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Abstract

Neural networks constitute a class of func-
tions that are typically non-surjective, with high-
dimensional fibers and complicated image. We
prove two main results concerning the geometry
of the loss landscape of a neural network. First,
we provide an explicit effective bound on the sizes
of the hidden layers so that the loss landscape has
no spurious valleys, which guarantees the success
of gradient descent methods. Second, we present
a novel method for analyzing whether a given neu-
ral network architecture with monomial activation
function can represent a target function of inter-
est. The core of our analysis method is the study
of a specific set of error values, and its behavior
depending on different training datasets.

1. Introduction
In various neural network applications, the need of ana-
lyzing high-dimensional datasets has prompted the use of
increasingly deep and complex neural network architectures.
Although the practical results are remarkable and promis-
ing, a complete theoretical understanding of the reason why
training methods, such as the Stochastic Gradient Descent
(SGD), work so well is yet to be reached. In this paper, we
study the geometrical properties of the loss landscapes of
neural networks to shed some light on this topic. In par-
ticular, we present two main results: the first one relates
the presence of spurious valleys in the loss landscape with
the architecture of the neural network (Section 3), and the
second one uses the geometry of the loss landscape to define
a novel criterion to determine whether the target function is
representable by the given neural network (Section 4).

We view a neural network N as a family of functions in-
dexed by the set of its parameters (weights and biases).

1Department of Mathematics, University of Bonn, Bonn, Ger-
many 2Department of Computer Science, Vrije Universiteit Brus-
sel, Brussels, Belgium. Correspondence to: Samuele Pollaci
<Samuele.Pollaci@vub.be>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

In particular, we formalize a neural network as a function
sending a tuple A of parameters to a map N (A), defined as
an alternating composition of affine transformations with
a given activation function (Section 2.1). Intuitively, each
affine transformation expresses the behavior of a layer of
neurons, and the image of a tuple A of parameters via N is
the corresponding neural network with fixed parameters1 A.
As usual, we are going to use neural networks for approxi-
mating with a good representative η from the image of N an
unknown real target function ϕ : Rp → Rq. The choice of
η can be determined by gradient descent methods based on
a given finite sample T of points of the graph of ϕ, called a
training dataset, and a fixed, chosen error function. During
this process, a path on the graph of the error function, i.e.
the loss landscape, is defined, moving closer to points of
lower error and eventually ending in η. It is patent that the
geometry of the loss landscape can influence how good of
an approximation η is. In particular, the gradient descent
can get stuck in particular connected components of the loss
landscape, called spurious valleys (Definition 3.2), that do
not contain any global minimum of the error function, forc-
ing the path to end in a sub-optimal point. The absence of
spurious valleys implies that all the local minima of the error
function are global, and thus it guarantees, under certain
assumptions, the success of gradient descent methods. Our
first result provides sufficient conditions for the absence of
spurious valleys:

Theorem 1.1. Let N be a neural network. If the error func-
tion has a global minimum, then there are explicit effective
bounds on the sizes of the hidden layers so that the loss
landscape of N has no spurious valleys.

The bounds mentioned in Theorem 1.1 depend only on the
sizes of the input and output layers, the number of hidden
layers, and the activation function. Hence, Theorem 1.1
can be used to choose the sizes of the hidden layers of N
to prevent the loss landscape from having spurious valleys.
We have precise formulations of Theorem 1.1 in the spuri-
ous valleys Theorems (Theorems 3.7 and 3.10) for neural
networks with and without bias. Our results generalize a the-
orem from (Venturi et al., 2019), denoted as Theorem 8, to
wider classes of neural networks in the context of empirical
risk minimization.

1We call N (A) a neural network function, to distinguish it from
our definition of neural network which does not fix the parameters.
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The second main contribution is presented in Section 4 and
it concerns a novel method for analyzing whether a given
neural network N can represent a target function ϕ of in-
terest, i.e. if ϕ is in the image of N . For this result, we
focus just on polynomial neural networks, which are neural
networks with an r-th power exponentiation as activation
function. This environment allows us to use the powerful
machinery of algebraic geometry (Hartshorne, 1977), and,
other than being a satisfactory testing ground, it could con-
stitute a good stepping stone for further results in more
general settings. More in detail, our criterion is based on the
study of a certain set ST of error values depending on the
training dataset T . We provide now a brief and technical
description of the construction of ST , as an anticipation
of what is presented in Section 4. We denote by HT the
graph of the error function restricted to a generic 2-plane.
If we consider the projection πT : HT → A1 onto the 1-
dimensional affine space representing the error, we obtain a
family of plane curves, which are the fibers of the restricted
error function. We denote by ST ⊆ A1 the set of error
values s where π−1

T (s) is a singular curve. We observe that
the behavior of the points in ST as we change the training
dataset T contains information on the ability of the neural
network to approximate the target function. This approach
involving cross-sections is a mathematical elaboration of an
idea from the paper (Li et al., 2018) on the visualization of
loss landscapes.

Figure 1. Visualisation of a cross-section of the loss landscape
of a 1-3-3-1 NN, with activation function ρ(x) = x2 and target
function ϕ(x) := 5x4 + 3x2 − 13, made with Paraview (Ayachit,
2015). To train the NN and output the image files we adapted the
code used in (Li et al., 2018).

We show that for a one-hidden layer polynomial neural
network N , the points of ST organize along A1 into 3
distinct clusters. Moreover, a particular behavior can be
observed when we modify the training dataset T . More
specifically, let Tδ := {(i+ δ, ψ(i+ δ)) | (i, ψ(i)) ∈ T }

be a training dataset depending on δ ∈ A1, for a target
polynomial ψ of degree d. We proved that, as δ goes to ∞,
the clusters of points of STδ

move towards different limit
values in A1, depending on whether the target function f is
in the image of the neural network or not.

Theorem 1.2. Let sδ ∈ STδ
. Then, as δ goes to +∞, one

of the followings holds:

1. sδ is asymptotic to aδ2max{r,d}, for some constant
a ∈ C∗;

2. sδ is asymptotic to bδ2(m−1), for some constant b ∈
C∗;

3. if ψ is in the image of N then sδ = 0, otherwise sδ is
asymptotic to cδ2(m−2), for some constant c ∈ C∗,

where m depends on the coefficients of ψ.

We have a more precise statement in the clustering Theorem
(Theorem 4.4). We would like to highlight that the middle
cluster (2) of points of STδ

tends to zero if and only if the
target function ψ is in the image of N .

1.1. Overview

The rest of the paper is structured as follows. In Section 2,
we introduce neural networks and the mathematical formal-
ism needed to deal with them. In Section 3, we generalize
the result presented as Theorem 8 in (Venturi et al., 2019)
to wider classes of neural networks, by proving Theorems
3.7 and 3.10. They provide a sufficient condition on the
sizes of the hidden layers of a neural network so that its loss
landscape has no spurious valleys. In Section 4, we study
the points of ST ⊆ A1, coming from 2D cross-sections
of the loss landscape. The core of the chapter is formed
by Theorem 4.4, which describes the limit behavior of the
points of ST for different target functions. In Section 5 we
discuss related work, and then we conclude.

Due to constraints on the number of pages, the full proofs
of the main results (Theorems 3.7, 3.10, and 4.4) are con-
tained in the Appendices A, B, and C, after the bibliography.
Nevertheless, a sketch or idea of each proof is provided in
the main body of the paper.

2. Neural Networks
We provide a short and precise overview of artificial neural
networks (NNs), with the mathematical formalism needed
for a more in-depth analysis. For further insight and infor-
mation about algebraic-geometric concepts and definitions,
you can refer to (Hartshorne, 1977) or (Goertz & Wedhorn,
2020).
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2.1. Artificial Neural Networks

In this subsection, we introduce the nomenclature concern-
ing NNs. As usual, we denote by AnF the n-dimensional
affine space over the field F. Moreover, we are always going
to consider F to be either R or C.

We use NNs to approximate an unknown real target function
ϕ : ApR → AqR, given a finite training dataset T for ϕ. In this
setting, T is a finite subset of the graph G(ϕ) ⊆ ApR×AqR of
the target function, and the inputs and outputs of T are the
points in the projections of T onto ApR and AqR, respectively.

Figure 2. A NN map NA : A2
F → A1

F with l = 2.

A neural network architecture N is a tuple (l,H, ρ),
where l ∈ N is the number of hidden layers, H =
(h0, . . . , hl+1) ∈ Zl+2

+ is the tuple of sizes of the layers2,
and ρ : A1

F → A1
F is the activation function. We denote by

w := h0h1+
∑l
j=1(hj+1)hj+1 the number of parameters

of the NN. For i ∈ [0, l + 1], the affine space Ahi

F is called
the i-layer. As usual, the i-layers with i ∈ [1, l] are called
hidden layers, and the 0-layer and l + 1-layer are called the
input and output layer, respectively. By abuse of notation,
we denote by ρ also the function Ahi

F → Ahi

F defined on the
whole i-layer by (a1, . . . , ahi

) 7→ (ρ(a1), . . . , ρ(ahi
)).

For a fixed architecture N = (l,H, ρ), let A :=
(A0, . . . , Al) be a tuple of affine transformations
Ai : Ahi

F → Ahi+1

F , where A0 is linear. A NN function
NA : Ah0

F → Ahl+1

F for the architecture N and parameters
A is a map defined by x 7→ Al ◦ ρ ◦ . . . ◦ ρ ◦ A0(x). In-
tuitively, this is just a neural network with fixed parame-
ters. In fact, we can write each affine transformation Ai
as the composition of a translation and a linear map using
matrices Bi ∈ Mhi+1×1(F) and Wi ∈ Mhi+1×hi(F), i.e.
Ai(x) = Wix + Bi. The entries of Wi and Bi are the
weights and the biases of NA, respectively.

The map N : Aw
F → Hom(Ah0

F ,Ahl+1

F ) sending parameters
A ∈ Aw

F to NA is the artificial neural network (induced by
the architecture N). The artificial neural network without

2Whenever we use the term “layers” with no further specifica-
tion, we mean input layer, hidden layers, and output layer.

bias (induced by the architecture N) is the map N restricted
to the space where all biases are zero.

