Published as a conference paper at ICLR 2021

LLEARNING ASSOCIATIVE INFERENCE USING
FAST WEIGHT MEMORY

Imanol Schlag Tsendsuren Munkhdalai

The Swiss Al Lab IDSIA / USI/SUPSI  Microsoft Research

imanol@idsia.ch tsendsuren.munkhdalai@microsoft.com
Jiirgen Schmidhuber

The Swiss Al Lab IDSIA / USI/ SUPSI
juergen@idsia.ch

ABSTRACT

Humans can quickly associate stimuli to solve problems in novel contexts. Our
novel neural network model learns state representations of facts that can be
composed to perform such associative inference. To this end, we augment the
LSTM model with an associative memory, dubbed Fast Weight Memory (FWM).
Through differentiable operations at every step of a given input sequence, the
LSTM updates and maintains compositional associations stored in the rapidly
changing FWM weights. Our model is trained end-to-end by gradient descent
and yields excellent performance on compositional language reasoning problems,
meta-reinforcement-learning for POMDPs, and small-scale word-level language
modelling][]

1 INTRODUCTION

Humans continually adapt in order to understand new situations in changing environments. One
important adaptive ability is associative inference for composing features extracted from distinct
experiences and relating them to each other (Schlichting & Preston, 2015} |Gershman et al., [2015).
Suppose Alice has shared with you pictures of her toddler. Later, at the office party, you see a man
carrying the depicted toddler. Since the toddler yields a shared feature in two different contexts,
it may be plausible to infer that the man is Alice’s partner, without ever seeing him and Alice to-
gether. The ability to rapidly associate and bind together novel stimuli can help to derive knowledge
systematically, in addition to the knowledge gained directly from observation.

Virtually all modern cognitive architectures applied to challenging artificial intelligence problems
are based on deep artificial neural networks (NNs). Despite their empirical successes and theoretical
generality, NN tend to struggle to generalise in situations similar to the given example (Lake et al.,
2017} Phillips} 1995} [Lake & Baroni,|2017). This weakness becomes even more severe if the training
and test data exhibit systematic differences (Atzmon et al., 2016;[Agrawal et al.,[2017). For example,
during training, the man’s representation might never be associated with the toddler’s, but during
testing, this association might be necessary to make a useful prediction. In problems where humans
excel, this sort of inference is likely ubiquitous since data is often combinatorially complex in a
way that observations used during training will likely cover just a small fraction of all possible
compositions. Such a lack of productivity and systematicity is a long-standing argument against the
use of NNs as a substrate of an artificial cognitive architecture (Fodor & Pylyshyn, [1988; [Hadley),
1994} McLaughlin}, [2009).

The hidden state of a neural model is a learned representation of the task-relevant information ex-
tracted from the input. To generalise to never-seen-before compositions of stimuli, the function
which produces the state representation must be able to systematically construct all possible states.
This requires a general and preferrably differentiable method, such as the Tensor Product Repre-
sentation (TPR;|Smolensky| (1990)). TPRs provide a general and differentiable method for embed-

'Source code and data used in this paper is available at github.com/ischlag/Fast-Weight-Memory-public


https://github.com/ischlag/Fast-Weight-Memory-public

Published as a conference paper at ICLR 2021

ding symbolic structures in vector spaces. A TPR state representation is constructed via the tensor
product (i.e. the generalised outer-product) of learned component representations. Under certain
constraints, such a mechanism guarantees a unique representation for every possible combination of
components (Smolensky, [1990; 2012)).

In this work, we augment a recurrent NN (RNN) with an additional TPR-like memory representa-
tion. To facilitate the learning of multi-step associative inference, the TPR memory can be queried
multiple times in a row, allowing the model to chain together various independent associations. In
contrast to previous work on fast weights, we apply our memory-augmented RNN to much longer
sequences. This requires the model to update its associative memory. Furthermore, we demonstrate
the generality of our method by applying it to meta-reinforcement learning and small scale language
modelling problems.

In the next section, we cover related memory-augmented NNs. Section [3] describes the FWM in
detail. Section 4 demonstrates the generality of our method through experiments in the supervised,
self-supervised, and meta-reinforcement learning setting. The supervised-learning experiments in
subsection [.T| consist of a more challenging version of the bAbI dataset dubbed concatenated-bAbl
or catbAbl. The meta-reinforcement learning experiment in section demonstrates the FWM’s
ability to learn to explore a partially observable environment through its ability to perform associa-
tive inference. Finally, the self-supervised experiments in subsection[4.3]demonstrate that the FWM
can compete with the state-of-the-art word-level language models on small benchmark datasets.

2 RELATED WORK

RNNs such as the Long Short-Term Memory (LSTM; [Hochreiter & Schmidhuber (1997); |Gers
et al.[(2000)) are in theory capable of implementing any algorithm (Siegelmann & Sontag| [1991).
However, the linear growth of the hidden state of a fully connected RNN leads to quadratic growth
in the number of trainable weights. Early work addressed this issue through the use of additional
memory (Das et al}[1992; Mozer & Dasl, [1993)) and differentiable fast weights (Schmidhuber;|1992;
1993). Recently, memory-augmented NNs have solved algorithmic toy problems (Graves et al.,
2014;2016)) as well as reasoning and inference problems in synthetic and natural language (Weston
et al.,|2015b; Xiong et al.,|2016).

Inspired by the random-access memory of computer architectures, a common approach is to incor-
porate a soft and differentiable lookup table into the NN model. Such slot-based memory matrices
have shown to be difficult to train (Munkhdalai & Yul 2017b) and require sophisticated mechanisms
for the allocation and deallocation of memory (Csordas & Schmidhuber, [2019). The Transformer-
XL (TXL; |Dai et al.{(2019)), an autoregressive language model variant of the Transformer (Vaswani
et al |2017), can be understood as a slot-based memory-augmented RNN where every new state is
pushed into an immutable queue of finite size. Although it is recurrent, the layers of a transformer
architecture are strictly forced to use inputs from a lower layer which limits its generality. Neverthe-
less, a sufficiently deep and well regularised TXL model has achieved state-of-the-art performance
in large scale language modelling tasks.

A biologically more plausible alternative of increasing the memory capacity of NNs are fast-
changing weights, i.e. stateful weights that can adapt as a function of its input. Non-differentiable
fast weights or “dynamic links” have been published since 1981 (von der Malsburg, |1981; [Feldman),
1982; |Hinton & Plaut, [1987). Subsequent work showed that a regular network can be trained by
gradient descent to control the fast weights of a separate network (Schmidhuber, [1992)) or of it-
self (Schmidhuber} |1993) in an end-to-end differentiable fashion. Recently, fast weights have made
a comeback and achieved good results in small toy problems where regular NNs fall short (Ba et al.,
2016aj;|Schlag & Schmidhuber;, 2017; [Munkhdalai & Yul [2017a; |Pritzel et al.,[2017; [Ha et al., 2017}
Zhang & Zhou, 2017; Miconi et al.l 2018; 2019; Schlag & Schmidhuber, 2018; [Munkhdalai et al.,
2019; Bartunov et al., |[2020).

Most memory-augmented NNs are based on content-based or key-based lookup mechanisms. An
alternative to the storage of patterns in a lookup table is the idea that patterns are reconstructed
through the implicit iterative minimisation of an energy function, such as in the classical Hopfield
network (Steinbuchl [1961; Willshaw et al., [1969; Hopfield, |1982} [Kanerval [1988) or the modern
Hopfield network (Krotov & Hopfield, 2016; |[Demircigil et al., 2017; |[Ramsauer et al., 2020). This is



Published as a conference paper at ICLR 2021

often described as an auto-associative type of memory as it reconstructs a previously stored pattern
that mostly resembles the current pattern. A much less studied variation is the hetero-associative
memory (see e.g. Kosko|(1988))) where the retrieved pattern is different from the input pattern. This
is more relevant for our use case. We aim to train an LSTM to construct, maintain, and edit its
associative memory. The ability to edit Hopfield networks partially is not very well studied. For this
reason, we employ a simple (multi-)linear hetero-associative memory as it is more closely related to
the theory of TPRs (whose manipulation is well understood) and because the association is retrieved
in a single step.

Our work directly builds on two examples of differentiable fast weight memories: the TPR-RNN
by [Schlag & Schmidhuber (2018) and the Metalearned Neural Memory (MNM) by Munkhdalai
et al.[ (2019). The TPR-RNN is a sentence-level model for reasoning on text. It achieves excellent
results on the regular bADI tasks but it underperforms on word-level bAbI (Schlag et al., [2019) or
algorithmic toy problems (Le et al) 2020). In contrast, the MNM is a word-level model which
augments the LSTM with a fully-connected multi-layer feed-forward network as its memory and
trains it using a meta-learning objective. Both, MNM and TPR-RNN were developed on the regular
bADI dataset which only contains short sequences and does not require the model to remove depre-
cated associations from its memory. In this work, we train on an infinite sequence of bAbI stories
where our FWM achieves excellent performance and improves over MNM. We further demonstrate
strong performance in small-scale language modelling and meta reinforcement-learning which
demonstrates the generality of our contribution.

3 PROPOSED METHOD

Our FWM is a fast-changing, multi-linear map which is controlled by a slowly-changing, non-linear
LSTM. The slow weights of the LSTM are regular NN weights which are updated during training by
gradient descent. In contrast, the fast weights of the FWM are updated by the LSTM at every step of
the input sequence through a Hebb-like differentiable mechanism. This allows the FWM function
to change rapidly even during testing—hence the name fast weights. Along with updating the fast
weights, the LSTM also generates a memory query which is used to retrieve information that was
previously stored. The retrieved information then becomes part of the model’s output.

3.1 THE FAST WEIGHT MEMORY

Lip1

Given a sequence of tokens x = (z1,...,z7) from XN,

a vocabulary V, the task of language modelling is to +

train a model which maximizes the joint probability F F, FWM

p(x) which we factorize autoregressively p(z1.7) = t-1—> > F,
]_[tT: p(x¢|xo.¢—1) where xp is an artificial start to- +

ken | In this work, we train an RNN model to encode
the input sequence X;.; into hy, the hidden state of the ~ h, ;—»| LSTM |—> h,
LSTM, and F3, the fast weight tensor of the FWM, to
maximize the probability of the next token x; 1. +

Ty

At step t of the input sequence, the input to-
ken z; is embedded in a dg-dimensional vector

space using ailookup table? e = gmbedding(wt). proposed method where A refers to the
An LSTM with disrm hidden units encodes the write mechanism described in section

sequence of embedded tokens into a fixed size F, are the recurrent weights of

vector representation h; = LSTM(es, hi—1). e FWM which have been generated by
The probability distribution over the next token o1 STM. The LSTM is a regular slow

41 = softmax(W ) (h, + FWM(h,, F;)) where RNN. The residual connection between
F, € R%wxdiw are the fast weights of the FWM  the FWM and the LSTM is not depicted.
at step t and W) € RIVIxdismi | Note that the fast

weight matrix F is a reshaped third-order tensor F, € R%wwxdrwmxdrwn This allows us to describe
third-order tensor operations using matrix multiplications. We’ll now describe in detail the FWM
function and how its fast weights are updated.

