re-
 826 trieval, ECIR 2023, Dublin, Ireland, April 2–6, 2023, Proceedings, Part III*, pp. 101–116, Berlin,
 827 Heidelberg, 2023. Springer-Verlag. ISBN 978-3-031-28240-9. doi: 10.1007/978-3-031-28241-6-
 828 7. URL https://doi.org/10.1007/978-3-031-28241-6_7.

829 Thong Nguyen, Mariya Hendriksen, Andrew Yates, and Maarten de Rijke. Multimodal learned
 830 sparse retrieval with probabilistic expansion control. In *Advances in Information Retrieval: 46th*
 831 *European Conference on Information Retrieval, ECIR 2024, Glasgow, UK, March 24–28, 2024,
 832 Proceedings, Part II*, pp. 448–464, Berlin, Heidelberg, 2024. Springer-Verlag. ISBN 978-3-
 833 031-56059-0. doi: 10.1007/978-3-031-56060-6_29. URL https://doi.org/10.1007/978-3-031-56060-6_29.

834 Rodrigo Nogueira and Kyunghyun Cho. Passage re-ranking with bert, 2020. URL <https://arxiv.org/abs/1901.04085>.

835 Charles O'Neill, Christine Ye, Kartheik G. Iyer, and John F Wu. Towards interpretable scientific
 836 foundation models: Sparse autoencoders for disentangling dense embeddings of scientific con-
 837 cepts. In *Neurips 2024 Workshop Foundation Models for Science: Progress, Opportunities, and
 838 Challenges*, 2024. URL <https://openreview.net/forum?id=mPq3R6jdtD>.

839 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
 840 tive coding. *arXiv preprint arXiv:1807.03748*, 2018.

841 OpenAI. text-embedding-3-large and new embedding models. <https://openai.com/index/new-embedding-models-and-api-updates/>, January 2024. Accessed:
 842 2025-09-25.

843 Biswajit Paria, Chih-Kuan Yeh, Ian EH Yen, Ning Xu, Pradeep Ravikumar, and Barnabás Póczos.
 844 Minimizing flops to learn efficient sparse representations. *arXiv preprint arXiv:2004.05665*, 2020.

845 Seongwan Park, Taeklim Kim, and Youngjoong Ko. Decoding dense embeddings: Sparse autoen-
 846 coders for interpreting and discretizing dense retrieval, 2025. URL <https://arxiv.org/abs/2506.00041>.

847 Aldo Porco, Dhruv Mehra, Igor Malioutov, Karthik Radhakrishnan, Moniba Keymanesh, Daniel
 848 Preotiu-Pietro, Sean MacAvaney, and Pengxiang Cheng. An alternative to flops regularization
 849 to effectively productionize splade-doc. In *Proceedings of the 48th International ACM SIGIR*
 850 *Conference on Research and Development in Information Retrieval, SIGIR '25*, pp. 2789–2793,
 851 New York, NY, USA, 2025. Association for Computing Machinery. ISBN 9798400715921. doi:
 852 10.1145/3726302.3730163. URL <https://doi.org/10.1145/3726302.3730163>.

864 Jingfen Qiao, Thong Nguyen, Evangelos Kanoulas, and Andrew Yates. Leveraging decoder archi-
 865 tectures for learned sparse retrieval, 2025. URL <https://arxiv.org/abs/2504.18151>.
 866

867 Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma, János
 868 Kramár, and Neel Nanda. Jumping ahead: Improving reconstruction fidelity with jumprelu sparse
 869 autoencoders, 2024. URL <https://arxiv.org/abs/2407.14435>.
 870

871 Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
 872 networks. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language
 873 Processing*. Association for Computational Linguistics, 11 2019. URL <https://arxiv.org/abs/1908.10084>.
 874

875 Sebastian Ruder, Jonathan H. Clark, Alexander Gutkin, Mihir Kale, Min Ma, Massimo Nicosia,
 876 Shruti Rijhwani, Parker Riley, Jean-Michel A Sarr, Xinyi Wang, John Wieting, Nitish Gupta,
 877 Anna Katanova, Christo Kirov, Dana L. Dickinson, Brian Roark, Bidisha Samanta, Connie
 878 Tao, David I. Adelani, Vera Axelrod, Isaac Caswell, Colin Cherry, Dan Garrette, Reeve Ingle,
 879 Melvin Johnson, Dmitry Pantelev, and Partha Talukdar. XTREME-UP: A user-centric scarce-
 880 data benchmark for under-represented languages. In Houda Bouamor, Juan Pino, and Kalika Bali
 881 (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2023*, pp. 1856–1884,
 882 Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
 883 findings-emnlp.125. URL <https://aclanthology.org/2023.findings-emnlp.125>.
 884

885 Oscar Skean, Md Rifat Arefin, Dan Zhao, Niket Nikul Patel, Jalal Naghiyev, Yann LeCun, and Ravid
 886 Schwartz-Ziv. Layer by layer: Uncovering hidden representations in language models. In *Forty-
 887 second International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=WGXB7UdvTX>.
 888

889 Lewis Smith, Senthooran Rajamanoharan, Arthur Conmy, Callum McDougall, Tom Lieberum,
 890 János Kramár, Rohin Shah, and Neel Nanda. Negative results for saes on down-
 891 stream tasks and deprioritising sae research (gdm mech interp team progress up-
 892 date 2). <https://www.alignmentforum.org/posts/4uXCAJNuPKtKBsi28/sae-progress-update-2-draft>, 2025.
 893

894 Livio Soares, Daniel Gillick, Jeremy Cole, and Tom Kwiatkowski. NAIL: Lexical retrieval in-
 895 dices with efficient non-autoregressive decoders. In Houda Bouamor, Juan Pino, and Kalika
 896 Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language
 897 Processing*, pp. 2574–2589, Singapore, December 2023. Association for Computational Linguis-
 898 tics. doi: 10.18653/v1/2023.emnlp-main.156. URL <https://aclanthology.org/2023.emnlp-main.156>.
 899