A function ψ is representable by N if it is in the image
of N . Moreover, ψ is representable by an architecture N
if it is representable by the NN induced by N. A set T is
representable by N if there exists a map ϕ representable by
N such that T is a training dataset for ϕ.

2.2. Training

Let N be a NN, T be a training dataset, and L : Ahl+1

F ×
Ahl+1

F → R be a semimetric on the output layer. During
the training process, we look for the minimizers of the error
function errT :Aw

F →R defined by

errT (A) :=
1

|T |
∑

(i,o)∈T

L (o,NA(i)) .

The mapL and the graph of errT are called the loss function
and the loss landscape of N , respectively.

Notice that the error function might have no global mini-
mum. In any case, we can end the training process when we
find parameters A ∈ Aw

F such that the error is sufficiently
small, i.e. errT (A) < ϵ, for some chosen constant ϵ ∈ R+.

2.3. Algebraic Setup

In Section 4, we need a fully-algebraic setup. Here we
introduce the choices that allow us to have such algebraic
environment. First, we choose the activation function to be
a monomial.

Definition 2.1. An architecture N := (l,H, ρ) is polyno-
mial if ρ = (·)r for some r ∈ Z+. In such case, the
NN (without bias) induced by N is called the h0-. . .-hl+1

r-polynomial NN (without bias).

Given a polynomial NN N , a NN function is a tuple of poly-
nomials with monomials of a specific degree, as it expresses
the following proposition.

Proposition 2.2. Let N : Aw
F → Hom(ApF,A

q
F) be an r-NN,

with l ≥ 1 hidden layers. Then, the q components of a NN
function are polynomials in p variables with monomials of
degree multiple of r, up to degree rl.

Proof. Clear, as a NN is a composition of affine transforma-
tions and degree r exponentiations.

By Proposition 2.2, for a polynomial NN N , it is possible
to find the set DN of algebraic functions which includes the
image of N . In particular, we have

Im(N )⊆DN :=


rl−1∑
i=0

P1,i, . . . ,

rl−1∑
i=0

Pq,i

|Pj,i∈F[Xp]ir

 ,
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where F[Xp]ir is the group of polynomials in p variables,
with coefficients in F, and of degree ir. If a NN N : Aw

F →
DN is surjective, we say N is filling (Kileel et al., 2019).

Finally, since our goal is to approximate a real target func-
tion ϕ, we choose the loss function to be the real squared
Euclidean distance L(y, ŷ) :=

∑hl+1

i=1 (yi − ŷi)
2. In this

way, errT : Aw
R → R is an algebraic function, and the loss

landscape L is an algebraic hypersurface in the affine space
Aw+1

R .
Remark 2.3. When studying the geometry of L in Section 4,
we consider the base change L ×R C, which corresponds to
linearly extending the error function on C. Even though the
loss function is not a semimetric on C, the linear extension
allows us to get valuable geometric insights.

3. Spurious Valleys
The presence of spurious valleys (Definition 3.2) in the loss
landscape may cause gradient-descent methods to fail. In
this section, we provide a sufficient condition (Theorems
3.7 and 3.10) on the number of parameters w for having
no spurious valleys in the loss landscape. The Theorems
3.7 and 3.10 generalize a result from (Venturi et al., 2019),
denoted as Theorem 8, to wider classes of neural networks
in the context of empirical risk minimization. We use the
definition of spurious valley given in (Venturi et al., 2019).

Definition 3.1. For all c ∈ R, a sub-level set of a function
f : X → R is Ωf (c) := {x ∈ X | f(x) ≤ c}.

Definition 3.2. We define a spurious valley of the loss
landscape as a path-connected component of a sub-level
set ΩerrT (c) which does not contain any element of
argmin errT .

Figure 3. Simplified 2D visualization of a loss landscape L. Two
spurious valleys are clearly visible: the red one for the sub-level set
ΩerrT (3), and the orange one for ΩerrT (8) (assuming the right
branch is asymptotic to errT = 6).

We will use the following setup for a NN.

Setup 3.3. Let N := (l,H, ρ) be an architecture, with
continuous ρ, and T be a training dataset. We consider the
NN N : Θ := Aw

R → C (with or without bias) induced by
N. We take as loss function a convex semimetric L on real
vectors. We denote by L ⊆ Aw+1

R the loss landscape of N
for T with base space R.

Throughout this section, we always assume the error func-
tion has a global minimum, i.e. argmin errT ̸= ∅. For
the sake of simplicity, we start by considering the no-bias
case. Obtaining the analogous results for NNs with bias will
require some careful adjustments.

3.1. No-bias Case

We start by redefining the set of functions representable
by N in a more convenient way. For any m ∈ Z+ and
any vector w ∈ Rm, we define the functions ψw :=
ψm,ρ,w : Rm → R by sending x to ρ⟨w, x⟩, i.e. the acti-
vation function applied to the scalar product between w
and x. Moreover, for any k ∈ Z+ and K ∈ Zk+, let Ckρ,K
be the set of functions representable by a NN without bias
induced by the architecture NK := (k, (p,K, 1), ρ). We
define Ckρ :=

⋃
K∈Zk

+
Ckρ,K as the set of all the functions

representable by a NN without bias induced by an architec-
ture NK with arbitrary tuple K. By the structure of a NN
and our definition of ψw, the Ckρ ’s are vector spaces of the
following form:

C1
ρ = spanR{ψw | w ∈ Rp}

Ckρ = spanR{ρf | f ∈ Ck−1
ρ }, k > 1.

(1)

Definition 3.4. Let ρ be a continuous activation function,
and k a positive integer. The k-intrinsic dimension dimk

ρ is
the dimension dimR(Ckρ ) of the vector space Ckρ .

Example 3.5 (Polynomial NN). Let N be a 2-h1-h2-3
2-polynomial NN without bias. Notice that in this case
ρ = (·)2 is the squaring operation. Then, for any w :=
(w1, w2) ∈ R2 we have ψw(x, y) = w2

1x
2 + w2

2y
2 +

2w1w2xy. Hence,

C1
ρ = spanR{w2

1x
2 + w2

2y
2 + 2w1w2xy | (w1, w2) ∈ R2}

= {ax2 + by2 + cxy | a, b, c ∈ R},
C2
ρ = spanR{ρf | f ∈ C1

ρ}
= {ax4+bx3y+cx2y2+dxy3+ey4 | a, b, c, d, e ∈ R}.

Moreover, we get dim1
ρ = 3 and dim2

ρ = 5.

By the definition of the vector space Ckρ in (1), and Definition
3.4, the intrinsic dimensions dimk

ρ depend solely on the size
of the input layer and the activation function ρ.
Example 3.6. Let N be a NN with h0-dimensional input
layer, and activation function ρ(x) :=

∑N
n=0 anx

n a real
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polynomial of degree N ∈ N. The 1-intrinsic dimension is
dim1

ρ =
∑N
n=0

(
h0+n−1

n

)
.

We have now all the elements to state the spurious valleys
theorem for NNs without bias.
Theorem 3.7 (Spurious valleys theorem: no-bias case).
Consider Setup 3.3 for a NN without bias, and suppose
dimk

ρ <∞ for all k ∈ [1, l]. If hk ≥ dimk
ρ for all k ∈ [1, l],

then the loss landscape L has no spurious valleys.

It is interesting to notice that Theorem 3.7 does not depend
on the size of the training dataset. On the contrary, it relies
solely on the expressiveness gained from the overparameter-
ization of the hidden layers: the proof (Appendix A) uses
the fact that the sizes of the hidden layers are greater than
the dimensions of the corresponding functional spaces to
carefully change the matrices of weights and build a non-
increasing path from any point of the loss landscape to the
global minimum. These considerations clearly hold also for
the bias version (Theorem 3.10), presented in Section 3.3,
Example 3.8 (Polynomial NN (continues)). By applying
Theorem 3.7 to the polynomial NN N from Example 3.5,
we obtain that, if h1 ≥ 3 and h2 ≥ 5, then the loss landscape
of N has no spurious valleys.

In the next subsection, we provide a sketch of the proof of
Theorem 3.7. The complete proof can be found in Appendix
A.

3.2. Proof of Theorem 3.7 (sketch)

The technique of the proof is analogous to the one used in
(Venturi et al., 2019). As pointed out in (Freeman & Bruna,
2017) and (Venturi et al., 2019), the following property
implies that the loss landscape L does not have any spurious
valley:
Property 3.9. Given any initial w-tuple of parameters Ã ∈
Θ, there exists a continuous path θ : t ∈ [0, 1] 7→ θt ∈
Θ such that θ0 = Ã, θ1 ∈ argminθ∈ΘerrT (θ), and the
function t 7→ errT (θt) is non-increasing.

Hence, we reduce to proving that for any A ∈ Θ there
exists a continuous path satisfying the conditions in Property
(3.9). Let Ã := (Ã0, . . . , Ãl) ∈ Θ be our starting set of
parameters, where l is the number of hidden layers of the NN
as usual. In order to build the desired path θ, we construct
l+1 intermediate continuous paths P1, . . . , Pl+1 : [0, 1] →
Θ, and then we concatenate them.

Each path Pi with i ∈ [1, l] modifies just the matrices Ãi−1

and Ãi of the tuple of parameters Ã, in such a way that
the image Pi([0, 1]) of the path is entirely contained in the
fiber N−1(NÃ) ⊆ Θ. In particular, since we are moving in
the fiber above NÃ, the NN function NÃ remains the same
along the path and the error remains constant. Hence, the
requirement for the path of being non-increasing is satisfied.

The final goal of the first l paths is to be able to move from
the starting tuple of parameters Ã to another point A of
the space Θ with some special properties. Such proper-
ties together with the convexity of the loss function guar-
antee the existence of a continuous path Pl+1 with end-
point a global minimum of the error function, and such that
t 7→ errT (Pl+1(t)) is non-increasing, as desired. For more
details, we refer to Appendix A.