Figure 1: A simplified illustration of our

We use the notation x; .; to refer to the sequence (T1, 22, ey Tt)-



Published as a conference paper at ICLR 2021

3.1.1 WRITING

The FWM is updated at every step ¢ using the write mechanism described in this section. To this
end, we extract from the hidden state h;: the write strength [ (a scalar bounded by 0 and 1 using the
sigmoid function o), the two key vectors k1, ko, and the new value v.
[k:lv k2> ’U} = ¢(eriteht) (1)
B =0c(Wghy) 2)
The purpose of writing to memory is to learn a context-specific association between the input pattern
k1 ® k4 and the output pattern v. The usage of the tensor-product in the input pattern factorises the
the representational space which guarantees unique orthogonal vector representations for novel key
pairs. A specific example of such is given and demonstrated by|Schlag & Schmidhuber|(2018)) where
the first key learns to represent an entity and the second key a specific action, thereby, learning a
representational space that generalises to never seen entity and action compositions.

In stark contrast to the complex memory operations of the TPR-RNN, we employ a single, simple,
and word-level operation which is closely related to the perceptron learning rule (Rosenblatt, |1958).
It allows the model to replace the previous association v, With a convex combination of the old
and new value Sv + (1 — B)voq. With the scalar 8 the LSTM controls if the new association fully
replaces the previous value (8 = 1) or if the information of both are mixed together. Our fast weight
update works as follows: First, the current value vgq that is associated with k1 ® ko is retrieved.
Second, we remove the old association from the map by subtracting vec(k; ® kg) ® voq from our
memory, where vec vectorises the matrix. Third, we add vec(k; ®k2) ® (Sv+ (1— ) von). All three
steps can be achieved at once using the following update rule (see appendix section B for the proof):
F/=F, 1 + Bvec(ks @ ka) ® (v — voiq)- 3)
To prevent the fast weights from potentially growing endlessly, we scale down the fast weights
whenever || F/||2 > 1. This is achieved through the following element-wise scaling.
!/
Fo-— @)
max (1, || F/[|2)
3.1.2 READING

For each step of the input sequence, the model queries the memory in order to retrieve a previously
stored value. Due to the keys and values being generated separately, the network can retrieve values
which are informationally independent from their keys. In order to perform more complex associa-
tive inference, like e.g. transitive inference (a — b,b — ¢, therefore, a — c¢), we employ multiple
reads where we use the retrieved value as one of the keys in the next query (see equation|[7).

) = 6(Wohe) 5)
el = p(Why), 1 <i <N, (©6)
ngi) = LN(F; Vec(ngi_l) ® egi))), 1<i<N, 7
FWM(h,, F,) = W,n{™"). (8)

Here LN refers to layernorm without the learned element-wise affine map (Ba et al.l 2016b)), vec

reshapes the matrix into a vector, ¢ is the hyperbolic tangent function, and the matrices W, Wez) €
Rwuxdisv i 1. N, } and W, € Résm*diwn are regular slow weights trained by gradient de-
scent which allow us to decouple the dimensionality of the LSTM from the dimensionality of the
FWM. In eq. [7| F; is the multi-linear map which we query using the LSTM-generated “input” e(*)
and the previous retrieval (") (except for the first query where both keys are LSTM-generated).

4 EXPERIMENTS

4.1 CONCATENATED-BABI

The bADI tasks is a popular toy dataset to benchmark neural networks with memory augmenta-
tions and reasoning capabilities (Weston et al.l |2015a). It consists of a set of short stories with



Published as a conference paper at ICLR 2021

questions embedded in the text. The stories were generated by simulating multiple entities in a vir-
tual environment and cover different contexts in which entities change their state on their own or
through an interaction. Each story-sample belongs to one of 20 different tasks that the authors of the
dataset considered important for intelligent dialogue agents. The tasks contain questions which re-
quire reasoning capabilities like deduction, coreference, or counting. All tasks require some level of
symbolic reasoning, and the first neural and non-neural baselines demonstrated poor generalisation
performance on test data (Weston et al., 2015a)).

We aim to improve the bAbI benchmark as a means of developing intelligent dialogue agents. To
this end, we propose concatenated-bAbl (catbAbl): an infinite sequence of bAbI stories. catbAbl is
generated from the bAbI dataset and during training, a random sample/story from any task is drawn
without replacement and concatenated to the ongoing story. The preprocessing for catbAbl ad-
dresses several issues: it removes the supporting facts, leaves the questions embedded in the story,
inserts the correct answer after the question mark, and tokenises the full sample into a single se-
quence of words. As such, catbAbl is designed to be trained in an autoregressive way and analogous
to closed-book question answering.

catbAbl models can be trained in two different ways: language modelling mode (LM-mode)
or question-answering mode (QA-mode). In LM-mode, the catbAbl models are trained like
autoregressive word-level language models. In QA-mode, the catbAbl models are only trained to
predict the tokens that are answers to questions—making it more similar to regular bAbIl. QA-mode
is simply implemented by masking out losses on non-answer predictions. In both training modes,
the model performance is solely measured by its accuracy and perplexity when answering the
questions. Performance on non-answers is irrelevant on catbAbl because the tokens are either
very predictive or inherently unpredictable, and there is nothing appealing to be learned. Despite
measuring performance only for answers, we argue that LM-mode is interesting for three reasons.
First, LM-mode removes the bias of knowing which words would benefit from a symbolic inference
mechanism. Second, LM-mode trains the model on a sequence with tokens which are inherently
unpredictable. Such tokens could also appear in natural language and might harm the model’s
ability to learn a useful representation of the story. Indeed, in the next section, we will give evidence
for such a generalisation gap. Third, the LM-mode setting allows us to directly compare our method
with state-of-the-art language models.

4.1.1 RESULTS

We compare our FWM directly with the current state-of-the-art on word-level bAbI: Metalearned
Neural Memory (MNM; Munkhdalai et al.| (2019))). We also include two strong autoregressive
word-level language models as baselines: a regularized LSTM (Merity et al., 2018} Melis et al.
2017) and a regularized Transformer-XL (TXL; |Dai et al| (2019)). Lastly, we also evaluate Ba’s
Fast Weights which attend to the recent past (JBFW; Ba et al.|(2016a))) but were unable to find
hyperparameters that converged. We truncate backpropagation through time (tBPTT) to 200 tokens
for all models and limited the amount of GPU memory to ~16GB for practical reasons. For every
model, we performed a hyperparameter search in QA mode over the first 3k steps of which a smaller
selection was trained for 30-60k steps. For all models, we adopt the best QA mode hyperparameters
for the LM mode results. Table |1|lists the best accuracy and perplexity of each model over three
seeds while figure [2] shows the learning curves of the best seeds. Further hyperparameter search
results can be found in the appendix section [F

Our experiments on catbAbl show that a regularized, 4-layer deep, and residual LSTM, and a 3-
layer deep TXL with attention over the last 1400 tokens, achieve strong performance on catbAbl.
MNM, on the other hand, suffered a ~10% drop in QA mode accuracy compared to its performance
on bADbI which demonstrates the increased difficulty of catbAbl. The JBFW model is not able to
make meaningful predictions on catbAbl which may be due to its inability of removing previous
associations and fixed fast weight memory decay. Our FWM achieves an excellent accuracy on
catbAbl while being by far the smallest in parameter count and weight to activation ratio. The
performance gap between FWM and MNM suggests the importance of our fast weight memory
mechanism. In figure [3| we visualise how the FWM can chain memories from different points in
time to perform transitive inference.

We chose to include the TXL model in our comparison due to its autoregressive nature and strong
performance in large-scale language modelling benchmarks. However, we point out that the TXLs



Published as a conference paper at ICLR 2021

Table 1: Accuracy and perplexity on test data over three seeds of each model’s best hyperparameters
setting according to our hyperparameter search. Detailed hyperparameters and results can be found
in the appendix section |F

Mode JBFW LSTM TXL MNM FWM

QAacc 1322+0.0 80.88% +0.30 87.66% +2.82 88.97% + 6.28 96.75% + 0.05
QAppl 31.19+88 1.93 £0.11 1.50 £ 0.14 2.50 =+ 1.07 1.36 £ 0.06

LM acc 00£0.0 80.15% +0.40 90.23% £ 1.01 69.30 % £+ 16.60 93.04% =+ 0.62
LMppl 1603 +243 1.84+0.02 1.39 £ 0.03 2.60 + 1.02 145 £0.14

weights 548 M 10.5M 1.1M 694k
activations 263k 4096 4.3ME| 30.5k 33.3k

1.000
0.975
0.950
0.925
0.900
0.875
0.850
0.825
0.800

50‘775

g 0750

®0.725
0.700
0.675
0.650
0.625
0.600
0.575
0.550
0.525
0.500

MNM
Transformer-XL
FWM

LSTM

0 10000 20000 30000 40000 50000 60000

step
Figure 2: QM model validation accuracy of the best-over-all seeds of each model over training steps.

context window is larger than the average bAbI story. In this case, due to the shortness of the stories,
catbAbl becomes more of an open-book problem for the TXL model since it has the capability of
looking up representations of its previous input whereas the RNN models do not. This fundamentally
limits the TXL model as it can only condition its prediction on information that is no longer than its
attention window to past states. The RNN models, which are general function approximators, for
better or for worse, are instead forced to learn to carry the necessary information through time.

4.2 META-REINFORCEMENT LEARNING

Meta reinforcement learning (Meta-RL) applies meta-learning (Schmidhuber, 1987} |[Hochreiter
et al.l 2001; [Finn et al., 2017)) to the field of reinforcement learning (Schmidhuber1994). An agent
is trained on multiple environments (or tasks) and receives environmental feedback as part of its
input. To maximise its total reward in an environment, the agent has to leverage the feedback signals
and adapt. A successful agent is capable of maximising its reward in novel environments that it has
not been exposed to during training. Recent work achieved notable progress in this domain (Santoro
et al., 2016; Mishra et al., 2018} |Kirsch et al., 2020). We experiment with tasks drawn randomly
from a large set of partially observable Markov decision processes (POMDPs). In this set, every
environment consists of precisely five states and three actions. Globally, every environment can be
viewed as a sparse directed graph where nodes are locations, and the directed edges are one-way
modes of transportation—similar to a metro transit map of a city (Graves et al.,[2016). To generate

3Bigger IBFW models did not improve performance. See appendix section
*The number of immutable activations is 512 x 2 x 3 x (1200 + 199) while the number of mutable
activations is merely 512 x 2 X 3 = 3072. Only the TXL model maintains immutable activations.