900 Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen,
 901 Adam Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L
 902 Turner, Callum McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R. Sumers,
 903 Edward Rees, Joshua Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan.
 904 Scaling monosemanticity: Extracting interpretable features from claude 3 sonnet. *Trans-
 905 former Circuits Thread*, 2024. URL <https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html>.
 906

907 Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna Gurevych. BEIR: A
 908 heterogeneous benchmark for zero-shot evaluation of information retrieval models. In *Thirty-fifth
 909 Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round
 910 2)*, 2021. URL <https://openreview.net/forum?id=wCu6T5xFjeJ>.
 911

912 Nicola Tonellotto, Craig Macdonald, Iadh Ounis, et al. Efficient query processing for scalable web
 913 search. *Foundations and Trends® in Information Retrieval*, 12(4-5):319–500, 2018.
 914

915 Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Im-
 916 proving text embeddings with large language models. In Lun-Wei Ku, Andre Martins, and
 917 Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Com-
 918 putational Linguistics (Volume 1: Long Papers)*, pp. 11897–11916, Bangkok, Thailand, August
 919 2024a. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.642. URL
 920 <https://aclanthology.org/2024.acl-long.642/>.

918 Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Multi-
 919 lingual e5 text embeddings: A technical report. *arXiv preprint arXiv:2402.05672*, 2024b.
 920

921 Shuai Wang, Shengyao Zhuang, Bevan Koopman, and Guido Zuccon. 2d matryoshka train-
 922 ing for information retrieval. In *Proceedings of the 48th International ACM SIGIR Confer-
 923 ence on Research and Development in Information Retrieval, SIGIR '25*, pp. 3125–3134, New
 924 York, NY, USA, 2025. Association for Computing Machinery. ISBN 9798400715921. doi:
 925 10.1145/3726302.3730330. URL <https://doi.org/10.1145/3726302.3730330>.

926 Tiansheng Wen, Yifei Wang, Zequn Zeng, Zhong Peng, Yudi Su, Xinyang Liu, Bo Chen, Hongwei
 927 Liu, Stefanie Jegelka, and Chenyu You. Beyond matryoshka: Revisiting sparse coding for adap-
 928 tive representation. In *Forty-second International Conference on Machine Learning*, 2025. URL
 929 <https://openreview.net/forum?id=z19u9B2fCZ>.
 930

931 Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak Gadre, Rebecca Roelofs, Raphael Gontijo-
 932 Lopes, Ari S. Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and
 933 Ludwig Schmidt. Model soups: averaging weights of multiple fine-tuned models improves ac-
 934 curacy without increasing inference time, 2022. URL <https://arxiv.org/abs/2203.05482>.
 935

936 Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett, Junaid Ahmed,
 937 and Arnold Overwijk. Approximate nearest neighbor negative contrastive learning for dense text
 938 retrieval. *arXiv preprint arXiv:2007.00808*, 2020.
 939

940 Mengyao Xu, Gabriel Moreira, Ronay Ak, Radek Osmulski, Yauhen Babakhan, Zhiding Yu,
 941 Benedikt Schifferer, and Even Oldridge. Llama nemoretriever colembed: Top-performing text-
 942 image retrieval model, 2025a. URL <https://arxiv.org/abs/2507.05513>.
 943

944 Zhichao Xu, Aosong Feng, Yijun Tian, Haibo Ding, and Lin Lee Cheong. Csplade: Learned sparse
 945 retrieval with causal language models, 2025b. URL <https://arxiv.org/abs/2504.10816>.
 946

947 Junhan Yang, Jiahe Wan, Yichen Yao, Wei Chu, Yinghui Xu, and Yuan Qi. inf-retriever-v1 (revision
 948 5f469d7), 2025. URL <https://huggingface.co/infly/inf-retriever-v1>.
 949

950 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
 951 and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
 952 answering. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun'ichi Tsujii (eds.), *Pro-
 953 ceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*, pp. 2369–
 954 2380, Brussels, Belgium, October–November 2018. Association for Computational Linguistics.
 955 doi: 10.18653/v1/D18-1259. URL <https://aclanthology.org/D18-1259/>.
 956

957 Hansi Zeng, Julian Killingback, and Hamed Zamani. Scaling sparse and dense retrieval in decoder-
 958 only llms. In *Proceedings of the 48th International ACM SIGIR Conference on Research and
 959 Development in Information Retrieval, SIGIR '25*, pp. 2679–2684, New York, NY, USA, 2025.
 960 Association for Computing Machinery. ISBN 9798400715921. doi: 10.1145/3726302.3730225.
 961 URL <https://doi.org/10.1145/3726302.3730225>.
 962

963 Xinyu Zhang, Xueguang Ma, Peng Shi, and Jimmy Lin. Mr. TyDi: A multi-lingual bench-
 964 mark for dense retrieval. In Duygu Ataman, Alexandra Birch, Alexis Conneau, Orhan Fi-
 965 rat, Sebastian Ruder, and Gozde Gul Sahin (eds.), *Proceedings of the 1st Workshop on Mul-
 966 tilingual Representation Learning*, pp. 127–137, Punta Cana, Dominican Republic, November
 967 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.mrl-1.12. URL
 968 <https://aclanthology.org/2021.mrl-1.12/>.
 969

970 Xinyu Zhang, Nandan Thakur, Odunayo Ogundepo, Ehsan Kamalloo, David Alfonso-Hermelo, Xi-
 971 aoguang Li, Qun Liu, Mehdi Rezagholizadeh, and Jimmy Lin. MIRACL: A multilingual retrieval
 972 dataset covering 18 diverse languages. *Transactions of the Association for Computational Lin-
 973 guistics*, 11:1114–1131, 2023. doi: 10.1162/tacl_a_00595. URL <https://aclanthology.org/2023.tacl-1.63/>.
 974

972 Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie,
973 An Yang, Dayiheng Liu, Junyang Lin, Fei Huang, and Jingren Zhou. Qwen3 embedding:
974 Advancing text embedding and reranking through foundation models, 2025. URL <https://arxiv.org/abs/2506.05176>.