3.3. Bias Case

To adapt Theorem 3.7 to NNs with bias, we use Setup 3.3
and the notation adopted in Subsection 3.1 with some slight
changes:

• N has bias. As a consequence, the parameter space Θ
has a higher dimension.

• The matrices A0, . . . , Al of a set of parameters A ∈ Θ
contain also the bias terms of the respective layers, i.e.
they have now one additional column on the right.

• The sets of representable functions are now

C1
ρ = spanR {{ψw | w ∈ Rp} ∪ {1}}

Ckρ = spanR{{ρf | f ∈ Ck−1
ρ } ∪ {1}}, k > 1.

Theorem 3.10 (Spurious valleys theorem: bias case). Con-
sider Setup 3.3 for a NN with bias, and suppose dimk

ρ is
finite for any k ∈ [1, l]. If hk ≥ dimk

ρ − 1 for all k ∈ [1, l],
then the loss landscape L has no spurious valleys.

The proof of Theorem 3.10 is analogous to the proof of
Theorem 3.7 and it is written in detail in Appendix B.
Remark 3.11. Notice that, by Proposition 2.2 it is clear that,
for a polynomial NN with or without bias, Ckρ is a finitely
generated R-vector space, and dimk

ρ <∞. Moreover, since
the squared Euclidean distance is a convex loss function
and the monomial exponentiation (·)r is continuous, we
can apply the (no-bias) spurious valleys theorem to any
polynomial NN (without bias) with sufficiently wide layers.

4. Clustering
In this section, we present Theorem 4.4 which describes
a behavior of polynomial NNs that seems to be a good
indicator of the representability of a function. Since we
consider just polynomial NNs in this section, we omit the
term “polynomial” when referring to NNs and architectures.

4.1. The Idea

As the number of parameters w is typically huge, it is of-
ten useful to consider cross-sections when studying loss
landscapes. In particular, we compose the error function
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Figure 4. Average, maximum and minimum error values (in log-
arithmic scale) of the points in the cluster c4 depending on the
input interval [10n+2 − 100, 10n+2]. The data were collected by
conducting 21 trials on SageMath (Stein et al., 2020), using the NN
architecture described in Example 4.1, with N = 10, ∆ = 100,
and δ(n) := 10n+2, for n ∈ [0, 20] ⊆ Z.

errT with a 2-plane p : A2
F → Aw

F , so that the graph of
the restricted error function f := errT ◦ p is an algebraic
hypersurface HT := Z(f − z) ⊆ A3

F. In other words, we
reduce to study a 2-dimensional cross-section HT of the
loss landscape in a 3-dimensional space. We call HT the
cut loss landscape, and we consider it over C. If we look
at the projection πT : HT → A1

C onto the error coordinate,
we obtain a family of plane curves, which are the fibers of
f . We denote by ST ⊆ A1

C the set of points s where π−1
T (s)

is a singular curve. Notice that here we consider the error to
be a complex number, not just a non-negative real number.

If we modify the input points of T by translating them to-
wards infinity, and we change the output points accordingly,
we observe that the points of ST organize into clusters.
Moreover, the mean values of these clusters move towards
different limit values, depending on whether the target func-
tion is representable or not.

4.2. Examples

We study in detail the clustering behavior of a 1-h-1 neu-
ral network N when considering representable and non-
representable training datasets.

It is easy to see that N is filling and a NN function is of
the form axr + b, for a, b ∈ F. Hence, it is really easy to
verify whether a training dataset (or even a target function)
is representable. Nevertheless, the results in this section,
other than proving an interesting fact about representability,
provide valuable insights into the limit behavior of a 1-
hidden layer NN that might be used to study analogous
behaviors for NNs with more hidden layers. We start our

Figure 5. Average, maximum and minimum error values (in log-
arithmic scale) of the points in the cluster c6 depending on the
input interval [10n+2 − 100, 10n+2]. The data were collected by
conducting 21 trials on SageMath (Stein et al., 2020), using the NN
architecture described in Example 4.1, with N = 10, ∆ = 100,
and δ(n) := 10n+2, for n ∈ [0, 20] ⊆ Z.

analysis with two examples.
Example 4.1 (Representable case). Let N be a 1-3-1 2-
NN, and ψ(x) = 3x2 − 13 be the target function. The
map ψ is representable because N is filling and ψ ∈ DN
(see Proposition 2.2). Let {Tδ} be a family of training
datasets for ψ, such that, for any δ ∈ R, the input points
of Tδ are taken uniformly at random from the real interval
[δ−∆, δ], for some fixed ∆ ∈ R+. It is easy to see that, for
a generic cutting plane p, the minimum value of the function
f := errTδ

◦ p is 0, for all δ ∈ R.

By using SageMath (Stein et al., 2020), we compute the
polynomial defining the cut loss landscape HTδ

. Then we
can use Groebner basis and elimination on Magma (Bosma
et al., 1997) to find the polynomial e which defines the
projection of Z

(
∂f
∂x ,

∂f
∂y , f − z

)
onto the error axis. The

roots of e are the points of STδ
. When plotting the points of

STδ
(as in Figures 4 and 5), we apply an absolute value to

get real positive numbers.

After multiple trials with different values of δ and ∆, some
interesting empirical observations can be formulated:

• We obtain 11 different error values for each trial, di-
vided into 3 clusters. The first cluster has just the point
0, with multiplicity 3. This is of course expected since
ψ is representable. The second and third clusters, de-
noted by c6 and c4, contain 6 and 4 points respectively.

• The difference between the highest and lowest error
value in each cluster tends to get smaller by reducing
∆.
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Figure 6. Average error values (in logarithmic scale) of the points
in the 3 clusters of STδ depending on the input interval [10n+2 −
100, 10n+2]. We used ψ(x) = −x2 + x + 5 as target function,
ρ(x) = x2 as activation function.

• Modifying δ deeply influences the three aforemen-
tioned clusters. In particular, the values in c6 and c4
tend to 0 and ∞ respectively as δ goes to ±∞, whereas
the 0 value stays the same. In Figures 4 and 5 we col-
lected some data which clearly show the limit behavior
of the clusters c4 and c6, respectively.

Example 4.2 (Non-representable case). We consider the
same setting of Example 4.1, but ψ is a polynomial target
function not representable by N . We still observe 3 clusters
of points in STδ

, but their limit behavior is different. We
again use the absolute value to plot the points of STδ

. As
can be noticed from the graphs in Figures 6, 7, and 8, there
is always one cluster whose points tend towards +∞, as
in the representable case. Moreover, the bottom cluster is
not constant at 0, and the middle cluster does not tend to 0,
which was the behavior observed in Example 4.1. The data
in Figures 6, 7, and 8 were collected and elaborated using
SageMath (Stein et al., 2020) and Magma (Bosma et al.,
1997).

4.3. The Clustering Theorem

Now that we have a better understanding of the clustering
behavior, we can introduce Theorem 4.4, which describes
the limit behaviour of the error values of the points in the
set ST introduced in Section 4.1.

Definition 4.3. Let T ⊆ Rp × Rq be a training dataset
for a target function ψ : Rp → Rq, and δ ∈ Rp. The δ-
translated training dataset Tδ for ψ is the training dataset
{(i+δ, ψ(i+δ)) | (i, ψ(i)) ∈ T }. The family of translated
training datasets {Tδ} for ψ is the set of training datasets
{Tδ : δ ∈ Rp}.

Figure 7. Average error values (in logarithmic scale) of the points
in the 3 clusters of STδ depending on the input interval [10n+2 −
100, 10n+2]. We used ψ(x) = x3 + 2x2 − 3 as target function,
ρ(x) = x2 as activation function.

We will use the following notation to compare growing rates:
if ϕ and ψ are two functions such that limx→+∞

ϕ(x)
ψ(x) = 1,

then we say ϕ and ψ have the same growth rate as x→ +∞,
or are asymptotic at +∞, and we write ϕ ∼+∞ ψ.

Theorem 4.4 (Clustering theorem). Let r, h ∈ Z, r > 1,
h > 2. Let N be a 1-h-1 r-NN, and ψ(x) :=

∑d
j=0 αjx

j

be a real polynomial target function. Let {Tδ} be a family
of translated training datasets for ψ with at least 3 distinct
points each. For a generic 2-plane, let sδ ∈ STδ

. Then one
of the following holds:

1. sδ ∼+∞ aδ2max{r,d}, for some non-zero constant a ∈
C∗;

2. sδ ∼+∞ bδ2(m−1), for some non-zero constant b ∈
C∗;

3. if ψ is in the image of N then sδ = 0, otherwise
sδ ∼+∞ cδ2(m−2), for some non-zero constant c ∈
C∗,

where m := max({j | αj ̸= 0 and j ̸= r} ∪ {0}).
Remark 4.5. Notice that if r ̸= d then m = d, else m < d.
Hence m ≤ max{r, d}.

Proposition 4.6. Let r, h ∈ Z, r > 1, h > 2. Let N be a
1-h-1 r-NN, and ψ(x) :=

∑d
j=0 αjx

j be a real polynomial
target function. Then ψ is representable by N if and only if
m = 0.

Proof. It is easy to see that ψ : R → R is representable
by N if and only if ψ is of the form ψ(x) = αrx

r + α0,
with αr, α0 ∈ R. We conclude by the definition of m (see
Theorem 4.4).
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Figure 8. Average error values (in logarithmic scale) of the points
in the 3 clusters of STδ depending on the input interval [10n+2 −
100, 10n+2]. We used ψ(x) = x3 + 2x2 − 3 as target function,
ρ(x) = x3 as activation function.

The points of STδ
satisfying 2. in Theorem 4.4 are the points

composing the middle cluster. This middle cluster can be
used to tell whether the target function is representable.
In fact, by Theorem 4.4 and Proposition 4.6, the target
function is representable if and only if the points of the
middle cluster tend to 0. The points satisfying 3. might
be misleading when using numerical methods to compute
them, as they may result close to 0 for both representable
and non-representable training datasets.

We conclude this section with the idea of the proof of Theo-
rem 4.4. The full proof is contained in Appendix C.