Published as a conference paper at ICLR 2021

—-200 -100 0 100

Figure 3: A visualisation of the FWMs ability to chain independent associations to perform transitive
reasoning on the catbAbl validation data. The colour of each grid cells represent the dot product
(k1 ® ko, ® e) where ky, ko are the write keys of each previous position while n, e refers to
the respective queries generated at “?” (second position from the right) for each of the N, = 3
memory reads. The first query matches most with the keys at the recent positions where the input
was “gertrude” and “afraid” (first row of grid cells). The second query, which partially consists of
the value retrieved from the first query, matches with the “getrude is a mouse” section. The third
query, which partially consists of the value retrieved from the second query, matches with the “mice
are afraid of wolves” section. Finally, the FWM correctly outputs the next word and answer to the
question: wolf (not seen). This likely completes the deduction: gertrude is a mouse, mice are afraid
of wolves, therefore, gertrude is afraid of wolves.

Figure 4: Two randomly generated environments with the agent’s location coloured in green and
the reward location coloured in yellow. Edge labels indicate the set of valid actions (0, 1, or 2)
to transition along that arrow. Invalid actions are not visualised. The graph and the locations of
the agent and reward are set randomly at the beginning of the experiment. If the agent reaches the
reward location or did not reach it after six steps, both are randomly reset.

a new environment, we sample the adjacency matrix of the graph such that actions are deterministic,
and every location is reachable from any other location (see figure ). We sample graphs such that
there are no actions that lead to the same location, and such that not every action is always a valid
way of transitioning. We added the exact algorithm to generate graphs, as well as further details, to
the appendix section|l]

The agent’s goal is to reach the reward location. Upon arrival, the agent receives the reward, followed
by a random reset of the agent’s and reward’s location. Whenever the agent takes an action that does
not lead to a new location, it receives a penalty. At every step, the agent receives as an input: its
current location, the reward location, its last action, and the reward received so far.

We run our experiment for 30 steps and compare our FWM to an LSTM baseline. Both methods
are trained on the same training set of 600 graphs and tested on 600 novel graphs. We optimise our
agent with the Advantage Actor-Critic (A2C) algorithm, a non-asynchronous version of the A3C
method (Mnih et al., 2016). In our experiments, the LSTM-based agent requires more episodes, a
bigger network, and eventually overfit to the training graphs. The FWM-based agent however trains
faster and generalises to randomly sampled graphs.



Published as a conference paper at ICLR 2021

— FWM-32-16

train environments test environments LSTM-512 (x71)
160 160 —— LSTM-1024 (x307)
—— LSTM-2048 (x1207)
140 140 — LSTM-4096 (x4814)
120 120
k=l
B
1]
=
2 100 100
=
s
> 80 80
©
60 60
40 40
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
steps x 50 steps x 50

Figure 5: Average total reward of the agent when trained on 600 random graphs (left plot) and
tested on 600 different graphs (right plot). The FWM agent (blue) has a slow LSTM with 32 hidden
units and a fast weight memory of size 16 x 162. We compare to LSTM agents with different sized
hidden states. The largest LSTM has 4096 hidden units (red) which roughly matches the number of
temporal variables of the FWM. The FWM has 14k trainable weights which is by far the lowest. The
largest LSTM has 67.4M weights which is roughly 4814 times more than the FWM. The relative
factor of each LSTM is added to the legend. All LSTMs take longer to train and eventually overfit
on the training data. Due to the overfitting, the LSTM does not have to explore, which results in a
higher total reward on training environments but a lower total reward on test environments.

We argue that the bAbI stories and the episodes on the graphs are similar in the following three ways.
First, in both problems, the network has to construct a useful and context-specific representation
from its ongoing input. Second, as part of its input, the network repeatedly receives an objective
(the reward location versus the question) which requires the exploitation of the context-specific
information. Third, the model has to produce a discrete sequence (actions in the environment in RL
and reasoning steps in catbAbl) to optimise its training signal (high reward versus low uncertainty).

4.3 LANGUAGE MODELLING

Comparing FWM to autoregressive language models on catbAbl begs the question: how does FWM
perform on popular word-level language modelling datasets such as Penn Treebank (PTB; Mikolov
et al.| (2010)) or WikiText-2 (WT2; Merity et al.[(2017))? It is unclear to which extend a symbolic
inference mechanism is beneficial for language modelling. PTB and WT2 contain virtually no ques-
tions and are constructed from Wikipedia and news articles which are designed to be easily parsed
by the reader. Nevertheless, in figure [6] we show how our FWM exploits recurring subject names to
reduce its uncertainty. Not many memory augmented NNs have been able to bridge from small and
toy reasoning tasks to general language models—and those which did, underperformed (Paperno
et al., 2016} |Sukhbaatar et al., 2015). We use the regularized 3-layer AWD-LSTM (Merity et al.,

Table 2: Best perplexity on the test data of Penn Treebank (PTB) and WikiText-2 (WT2) from
three seeds. Detailed results can be found in the appendix in table 5] All PTB models have
roughly 24M parameters and all WT2 models have roughly 37M parameters. The AWD-TXL is
the Transformer-XL architecture as reported by Dai et al.| (2019) with the necessary AWD-style
regularisation, model averaging, and softmax temperature tuning (see appendix section E[)

Model PTB WT2
Validation Test Validation Test
AWD-LSTM (Merity et al.,[2018) 60.0 57.3 68.6 65.8
AWD-TXL (Dai et al.,[2019) - 54.52 - -
AWD-TXL (ours) 59.39 56.50 65.73 63.11
AWD-FWM (ours) 56.76 54.48 63.98 61.65




Published as a conference paper at ICLR 2021

LSTM - ]
FWM -

diff -

|
|
-
o =
o

]

5 -

n't-
results -

in-

an-

in -
general -
he -
added -
<eos> -
forecast -
be -
among -

in -
interview -

in -
petrochemicals -

volume -
co. -
said -
but -
the -

securities -
o

and -
certainly -
glenn -
cox -
president -
<eos> -
that -
change -
will
obviously -
impact -
third -
and
fourth -
quarter -
earnings -
for
the -
industry -
he
did -
phillips -
<eos> -
analysts -

Figure 6: Loss comparison between the LSTM and our FWM on a section of the PTB test set. The
colour of the grid cells in the first row stands for the cross-entropy error of the LSTM and FWM
model. The second row, for their respective difference. Our FWM sometimes shows a lower error
on rare subject words such as names of companies and people once they have been introduced.
As seen in the red circles, the initial mentioning of “phillips” has similar uncertainty between the
LSTM and FWM but shortly after that the subject of the sentences is more predictable and the
FWM is more certain (4.3 bits difference) whereas the LSTM’s uncertainty remains roughly on the
same level (12.8 bits).

2018)) as the slow RNN in our FWM model to minimize further hyperparameter search. The experi-
mental results in table E] demonstrate a relative improvement over the AWD-LSTM baselines, which
suggest the benefit of our FWM even in language modelling benchmarks. However, in contrast to
catbAbl, all three models achieve very similar results which might indicate that PTB and WT2 do
not benefit as strongly from an associative reasoning capacity. We added the experimental details to
the appendix section [H]

Since the publication of AWD-LSTM (Merity et al [2018), various extensions (some of which are
orthogonal to our memory augmentation) have been proposed (Krause et al., 2018; Merity et al.,
2018; |Yang et al., 2018). In this work, we are not primarily interested in beating the state-of-the-art
in language modelling and leave it for future work to explore the possible synergies between these
methods.

5 DISCUSSION

An order-three memory tensor is a computationally demanding method for constructing compo-
sitional state representations. With vector components in R"”, the tensor product computation
alone has a space and time complexity of O(n?®). For practical reasons, this forces the FWM
to remain small, relative to the slow NN, which limits the number of associations that can be
maintained at once. Previous work has proposed approximations of such memory tensors in a
variance-optimal way (Schlag et al. 2019). In our ablation experiments in section [E| we show
on catbAbl that concatenating the keys results in a performance accuracy drop of ~5%. We also
experiment with fewer read operations (smaller NV,.) which also results in a performance degradation
(appendix figure [7). However, further improvements might not come from scaling up but from
more general symbolic manipulations. We address the capacity of the FWM and the necessity
of the tensor product from a linear hetero-associative memory perspective in section |A| of the
appendix. Finally, our fast weight memory can be thought of as a primitive “working memory” of
the model—analogous to the working memory in the human brain (Spalding et al., 2018)). This idea
is supported by recent work which proposes a cognitive model of the human brain that is based on
such higher-order tensors (Tresp & Mal, 2017)).

6 CONCLUSION

Our new FWM is a fast weights architecture capable of learning from synthetic data to answer
questions which require various symbolic reasoning skills. To improve generality, we overcome
issues of the popular bAbI dataset by introducing more general and more difficult variation dubbed
catbAbl. We report excellent performance on catbAbl and compare with strong baselines based on
state-of-the-art language models, as well as, the previous state-of-the-art in word-level bAbl. We
also apply the FWM in a challenging meta-reinforcement learning environment where the agent
generalises to novel environments by learning from its observations and actions. Finally, in a self-
supervised setting, we apply the FWM to word-level language modelling on PTB and WT2 where it
beats the AWD-LSTM and AWD-Transformer-XL baselines.



Published as a conference paper at ICLR 2021

ACKNOWLEDGEMENTS

We thank NVIDIA Corporation for donating several DGX machines, and IBM for donating a Minsky
machine. This research was supported by an European Research Council Advanced Grant (no:
742870).

REFERENCES

Aishwarya Agrawal, Aniruddha Kembhavi, Dhruv Batra, and Devi Parikh. C-vqa: A compositional
split of the visual question answering (vqa) v1.0 dataset. ArXiv, abs/1704.08243, 2017.

Yuval Atzmon, Jonathan Berant, Vahid Kezami, Amir Globerson, and Gal Chechik. Learning to
generalize to new compositions in image understanding. arXiv preprint arXiv:1608.07639, 2016.

Jimmy Ba, Geoffrey E Hinton, Volodymyr Mnih, Joel Z Leibo, and Catalin Ionescu. Using fast
weights to attend to the recent past. In Advances In Neural Information Processing Systems, pp.
4331-4339, 2016a.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016b.