975
976 Shengyao Zhuang, Shuai Wang, Fabio Zheng, Bevan Koopman, and Guido Zuccon. Starbucks-v2:
977 Improved training for 2d matryoshka embeddings, 2025. URL <https://arxiv.org/abs/2410.13230>.

978
979
980 Justin Zobel and Alistair Moffat. Inverted files for text search engines. *ACM Comput. Surv.*, 38
981 (2):6–es, July 2006. ISSN 0360-0300. doi: 10.1145/1132956.1132959. URL <https://doi.org/10.1145/1132956.1132959>.

982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026 **A EXPERIMENTAL SETTING**
10271028 We detail below the training sets used for the English and Multilingual settings.
10291030 **English Setting** For our ablation study, we restrict training to the MS MARCO dataset, given the
1031 computational cost associated with training 7B-parameter models. Our experimental setup closely
1032 follows that of SPLADE-v3 (Lassance et al., 2024). For each training query, we mine hard negatives
1033 using a SPLADE model and derive distillation targets from reranking scores produced by an open-
1034 source DeBERTa-v3 reranker (Déjean et al., 2024). This controlled setting is designed to enable
1035 a direct and fair comparison between SPLARE and its vocabulary-based counterpart, SPLADE-
1036 Llama.
10371038 **Multilingual Setting** In this more compute-intensive setting, we use the same training set em-
1039 ployed for the bge-multilingual-gemma2 model (Li et al., 2025)⁴. This corpus includes several
1040 English-centric public datasets (e.g., MS MARCO Bajaj et al. (2018), NQ Kwiatkowski et al. (2019),
1041 and HotPotQA Yang et al. (2018)), a large collection of Chinese retrieval datasets, and two multi-
1042 lingual benchmarks: MIRACL Zhang et al. (2023) and Mr.TyDi (Zhang et al., 2021). Since we rely
1043 on distillation for training, we only keep samples from this dataset which were annotated using the
1044 BGE multilingual reranker Chen et al. (2024b); Li et al. (2023a)⁵. After filtering, the final training
1045 set comprises approximately 1.3M queries with hard negatives. Notably, some of these datasets
1046 correspond to training splits of several MTEB benchmark tasks. While this may constrain the strict
1047 evaluation of generalization, this practice has become standard in prior work on general-purpose
1048 embedding models (Lee et al., 2025a; Wang et al., 2024a; BehnamGhader et al., 2024).
10491050 **B HYPER-PARAMETERS**
10511052 Table 4 gives the hyper-parameters used to train and evaluate SPLARE models and other baselines.
1053 Note that the temperature parameters τ is critical and needs to be adapted to each SAE suite. For
1054 instance, the optimal τ is different between Llama Scope or Gemma Scope. This depends on the
1055 scale of the logits and the initial sparsity of the SAE. For ill-suited τ , it can happen that models
1056 actually diverge—for instance, collapse of the ℓ_0 . To determine the optimal temperature, we ran
1057 a grid search over the values {1, 10, 20, 40, 50, 80, 100}, and used NanoBEIR⁶’nDCG@10 as an
1058 evalution criterion for all models.
10591060 **SAE choice** Gemma-scope contains multiple SAEs for the same layer and width, but with dif-
1061 ferent ℓ_0 . In practice, we observed that the initial SAE’s ℓ_0 had no critical effect on final per-
1062 formance—most likely because we fine-tune the backbone LLM. We use SAEs with ℓ_0 closest to 100
1063 throughout the paper. Additionally, Llama and Gemma Scope contain residual SAEs as well as MLP
1064 and attention stream SAEs. We only used residual SAEs in this paper.
10651066 **C ENGLISH-ONLY SPLARE FULL RESULTS**
10671068 We evaluate models from Section 5 (trained on English data only) on several benchmarks, and
1069 provide results in Table 1. We show in Table 5 additional evaluation results comparing SPLARE
1070 to SPLADE-Llama. We report MRR@10 on MS MARCO Bajaj et al. (2018) and nDCG@10 on
1071 TRECML 19 and TRECML 20 Craswell et al. (2021) and on all BEIR datasets (Thakur et al., 2021).
10721073 **D FULL RESULTS**
10741075 Tables 6—9 provide the full results of several MTEB datasets: English, Multilingual, and various
1076 domains and languages.
1077⁴hanhainebula/bge-multilingual-gemma2-data⁵BAAI/bge-reranker-v2-m3reranker⁶<https://huggingface.co/collections/zeta-alpha-ai/nanobair-66e1a0af21dfd93e620cd9f6>

Table 4: Hyperparameters.

Component	Value
LoRA rank r	64
Max training sequence length (english models)	128
Max training sequence length (multilingual models)	256
Epochs	1
Batch size	128
Learning rate	5×10^{-5}
Warmup ratio	0.01
Weight decay	0.
Nb negatives per query	8
λ_d	0.0001
λ_q	0.0001
τ SPLARE (LLama Scope)	80
τ SPLARE (Gemma Scope)	50
τ (SPLADE-LLama)	10
Evaluation max context size	512
Adam β s	0.9, 0.999

Dataset	SPLARE	SPLADE-Llama
arguana	16.0	16.2
climate-fever	18.3	18.0
dbpedia	44.3	44.8
fever	76.0	75.8
fiqa	42.4	42.3
hotpotqa	66.8	67.6
nfcorpus	37.3	36.4
nq	61.6	61.2
quora	87.3	87.9
scifact	72.5	72.9
trec-covid	84.7	82.4
webis	27.2	26.9
scidocs	17.5	17.3
Average	50.2	50.0
MS MARCO (MRR@10)	40.8	40.0
TRECDL 19	77.4	76.3
TRECDL 20	77.3	75.9

Table 5: Full results (nDCG@10 unless specified) on BEIR, MS MARCO and TREC DL for English-based SPLARE and SPLADE-Llama models. Evaluation done with Top-K = (40, 400).