4.4. Proof of Theorem 4.4 (sketch)

The proof of Theorem 4.4 uses some notions from algebraic
geometry. We refer to (Hartshorne, 1977) or (Goertz &
Wedhorn, 2020) for the basic definitions and results.

Let f be the error function restricted to a generic 2-plane,
and HTδ

= Z (f(x, y)− z) ⊆ A3
C be the cut loss landscape.

Then, we can write STδ
= {f(x, y) | (x, y) ∈ Zδ} ⊆ A1

C,
where Zδ ⊆ A2

C is the zero locus defined by the partial
derivatives of f . The idea of the proof is to study the limit
behavior of the points in STδ

through the analysis of the
points of Zδ .

Since the partial derivatives of f have a complicated
expression, we study instead a larger set of points,
namely the points of Z ′

δ ⊇ Zδ, where Z ′
δ :=

Z (a(x, y)b(x, y), a(x, y)c(x, y)) ⊆ A2
C, and the polyno-

mials a, b, and c depend on the partial derivatives of f . To
study the limit behavior, we would like to express the coor-
dinate x and y as functions of δ.

Let Z ⊆ P2
C × P1

C be the projective closure of Zδ w.r.t. the
variables (x, y) and δ separately. Morevoer, let π2 : Z ⊆
P2
C × P1

C → P1
C be the second projection. Since we are

only interested in positive real values of δ, we can consider
an analytic local section σ′ : D → Z of π2, where D :=
(M,+∞) ⊆ R>0. Let σ := π1◦σ′ : D → P2

C. It is possible
to show that we may reduce to σ : D ⊆ A1

C → A2
C, which

expresses the coordinates of a point in Zδ as a function of δ,
as desired. Hence, we can study the limit behaviour of f(σ)
as δ goes to +∞.

To do so, we prove several lemmata. In the majority of them,
we use the genericity assumption (Griffiths & Harris, 1994)
for the 2-plane in Theorem 4.4.

5. Related Work
The geometry and topology of the loss landscapes have been
studied extensively for shallow neural networks (Venturi
et al., 2019; Chizat & Bach, 2018; Mei et al., 2018), and
deep linear networks (Montúfar et al., 2014; Arora et al.,
2018; 2019; Hardt & Ma, 2017). In the last years, more
attention has been drawn to the geometry of deep non-linear
neural networks (Freeman & Bruna, 2017; Larsen et al.,
2022). in particular, (Pittorino et al., 2022) and (Simsek
et al., 2021) focus on the simmetries encountered in the
loss landscapes. Our Theorems 3.7 and 3.10 on spurious
valleys extend to deep non-linear NNs a result from (Venturi
et al., 2019), in the context of empirical risk minimization.
Other works with a focus on level sets include (Draxler et al.,
2018) and (Freeman & Bruna, 2017).

As far as polynomial NNs are concerned, the literature is
quite substantial. This is especially true for linear activation
functions, as cited above, and quadratic activation functions,
like in (Soltanolkotabi et al., 2019; Kawaguchi, 2016; Du &
Lee, 2018). Moreover, the study of NNs through the lenses
of algebraic geometry has sparked some interest, as can be
seen in recent papers (Yang, 2021; Mehta et al., 2022; Trager
et al., 2020). In particular, Kileel (Kileel et al., 2019) studied
the dimension of the space of functions representable by a
polynomial NN without bias.

6. Conclusions and Future Work
In this paper, we have presented and proved two novel main
results. The first one (Theorems 3.7, and 3.10) provides
a sufficient condition on the sizes of the hidden layers of
a neural network to have no spurious valleys in the loss
landscape. This guarantees, under certain assumptions, the
success of gradient descent methods.

The main limitation both in Theorem 3.7 and in Theorem
3.10 is the assumption on the finiteness of the intrinsic
dimensions. This requirement is fundamental for the tech-
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nique used in the proofs, as allows to carefully modify the
matrices of weights and build the non-increasing function
required by Property 3.9. Unfortunately, commonly used
activation functions like the ReLU or the sigmoid have infi-
nite intrinsic dimensions. Nevertheless, some insight may
be gained into the presence of spurious valleys for these
cases too. First, we believe that if the size of the k-th hidden
layer is less than the k-th intrinsic dimension dimk

ρ , then
there exists a training dataset T such that the resulting loss
landscape has spurious valleys (this, of course, holds in
particular for the case with infinite intrinsic dimensions).
Second, in the case of infinite intrinsic dimensions, one
could consider finite-dimensional vector subspaces Skρ of
the functional spaces Ckρ . Each functional subspace corre-
sponds to a restriction Rk on the weights used. The same
technique used in the proofs of Theorems 3.6 and 3.9 may
allow to show that, if the size of the k-th hidden layer is
greater or equal to the dimension of the k-th vector subspace
Skρ , then there are no spurious valleys in the corresponding
subset of the loss landscape (i.e. the landscape obtained by
considering the graph of the error function restricted on the
subset of weights given by theRk’s). Notice that, increasing
the sizes of the hidden layers would allow to use the mod-
ified result with less restrictive limitations on the weights,
i.e. the considered subset of the loss landscape has a higher
dimension. This hints at the fact that increasing the sizes
of the hidden layers reduces the dimension of the subspace
of the loss landscape in which spurious valleys may occur,
i.e. it reduces the chances of encountering spurious valleys
during gradient descent. Both the conjectures presented
above require some more work and care, and they are left
for future work. It would also be interesting to investigate
whether Theorems 3.7 and 3.10 hold in the population risk
setting. We believe they do, since the core of the proofs
seems to work for any input-output distribution, and the
technique used would remain the same. However, adapting
the setting for population risk would lead to the introduction
of some additional concepts and notation (in order to prop-
erly deal with the expectation substituting the sum in the
error computation), which would make the paper even more
complex and less accessible. Such extension is certainly
desirable but it is left for future work.

Our second result (Theorem 4.4) focuses on the expressive
power of neural networks with a polynomial activation func-
tion. In more detail, Theorem 4.4 expresses the behavior
of the errors of certain singular points of the loss landscape
as we modify the training dataset. Moreover, such behavior
provides information on the representability of the target
function. Even though Theorem 4.4 holds for 1-k-1 poly-
nomial NNs, we observed a similar clustering behavior in
deeper polynomial NNs. Hence, the next step would be to
extend Theorem 4.4 to a wider class of NNs. This could
yield valuable novel insight into the set of functions repre-

sentable by a NN architecture.
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A. Proof of Theorem 3.7
In this appendix, we present the proof of Theorems 3.7.

Theorem (3.7). Consider Setup 3.3 for a NN without bias, and suppose dimk
σ <∞ for all k ∈ [1, l]. If hk ≥ dimk

σ for all
k ∈ [1, l], then the loss landscape L has no spurious valleys.

We need some additional definitions and a few preliminary results. As pointed out in (Freeman & Bruna, 2017) and (Venturi
et al., 2019), the following property implies that the loss landscape L has no spurious valley:

Property (3.9). Given any initial w-tuple of parameters θ̃ ∈ Θ, there exists a continuous path θ : t ∈ [0, 1] 7→ θt ∈ Θ such
that θ0 = θ̃, θ1 ∈ argminθ∈Θ errT (θ), and the function t 7→ errT (θt) is non-increasing.

We will use Property 3.9 to prove Theorem 3.7 and its bias case analogue (Theorem 3.10).

First, we define a few more maps, linking the parameters of the NN to functions in Ckσ . For any positive integer m we define

ψ0 : Rm → C1
σ

w 7→ ψw.

Whenever we want to apply ψ0 to the rows of a matrix A = (ai,j)i,j ∈ Rs×t we will write ψ1(A) := (ψa1,· , . . . , ψas,·)
⊤.

Finally, for any k ∈ Z>1, and for any k + 1-tuple of positive integers (m0,m1, . . . ,mk) ∈ Zk+1
>0 we define the map

ψk : Rm1×m0 × Rm2×m1 × . . .× Rmk×mk−1 →
(
Ckσ
)mk ,

by sending (W0, . . . ,Wk−1) to ψ1(Wk−1)(ψ
k−1(W0, . . . ,Wk−2)).

Notation A.1. For any tuple a = (b0, . . . , bk) and i ∈ [0, k] we denote a′i := (b0, . . . , bi).
Remark A.2. If N is a NN without bias with l hidden layers, then for any tuple of parameters A = (W0, . . . ,Wk) we can
write NA(x) =Wlψ

l(A′
l−1)(x).

Proposition A.3. Let σ be a continuous map, and k ∈ Z+. If d := dimk
σ <∞, then for any basis of Ckσ there exist an inner

product ⟨·, ·⟩ on Ckσ and a map ϕk : Rp → Ckσ such that ⟨f, ϕk(x)⟩ = f(x), for any f ∈ Ckσ and x ∈ Rp.

Proof. The proof is analogous to the one for Lemma 18 in (Venturi et al., 2019).

Proposition A.4. Let k ∈ Z>0. If σ is continuous and d := dimk
σ <∞, then the map ψk is continuous.

Proof. For ψ0 see the proof of Lemma 18 in (Venturi et al., 2019). ψ1 is just ψ0 applied row-wise, hence continuity
of ψ1 follows immediately from continuity of ψ0. Then we proceed by induction. Consider ψk and assume ψk−1 is
continuous. We fix a base {f1, . . . , fd} for Ckσ , and consider the inner product and the map ϕk(x) :=

∑d
i=1 fi(x)fi, defined

in Lemma A.3. Let R := Rh1×p × Rh2×h1 × . . .× Rhk−1×hk−2 × Rhk−1 , and s : R → Rd be the map defined by sending
(W0, . . . ,Wk−2, w) to a d-tuple (t1, . . . , td), where ti := ⟨ψ0(w)(ψk−1(W ′

k−2)), fi⟩. By the definitions of ψk and ψ1,
it is sufficient to show that, for i ∈ [1, d], s is continuous. We choose x1, . . . , xd ∈ Rp such that {ϕk(x1), . . . , ϕk(xd)}
is a basis of Ckσ . We define the function z : R → Rd by sending (W0, . . . ,Wk−2, w) to a d-tuple (t′1, . . . , t

′
d), where

t′i := ψ0(w)(ψk−1(W ′
k−2))(xi). Let M := (fj(xi))i,j ∈ Rd×d. Then s = M−1z and we reduce to prove continuity of

z, as M−1 is a fixed matrix. This is equivalent to show that, for any i ∈ [1, d], ψ0(·)(ψk−1(·))(x1) is continuous. Since
ψ0(w)(ψk−1(A)) is in Ckσ for any (A,w) ∈ R, by Lemma A.3 we have

ψ0(w)(ψk−1(A))(xi) = ⟨ψ0(w)(ψk−1(A)), ϕk(xi)⟩ = ⟨σ⟨w,ψk−1(A)⟩, ϕk(xi)⟩.