Sergey Bartunov, Jack Rae, Simon Osindero, and Timothy Lillicrap. Meta-learning deep energy-
based memory models. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=Sy1ljQyBFDH.

Robert Csordas and Juergen Schmidhuber. Improving differentiable neural computers through mem-
ory masking, de-allocation, and link distribution sharpness control. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
HyGEM3CIKQ.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdi-
nov. Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860, 2019.

S. Das, C.L. Giles, and G.Z. Sun. Learning context-free grammars: Capabilities and limitations of
a neural network with an external stack memory. In Proceedings of the The Fourteenth Annual
Conference of the Cognitive Science Society, Bloomington, 1992.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=HyzdRiR9Y7.

Mete Demircigil, Judith Heusel, Matthias Lowe, Sven Upgang, and Franck Vermet. On a model of
associative memory with huge storage capacity. Journal of Statistical Physics, 168(2):288-299,
2017.

Jerome A Feldman. Dynamic connections in neural networks. Biological cybernetics, 46(1):27-39,
1982.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pp. 1126-1135. JMLR. org, 2017.

Jerry A Fodor and Zenon W Pylyshyn. Connectionism and cognitive architecture: A critical analy-
sis. Cognition, 28(1-2):3-71, 1988.

F. A. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: Continual prediction with LSTM.
Neural Computation, 12(10):2451-2471, 2000.

Samuel J Gershman, Kenneth A Norman, and Yael Niv. Discovering latent causes in reinforcement
learning. Current Opinion in Behavioral Sciences, 5:43-50, 2015.

10


https://openreview.net/forum?id=SyljQyBFDH
https://openreview.net/forum?id=HyGEM3C9KQ
https://openreview.net/forum?id=HyGEM3C9KQ
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7

Published as a conference paper at ICLR 2021

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwinska, Sergio Gomez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou,
AdriA Puigdomenech Badia, Karl Moritz Hermann, Yori Zwols, Georg Ostrovski, Adam Cain,
Helen King, Christopher Summerfield, Phil Blunsom, Koray Kavukcuoglu, and Demis Hassabis.
Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626):
471-476, 2016.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. In ICLR 2017, 2017.

Robert F Hadley. Systematicity in connectionist language learning. Mind & Language, 9(3):247—
272, 1994.

Geoffrey E Hinton and David C Plaut. Using fast weights to deblur old memories. In Proceedings
of the ninth annual conference of the Cognitive Science Society, pp. 177-186, 1987.

S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Computation, 9(8):1735—
1780, 1997. Based on TR FKI-207-95, TUM (1995).

S. Hochreiter, A. S. Younger, and P. R. Conwell. Learning to learn using gradient descent. In Lecture
Notes on Comp. Sci. 2130, Proc. Intl. Conf. on Artificial Neural Networks (ICANN-2001), pp. 87—
94. Springer: Berlin, Heidelberg, 2001.

John J Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the national academy of sciences, 79(8):2554-2558, 1982.

Daniel D. Johnson. Learning graphical state transitions. In International Conference on Learning
Representations, 2017. URL https://openreview.net/forum?id=HJONvFzx1.

Pentti Kanerva. Sparse distributed memory. MIT press, 1988.

Louis Kirsch, Sjoerd van Steenkiste, and Juergen Schmidhuber. Improving generalization in meta
reinforcement learning using learned objectives. In International Conference on Learning Repre-
sentations, 2020. URL https://openreview.net/forum?id=SlevHerYPrl

Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review, 51(3):
455-500, 2009.

Bart Kosko. Bidirectional associative memories. IEEE Transactions on Systems, man, and Cyber-
netics, 18(1):49-60, 1988.

Ben Krause, Emmanuel Kahembwe, Tain Murray, and Steve Renals. Dynamic evaluation of neural
sequence models. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pp. 2766-2775, Stockholmsmaéssan, Stockholm Sweden, 10—15 Jul 2018. PMLR. URL http:
//proceedings.mlr.press/v80/krausel8a.html.

Dmitry Krotov and John J Hopfield. Dense associative memory for pattern recognition. In Advances
in neural information processing systems, pp. 1172—-1180, 2016.

Joseph B Kruskal. Rank, decomposition, and uniqueness for 3-way and n-way arrays. Multiway
data analysis, pp. 7-18, 1989.

Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan Gulrajani, Vic-
tor Zhong, Romain Paulus, and Richard Socher. Ask me anything: Dynamic memory networks
for natural language processing. In Maria Florina Balcan and Kilian Q. Weinberger (eds.), Pro-
ceedings of The 33rd International Conference on Machine Learning, volume 48 of Proceedings
of Machine Learning Research, pp. 1378-1387, New York, New York, USA, 20-22 Jun 2016.
PMLR. URL http://proceedings.mlr.press/v48/kumarl6.htmll

Brenden M. Lake and Marco Baroni. Still not systematic after all these years: On the compositional
skills of sequence-to-sequence recurrent networks. CoRR, abs/1711.00350, 2017. URL http:
//arxiv.org/abs/1711.00350.

11


https://openreview.net/forum?id=HJ0NvFzxl
https://openreview.net/forum?id=S1evHerYPr
http://proceedings.mlr.press/v80/krause18a.html
http://proceedings.mlr.press/v80/krause18a.html
http://proceedings.mlr.press/v48/kumar16.html
http://arxiv.org/abs/1711.00350
http://arxiv.org/abs/1711.00350

Published as a conference paper at ICLR 2021

Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. Building
machines that learn and think like people. Behavioral and Brain Sciences, 40, 2017.

Hung Le, Truyen Tran, and Svetha Venkatesh. Self-attentive associative memory. arXiv preprint
arXiv:2002.03519, 2020.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. In International Conference on Learning Representations, 2016. URL https://
arxiv.orqg/abs/1511.05493.

Brian P McLaughlin. Systematicity redux. Synthese, 170(2):251-274, 2009.

Gébor Melis, Chris Dyer, and Phil Blunsom. On the state of the art of evaluation in neural language
models. CoRR, abs/1707.05589, 2017. URL |http://arxiv.org/abs/1707.055809.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mix-
ture models. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=Byj72udxel

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing LSTM
language models. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=SyyGPPOTZ.

Thomas Miconi, Kenneth Stanley, and Jeff Clune. Differentiable plasticity: training plastic neu-
ral networks with backpropagation. In Jennifer Dy and Andreas Krause (eds.), Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 3559-3568, Stockholmsmaéssan, Stockholm Sweden, 10-15 Jul 2018.
PMLR. URL http://proceedings.mlr.press/v80/miconil8a.htmll

Thomas Miconi, Aditya Rawal, Jeff Clune, and Kenneth O. Stanley. Backpropamine: training
self-modifying neural networks with differentiable neuromodulated plasticity. In International
Conference on Learning Representations, 2019. URL https://openreview.net/forum?
id=rllrAiA5Ym.

Tomas Mikolov, Martin Karafiit, Lukas Burget, Jan Cernocky, and Sanjeev Khudanpur. Recurrent
neural network based language model. In Eleventh annual conference of the international speech
communication association, 2010.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive
meta-learner. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=B1DmUzWAW.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928—-1937, 2016.

Michael C Mozer and Sreerupa Das. A connectionist symbol manipulator that discovers the structure
of context-free languages. In Advances in neural information processing systems, pp. 863-870,
1993.

Tsendsuren Munkhdalai and Hong Yu. Meta networks. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pp. 2554-2563. IMLR. org, 2017a.

Tsendsuren Munkhdalai and Hong Yu. Neural semantic encoders. In Proceedings of the confer-
ence. Association for Computational Linguistics. Meeting, volume 1, pp. 397. NIH Public Access,

2017b.

Tsendsuren Munkhdalai, Alessandro Sordoni, Tong Wang, and Adam Trischler. Metalearned neural
memory. In Advances in Neural Information Processing Systems, pp. 13310-13321, 2019.

12


https://arxiv.org/abs/1511.05493
https://arxiv.org/abs/1511.05493
http://arxiv.org/abs/1707.05589
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=SyyGPP0TZ
https://openreview.net/forum?id=SyyGPP0TZ
http://proceedings.mlr.press/v80/miconi18a.html
https://openreview.net/forum?id=r1lrAiA5Ym
https://openreview.net/forum?id=r1lrAiA5Ym
https://openreview.net/forum?id=B1DmUzWAW
https://openreview.net/forum?id=B1DmUzWAW

Published as a conference paper at ICLR 2021

Denis Paperno, German Kruszewski, Angeliki Lazaridou, Ngoc Quan Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernandez. The LAMBADA
dataset: Word prediction requiring a broad discourse context. In Proceedings of the 54th An-
nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
1525-1534, Berlin, Germany, August 2016. Association for Computational Linguistics. doi:
10.18653/v1/P16-1144. URL https://www.aclweb.org/anthology/P16-1144.

Steven Andrew Phillips. Connectionism and the problem of systematicity. PhD thesis, University of
Queensland, 1995.

Alexander Pritzel, Benigno Uria, Sriram Srinivasan, Adria Puigdomenech Badia, Oriol Vinyals,
Demis Hassabis, Daan Wierstra, and Charles Blundell. Neural episodic control. In Proceedings
of the 34th International Conference on Machine Learning-Volume 70, pp. 2827-2836. IMLR.
org, 2017.

Hubert Ramsauer, Bernhard Schifl, Johannes Lehner, Philipp Seidl, Michael Widrich, Lukas Gru-
ber, Markus Holzleitner, Milena Pavlovi¢, Geir Kjetil Sandve, Victor Greiff, et al. Hopfield
networks is all you need. arXiv preprint arXiv:2008.02217, 2020.

Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organization
in the brain. Psychological review, 65(6):386, 1958.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. Meta-
learning with memory-augmented neural networks. In International conference on machine learn-

ing, pp. 18421850, 2016.

Imanol Schlag and Jiirgen Schmidhuber. Gated fast weights for on-the-fly neural program genera-
tion. In NIPS Metalearning Workshop, 2017.

Imanol Schlag and Jiirgen Schmidhuber. Learning to reason with third order tensor products. In
Advances in Neural Information Processing Systems (NeurIPS), pp. 9981-9993, 2018.

Imanol Schlag, Paul Smolensky, Roland Fernandez, Nebojsa Jojic, Jiirgen Schmidhuber, and Jian-
feng Gao. Enhancing the transformer with explicit relational encoding for math problem solving.
arXiv preprint arXiv:1910.06611, 2019.

Margaret L Schlichting and Alison R Preston. Memory integration: neural mechanisms and impli-
cations for behavior. Current opinion in behavioral sciences, 1:1-8, 2015.

J. Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to
learn: the meta-meta-... hook. Diploma thesis, Inst. f. Inf., Tech. Univ. Munich, 1987.
http://www.idsia.ch/“juergen/diploma.html.