Table 10 compares the SPLARE results on the MIRACL dataset with top multilingual dense retrievers—baseline results are taken from Chen et al. (2024b). On this benchmark, SPLARE obtains an average score of 69.6, only 1.9 points below M3-embeddings (hybrid: dense+sparse) Chen et al. (2024a). Notably, SPLARE is state-of-the-art in English, Finnish, Russian, German and Yoruba, once again indicating its ability to generalize to diverse languages. Note in particular that German and Yoruba are the “secret” languages of MIRACL which were released later *without associated training data*.

E LATENCY MEASURES

We provide per-query retrieval latency as measured on MS MARCO (retrieval from a collection of 8.8M documents) for SPLARE and SPLADE-Llama in Figure 5. To measure this, we first index

Task Name	SPLARE	SPLADE-Llama
ArguAna	59.1	64.0
CQA DupstackGamingRetrieval	61.6	58.5
CQA DupstackUnixRetrieval	44.5	44.1
ClimateFEVERHardNegatives	31.5	38.0
FEVERHardNegatives	89.4	90.4
FiQA2018	53.6	56.4
HotpotQAHardNegatives	77.1	74.0
SCIDOCS	20.4	19.7
TRECCOVID	83.4	81.1
Touche2020Retrieval.v3	65.0	57.6
Average	58.6	58.4

Table 6: Full results of SPLARE and SPLADE-Llama on MTEB(Eng, v2). Evaluation done with Top-K = (40, 400).

Task Name	SPLARE	SPLADE-Llama
AILAStatutes	33.8	34.1
ArguAna	59.1	64.0
BelebeleRetrieval	83.5	82.4
CovidRetrieval	80.6	78.0
HagridRetrieval	98.9	98.6
LEMBPasskeyRetrieval	38.8	38.8
LegalBenchCorporateLobbying	95.3	95.1
MIRACLRetrievalHardNegatives	70.7	68.8
MLQARetrieval	83.2	80.3
SCIDOCS	20.4	19.7
SpartQA	3.6	4.2
StackOverflowQA	86.0	90.2
StatcanDialogueDatasetRetrieval	36.7	32.2
TRECCOVID	83.4	81.1
TempReasonL1	2.4	4.0
TwitterHjerneRetrieval	74.4	75.3
WikipediaRetrievalMultilingual	90.9	89.9
WinoGrande	53.8	48.5
Average	60.9	60.3

Table 7: Full results of SPLARE and SPLADE-Llama on MTEB(Multilingual, v2). Evaluation done with Top-K = (40, 400).

the collection using Seismic Bruch et al. (2024c), and then perform single-threaded retrieval on the saved index. Seeking a very optimal sparse retrieval setup is difficult in general; here we use the very optimized Seismic library without any further tuning. Parameters used to index and retrieve and obtain these latency measurements are given in Table 12.

With the obtained SPLARE models and this simple setup, retrieval takes around 5ms per query with maximal accuracy. In low-latency regime (<4ms), SPLARE can be used with higher accuracy.

F SPLADE LAYER ABLATION

We showed in § 5 that SPLARE models are usually more effective at intermediate layer representations, providing a latency advantage compared to SPLADE. Yet, it is in principle possible to train SPLADE models using intermediate representations as well, by simply applying the LM head on the intermediate representations. We show results of such a training procedure in Table 13.

1188	1189	Task Name	SPLARE	SPLADE-Llama
ChemTEB				
1190	1191	ChemHotpotQARetrieval	89.3	82.1
1192	1193	ChemNQRetrieval	65.1	69.2
1194	1195	Average	77.2	75.7
Code				
1196	1197	AppsRetrieval	22.6	29.5
1198	1199	COIRCodeSearchNetRetrieval	61.0	72.7
1200	1201	CodeEditSearchRetrieval	72.9	74.4
1202	1203	CodeFeedbackMT	50.3	49.4
1204	1205	CodeFeedbackST	76.3	77.9
1206	1207	CodeSearchNetCCRetrieval	60.4	65.1
1208	1209	CodeSearchNetRetrieval	83.4	86.5
1210	1211	CodeTransOceanContest	81.6	86.6
1212	1213	CodeTransOceanDL	36.3	32.0
1214	1215	CosQA	30.2	30.9
1216	1217	StackOverflowQA	86.0	90.2
1218	1219	SyntheticText2SQL	67.5	67.9
1220	1221	Average	60.7	63.6
Medical				
1222	1223	CUREv1	63.7	56.3
1224	1225	CmedqaRetrieval	28.0	32.2
1226	1227	MedicalQARetrieval	74.8	75.2
1228	1229	NFCorpus	40.0	38.7
1230	1231	PublicHealthQA	85.7	86.0
1232	1233	SciFact	77.8	77.1
1234	1235	SciFact-PL	75.6	73.7
1236	1237	TRECCOVID	83.4	81.1
1238	1239	TRECCOVID-PL	82.8	83.5
1240	1241	Average	68.0	67.1
Law				
1242	1243	AILACasedocs	36.2	36.5
1244	1245	AILAStatutes	33.8	34.1
1246	1247	GerDaLIRSmall	27.5	27.6
1248	1249	LeCaRDv2	62.1	58.6
1250	1251	LegalBenchConsumerContractsQA	86.9	84.6
1252	1253	LegalBenchCorporateLobbying	95.3	95.1
1254	1255	LegalQuAD	55.4	55.2
1256	1257	LegalSummarization	67.8	68.4
1258	1259	Average	58.1	57.5

Table 8: Full results of SPLARE and SPLADE-Llama on MTEB domain specific datasets. Evaluation done with Top-K = (40, 400).

G RETRIEVAL EXAMPLES

We provide in Figures 6—14 multiple examples of scores and explanations obtained for positive documents for some queries on English, Multilingual and multi-domain datasets. We also provide examples on the code domain (Figures 15—17), which highlight some of the limitations on SPLARE on specific domains which might require dedicated SAEs. Notably, in Figure 14 which shows a Tamil example, *the document and query representations coincide for only 6 tokens*, further highlighting SPLADE multilingual limitations. Note that the explanations we used, taken from Neuronpedia, are mostly annotated by LLMs provided with examples of context with features activations. As such, these explanations may remain inaccurate or incomplete.