Notice that ϕk(xi) is fixed, ψk−1 is continuous in the parameters A by induction hypothesis, and σ is continuous by
hypothesis. By continuity of the inner products we conclude.

By Remark A.2 and Proposition A.3, a NN function can be written as NA(x) = ⟨Wlψ
l(A′

l−1), ϕ(x)⟩, for any A =

(W1, . . . ,Wl) ∈ Θ, and x ∈ Rp, where the scalar product is applied row-wise on Wlψ
l(A′

l−1). Moreover, notice that, for
any k ∈ [1, l], the hk-vector ψk(A′

k−1) can be written as a hk × dimk matrix by using a basis of Ckσ .

12



Spurious Valleys and Clustering Behavior of Neural Networks

The next two lemmata will be the building blocks used in the proof of Theorem 3.7. Lemma A.5 shows that, under certain
conditions, for any set of parameters A ∈ Θ, it is possible to find a path in the fiber N−1(NA) ⊆ Θ starting from A and
ending in another set of parameters Ã such that the matrix ψk+1(Ã′

k) is full rank. In particular, since we are moving in the
fiber above NA, the NN function remains the same along the path and the error remains constant.

Lemma A.5. Let k ∈ [1, l−1], andA = (A0, . . . , Al) ∈ Θ. Suppose that dimk+1
σ <∞, and rank(ψk(A′

k−1)) = dimk
σ <

∞. If hk+1 ≥ dimk+1
σ , then there exists a path θ : t ∈ [0, 1] 7→ θt ∈ Θ such that

1. θ0 = A;

2. θ1 =: Ã ∈ Θ such that Ai = Ãi ∀i ∈ [0, l] \ {k, k + 1}, and rank(ψk+1(Ã′
k)) = dimk+1

σ ;

3. Nθt = NA ∀t ∈ [0, 1].

Proof. If rank(ψk+1(A′
k)) = dimk+1 we take the constant path. Suppose otherwise rank(ψk+1(A′

k)) = z < dimk+1. Let
a1, . . . , ahk+1

∈ Rhk be the rows ofAk, and let di := ψ0(ai)(ψ
k(A0, . . . , Ak−1)), with i ∈ [1, hk+1], be the corresponding

rows of ψk+1(A′
k) (remember that we can write the functions ψ0(ai)(ψ

k(A0, . . . , Ak−1)) ∈ Ck+1
σ as vectors with entries

the coefficients of a linear decomposition w.r.t. a basis {fi}i of Ck+1
σ ). Moreover suppose that L := {di1 , . . . , diz} is a

linearly independent set, i1, . . . , iz ∈ [1, hk+1]. We will construct a new set of parameters B ∈ Θ by modifying just Ak+1.
Let I := {i1, . . . , iz}, J := [1, hk+1] \ I = {j1, . . . , jhk+1−z}, and b1, . . . , bhk+1

the columns of Ak+1. For j ∈ J we can
write

dj =

z∑
s=1

αsjdis ,

for some αij ∈ R. Then define Bt := At for t ∈ [0, l] \ {k + 1}, and the columns b̄1, . . . b̄hk+1
of Bk+1 as

b̄i :=bi +

h1−z∑
s=1

αisbjs for i ∈ I,

b̄j :=0 for j ∈ J.

In this way we have that Ak+1ψ
k+1(A′

k) = Bk+1ψ
k+1(B′

k), i.e. ψk+2(A′
k+1) = ψk+2(B′

k+1). Hence the path t ∈
[0, 12 ] 7→ θt = (A′

k, 2tBk+1 + (1 − 2t)Ak+1, Ak+2, . . . , Al) leaves the network unchanged, i.e. Nθt = NA for all
t ∈ [0, 12 ].

Notice that the linearly independent set L is contained in the spanning set S := {σf | f ∈ Ckσ} defining Ck+1
σ . Hence

there exists a basis T such that L ⊆ T ⊆ S. In particular the elements of the basis T are all of the form σf with
f ∈ Ckσ . Since rank(ψk(B′

k−1)) = rank(ψk(A′
k−1)) = dimk

σ, we can choose cj1 , . . . , cjhk+1−z
∈ Rhk such that the

matrix Âk with rows âj := cj for j ∈ J and âi := ai for i ∈ I , satisfies rank(ψk+1(Â′
k)) = dimk+1

σ . Then we
define Â = (B′

k−1, Âk, Bk+1, . . . , Bl) ∈ Θ. We have again that the path t ∈ [ 12 , 1] 7→ θt = (B′
k−1, (2t − 1)Âk + (2 −

2t)Bk, Bk+1, . . . , Bl) leaves the network unchanged, i.e. Nθt = NB = NA for all t ∈ [ 12 , 1]. Concatenating the two paths
built above gives the path with the desired properties.

It is easy to see from the proof of Lemma A.5 that we can also maximize the rank of the first matrix ψ1(A0) in an
over-parametrized regime, and all the above considerations also apply.

Lemma A.6. Let A = (A0, . . . , Al) ∈ Θ. Suppose dim1
σ <∞. If h1 ≥ dim1

σ then there exists a path θ : t ∈ [0, 1] 7→ θt ∈
Θ such that

1. θ0 = A;

2. θ1 =: Ã such that rank(ψ1(Ã0)) = dim1
σ, and Ai = Ãi ∀i ∈ [2, l];

3. Nθt = NA ∀t ∈ [0, 1].

Proof. Analogous to the proof of Lemma A.5. It is sufficient to take the spanning set S := {ψw | w ∈ Rh0} = {σ⟨w, ·⟩ |
w ∈ Rh0} and considering that the R-vector space of functions {⟨w, ·⟩ | w ∈ Rh0} has finite dimension h0.

13
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We can now prove the spurious valleys theorem for a NN without bias.

Proof. (Theorem 3.7) For the sake of simplicity, we will write Ck and dimk instead of Ckσ and dimk
σ respectively. The

technique is analogous to the one used in (Venturi et al., 2019): for any A ∈ Θ we want to build a path satisfying the
conditions in Property 3.9.

Let Ã ∈ Θ be our starting set of parameters. In order to build a path satisfying the conditions in Property 3.9, we will
construct l + 1 intermediate paths P1, . . . , Pl+1 : [0, 1] → Θ. The final goal of the first l paths is to be able to assume
w.l.o.g. rank(ψl(Ã′

l−1)) = diml. The first path P1 is built by applying Lemma A.6 on Ã. The endpoint of P1 is a tuple of
parameters A with rank(ψ1(A0)) = dim1. Since the NN function remains the same for all the tuples of parameters on the
path P1, the error function remains constant on the path, i.e. errT (Ã) = errT (P1(t))∀t ∈ [0, 1]. Hence we can assume
w.l.o.g. that the starting tuple of parameters Ã is such that rank(ψ1(A0)) = dim1. Following the same reasoning, we can
proceed by induction by applying Lemma A.5 on Ã, l − 1 more times. More in details, for each k ∈ [2, l], we build a path
Pk such that the endpoint is a tuple of parameters A with rank(ψk(A

′
k−1)) = dimk, and the error function is constant on

Pk. Hence we can assume w.l.o.g. rank(ψl(Ã′
l−1)) = diml.

For the l + 1-th path consider the following. By initial assumption, for any training sample T , the error function errT has a
global minimum. Since the NN function has the form NA(x) = ⟨Alψl(A′

l−1), ϕ(x)⟩ and rank(ψl(Ã′
l−1)) = diml, there

exists B ∈ Rhl+1×hl such that Â := (Ã′
l−1, B) ∈ argminA∈Θ errT (A). By convexity of L, the error function is convex in

the parameters of the last matrix, i.e. errT (Ã′
l−1, ·) is convex. Hence the path t ∈ [0, 1] 7→ θt = (Ã′

l−1, tB + (1− t)Ãl)
satisfies all the conditions in Property 3.9, as desired.

B. Proof of Theorem 3.10
Now we can prove the bias version of the spurious valleys theorem.

Theorem (3.10). Consider Setup 3.3 for a NN with bias, and suppose dimk
σ is finite for any k ∈ [1, l]. If hk ≥ dimk

σ − 1
for all k ∈ [1, l], then the loss landscape L has no spurious valleys.

We use Setup 3.3 and the notation adopted for Theorem 3.7 with some slight changes:

• N has bias. As a consequence, the parameter space Θ has a higher dimension.

• The matrices A0, . . . , Al of a set of parameters A ∈ Θ contain also the bias terms of the respective layers, i.e. they
have now one additional column on the right.

• The sets of representable functions are now

C1
σ = spanR {{ψw | w ∈ Rp} ∪ {1}}

Ckσ = spanR{{σf | f ∈ Ck−1
σ } ∪ {1}}, k > 1.

• Finally we modify the definitions of the functions “ψ”. If v = (v1, . . . , vm) is a m-dimensional vector, we denote by v
the m+ 1-dimensional vector (v1, . . . , vm, 1). For any positive integer m, and any real-valued vector w ∈ Rm+1, we
define the new functions

ψ̃w : Rm → R
x 7→ σ⟨w, x⟩.