J. Schmidhuber. Learning to control fast-weight memories: An alternative to recurrent nets. Neural
Computation, 4(1):131-139, 1992.

J. Schmidhuber. On decreasing the ratio between learning complexity and number of time-varying
variables in fully recurrent nets. In Proceedings of the International Conference on Artificial
Neural Networks, Amsterdam, pp. 460-463. Springer, 1993.

J. Schmidhuber. On learning how to learn learning strategies. Technical Report FKI-198-94, Fakultit
fiir Informatik, Technische Universitdt Miinchen, 1994. Revised 1995.

H. T. Siegelmann and E. D. Sontag. Turing computability with neural nets. Applied Mathematics
Letters, 4(6):77-80, 1991.

P. Smolensky. Tensor product variable binding and the representation of symbolic structures in
connectionist systems. Artif. Intell., 46(1-2):159-216, November 1990. ISSN 0004-3702. doi: 10.
1016/0004-3702(90)90007-M. URL http://dx.doi.org/10.1016/0004-3702(90)
90007-M.

Paul Smolensky. Symbolic functions from neural computation. Phil. Trans. R. Soc. A, 370(1971):
3543-3569, 2012.

13


https://www.aclweb.org/anthology/P16-1144
http://dx.doi.org/10.1016/0004-3702(90)90007-M
http://dx.doi.org/10.1016/0004-3702(90)90007-M

Published as a conference paper at ICLR 2021

Kelsey N Spalding, Margaret L Schlichting, Dagmar Zeithamova, Alison R Preston, Daniel Tranel,
Melissa C Duff, and David E Warren. Ventromedial prefrontal cortex is necessary for normal
associative inference and memory integration. Journal of Neuroscience, 38(15):3767-3775, 2018.

Karl Steinbuch. Die lernmatrix. Kybernetik, 1(1):36-45, 1961.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-to-end memory networks. In Advances
in neural information processing systems, pp. 2440-2448, 2015.

Volker Tresp and Yunpu Ma. The tensor memory hypothesis. ArXiv, abs/1708.02918, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998-6008, 2017.

Christoph von der Malsburg. The correlation theory of brain function (internal report 81-2). Goet-
tingen: Department of Neurobiology, Max Planck Intitute for Biophysical Chemistry, 1981.

Jason Weston, Antoine Bordes, Sumit Chopra, and Tomas Mikolov. Towards ai-complete question
answering: A set of prerequisite toy tasks. CoRR, abs/1502.05698, 2015a. URL http://
arxiv.orqg/abs/1502.05698.

Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. In International Conference
on Learning Representations, 2015b. URL https://arxiv.org/abs/1410.3916.

David J Willshaw, O Peter Buneman, and Hugh Christopher Longuet-Higgins. Non-holographic
associative memory. Nature, 222(5197):960-962, 1969.

Caiming Xiong, Stephen Merity, and Richard Socher. Dynamic memory networks for visual and
textual question answering. In International Conference on Machine Learning, pp. 2397-2406,
2016.

Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and William W. Cohen. Breaking the softmax
bottleneck: A high-rank RNN language model. In International Conference on Learning Repre-
sentations, 2018. URL https://openreview.net/forum?id=HkwZSG-CZ.

Wei Zhang and Bowen Zhou. Learning to update auto-associative memory in recurrent neural net-
works for improving sequence memorization. arXiv preprint arXiv:1709.06493, 2017.

14


http://arxiv.org/abs/1502.05698
http://arxiv.org/abs/1502.05698
https://arxiv.org/abs/1410.3916
https://openreview.net/forum?id=HkwZSG-CZ

Published as a conference paper at ICLR 2021

CONTENTS (APPENDIX)

A Further D ol
[B Derivation of the Update Rule|

[C A Comment on the Regular bAbI Dataset and Previous Work|
[D_Concatenated-bAbI Defails|

[E_Ablation|

[F_Hyperparamefer search for catbAbl|

|G Best catbAbl Runs Broken Down by Task|

|H Language Modelling|
[H.I _Resultsl

[[Meta Reinforcement Learning|

15

ast Weight Memory| . . . . . . . . . . ... Lo
etalearne eural Memory| . . . . . ..o o000 o 000

16
16
16
17
18

20
20

22
23
24
25

27
27

28



Published as a conference paper at ICLR 2021

A FURTHER DISCUSSION

One way of assessing the capacity of the third-order tensor memory is its rank (which is analogous
to the rank of a matrix). However, there exists no general algorithm to determine the rank of a given
higher-order tensor A € R!*/*K There exists only a loose upper bound described by rank(A) <
min{lJ, I K, JK} (Kruskal, [1989; Kolda & Bader, 2009).

It might be tempting to simplify the FWM by replacing the outer-product of the input with a con-
catenation as a means to reduce the space and time complexity. However, in highly compositional
domains, the concatenated input will suffer from interference between memories. Consider a prob-
lem which, from a set of 10 symbols, requires the association of any three symbols represented by
the vectors s,7,t € R'°. In the case of a concatenation, one rank of the fast weight memory is
[s;7] ® t where we refer to [s; ] as the key representation. The read vectors s’, 7' € R0, are then
concatenated and matrix multiplied to retrieve the previous association £ = F'[s’; r']. Here we refer
to [s';7'] as the query representation. Since there are ten distinct symbols of which any two can
behave as a key representation, there exist 102 = 100 unique key patterns. To guarantee noise-free
retrieval in any context, the vectors of the key representations have to be orthogonal. However,
[s';7'] is only a 20 dimensional space which means that certain key representations cannot be used
simultaneously without interference. The tensor product, on the other hand, is capable of noise-free
retrieval because it represents the key as s @ r € R10*10 which allows for 100 orthogonal keys and
as such the possibility of noise-free retrieval. We conclude that if the problem is highly composi-
tional, in a sense that every component can be composed with any other component, then the tensor
product will be better suited than a concatenation. Experimentally we evaluate concatenated keys
in section [El The results show that concatenated keys will result in a slightly worse performance
(see figure [8). As an alternative, a non-linear memory, e.g. through the use of a softmax, would
not require orthogonality in it’s keys to be free of interference and could result in a larger storage
capacity.

B DERIVATION OF THE UPDATE RULE

Theorem B.1. Given two key vectors ki,ks € R? and two value vectors Vyg, Unew € R® with
d € Z~q, a mixing coefficient 5 € (0, 1), and a fast weight memory F,;; = vec(ki®ks) @,y where
vec refers to the vectorisation of the higher-order tensor, then the (recurrent) fast weight update rule
given by F,j;+ Bvec(k1 @k2) ® (Vew — Voia) results in F,,, = vec(k1 @k2) ®[(1— 8)Voia+ BUnew)-

Proof.
Fnew = Foiq + ﬂVeC(kl (24 k2) (vnew - vold) (9)
= vec(k1 ® kg) & Vold + VeC(kl ® k2) (6'Unew - ﬂ'vold) (10)
= vec(k1 ® k2) @ [Vod + SUnew — BVold] (11
= Vec(kl ® k2) [( )vold + ﬂvnew] (12)
O]

C A COMMENT ON THE REGULAR BABI DATASET AND PREVIOUS WORK

The bADI tasks is a popular toy dataset to benchmark neural networks with memory augmentations
and reasoning capabilities (Weston et al., [2015a). It consists of a set of short stories with questions
embedded in the text. The stories were generated by simulating multiple entities in a virtual envi-
ronment and cover different contexts in which entities change their state or interact with each other.
Each story-sample belongs to one of 20 different tasks that the authors of the dataset considered
important for intelligent dialogue agents. The tasks contain questions which require reasoning capa-
bilities like deduction, coreference, or counting. All tasks require some level of symbolic reasoning,
and the first neural and non-neural baselines demonstrated poor generalisation performance on test
data (Weston et al., |[2015a). In addition to the story sentences, the questions, and the answers, the
dataset also included supporting facts which demarcated question-relevant sentences in the story.
The stories often follow multiple parallel plots where each new sentence is advancing one of the
plots by a single fact.

16



Published as a conference paper at ICLR 2021

The bAbI dataset did not include a strict experimental protocol which resulted in several variations
that differed slightly. Early methods achieved good results by relying on the supporting facts (We-
ston et al., 2015b; |Kumar et al.,|2016)) or other supervised training signals (see e.g. Johnson| (2017);
Li et al.|(2016)).

Some researchers achieved great results by reformatting the data such that the question is read before
the story or, similarly, by giving the model the capacity to lookup parts of the story, e.g. through
some attentional mechanism, after the question has been read (Sukhbaatar et al.,[2015; Xiong et al.,
2016; \Dehghani et al., 2019). Such methods have shown to be useful for answering questions while
maintaining access to the full story. We argue that this is similar to open-book question answering.
In such a setting, the model is incentivised to look up information instead of capturing the useful
bits of the data it has seen. The advantage of the latter becomes more evident in a different scenario:
imagine the model is processing a book where a user can ask a question about the content at any
time. An open-book approach will have to store all previous sentences in its memory and apply
its answer-search mechanism to all of the data. Instead, a closed-book approach would store a
compressed version of the story, or the question-relevant information of the story.

It is essential to acknowledge that the sentences in the bAbI stories of all tasks are short and simplis-
tic. Virtually every sentence contains precisely one fact. Because of that, it might be that sentence-
level models have an advantage over word-level models. Indeed, a previous sentence-level model
has reported poor performance in the word-level setting (Schlag & Schmidhuber, 2018)). This limits
their generality since sentences in natural language are often not limited to a single fact.

Lastly, even though the bAbI dataset was initially designed with the questions embedded in the story,
virtually all methods so far preprocess the dataset such that a sample with four questions is split into
four samples with one question each (Weston et al., 2015b). This arguably simplifies the problem
because the model does not need to maintain the state of other entities which are not relevant to the
question once it is read. However, it remains to be tested if this would result in inferior performance.

D CONCATENATED-BABI DETAILS

Concatenated-bAbl (catbAbl) is a preprocessing and experimental procedure to evaluate autore-
gressive models in their capability of predicting words which require certain reasoning skills (here
answers of questions). In this work we only focused on the 10k samples per task version of bAbI but
all our scripts can be applied to the 1k version as well. We used the same train/test/valid split of the
data as in regular bADI. In contrast to previous work, we do not split the stories to contain only one
question. We remove the sentence indecies and concatenate the sentences with answers following a
question mark into one long sequence of words. The preprocessed data is a shuffled list of samples.
Each sample comes with its task id for diagnosis. All answers are preceeded by a question mark.