1242	Task Name	SPLARE	SPLADE-Llama
MTEB (deu, v1)			
1247	GerDaLIR	13.6	13.6
1248	GermanDPR	88.0	85.1
1249	GermanQuAD-Retrieval	95.9	94.9
1250	XMarket	27.2	27.8
1251	Average	56.2	55.4
MTEB (Scandinavian, v1)			
1253	DanFeverRetrieval	41.6	41.5
1254	NorQuadRetrieval	24.7	27.5
1255	SNLRetrieval	98.0	98.3
1256	SweFaqRetrieval	77.9	76.9
1257	SwednRetrieval	82.4	79.9
1258	TV2Nordretrieval	94.2	93.7
1259	TwitterHjerneRetrieval	74.4	75.3
1260	Average	70.5	70.4
MTEB (fra, v1)			
1262	AlloprofRetrieval	56.1	56.9
1263	BSARDRetrieval	66.7	57.7
1264	MintakaRetrieval	47.0	58.6
1265	SyntecRetrieval	90.1	89.1
1266	XPQARetrieval	68.0	65.5
1267	Average	65.6	65.6
MTEB (kor, v1)			
1269	Ko-StrategyQA	83.3	82.4
1270	MIRACLRetrieval	66.6	64.9
1271	Average	74.9	73.7

1273 Table 9: Full results of SPLARE and SPLADE-Llama on MTEB language-specific benchmarks.
1274 Evaluation done with Top-K = (40, 400).

Model	ar	bn	en	es	fa	fi	fr	hi	id	ja	ko	ru	sw	te	th	zh	de [†]	yo [†]	Avg
Baselines (Prior Work)																			
BM25	39.5	48.2	26.7	7.7	28.7	45.8	11.5	35.0	29.7	31.2	37.1	25.6	35.1	38.3	49.1	17.5	12.0	56.1	31.9
mDPR	49.9	44.3	39.4	47.8	48.0	47.2	43.5	38.3	27.2	43.9	41.9	40.7	29.9	35.6	35.8	51.2	49.0	39.6	41.8
mContriever	52.5	50.1	36.4	41.8	21.5	60.2	31.4	28.6	39.2	42.4	48.3	39.1	56.0	52.8	51.7	41.0	40.8	41.5	43.1
mE5large	76.0	75.9	52.9	52.9	59.0	77.8	54.5	62.0	52.9	70.6	66.5	67.4	74.9	84.6	80.2	56.0	56.4	78.3	66.6
E5_mistral-7b	73.3	70.3	57.3	52.2	52.1	74.7	55.2	52.1	52.7	66.8	61.8	67.7	68.4	73.9	74.0	54.0	54.1	79.7	63.4
Gemini Embedding	78.3	79.0	58.7	57.0	60.9	78.0	55.6	65.4	54.3	75.1	68.9	73.4	81.0	80.5	80.8	65.7	59.8	88.8	70.1
M3-Emb (Sparse)	67.1	68.9	43.8	38.6	45.1	65.4	35.3	48.2	48.9	56.1	61.5	44.5	57.9	79.1	70.9	36.1	32.5	70.0	53.9
M3-Emb (All)	80.2	81.5	59.6	59.7	63.4	80.4	61.2	63.3	59.0	75.2	72.1	71.7	79.6	88.1	83.7	64.9	59.8	83.5	71.5
SPLADE-Llama	76.9	70.7	57.7	55.6	57.5	78.9	57.1	60.3	57.2	73.0	64.5	71.1	78.7	77.9	78.8	89.8	60.2	56.8	67.9
SPLARE	79.2	72.2	62.0	58.4	59.5	80.5	58.4	62.2	55.5	75.1	66.8	73.8	78.9	75.7	80.8	62.8	61.3	89.1	69.6

1291 Table 10: Multi-lingual retrieval performance on MIRACL dev (nDCG@10). Baseline results are
1292 taken from Chen et al. (2024b) and (Lee et al., 2025b). [†] denotes the two hidden test sets of MIR-
1293 ACL. Evaluation for SPLARE and SPLADE-Llama done with Top-K = (40, 400).

Model	MRR@10
SPLARE	59.8
SPLARE (Eng Only)	41.6
SPLADE-Llama	56.3
SPLADE-Llama (Eng Only)	30.5
Gemini Embedding	64.3
Gemini Embedding (Eng Only)	49.3
Gecko i18n Embedding	35.0
voyage-3-large	39.2
Linq-Embed-Mistral	24.6
multilingual-e5-large-instruct	18.7
gte-Qwen2-7B-instruct	17.4
text-embedding-3-large	18.8

Table 11: XTREME-UP dataset (MRR@10) - Average Scores. Baselines taken from (Lee et al., 2025b). Evaluation for SPLARE done with Top-K = (40, 400).

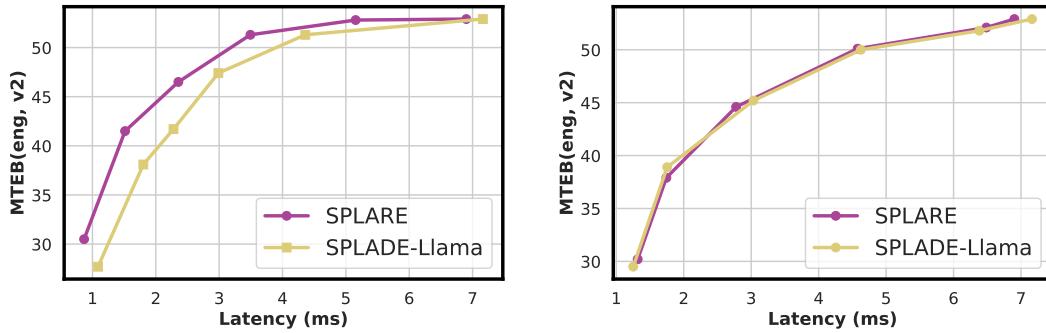


Figure 5: Retrieval Latency (ms) when pooling documents (Left) or query (Right) representations with Top-K. In low-latency settings, SPLARE enables higher accuracy for a given level of latency.