Moreover, for any matrix A ∈ Ms×t(R), we define ψ̃(A) := (ψ̃a1 , . . . , ψ̃as)
⊤, where a1, . . . , as are the rows of

A. As the first affine transformation of a neural network is always linear, even for the NNs with bias, the functions
ψ0 : w 7→ ψw and ψ1 are defined as for the no-bias case. Finally, for any k ∈ Z>1, and for any k + 1-tuple of positive
integers (m0,m1, . . . ,mk) ∈ Zk+1

>0 we make a slight modification to ψk, and we define, by abuse of notation, a map
ψk from Rm1×m0 × Rm2×(m1+1) × . . .× Rmk×(mk−1+1) to

(
Ckσ
)mk , by

(W0, . . . ,Wk−1) 7→ ψ̃(Wk−1)(ψ
k−1(W0, . . . ,Wk−2)).

14
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The proof of Theorem 3.10 is analogous to the proof of Theorem 3.7:

• It is easy to see that Propositions A.3 and A.4 still hold true.

• The NN functions can be written as NA(x) = ⟨Alψl(A′
l−1), ϕ(x)⟩, for any A ∈ Θ, x ∈ Rh0 , where the scalar product

is applied row-wise on the LHS. Moreover, for any k ∈ [1, l], the hk +1-vector ψk(A′
k−1) :=

(
ψk(A′

k−1), 1
)

can now
be written as a (hk + 1)× dimk matrix by using a basis of Ckσ .

• The Lemmata A.5 and A.6 need just a little adjustment which relaxes the bound on the hidden layer size: for Lemma
A.5 it is sufficient to have hk+1 ≥ dimk+1

σ − 1, and for Lemma A.6 it is sufficient h1 ≥ dim1
σ − 1.

C. Proof of Theorem 4.4
In this final appendix, we present the proof of Theorem 4.4. Since we consider just polynomial NNs in this section, we omit
the term “polynomial” when referring to NNs and architectures.

Theorem (4.4). Let r, h ∈ Z, r > 1, h > 2. Let N be a 1-h-1 r-NN, and ψ(x) :=
∑d
j=0 αjx

j be a real polynomial target
function. Let {Tδ} be a family of translated training datasets for ψ with at least 3 distinct points each. For a generic 2-plane,
let sδ ∈ STδ

. Then one of the followings holds:

1. sδ ∼+∞ aδ2max{r,d}, for some non-zero constant a ∈ C∗;

2. sδ ∼+∞ bδ2(m−1), for some non-zero constant b ∈ C∗;

3. if ψ is in the image of N then sδ = 0, otherwise sδ ∼+∞ cδ2(m−2), for some non-zero constant c ∈ C∗,

where m := max({j | αj ̸= 0 and j ̸= r} ∪ {0}).

To prove Theorem 4.4, we will need several lemmata. We first fix some notation that we will extensively use in this section.
Notation C.1. We denote by pu,v,k : A2

C → Aw
C , pu,v,k(x, y) := ux+ vy + k, a generic 2-plane in the space of parameters

Aw
C , with u, v, k ∈ Aw

C . We denote with U, V , and K the last coordinate of u, v, and k respectively.

Let N be a 1-h-1 r-NN, and ψ(x) :=
∑d
j=0 αjx

j be a real polynomial target function. Let T be a training dataset for ψ,
with |T | > 2, and let {Tδ} be the family of translated training datasets. When we restrict the error function onto a generic
2-plane pu,v,k we obtain

f(x, y)=
1

N

∑
n=1

(s−αr)pn,r+B − α0−
d∑

j=1,j ̸=r

αjpn,j

2

, (2)

where B = B(x, y) := Ux+ V y+K, and s = s(x, y) :=
∑h
j=1(ujx+ vjy+ kj)

r(uh+jx+ vh+jy+ kh+j). Recall that
we denote by HTδ

⊆ A3
C the graph of f , i.e. the cut loss landscape, by π : HTδ

→ A1
C the projection onto the last coordinate,

and by STδ
⊆ A1

C the set of points sδ where π−1(sδ) is a singular curve. We want to study the limit behaviour of the points
of STδ

as δ → +∞.

Notice that STδ
= {f(x, y) | (x, y) ∈ Zδ} ⊆ A1

C, where Zδ ⊆ A2
C is the zero locus defined by the partial derivatives of f ,

i.e. {
0 =

∑N
n=1 Dn

(
pn,r

∂s
∂x + U

)
0 =

∑N
n=1 Dn

(
pn,r

∂s
∂y + V

) , (3)

where Dn := (s− αr)pn,r +B − α0 −
∑d
j=1,j ̸=r αjpn,j . Hence, we study the limit behavior of f evaluated at a point of

Zδ .

By manipulating the equations in (3), it is easy to see that Zδ ⊆ Z ′
δ , where Z ′

δ ⊆ A2
C is the zero locus defined by

0=Ds(NP2r−P 2
r )−D

d∑
j=1
j ̸=r

αj(NPr+j−PjPr)

0=D(B−α0)(NP2r−P 2
r )−D

d∑
i=1
j ̸=r

αj(P2rPj−Pr+jPr)
(4)
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where D := ∂s
∂xV− ∂s

∂yU . We will use Z ′
δ to prove Theorem 4.4.

Notation C.2. We denote by Z ⊆ A3
C the zero locus describing the points in (3), with x, y, and δ as variables. Let

Z ⊆ P2
C × P1

C be the reduced projective closure of Z w.r.t. the variables (x, y) and δ separately. For [δ : η] ∈ P1
C, let

Z [δ:η] ⊆ P2
C be the restriction of Z to P2

C × {[δ : η]}.

Let π2 : Z ⊆ P2
C × P1

C → P1
C be the second projection. We proceed by considering local sections of π2. Since we are

interested just in real values of δ close to +∞, we may consider sections from a real interval D := (M,+∞) ⊆ R>0. Since
D is simply connected, there exists an analytic local section σ′ : D ⊆ A1

C → P2
C × P1

C of π2. Let σ := π1 ◦ σ′ : D → P2
C be

the composition with the first projection. By Lemma C.7, we may reduce to σ : D ⊆ A1
C → A2

C.

Now we can study the limit behaviour of f(σ) as δ goes to +∞. To do so, we prove some lemmata.
Notation C.3. We will denote by s and B the homogenizations of s and B restricted to {[x : y : 0] | [x : y] ∈ P1

C}. We
denote by sx and sy the partial derivatives of s. Moreover, we write s̃x and s̃y for the dehomogeneizations of sx and sy
respectively. More explicitly we have:

s(x, y) :=

h∑
j=1

(ujx+ vjy)
r(uh+jx+ vh+jy)

B(x, y) :=Ux+ V y

sx(x, y) :=

h∑
j=1

(ujx+ vjy)
r−1
(
(r + 1)ujuh+jx+ rujvh+jy + vjuh+jy

)

sy(x, y) :=

h∑
j=1

(ujx+ vjy)
r−1
(
(r + 1)vjvh+jy + rvjuh+jx+ ujvh+jx

)
(5)

s̃x(x) :=

h∑
j=1

(ujx+ vj)
r−1
(
(r + 1)ujuh+jx+ rujvh+j + vjuh+j

)

s̃y(x) :=

h∑
j=1

(ujx+ vj)
r−1
(
(r + 1)vjvh+j + rvjuh+jx+ ujvh+jx

)
.

(6)

Lemma C.4. The zero locus Z(s̃x, s̃y) ⊆ A1
C is empty for a generic 2-plane.

Proof. We would like to understand which conditions on the parameters of the 2-plane imply that Z(s̃x, s̃y) is empty, i.e.
the GCD(s̃x, s̃y) is a polynomial of degree 0. When we run the Euclidean algorithm for GCD, the degree of the residual
polynomial is decreased of at least 1 in each iteration. Since we want the last non-zero residual to be of degree 0, and s̃x
and s̃y are both polynomial in x of degree r, from the GCD computation we get at most r closed conditions of the form
Z(c0, . . . , cr−i) at iteration i, where c0, . . . , cr−i are the coefficients of the i-th residual polynomial. We denote the union
of such vanishing loci with Z.

It remains to show there exists a 2-plane not in Z. Let p′ be the 2-plane defined by u1 = uh+1 = v2 = vh+2 = U = 1,
V = 2, and all the other entries of u, v, k ∈ Aw

C equal to 0. We have s(x, y) = xr+1 + yr+1, s̃x(x) = (r + 1)xr, and
s̃y(x) = r + 1. Hence, the chosen vectors for p′ define a point that is not contained in Z.

Lemma C.5. The zero loci Z(s,B),Z(s, V sx − Usy) ⊆ P1
C are empty for a generic 2-plane.

Proof. We want to show Z(s,B) and Z(s, V sx −Usy) are both empty for all 2-planes in a Zariski open A. To achieve this
we explicitly construct A as complement of the union of some close sets Z0, . . . , Z4, and we show A is non-empty.

If U = V = 0, then Z(s,B) = Z(s, V sx − Usy) = Z(s) ̸= ∅. Hence we set Z0 := Z(U = 0, V = 0).

Let [x′ : y′] ∈ Z(s,B). Hence 0 = B(x′, y′) = Ux′ + V y′, which implies [x′ : y′] = [−V : U ]. Then we get a closed
condition on the parameters of the 2-plane, namely Z1 := Z

(
s(−V,U)

)
⊆ A3w

C .
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Now let [x′ : y′] ∈ Z(s, V sx−Usy). Then 0 = (r+1)s(x′, y′) = x′sx(x
′, y′)+y′sy(x

′, y′). If y′ = 0, then sx(1, 0) = 0.

Thus we obtain another closed condition Z2 := Z
(∑h

j=1 u
r
juh+j

)
. If y′ ̸= 0, by using V sx(x′, y′) − Usy(x

′, y′) = 0,
we obtain sx(x′, y′)(Ux′ + V y′) = 0 and sy(x′, y′)(Ux′ + V y′) = 0. If Ux′ + V y′ = 0, we get [x′ : y′] = [−V : U ] and
the same condition encoded in Z1. If Ux′ + V y′ ̸= 0, then sx(x′, y′) = sy(x

′, y′) = 0, i.e. (x′, y′) is a common root of the
two derivatives. Hence we need Z(sx, sy) ⊆ P2

C to be empty. Since y′ ̸= 0 we may as well de-homogenise and consider the
affine chart for y ̸= 0, i.e. we focus on Z(s̃x, s̃y) ⊆ A1

C. By Lemma C.4, Z(s̃x, s̃y) ⊆ A1
C is empty for a generic 2-plane.

Notice that by how we defined the 2-plane pu,v,k not all triples of vectors (u, v, k) defines a 2-plane: u and v have to be
linearly independent. In other words, the 2 × w matrix M formed by stacking the vectors u and v must have a 2 × 2
non-vanishing minor. Thus we can build one last zero locus Z3, defined by the 2× 2 minors of M .