To ensure that stories do not overlap and become ambiguous, we add a special end-of-story token
before concatenating the new story. For each word, the preprocessing script provides its task id to
measure the performance on different tasks. Similarly, it also provides a special answer token which
signifies if the current word is an answer or not. Naturally, the task id and answer information are
not provided to the model as an input. The validation and test data are processed likewise, but for
a proper comparison of various models, validation and test data are shuffled only onceﬂ During
training and evaluation, the validation and test stories are drawn deterministically.

Table 3: Statistics of the catbAbl dataset based on our preprocessing of the regular bAbI data.

subset number of tokens number of stories number of questions

train ~5M 56,376 179,909
valid ~560k 6,245 19,907
test ~560k 6,247 19,910

During training we uniformly sample stories without replacement and concatenate them into a long
sequence. Since a question mark is not always the end of a story we resolve any ambiguity by

SWe provide the preprocessed catbAbl data together with our code so future work can compare using the
same validation and test sequence.

17



Published as a conference paper at ICLR 2021

separating the stories with a special end-of-story token. The model is trained on this long sequence
in an autoregressive way with truncated backpropagation. At the end of the epoch, we fill the batch
with padding symbols if the sequences in the batch have different lengths.

In LM-mode we mask padding tokens and in QA-mode we mask everything except the steps with a
question mark as input. At the end of the epoch we carry over the hidden states to the new epoch.
Reseting all hidden states to the same or to zeros had a weak negative effect on final performance but
was not explored thouroghly. For evaluation on valid and test splits a copy of the hidden state of the
first batch element is used. Evaluation on valid is done throughout training with a large batch-size
to maintain speed. Evaluation on test is done with a batch-size of one. During evaluation on valid
and test the samples are picked sequentially to ensure that all models are evaluated on the same valid
and test sequence of bADI stories.

E ABLATION

We evaluate the FWM model with different number of recurrent steps. Experiments in figure [7]
indicate that just one step is already achieving over 95% accuracy but more inference steps help on
rarer but harder tasks. We also test a FWM version where the read and query keys are concatenated
instead of multiplied through the tensor product. In this version, the FWM results in a weight matrix

. . 2 . . . .
with R24rwwixdiwm jpstead of R%wwX WM The results in figure |8|indicate a drop in performance.

label
—— bs=64.0_Ir=0.001_nr=3.0
—— bs=64.0_Ir=0.001 nr=1.0

—— bs=64.0_Ir=0.001_nr=2.0
1.000 4

0.975
0.950

©,0.925 -

-

© 0.900 4

u

S 0.875 -

£ 0.850 1
0.825
0.800
0.775
0.750
0.725

0.700 T T T T T T T
0 5000 10000 15000 20000 25000 30000

step

Figure 7: Comparison of the FWM with the same seed but with different NV,..

18



Published as a conference paper at ICLR 2021

1.000
0.975
0.950
0.925
0.900
- 0.875
210.850
v 0.825
'0.800
& 0.775
@' 0.750 label
0.725 —— concat seed=111
g;gg —— concat_seed=333
0.650 - —— concat seed=222
0.625 —— best FWM
0.600 . T T T ; . ;
0 10000 20000 30000 40000 50000 60000
step
1.0
0.9
0.8
< 0.7
%'0.61
& 0.51
5‘0-4' — concat_seed=111
© 0.3; —— concat_seed=333
-2 0.21 —— concat_seed=222
1 0.1 —— best FWM
90510000 20000 30000 20000 50000 60000  ° G 10000 20000 30600 40000 50000 60000
ste
1.0 P 1.0
0.9 0.9
0.81 0.81
© 0.7 2 0.7
%' 0.61 ¥'0.61
Elo.s- TR o YW e LYY ot : 50.5-
S 0.4 S 0.4/
©'0.31 ©'0.31
0.2 0.2
0.1 0.1
00510800 20600 30000 20600 50600 60600 °" 6 10600 20000 30600 40000 50600 60000
step step

Figure 8: FWM model with a concatenated keys compared with the tensor product of the keys.
With a concatenation of the respective keys and queries the Fast Weight tensor has a squared space
and compute complexity O(dzy,) but performs worse on average (top figure). The performance
difference is limited to more complex tasks such as 3, 14, 16, 19 (bottom figures).

19



Published as a conference paper at ICLR 2021

F HYPERPARAMETER SEARCH FOR CATBABI

Since catbAbl is an ongoing sequence of stories, backpropagation through time (BPTT) is infeasable
for all models which is why we truncate BPTT to the last 200 tokens. Hyperparameters were chosen
such that they fit roughly on one GPU with 16GB of memory. All models use a token embedding
size of 256 and the Adam optimizer. We exclusively tuned the hyperparameters for the QM setting
and transfer only the best to the LM setting. We run a grid search over the batch-size, learning rate,
and various model specific parameters such as dropout rates or number of layers on top of additional
manually chosen settings. For computational reasons we run two rounds of grid-search: an initial
round of 3,000 steps of which the best are moved to the second round where we train them for 30,000
or 60,000 steps. In the following subsections we give further details for each model seperately.

F.1 FAST WEIGHT MEMORY

We set distm = 256, dpwm = 32, N, = 3 and searched experimented with two seeds for batch sizes
64, 128 and learning rates 0.0001, 0.00025, 0.0005, 0.001, 0.002.

test accuracy on all tasks

100

095

0.90

085

0.80

0.75

label
— bs=128.0_Ir=0.002
— bs=64.0_Ir=0.0005
bs=128.0 Ir=0.001
— bs=128.0_Ir=0.0001
bs=128.0_Ir=0.0005
0.55 bs=128.0_Ir=0.00025
— bs=64.0_Ir=0.001
bs=64.0_Ir=0.002
0.45 bs=64.0_Ir=0.0001
— bs=64.0_Ir=0.00025

070

ra_acc task 0

065

0.60

050

0.40

500 1000 1500 2000 2500 3000
step

FWM test accuracy on all tasks

1000
0375
0950
0925
0300
0&75
0E50
0825
0800
0775
0.750
0725
0700
0675
0e50
0625
0e00
0575
0550
0525

0500
0.475 bs=64.0_Ir=0.001_seed=111

pa5p | — bs=64.0_Ir=0.001 seed=333
0.425 bs=64.0_Ir=0.001_seed=222
0.400

ra_acc_task 0

label

0 10000 20000 30000 40000 50000 60000
step

Figure 9: Top: Hyperparameter search runs for different batch sizes and learning rates of the FWM

model in the QM setting with the average accuracy on all tasks. Bottom: FWM performance over
60,000 steps with three seeds.

20



Published as a conference paper at ICLR 2021

F.2 METALEARNED NEURAL MEMORY

We only experimented with the plastic version of MNM as it was reported to be the best. We used
the same hyperparameters for the fast weights as reported by Munkhdalai et al.| (2019): 3 layer of
fast weights with a dimensionality of 100. We searched over the batch sizes 64, 128; learning rates
0.00025, 0.0005, 0.001, 0.002; and meta-objective coefficient (reg) 1.0, 2.0. In the first 3,000 steps
the MNM didn’t show any instability but for longer runs the MNM would sometimes result in NaNs
or become unstable.

0

ra_acc_task

1.00

0.95

0.90 1

0.85

c e o
~ N
o v o

0.65

0.60

0.55

0.50

0.45

0.40

test accuracy on all tasks

label
—— bs=64.0_Ir=0.0001_reg=1.0_heads=3.0
—— bs=64.0_Ir=0.00025_reg=1.0_heads=3.0
—— bs=64.0_Ir=0.002_reg=1.0_heads=3.0
—— bs=64.0_Ir=0.0005_reg=1.0_heads=3.0
—— bs=64.0_Ir=0.001_reg=1.0_heads=3.0

bs=128.0_Ir=0.0005_reg=1.0_heads=3.0
—— bs=128.0_Ir=0.001_reg=1.0_heads=3.0

bs=64.0_Ir=0.001_reg=2.0_heads=3.0

T T
500 1000 1500
step

T T T
2000 2500 3000

test accuracy on all tasks

1.000
0975 A
0.950
0.925
0.900 1
0.875
0.850
0.825
0.800 A
0775

ra_acc_task 0

0.750 1
0.725
0.700 4
0.675
0.650 4

0625
0.600
0.575
0.550 4
0.525 A
0.500 A
0.475 1
0.450 A
0.425 A

0.400

EIEIEE

label
bs=64.0_Ir=0.00025_reg=1.0_heads=3.0_seed=111.0
bs=64.0_Ir=0.00025_reg=0.5_heads=3.0_seed=111.0
bs=64.0_lr=0.00025_req=2.0_heads=3.0_seed=111.0
bs=64.0_Ir=0.00025_reg=0.0_heads=3.0_seed=111.0
bs=128.0_Ir=0.00025_reg=1.0_heads=3.0 seed=111.0
bs=64.0_lr=0.00025_reg=0.7_heads=3.0_seed=111.0
bs=64.0_Ir=0.00025_reg=1.5_heads=3.0_seed=111.0
bs=64.0_Ir=0.001_reg=1.0_heads=3.0_seed=3.0
bs=64.0_Ir=0.001_reg=1.0_heads=3.0_seed=1.0
bs=64.0_Ir=0.001_reg=1.0_heads=3.0_seed=2.0
bs=64.0_Ir=0.00025_reg=0.3_heads=3.0_seed=111.0

T T T T T T
0 10000 20000 30000 40000 50000 60000

step

Figure 10: Top: Hyperparameter search runs for different batch sizes and learning rates of the MNM
model in the QM setting with the average accuracy on all tasks. Bottom: MNM model with three
different seeds, batch size 64, and learning rate 0.001 in the QM setting. Reported accuracy is the
average on all tasks.

21




Published as a conference paper at ICLR 2021

F.3

TRANSFORMER-XL

We ported the official Transformer-XL implementatiorﬂ to our own codebase; fully reusing the
model code for our catbAbl experiments. We employ a linear learning-rate warm-up schedule over
the first 1000 steps and run a grid search over batch size, learning rate, number of layers, and
memory length with some additional manual selected parameters. Our best setting uses a learning
rate of 0.00025, memory width of 1200, a hidden state size of dpege; = 512, an inner dimension of
the fully connected part of dipner = 2048, and 3 transformer layers. Several long runs can be seen in
figure[T2] Our experiments show how various seeds eventually become unstable and overfit. Some
settings also resulted in NaNs which we have removed from figure[T2] The best performing models
and most stable where 3 layer models with a large memory and a small learning rate (see figure [[3).