Parameter	Value
k	1000
query_cut	30
heap_factor	0.5
n_knn	0
sorted	False
num_threads	1

Table 12: Seismic retrieval parameters used to measure latency.

SPLADE-Llama at intermediate layers				
Layer No.	18	22	26	31
MTEB(Eng, v2)	0.	43.6	44.5	52.9

Table 13: Training SPLADE-Llama models at intermediate layers leads to strong deterioration. At layer < 22, models collapse during training.

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

Figure 6: Retrieval example from BEIR/Scifact

Query: Flexible molecules experience greater steric hindrance in the tumor microenvironment than rigid molecules.

Positive document: A solid tumor is an organ composed of cancer and host cells embedded in an extracellular matrix and nourished by blood vessels. A prerequisite to understanding tumor pathophysiology is the ability to distinguish and monitor each component in dynamic studies. Standard fluorophores hamper simultaneous intravital imaging of these components. Here, we used multiphoton microscopy techniques and transgenic [...]

SPLAIRE top features (doc rank = 3)		SPLAIDE top tokens (doc rank = 6)	
Explanation (from Neuronpedia) Lin (2023)	%	Token	%
references to tumors and their related biological processes	8.6	„tumor	12.7
terms related to drug delivery and cellular mechanisms	7.5	„tumors	8.1
terms related to cancer research and metastasis	5.5	„cancer	7.3
medical conditions and diseases, particularly types of cancer and their characteristics	4.8	„tum	6.3
concepts related to flexibility in various contexts	4.8	„nanoparticles	5.3
terms related to cellular processes and immune system functions	4.2	„Cancer	4.9
references to experimental methods and cell-related terminology	4.0	„nanop	4.4
terms related to microscopy and micro-level scientific analysis	4.0	„nan	3.0
variations of the word "tumorous" or its related forms	3.6	„solid	2.6
terms related to cancer and tumors	3.5	„malignant	2.6

Figure 7: Retrieval example from BEIR/Scifact

Query: PPAR-RXRs are inhibited by PPAR ligands.

Positive document: Heterodimerization is a common paradigm among eukaryotic transcription factors. The 9-cis retinoic acid receptor (RXR) serves as a common heterodimerization partner for several nuclear receptors, including the thyroid hormone receptor (T3R) and retinoic acid receptor (RAR). This raises the question as to whether these complexes possess dual hormonal responsiveness. We devised a strategy to examine ...

SPLAIRE top features (doc rank = 5)		SPLAIDE top tokens (doc rank = 18)	
Explanation (from Neuronpedia) Lin (2023)	%	Token	%
terms related to gene transcription regulation	6.2	„heter	6.2
mathematical variables and expressions	4.3	„RX	6.0
terms related to dopamine and receptor interactions in the context of medicine and psychology	4.2	„rx	5.2
abbreviations or terms related to programming and data structures	4.2	„RX	5.0
references to QR codes and VR technologies	4.2	„receptor	4.9
information about medications used for treating acne	3.8	„receptors	4.3
references to proteins and their biological functions	3.1	„nuclear	3.8
terminology related to pharmaceuticals and drug development	2.8	„Rx	3.7
terms related to cellular functions and regulatory mechanisms	2.8	„transcription	3.6
terms related to medical and biological concepts, particularly hormones and their effects	2.8	„rx	3.6

Figure 8: Retrieval example from BEIR/Climate-Fever

Query: Ocean acidification is the terrifying threat whereby all that man-made CO2 we've been pumping into the atmosphere may react with the sea to form a sort of giant acid bath.

Positive document: A greenhouse gas (abbrev. GHG) is a gas in an atmosphere that absorbs and emits radiation within the thermal infrared range. This process is the fundamental cause of the greenhouse effect. The primary greenhouse gases in Earth's atmosphere are water vapor, carbon dioxide, methane, nitrous oxide, and ozone. Without greenhouse gases, the average temperature of Earth's surface would be a ...

SPLAIRE top features (doc rank = 6)		SPLAIDE top tokens (doc rank = 20)	
Explanation (from Neuronpedia) Lin (2023)	%	Token	%
references to climate change and its associated causes	6.3	„CO	8.2
statements and discussions regarding climate change-related issues	5.0	„atmosphere	7.7
terms related to climate change and its impacts	4.4	„greenhouse	7.3
content related to environmental impacts, particularly concerning carbon dioxide and food	4.1	„climate	5.7
terms related to carbon emissions and environmental impacts	4.1	„carbon	5.6
mentions of carbon dioxide and its related metrics or expressions	3.9	„dioxide	4.7
references to carbon dioxide and its implications in various contexts	3.3	„anthrop	4.2
references to environmental impact and sustainability	3.2	„climate	3.6
references to human activity and its impact on the environment	3.0	„atmospheric	3.6
mentions of sustainability and environmental impact	3.0	„Carbon	3.5

1404

1405

1406

Figure 9: Retrieval example from BEIR/Climate-fever

1407

Query: No state generates as much solar power as California, or has as many people whose jobs depend on it.

1408

Positive document: California is the most populous state in the United States and the third most extensive by area . Located on the western (Pacific Ocean) coast of the U.S. , California is bordered by the other U.S. states of Oregon , Nevada , and Arizona and shares an international border with the Mexican state of Baja California . The state capital is Sacramento . Los A ...