Hence we can define the Zariski open A := A3w
C \

⋃3
i=0 Zi. It is easy to verify that the 2-plane p′, defined in the proof of

Lemma C.4, is in A. In particular, A is not empty.

Lemma C.6. Let a, b, c ∈ C. If ∂s∂x (σ)− b and ∂s
∂y (σ)− c both tends to 0 as δ goes to +∞, then limδ→+∞ s(σ)− a ̸= 0

for a generic 2-plane.

Proof. We show the statement holds for a generic 2-plane, i.e. for 2-planes in a non-empty Zariski open A.

Let s′, ∂s
∂x , and ∂s

∂y be the homogeneizations of s and its partial derivatives, respectively. Consider Z :=

Z
(
s′ − azr+1, ∂s∂x − bzr, ∂s∂y − czr

)
⊆ A3w

C × P2
C, where the parameters of the generic 2-plane, and x, y, z are the

variables. Then, the projection π(Z) of Z on A3w
C is again close (for example by Theorem 3.12 in (Harris, 1992)).

We take A := A3w
C \ π(Z), which clearly is open. It remains to show A is non-empty. We have to find the param-

eters u, v, k ∈ Aw
C of a 2-plane for which Z ∩ {(u, v, k)} × P2

C is empty. Here we use the notation for u, v, k we
have adopted in the rest of the section, namely u := (u1, . . . , uh, uh+1, . . . , u2h, U), and analogously for v and k. We
take u1 = uh+1 = v2 = vh+2 = k3 = U = 2V = 1, and kh+3 ∈ C such that kh+3 ̸= c + η a

r+1 + µ b
r+1 for

any η, µ ∈ C with ηr = a
r+1 , and µr = b

r+1 . We take all the other entries of u, v, and k equal to 0. Then we get
s′(x, y, z) = xr+1 + yr+1 + kh+3z

r+1. With the choices made for u, v, k it is easy to verify that Z ∩ {(u, v, k)} × P2
C is

empty. Hence, the chosen (u, v, k) is a point in A3w
C \ π(Z), concluding the proof.

Lemma C.7. Let δ ∈ A1
C. Then Z [δ:1] has no points at infinity for a generic 2-plane.

Proof. We re-write the polynomials in (3) in a more convenient way:

px := (s− αr)

(
∂s

∂x
P2r + PrU

)
+ (B − α0)

(
∂s

∂x
Pr +NU

)
−

d∑
j=1,j ̸=r

αj

(
∂s

∂x
Pr+j + UPj

)
,

and

py := (s− αr)

(
∂s

∂y
P2r + PrV

)
+ (B − α0)

(
∂s

∂y
Pr +NV

)
−

d∑
j=1,j ̸=r

αj

(
∂s

∂y
Pr+j + V Pj

)
.

Notice that

p3 := D(B−α0)
(
P 2
r−NP2r

)
−D

d∑
j=1
j ̸=r

αj(PrPr+j−P2rPj) =

(
∂s

∂y
P2r + V Pr

)
px −

(
∂s

∂y
P2r+UPr

)
py

is in the ideal generated by px and py. Hence, Z [δ:1] is contained in Z(px, py, p3) ⊆ P2
C, where px, py, and p3 are the

homogeneizations of px, py , and p3 respectively. We are interested in the points of C := Z(px, py, p3) of the form [x : y : 0]:

C|{[x:y:0]|[x:y]∈P1
C} : Z

(
s sx, s sy, B(V sx − Usy)

)
= Z(s,B) ∪ Z(s, V sx − Usy) (7)

The equality in 7 comes from the equality (r + 1)s = xsx + ysy. By Lemma C.5, the zero locus in (7) is empty. Hence
Z [δ:1] has no points at infinity.
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Lemma C.8. Let a, b ∈ A1
C, and let s, B, and σ(δ) be defined as for Theorem 4.4 for a generic 2-plane. If

limδ→+∞
∂s
∂x (σ) = a and limδ→+∞

∂s
∂y (σ) = b, then limδ→+∞ σ ∈ A2

C. In particular the limits limδ→+∞ s(σ) and
limδ→+∞B(σ) are both finite.

Proof. We want to show that limδ→+∞ σ is finite for a generic 2-plane. In order to do this, we homogenize the partial
derivatives of s, and we consider the zero locus Z := Z

(
∂s
∂x − azr, ∂s∂y − bzr

)
⊆ P2

C. The points at infinity of Z are

Z ′ := Z (sx, sy) ⊆ P1
C, where sx and sy are like in (5). We will show that Z ′ is empty for a generic 2-plane. Let

[x∗ : y∗] ∈ Z. From the expressions of sx and sy is clear that, for a generic 2-plane, x∗ = 0 if and only if y∗ = 0. Then we
can assume w.l.o.g. that y∗ ̸= 0 and dehomogenize the polynomials sx and sy. By Lemma C.4, Z(s̃x, s̃y) ⊆ A1

C is empty
for a generic 2-plane, where s̃x and s̃y are sx and sy dehomogenized, respectively. Hence Z ′ is empty and Z has no points
at infinity for a generic 2-plane. It follows that if ∂s

∂x (σ)− a and ∂s
∂y (σ)− b are both going to 0, then it is not possible for σ

to tend to a point at infinity of A2
C.

Lemma C.9. Suppose ∂s
∂x (σ)V − ∂s

∂y (σ)U = 0 on D, and ∂s
∂x (σ) goes to infinity as δ → +∞. Then s(σ)−αr ∼ αmδ

m−r,
as δ → +∞.

Proof. Recall thatB = B(x, y) := Ux+V y+K and s = s(x, y) :=
∑h
j=1(ujx+vjy+kj)

r(uh+jx+vh+jy+kh+j), for
a generic 2-plane pu,v,k defined by the vectors u := (u1, . . . , u2h, U), v := (v1, . . . , v2h, V ), k := (k1, . . . , k2h,K) ∈ Aw

C .
From the first equation in (3) we obtain

(B(σ)− α0)

(
∂s

∂x
(σ)Pr +NU

)
= − (s(σ)− αr)

(
∂s

∂x
(σ)P2r + UPr

)
+

d∑
j=1,j ̸=r

αj

(
∂s

∂x
(σ)Pr+j + UPj

)
. (8)

We may assume that s(σ)− αr ∼ aδt−r for some a ∈ C∗ and t ∈ Z. Moreover, we can write σ1 ∼ c1δ
q1 and σ2 ∼ c2δ

q2

for some c1, c2 ∈ C∗ and q1, q2 ∈ Z. We proceed by contradiction.

Suppose that either t > m or t = m and a ̸= αm. By (8), we must have B(σ) − α0 ∼ bδt, where b = −a if t > m, or
b = αm − a if t = m. In particular, b ̸= 0. Since t ≥ m > 0, we have Uσ1 + V σ2 ∼ bδt, where σ = (σ1, σ2). Then only
three cases are possible:

1. q1 = q2 > t. In this case we necessarily have c1 + c2 = 0. Hence we have

s(σ) = cr+1
1

 h∑
j=1

(uj − vj)
r
(uh+j − vh+j)

 δq1(r+1) + o
(
δq1(r+1)

)
.

Notice that c1 ̸= 0 by hypothesis, and
∑h
j=1 (uj − vj)

r
(uh+j − vh+j) is non-zero for a generic 2-plane. Hence s(σ)

is going to infinity of degree q1(r + 1) > t(r + 1) ≥ m(r + 1) ≥ r + 1 > 1. This means that also s(σ)− αr is going
to infinity with order q1(r + 1). But q1(r + 1) > t(r + 1) > t− r, which is a contradiction.

2. One between q1 and q2 is equal to t, and the other is smaller than t. W.l.o.g. q1 = t and q2 < t. In particular, we must
have Uc1 = b. Then we get:

s(σ) = br+1

 h∑
j=1

urjuh+j

 δt(r+1) + o
(
δt(r+1)

)
.

Again, b ̸= 0 by hypothesis, and
∑h
j=1 u

r
juh+j is non-zero for a generic 2-plane. Hence s(σ) is going to infinity of

degree t(r + 1) ≥ m(r + 1) ≥ r + 1 > 1, and so does s(σ)− αr. But t(r + 1) > t− r, which is a contradiction.

3. q1 = q2 = t and Uc1 + V c2 = b. Then we get:

s(σ) =

 h∑
j=1

(ujc1+vjc2)
r
(uh+jc1+vh+jc2)

 δt(r+1) + o
(
δt(r+1)

)
. (9)

18



Spurious Valleys and Clustering Behavior of Neural Networks

Since c1 and c2 depend on the generic 2-plane, in this case is more difficult to understand if s(σ) is of degree t(r+1) at
infinity. Using the notation introduced in this section, we have (r+1)s = xsx+ysy . Notice that the coefficient of δt(r+1)

in (9) is equal to D := s(c1, c2) =
1
r+1 (c1sx(c1, c2) + c2sy(c1, c2)). By hypothesis V ∂s

∂x (σ1, σ2) = U ∂s
∂y (σ1, σ2). In

particular, the limit behaviour of V ∂s
∂x (σ1, σ2) and U ∂s

∂y (σ1, σ2) is the same. This means that their leading coefficients
must be equal, or, equivalently, V sx(c1, c2) = Usy(c1, c2). Hence UD = 1

r+1 (Uc1 + V c2) sx(c1, c2). Since c2 ̸= 0

by hypothesis and U ̸= 0 for a generic 2-plane, we also have D = 1
r+1

(
c1
c2

+ V
U

)
s̃x

(
c1
c2

)
and s̃y

(
c1
c2

)
= V

U s̃x

(
c1
c2

)
.