100
095
090
085
0.80
075
070
065

1060

% 055

=

\

{2

5

@' 040
035
030
025
020
015
010
005
0.00

Figure 11:

test accuracy on all tasks

test accuracy on all tasks

100
095 label
090 1 — bs=128.0_Ir=0.001_nl=7.0_mem=400.0
0.85 1 — bs=64.0_Ir=0.0001_nl=7.0_mem=400.0
080 0_Ir=0.0005_nl=7.0_mem=400.0
I = g;; 0_Ir=0.00025_nl=7.0_mem=400.0 N,.,\(_N.ﬂw\[‘
ST A F ) ff w 065 ¥ X X /J-"*“‘“vf \ 7]
mwdw;\“ =, 1 r,-rv—ﬂh‘:/\rfv\ 21060 =T 0-mpn= 400 —/,..,.,\/,.r ‘\’\/
) 7 abel 8058 f\r v
| — bs=64.0_Ir=0.00025_nl=6.0_mem=600.0 Y 045
— bs=64.0 00025_nl=5.0_mem=400.0 o040
V' bs=64.0 00025 _nl=7.0_mem=400.0 035
— bs=64.0 00025_nl=4.0_mem=400.0 030
bs=64.0 00025_nl=8.0_mem=600.0 025
bs=64.0 00025_nl=6.0_mem=400.0 gig
— bs=64.0_Ir=0.00025_nl=6.0_mem=200.0 010
b5=64.0_Ir=0.00025_nl=5.0_mem=200.0 0.05
0 500 1000 1500 2000 2500 3000 000 500 1000 1500 2000 2500 3000
step step

Hyperparameter search runs for different batch sizes

and learning rates of the

Transformer-XL in the QM setting with the average accuracy on all tasks. Left graph varies number
of layers and memory length. Right graph varies batch size and learning rate for 7 layers.

test accuracy on all tasks

test accuracy on all tasks

100 100
095 095
090 AN . : 090
S NI s am dsts il R
0.80 W VA RERE A 0.80
075 075
070 070
065 065
£ 0:60 £ 0.60
¥oss *0ss
1050 L1050
% 045 A 1% L ~ 8 %045
e [~ —— bs=64.0_Ir=0.001_ni=3.0_mem=800.0_seed=111 P
0.40 'y, —— bs=64.0_Ir=0.001_nl=3.0_mem=800.0_seed=1 0.40 label
035 0.001_nl=3.0_mem=600.0_seed=1 035 —— bs=64.0_Ir=0.00025_nl=4.0_mem=400.0_seed=111
030 =0.00025_nl=3.0_mem=1200.0_seed=111 030 —— bs=128.0_Ir=0.00025_nl=4.0_mem=800.0_seed=111
em=1000.0_seed=1 00025_nl=4.0_mem=1200.0_seed=111
025 mem=1200.0_seed=111 025 00025_nl=4.0_mem=600.0_seed=111
020 0.0_seed=333 0.20 0025_nl=4.0_mem=800.0_seed=111
015 =3.0_mem=1200.0_seed=555 015 01_ni=4.0_mem=1000.0_seed=111
010 0_Ir=0.00025_nl=3.0_mem=1200.0_seed=222 010 01_nl=4.0_mem=1200.0_seed=111
—— bs=64.0_Ir=0.00025_nl=3.0_mem=1200.0_seed=444 y 01_nl=4.0 mem=800.0_seed=111
005 —— bs=64.0_Ir=0.001_ni=3.0_mem=400.0_seed=1 005 .00025_ni=4.0_mem=1200.0_seed=111
0.00 o
0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000
step step
test accuracy on all tasks test accuracy on all tasks
100 100
095 095
090 090
085 085
0.80 0.80
075 075
070 070
065 065
—— bs=64.0_Ir=0.001_nl=6.0_mem=400.0_seed=1
o060 o060 b5=128.0_Ir=0.0002
¥oss £055{ — ps= - = =
3 0025_ni=5.0_mem=1200.0_seed=111 | § :»:: gf" 0.0025 f:::_éiz";’;:;‘ilm
050 10025_nl=5.0_mem=600.0_seed=111 050 Epenl) o 1 gl
0.5 0025_nl=5.0_mem=600.0_seed=222 045 £5=64.0.Ir=0.00025 ) mem=600.{. seed=1
! S o00as s o memeB00.0 setori —— bs=64.0_1r=0.00025 _mem=400.0_seed=1
040 - _ni=5.0_.mem=800.0_seed= 040 bs=64.0_Ir=0.001_nl=7.0_mem=400.0_seed=1
035 0.35{ —— bs=64.0_Ir=0.00025_nl=6.0_mem=800.0_seed=111
030 030 ‘
025 025
020 020
015 015 — " —
PV WV VvV v v —
010 010 W\‘ i VV v VVIY \Am
005 005 :
0.00 0.00
0 10000 20000 30000 40000 50000 60000 10000 20000 30000 40000 50000 60000
step step

Figure 12: Long hyperparameter search runs for TXL with various layers and memory sizes. The
experiments are grouped based on the number of layers. Many runs begin to diverge late into the
training process.

5Source:

transformer.py

22

github.com/kimiyoung/transformer—-xl/blob/master/pytorch/mem_


github.com/kimiyoung/transformer-xl/blob/master/pytorch/mem_transformer.py
github.com/kimiyoung/transformer-xl/blob/master/pytorch/mem_transformer.py

Published as a conference paper at ICLR 2021

test accuracy on all tasks

1.00
0.95
0.90
0.85
0.80
©,0.75
v
%]
e
510.70
¥}
mI
©0.65
0.60 M-
i label
0.55 | —— bs=128.0_Ir=0.00025_nl=3.0_ mem=1200.0_seed=111
—— bs=64.0_Ir=0.00025 nl=3.0 mem=1200.0 seed=111
050 bs=64.0_Ir=0.00025_nl=3.0_mem=1200.0_seed=333
‘ —— bs=64.0_Ir=0.00025_nl=3.0_mem=1200.0_seed=555
0.45 i bs=64.0_Ir=0.00025_nl=3.0_mem=1200.0_seed=222
bs=64.0_Ir=0.00025_nl=3.0_mem=1200.0_seed=444
0.40 ! | | ! ] ] I
0 10000 20000 30000 40000 50000 60000
step

Figure 13: Various seeds for the best Transformer-XL hyperparameters: 3-layers, memory windows
of 1200 tokens, a learning rate of 0.00025, and a batch size of 64.

F4 LSTM

We heavily regularize a four-layer stack of residually connected LSTM cells, each with 512 hidden
units. Inspired by AWD-LSTM (Merity et al, 2018)), we use dropout in four different ways to

regularize the model. We dropout the tokens of the input sequence, elements of the embedding
vector, elements of the recurrent weight matrix, and elements of the of the hidden representation

between LSTM layers.

test accuracy on all tasks

test accuracy on all tasks

00 label 00 label
095 | — bs=64.0 01_I=4.0_drop=0.3/0.45/0.5/0.7 095 —— bs=128.0_Ir=0.001_I=4.0_drop=0.1/0.65/0.3/0.5
—— bs=64.0, 01_I=4.0_drop=0.3/0.25/0.5/0.7 —— bs=128.0 .0_drop=0.1/0.65/0.3/0.5
0.901 —— bs=64.0 01_|=4.0_drop=0.2/0.25/0.1/0.7 0.90 )_drop=0.1/0.65/0.3/0.5
ogs| — 5=640. 01_I=4.0_drop=0.2/0.25/0.5/0.3 oss _1=2.0_drop=0.1/0.65/0.3/0.5
bs5=64.0 01_I=4.0_drop=0.3/0.45/0.1/0.7 . 0.0005_I=4.0_drop=0.1/0.65/0.3/0.5

0.80 bs5=64.0 01_I=4.0_drop=0.1/0.65/0.3/0.5 0.80 bs=64.0_Ir=0.0005_I=4.0_drop=0.1/0.65/0.3/0.5
° — bs=64.0, 01_I=4.0_drop=0.2/0.25/0.5/0.7 ° —— bs=64.0_Ir=0.001_1=3.0_drop=0.1/0.65/0.3/0.5
075 b5=64.0 01_I=4.0_drop=0.2/0.45/0.5/0.3 4075 bs=64.0_Ir=0.002_1=4.0_drop=0.1/0.65/0.3/0.5
4 b5=64.0 01_I=4.0_drop=0.3/0.45/0.1/0.3 g
§'0701 __ pe6a.0, 01_1=4.0_drop=0.2/0.45/0.5/0.7 — y'o70
Slo6s | — bs=64.0 01_1=4.0_drop=0.3/0.25/0.5/0.3 = go6s — =

e~ &

0.60 0.60

055 055

0.50 050

045 045

0.40 0.40

1000 1500 2000 2500

3000 1000 1500 2000

2500 3000

Figure 14: Hyperparameter search runs for different batch sizes and learning rates of the LSTM in
the QM setting with the average accuracy on all tasks.

23



Published as a conference paper at ICLR 2021

test accuracy on all tasks

label
— bs=64.0_Ir=0.001_I=4.0_drop=>0.1/0.65/0.3/0.5_seed=3
100 — bs=64.0_Ir=0.001_I=4.0_drop=>0.1/0.65/0.3/0.5_seed=1
0.95 4 bs=64.0_Ir=0.001_|=4.0_drop=0.1/0.65/0.3/0.5_seed=2
090 A
0.85
=, 0.80 A
£
wi
B 075 4
HI
070
i}
065 -
060
055
050 |
045 4
040 T T T T T T T
o 10000 20000 30000 40000 50000 BOO00
step

Figure 15: Average accuracy of three seeds of the best LSTM settings over all tasks on the catbAbl
QM-mode dataset.

F.5 ATTENTION TO THE RECENT PAST FAST WEIGHTS

We evaluate our own implementation of Fast Weights as introduced by (20164). They
propose an RNN augmented with fast weights which modulate the slow weights of an Elman RNN
using a fixed fast weight learning and decay rate (JBFW). Our hyperparameter search did not result
in any model performing over 15% on the test data.