1409

1410

1411

1412

1413

SPLARE top features (doc rank = 2)		SPLADE top tokens (doc rank = 6)	
Explanation (from Neuronpedia) Lin (2023)	%	Token	%
references to financial or budgetary topics	7.0	California	8.5
references to California	6.8	california	6.3
regional references and mentions of cities or places	5.7	CA	6.1
references to California and its locations or institutions	4.9	Calif	4.9
mentions of political entities and territories	4.3	state	4.7
references to political figures and legislation related to California	3.9	Californ	4.7
references to geographic locations and regions in California, particularly related to agri ...	3.8	California	4.6
references to governance, laws, and political contexts	3.3	ifornia	3.6
positive descriptions and references to favorable weather conditions	3.2	CAL	3.3
references to California's environmental regulatory bodies and legislation	3.2	State	3.2

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

Figure 10: Retrieval example from BEIR/Hotpotqa

1427

Query: The Death of Cook depicts the death of James Cook at a bay on what coast?

1428

Positive document: Kealakekua Bay is located on the Kona coast of the island of Hawaii about 12 mi south of Kailua-Kona.

1429

1430

SPLARE top features (doc rank = 3)		SPLADE top tokens (doc rank = 17)	
Explanation (from Neuronpedia) Lin (2023)	%	Token	%
references to "Bay" or similar geographical features	11.9	Hawaii	9.9
references to a specific geographical location or name containing "Bay."	10.7	bay	9.7
geographical features and safe navigation routes	9.5	Hawai	9.1
references to health and community support systems	9.5	Bay	8.2
historical references and significant events	9.3	Ke	7.9
references to coastal regions and their characteristics	7.6	Ke	5.4
references to historical sites and landmarks	5.4	Bay	5.1
references to specific geographical locations and their significance in the context of li ...	5.2	Hawaiian	5.0
information related to marine and coastal ecosystems	4.7	bay	4.5
references to sailing, ships, and boating experiences	4.2	Haw	4.0

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

Figure 11: Retrieval example from MIRACL/Swahili

1442

Query: Kiongozi wa chama cha Orange Democratic Movement ni nani?

1443

1444

1445

1446

1447

1448

Positive document: Orange Democratic Movement Katika uchaguzi wa rais Raila Odinga alitangazwa kuwa ameshindwa na rais Kibaki kwa kura 230,000. Lakini watazamaji wengi waliona kasoro katika hesabu ya kura na ODM ilidai kuwa Odinga ni mshindi halali. ODM ilifaulu vizuri upande wa viti vya bunge la Kenya. Ilipata karibu nusu ya wabunge wote yaani 99 katи ya 120 ikawa kubwa katika bunge baada ya uchaguzi wa Desemba 200 ...

1449

1450

1451

1452

1453

1454

1455

1456

1457

SPLARE top features (doc rank = 5)		SPLADE top tokens (doc rank = 8)	
Explanation (from Neuronpedia) Lin (2023)	%	Token	%
mentions of "Orange" or related terms and concepts	8.9	Rail	9.3
references to events or occurrences in the future	6.4	Orange	8.5
prominent political figures and their involvement in elections	6.0	Kenya	7.1
references to the abbreviation "OD" and variations of it, typically related to a specific ...	5.8	Rail	6.3
terms associated with political events and discussions	5.4	OD	5.7
references to business strategies and company operations	5.1	OD	5.5
references to DMCA regulations and related legal terms	4.1	Orange	4.8
references to places in Kenya	4.0	movement	4.2
information related to notable historical figures and their relationships	3.6	Leader	4.0
references to political candidates and their activities within the Democratic Party	3.3	orange	3.5

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

Figure 12: Retrieval example from MIRACL/Bengali

Query (translated from Bengali): What is the name of the first band in Bangladesh?

Positive document (translated from Bengali): Obscure (Bangla Band) — Obscure is one of the notable bands in the history of Bangladeshi band music. In the 1980s, Sayed Hasan Tipu took the initiative to establish this band. On March 15, 1985, Tipu founded Obscure in Khulna. During the 1980s, Obscure's first album was released from Sargam Studio. That first self-titled album, "Obscure Volume 1," released in 1986, earned a permanent place in the history of Bangla band music.

SPLARE top features (doc rank = 3)		SPLADE top tokens (doc rank = 20)	
Explanation (from Neuronpedia) Lin (2023)	%	Token	%
references to specific individuals and groups within a social or cultural context	6.2	„Bangladesh	9.8
references to musical bands or groups	6.2	„band	8.5
mentions of bands and musical groups	5.5	„Bang	7.9
repeated or emphasized mentions of specific entities or concepts	4.8	Bang	5.8
references to iconic rock bands and their legacy	4.7	„bang	5.5
occurrences of the country name "Bangladesh."	4.7	„Band	5.3
references to musical bands and collaborations	4.5	band	4.8
elements related to music and musicians	3.4	„bands	4.2
descriptors related to music and performance quality	3.3	bang	3.8
proper names and the mention of individuals in the text	3.2	„-band	3.3

Figure 13: Retrieval example from MIRACL/French

Query: Qui est le mathématicien le plus célèbre au monde?

Positive document: Nira Chamberlain En 2017, il intervient dans l'atelier du New Scientist "Le monde mathématique". En 2018, il est nommé "mathématicien le plus intéressant du monde" par le "Big Internet Math Off" organisé par le site "Aperiodical". En 2019, il donne une conférence à la "Maxwell Society" sur "Les mathématiques qui peuvent arrêter une apocalypse de l'IA". Il fait des apparitions dans les médias brita ...

SPLARE top features (doc rank = 5)		SPLADE top tokens (doc rank = 11)	
Explanation (from Neuronpedia) Lin (2023)	%	Token	%
concepts related to mathematics and quantitative analysis	9.7	„mathematic	19.7
terms and phrases related to mathematics	9.0	„Mathematic	15.3
elements related to academic papers and research acknowledgments	8.5	„maths	10.3
references to the concept of "world" in various contexts	8.3	„math	10.2
references to mathematical concepts and theorems	6.8	„Math	8.1
discussions about artistic individuals or the concept of creativity	6.6	ian	7.9
terms and references related to mathematics and mathematicians	6.2	„world	6.6
references to mathematical concepts and terms	6.1	„monde	5.9
terms related to academic professionals and researchers across various fields	5.1	„mathematical	4.4
references to notable individuals and their contributions or warnings in the field of arti ...	5.0	ematik	3.9

Figure 14: Retrieval example from XTREME-UP: Tamil → English

Query: மனிதனால் சராசரியாக எவ்வளவு வெட்பத்தில்லையெ தாங்க முடியும்

Translation: On average, how much temperature can a human withstand?