Notice that c1c2 + V
U ̸= 0 because Uc1 + V c2 = b ̸= 0 by hypothesis. s̃x

(
c1
c2

)
= 0 would imply that also s̃y

(
c1
c2

)
= 0,

which is not possible for a generic 2-plane by Lemma C.4. Hence D ̸= 0 and s(σ) = Dδt(r+1). Hence, s(σ)− αr is
going to infinity of degree t(r + 1) too. But t(r + 1) > t− r, which is a contradiction.

We have taken care of the case t > m and the case t = m with a ̸= αm. Hence, it remains to show that it is not possible
to have t < m for a generic 2-plane. If we assume t < m, then B(σ)− α0 ∼ αmδ

m, by (8). By proceeding analogously
to the previous case, we find that s(σ) − αr goes to infinity with order greater than m(r + 1) > 0 > t −m, which is a
contradiction.

We can now conclude the proof of Theorem 4.4. We consider two cases.

1. There exists M ∈ R such that, for any δ > M , ∂s∂x (σ)V − ∂s
∂y (σ)U ̸= 0. By (4) we get:

(s(σ)−αr)(NP2r−P 2
r )=

d∑
j=1
j ̸=r

αj(NPr+j−PjPr)

(B(σ)−α0)(NP2r−P 2
r )=

d∑
j=1
j ̸=r

αj(P2rPj−Pr+jPr)
. (10)

Moreover, for any integer 0 < j ≤ d, j ̸= r, we have:

NPr+j − PjPr =rj

N N∑
n=1

i2n −

(
N∑
n=1

in

)2
 δj+r−2 +

rj(j + r − 2)

2

(
N

N∑
n=1

i3n −
N∑
n=1

in

N∑
n=1

i2n

)
δj+r−3

+
rj

12

(
µ1N

N∑
n=1

i4n−2µ2

N∑
n=1

in

N∑
n=1

i3n − 3µ3

( N∑
n=1

i2n

)2)
δj+r−4 + o

(
δj+r−4

) ,

and

P2rPj − Pr+jPr =(r2 − rj)

N N∑
n=1

i2n −

(
N∑
n=1

in

)2
 δj+2r−2 +

(r2−rj)(j+2r−2)

2

(
N

N∑
n=1

i3n−
N∑
n=1

in

N∑
n=1

i2n

)
δj+2r−3

+
r

12

(
η1N

N∑
n=1

i4n+2η2

N∑
n=1

in

N∑
n=1

i3n+3η3

( N∑
n=1

i2n

)2)
δj+2r−4 + o

(
δj+2r−4

) ,

where µ1 := 3rj+2r2+2j2− 9r− 9j+11, µ2 := j2+ r2− 3j− 3r+4, µ3 := jr− j− r+1, η1 := 7r3− 18r2+
11r− 3rj2 − 2r2j− 2j3 +9rj+9j2 − 11j, η2 := −2r4 +4r3 +6r3j− 4r2 − 5r2j− r2j2 − 3rj2 +4rj+ rj3, and

η3 := −r4+2r3−2r3j−r2−r2j+3r2j2+rj−rj2. Since T has at least 2 distinct points,N
∑N
n=1 i

2
n ̸=

(∑N
n=1 in

)2
,

and hence NP2r −P 2
r is non-zero for a sufficiently large δ. By dividing the equations in (10) by NP2r −P 2

r we obtain
expressions for s(σ)− αr and B(σ)− α0 respectively, depending on δ. Thus, we get a new expression for the error:

f(σ) =
1

N

N∑
k=1

 d∑
j=1,j ̸=r

αjωk,j
NP2r − P 2

r

2

, (11)
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where ωk,j := pk,r(NPr+j−PjPr)+(P2rPj−Pr+jPr)−pk,j(NP2r−P 2
r ) ∈ R[δ]. Notice that, if g is representable

by N , then f(σ) = 0 because the sum over j has no terms. By performing some computations, for any 1 ≤ k ≤ N
and any 0 < j ≤ d, j ̸= r, we obtain that ωk,j=Ωδ2r+j−4+o

(
δ2r+j−4

)
, where

Ω =
r2j(r − j)

2

N N∑
n=1

i2n −

(
N∑
n=1

in

)2
 i2k −

r2j(r − j)

2

(
N

N∑
n=1

i3n −
N∑
n=1

in

N∑
n=1

i2n

)
ik

+
r

12

(
ξ1N

N∑
n=1

i4n + 2ξ2

N∑
n=1

in

N∑
n=1

i3n + 3ξ3

( N∑
n=1

i2n

)2) ,

where ξ1, ξ2, ξ3 ∈ Z[r, j]. We focus on the coefficient of the leading term of ωk,j . Notice that the term multiplying ik
is non-zero, by the Cauchy-Schwarz inequality. Then, since T has at least 3 distinct elements, for each 0 < j ≤ d,
j ̸= r, there exists at least one 1 ≤ k ≤ N such that the coefficient of the degree 2r + j − 4 term of ωk,j is non-zero.
Hence there exists a k ∈ [1, N ] such that

∑d
j=1,j ̸=r

αjωk,j

NP2r−P 2
r
∼ cδm−2 as δ → +∞, for some multiplicative non-zero

real constant c ∈ R∗. By (11), f is asymptotic to δ2(m−2), up to a non-zero real constant. This concludes the first case.

2. For any M ∈ R+, there exists I > M such that ∂s
∂x (σ(I))V− ∂s

∂y (σ(I))U=0. By the Identity Theorem, we get
∂s
∂x (σ)V − ∂s

∂y (σ)U = 0 on D. If limδ→+∞
∂s
∂x (σ) ∈ A1

C, then also limδ→+∞
∂s
∂y (σ) is finite. By Lemma C.8, both

limδ→+∞ s(σ) and limδ→+∞B(σ) are finite. Furthermore, by Lemma C.6, s(σ)−αr does not tend to 0 as δ → +∞.
Hence, by (2), f(σ) goes to +∞ with order 2max{d, r} as δ → +∞. In particular, if d > r then f(σ) ∼ α2

dδ
2d, else

if d ≤ r then f(σ) ∼ c2δ2r, where c := limδ→+∞ s(σ)− αr ∈ C∗.

If ∂s
∂x (σ) goes to infinity, then clearly ∂s

∂y (σ) tends to infinity too. Then from the first equation in (3) we obtain

(B(σ)− α0)

(
∂s

∂x
(σ)Pr +NU

)
= − (s(σ)−αr)

(
∂s

∂x
(σ)P2r+UPr

)
+

d∑
j=1,j ̸=r

αj

(
∂s

∂x
(σ)Pr+j+UPj

)
. (12)

Since ∂s
∂x (σ) tends to infinity, ∂s∂x (σ)Pr +NU ̸= 0 for a sufficiently large δ. Hence, from (12) we get an expression

for B(σ)− α0 that we can substitute in the error f to obtain:

f(σ) =
1

N

N∑
k=1

(
λk
Λ

)2

,

where

Λ :=
∂s

∂x
(σ)Pr +NU

λk := (s(σ)− αr)

(
pk,rΛ− ∂s

∂x
(σ)P2r + UPr

)
−

d∑
j=1
j ̸=r

αj

(
pk,jΛ− ∂s

∂x
(σ)Pr+j + UPj

)
.

Then for any k ∈ [1, N ] and for any j ∈ [1, d], j ̸= r we have

pk,jΛ− ∂s

∂x
(σ)Pr+j + UPj =

∂s

∂x
(σ)

(
j

(
Nik−

N∑
n=1

in

)
δr+j−1+o

(
δr+j−1

))

+ U

(
j

(
Nik −

N∑
n=0

in

)
δj−1 + o

(
δj−1

))

=j

(
Nik −

N∑
n=1

in

)
∂s

∂x
(σ)δr+j−1 +

∂s

∂x
(σ)o(δr+j−1),
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where the last equality holds because ∂s
∂x (σ) goes to infinity by our assumption. By Lemma C.9, s(σ)−αr ∼ αmδ

m−r.

Hence, for any k ∈ [1, N ] we have λk ∼ (r − m)
(
Nik −

∑N
n=1 in

)
αm

∂s
∂x (σ)δ

m+r−1. Notice that m ̸= r by
definition. We conclude that

f(σ) ∼ α2
m

(r −m)2

N

N∑
k=1

(
ik −

1

N

N∑
n=1

in

)2

δ2(m−1),

as desired.

This concludes the proof of Theorem 4.4.

C.1. Observation on the proof of Theorem 4.4

Notation C.10. For n ∈ [1, N ], we denote by pn,r(δ) := (in+ δ)r the degree r polynomial in δ derived from the translation
of the dataset T by δ, as in Definition 4.3. Moreover, for any j ∈ N, let Pj :=

∑N
n=1 pn,j .

From the proof of Theorem 4.4, it is clear that the points of STδ
satisfying 3. in Theorem 4.4 come from the evaluation of

the restricted error function f at the points of the zero locus of A2
C, defined by

0 = (s(x, y)− αr)Pr,r −
d∑
j=1
j ̸=r

αjPj,r

0 = (B(x, y)− α0)Pr,r −
d∑
j=1
j ̸=r

αjPr,r+j

, (13)

where Pi,k := Pi+rPi−r − PiPk. The remaining points of STδ
, i.e. the ones verifying 1. or 2. in Theorem 4.4, come from

the evaluation of f at the points of the following zero locus of A2
C, defined by

0= V ∂s
∂x (x, y)− U ∂s

∂y (x, y)

0= (B(x, y)−α0)P0+(s(x, y)−αr)Pr−
d∑
j=1
j ̸=r

αjPj , (14)

where Pi(x, y) := ∂s
∂x (x, y)Pi+r + UPi. In particular, to determine which condition, 1. or 2. holds, we have to look at

finiteness of the limit of the partial derivatives (more details can be found in the proof of Theorem 4.4). Notice that, in
general, (13) has r+ 1 points, and (14) has r(2r+ 1) points. These numbers agree with the cardinality of the clusters found
in Examples 4.1 and 4.2.
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