101
label
0.9 1 —— bs=64.0_Ir=0.001_h=256.0 flr=0.5_decay=0.95
—— bs=128.0_Ir=0.00025 h=256.0_flr=0.5 decay=0.95
0.8 1 bs=64.0_Ir=0.0001_h=256.0_flr=0.5_decay=0.95
07| —— bs=64.0_[r=0.00025_h=512.0 flr=0.5_decay=0.99

bs=128.0_Ir=0.002_h=256.0_flr=0.5_decay=095

3 0.6 - bs=64.0_Ir=0.00025_h=512.0 flr=1.0_decay=0.99
E —— bs=64.0_Ir=0.00025_h=256.0_flr=0.5_decay=0.95
L1053 bs=128.0 Ir=0.0001_h=256.0 fir=0.5_decay=0.95
z' 04 bs=64.0_Ir=0.002_h=256.0_flr=0.5_decay=0.95

—— bs=128.0_Ir=0.0005_h=256.0_flr=0.5_decay=0.95
034 —— bs=64.0_Ir=0.0005_h=256.0_flr=0.5_decay=0.95
bs=128.0_Ir=0.001_h=256.0_flr=0.5_decay=0.95

0.2 1
—— —
0.1 4 /J//———%-" S
e
0.0 - T T T T T T
500 1000 1500 2000 2500 3000
step

Figure 16: Hyperparameter search for the Fast Weights attending to the recent past by

24



Published as a conference paper at ICLR 2021

G BEST CATBABI RUNS BROKEN DOWN BY TASK

%' 06

£
' 05

step

label 804 label
— MNM I ©'g3{— MNM !
— Transformer-XL | 24— Transformer-XL |
— FWM ] Fwm
— LSTM 011 — LsTM
T T T r r r r 00— - r r r r r
0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000

label § 04 label
L= MNM ©' g3~ MNM I
|~ Transformer-XL 0wl Transformer-XL |
— FWM ) — FWM
— LSTM™ 011 — LsTM
T 00— T T T T T T
0 10000 20000 30000 40000 50000 60000
step
10 T, — T
oo | FEII——T—F ] T
08
m 0.7 1
x'06
8
Sos
o
B 04 label
— MNM ©' g3~ MNM
— Transformer-XL 02— Transformer-XL
— FWM | FWM
— LSTM 011 — 1sTM
T T T T T T T 00— T T T T T T
0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000
step step

LM

o
label § 04 1 ! ! { { label
—— MNM e 03 = MNM
~— Transformer-XL — Transformer-XL
— FwM 02 — FwM
— LSTM 01 — LSTM
T T T T T T T 00 T T T T T
0 10000 20000 30000 40000 50000 60000 0 10000 20000 30600 40600 50000 60000
step step
""’_v T
H
%
b I
=
label 204 + + + { label
—— MNM o' 03 | = MNM
—— Transformer-XL | — Transformer-XL
— FWM 02 — FWM
— LSTM 01 [ — LSTM
T T T T T T T 0.0 T T T T T T T
0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000

step

step

Figure 17: Per-task test set performance comparison of the best catbAbl runs (first part).

25



Published as a conference paper at ICLR 2021

€ o3| — Mnm » e 03] — MNM
| = Transformer-XL : —— Transformer-XL
021 rwm 02 — FWM
011 — LsTM 011 — LSTM
00 T T T T T T T 00 T T T T T T T
0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000
10 10
09 091
08 08
~ 07 ~ 0.7
g 06 x'06
8' 05 T :, 05
® 04 label w04
1
e oy ] — mm , €31 MNM
— Transformer-XL | i Transformer-XL |
021 — Fwm 021 — Fwm
011 — [STM 011 — LsTM
00 T T T T T T T 00 T T T T T T T
0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000
step step
1o T - S
09 T
08
w 07 o
%06 x
s B
05 : .
%I 04 label gl 04 label
e 03 — MNM Bo3{ ™ MNM
02 — Transformer-XL 02— Transformer-XL |
: — FWM ) — FWM
01 — LSTM 011 — LsTM
00 T T T T T 00 T T T T T T T
0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000
step step
10 T
09
038 1
o 07 label
' 06 1 = MNM
Zos — Transformer-XL
. § 04 — i:‘]_’:‘
Bo3{— ':NMfo o €03
—— Transformer-,
021 _ rum 02
011 — |5TM 01
00 T T T T T 00 T T T T T T T
0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000
step step
10 10 =
09 091
08 08
o 07 g 07
ﬁ' 06 ﬁ' 06
‘E' 05 £ 051
® 04 label ® 04 label
e'o3 — MNM ©' g3~ MNM |
02 — Transformer-XL w2l Transformer-XL |
: — FWM : = FWM
01 — LSTM 011 — LsTM
00 T T T T T T T 00 T T T T T T T
0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000
step step

Figure 18: Per-task test set performance comparison of the best catbAbl runs (second part).

26



Published as a conference paper at ICLR 2021

H LANGUAGE MODELLING

The code of our language modelling experiments is forked from Uber AI Lab’s (github.com/uber-
research/differentiable-plasticity/tree/master/awd-Istm-lm) which is itself forked from the Sales-
force Language model toolkit (github.com/Smerity/awd-Istm-lm). The FWM uses the same three
layer LSTM as the slow RNN with the same optimisations as done by Merity et al.|(2018). An
alternative which we do not explore here is to use multiple FWM-layers each with one LSTM cell
and one FWM. We trained our model for 1000 epochs on PTB and 1600 epochs on WT2. Similar
to Merity et al.[(2018) we switched from Adam to Averaged Stochastic Gradient Descent (ASGD)
after 916 epochs and 1372 epochs for PTB and WT2 models respectively. We tune the dropout pa-
rameters on the validation set and, after training, we also tune the softmax temperature (tuning the
softmax temperature results in ~1 ppl of improvement). The embedding layers were initialized ran-
domly from a uniform distribution, uniform(-0.25, 0.25), which was crucial in our FWM language
models. The hyperparameters used for all reported results are in table [}

The Transformer-XL PTB results were based using the authors official code and hyperparameter
setting (see zihangdai.github.io/misc/ptb.zip) which includes AWD-style regularisation, model aver-
aging, and softmax tuning. The WT2 results are based on the same code using the best hyperparam-
eters found by Tim Dettmers (see github.com/TimDettmers/transformer-xl/tree/wikitext2/pytorch).

Table 4: Best hyperparameters of the FWM for our language modelling experiments

dataset droupout dropoute dropouth dropouti wdrop batchsize ADAMIr ASGD Ir

PTB 0.4 0.1 0.3 0.5 0.66 20 0.001 2.0
WT2 0.4 0.1 0.25 0.7 0.61 80 0.001 0.5

H.1 RESULTS

Table 5: The detailed evaluation results of the FWM and Transformer-XL language model for all
data partitions of the PTB and WT2 datasets using a batch size of 1. Experiment logs can be found
in our git repository.

loss ppl bits per word
train valid test | train valid test | train  valid test

141 | 2.82 4.04 4.00|16.77 56.76 5448 | 4.068 5.827 5.768
PTB 142 | 2.66 4.05 4.01|14.26 57.43 55.17| 3.834 5.844 5.786
143 | 3.16 4.08 4.04|23.66 59.31 56.90| 4564 5.890 5.830

model | dataset seed

FWM
1881 332 423 4.18]27.80 68.74 65.07| 4797 6.103 6.024
WT2 1882|281 4.16 4.12|16.66 63.98 61.65| 4.058 6.000 5.942
1883 1 3.28 4.23 4.17]26.60 6839 6491 | 4733 6.096 6.020
2 287 409 4.04|17.62 59.71 56.63 | 4.139 5900 5.824
PTB 3 288 408 4.03|17.84 59.39 56.50 | 4.157 5.892 5.820
TXL 1111|286 4.09 4.03|17.52 59.73 56.53 | 4.131 5900 5.821

444 12.61 4.19 4.15|13.60 6571 63.28|13.599 65.706 63.283
WT2 555 |2.61 4.19 4.15|13.66 65.83 63.40|13.660 65.830 63.400
666 | 2.61 4.14 4.19|13.62 6573 63.11 | 13.622 65.725 63.109

27


https://github.com/uber-research/differentiable-plasticity/tree/master/awd-lstm-lm
https://github.com/uber-research/differentiable-plasticity/tree/master/awd-lstm-lm
https://github.com/Smerity/awd-lstm-lm
http://zihangdai.github.io/misc/ptb.zip
https://github.com/TimDettmers/transformer-xl/tree/wikitext2/pytorch

Published as a conference paper at ICLR 2021

I META REINFORCEMENT LEARNING

The meta reinforcement learning experiments trains an agent in training POMDPs and evaluates it
on test POMDPs. The environments are directed graphs with labeled edges. As part of the data
generating process, novel graphs are sampled according the python algorithm in listing [I] Actions
and states are one-hot encoded. The agent receives a 17 dimensional input: the reward location, the

. . . . . t st
current location, the previous action, a fixed bit, the fractional progress as %, and the current

reward sum. Getting to the reward location gives a reward of 10. Choosing an invalid action gives
a penalty of 0.05. We use a discounting factor of 0.9 and a value coefficient of 0.1. The entropy
coefficient of A2C is set to 0.03.

The agent and reward locations are randomly selected at the beginning of the episode. With only
5 states, the reward is reachable in at most 5 steps. As elaborated in section [.2] such optimal
behaviour is only possible once the agent has learned the graphs from its experience. Whenever the
reward is placed in the environment a reset timer is set to 0. When the agent reaches the reward, or
after 6 unsuccessful steps, the reset timer is set to 0 and the reward and agent are randomly placed in
the environment. We train with a batch size of 600 agents and optimize the average step loss using
the Adam optimizer.

import numpy as np
def sample_adjacency_matrix(n_actions, n_states, random_state):
while True:

A = np.zeros((n_actions, n_states, n_states))

# every state has to be leavable by at least one action
for from_state in range (n_states):

to_state = random_state.choice([i for i in range (n_states)
if 1 != from_state])

action = random_state.randint (0, n_actions)

Alaction, from_state, to_state] = 1

# every state has to be reachable by one or more from-states
for to_state in range(n_states):
# only select states which don't have any neighbours given an action
action_list, from_list = np.where(A.sum(2) == 0)
# remove self from the selection
options = np.asarray(list(filter (lambda x: x[0] != to_state,
zip (from_list, action_list))))
indecies = np.arange (options.shape[0])
chosen_idx = random_state.choice (indecies)
from_state, action = options[chosen_idx]
Alaction, from_state, to_state] = 1

# reject if they are not all connected
Q = A.sum(0)
Q[ > 01 =1

for _ in range(n_states):
Q = np.matmul (Q, Q)

if (Q == 0).sum() == 0:
return A

Listing 1: Python3 code to sample new environments such that any state is reachable by any other
state.

28



	Introduction
	Related Work
	Proposed Method
	The Fast Weight Memory
	Writing
	Reading


	Experiments
	Concatenated-bAbI
	Results

	Meta-Reinforcement Learning
	Language Modelling

	Discussion
	Conclusion
	Further Discussion
	Derivation of the Update Rule
	A Comment on the Regular bAbI Dataset and Previous Work
	Concatenated-bAbI Details
	Ablation
	Hyperparameter search for catbAbI
	Fast Weight Memory
	Metalearned Neural Memory
	Transformer-XL
	LSTM
	Attention to the Recent Past Fast Weights

	Best catbAbI Runs Broken Down by Task
	Language Modelling
	Results

	Meta Reinforcement Learning