Positive document: Cold and heat adaptations in humans The human body always works to remain in homeostasis. One form of homeostasis is thermoregulation. Body temperature varies in every individual, but the average internal temperature is 37.0 °C (98.6 °F). Stress from extreme external temperature can cause the human body to shut down [...]

SPLARE top features (document rank = 2)		SPLADE top tokens (document rank = 73)	
Explanation (from Neuronpedia) Lin (2023)	%	Token	%
references to "human beings" and related concepts	12.3	„human	29.3
terms related to temperature variations and environmental conditions	11.9	„Human	21.5
terms related to fever and its physiological effects	10.3	„average	20.7
terms related to biological concepts and interactions	9.6	„humans	20.3
references to averages or average values in contexts related to statistics or metrics	9.2	„withstand	3.8
specific guidelines and recommendations related to health and wellness	8.6	„endurance	2.4
phrases related to summer and heat conditions	8.2	„limit	2.1
specific temperature values and their measurements	6.8		
references to bodily systems and their components	6.7		
quantitative data related to spending and financial metrics	5.9		

1512

1513

1514

Figure 15: from CodeEditSearchRetrieval

Query: Add totally untested pools ;)

Positive document: ---

```

1517    +++
1518    @@ -1,4 +1,6 @@
1519    -import abc
1520    +from multiprocessing import Pool as ProcessPool
1521    +from multiprocessing.dummy import Pool as ThreadPool
1522    +from multiprocessing import cpu_count
1523    def do_flow(flow, result=None):
1524        @@ -8,19 +10,41 @@
1525        return result
1526    +class PoolAPI(object):
1527        + def map(self, *args, **kw):
1528            + return self.pool.map(*args, **kw)
1529        +
1530        +class ThreadPool(PoolAPI):
1531        +
1532        + de ...

```

SPLARE top features (document rank = 10)		SPLADE top tokens (document rank = 3)	
Explanation (from Neuronpedia) Lin (2023)	%	Token	%
references to "pool" and related concepts in various contexts	32.4	pool	17.0
aspects of vacation experiences related to comfort and amenities	28.0	pools	15.1
references to specific events or actions occurring in a timeline or sequence	7.1	Pool	14.5
topics related to punk culture and its influence on music and community	6.9	pool	8.9
references to the term "stream" or its variations within contexts related to art and medi ...	5.8	Pool	8.8
comments about changes and improvements, particularly in processes, products, or performa ...	5.5	pooling	6.6
references to swimming pools and related recreational facilities	3.8	pool	3.9
references to programming tasks and contributions related to software development	3.7	patch	3.7
references to programming interfaces and database management	3.2	improvements	3.1
expressions of sports performance and competition	1.4	patches	2.4

1538

1539

1540

1541

Figure 16: from CodeEditSearchRetrieval

Query: Make sure that the interests_register tables are created
Nose tries to run the interests_register tests, but they will
fail unless the interest_register app is added to INSTALLED_APPS,
because its ta ...

Positive document: ---

```

1548    +++
1549    @@ -8,7 +8,8 @@
1550    'pombola.place_data',
1551    'pombola.votematch',
1552    'speeches',
1553    - 'pombola.spinner' ) + \
1554    + 'pombola.spinner',
1555    + 'pombola.interests_register' ) + \
APPS_REQUIRED_BY_SPEECHES
1556    # create the ENABLED_FEATURES hash that is used to toggle features on
1557    and off.

```

SPLARE top features (document rank = 14)		SPLADE top tokens (document rank = 1)	
Explanation (from Neuronpedia) Lin (2023)	%	Token	%
keywords related to the concept of registration in various contexts	9.5	apps	5.7
phrases relating to various aspects of "interest" in different contexts	9.2	register	5.3
mentions of applications or software-related terminology	5.9	register	5.2
features related to software libraries and their installation	4.7	interest	5.1
mentions of interest in various contexts or subjects	4.0	register	5.0
instances of the word "create" and its variations, indicating a focus on creation and gen ...	3.9	Interest	4.8
issues related to coding and technical errors in query parameters	3.9	interests	4.6
phrases related to registration and enrollment	3.0	apps	4.5
elements related to importing and structuring code within modules	2.8	interest	3.7
control keywords related to system configuration and management	2.8	interest	3.7

1564

1565

1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582

1583
 1584

Figure 17: from CodeEditSearchRetrieval

1585 **Query:** Update variables names in exam tests
 1586 **Positive document:** ---
 1587 +++
 1588 @@ -17,16 +17,16 @@
 1589 def test_create_biopsy_exam(self):
 1590 from biopsy.models import Biopsy
 1591 - specific_exam = create_specific_exam('Biopsy')
 1592 + biopsy_exam = create_specific_exam('Biopsy')
 1593 - specific_exam | should | be_kind_of(Biopsy)
 1594 + biopsy_exam | should | be_kind_of(Biopsy)
 1595 def test_create_necropsy_exam(self):
 1596 from necropsy.mod ...

SPLARE top features (document rank = 19)		SPLADE top tokens (document rank = 1)	
Explanation (from Neuronpedia) Lin (2023)	%	Token	%
terms associated with analysis and examination in a specialized medical context	19.8	.exam	12.4
instances of the word "exam."	17.2	.tests	9.0
occurrences of the word "test" and its variations in various contexts	16.9	.Exam	8.9
references to exams and testing processes	15.2	.exams	7.4
references to testing and test cases in programming contexts	10.2	exam	6.4
references to unit testing and its associated concepts	9.6	.test	6.2
references to notable figures or characters in a narrative context	3.2	Exam	5.3
technical terms and keywords related to programming and computer science	2.6	.exam	4.6
references to institutions or organizations in a structured context	2.1	.examination	4.3
numerical values and measurements	1.7	tests	4.0

1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619