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ABSTRACT

A central principle in self-supervised learning (SSL) is to learn data repre-
sentations that are invariant to semantic-preserving transformations e.g., image
representations should remain unchanged under augmentations like cropping
or color jitter. While effective for classification, such invariance can suppress
transformation-relevant information that is valuable for other tasks. To address
this, recent works explore equivariant representation learning, which encourages
representations to retain information about the applied transformations. However,
how to effectively incorporate equivariance as an explicit regularizer on top of
strong invariance-based SSL backbones at ImageNet scale remains underexplored.
We conjecture that enforcing invariance and equivariance to the same layer is in-
herently difficult and, if handled naively, may even hinder learning. To overcome
this, we propose soft equivariance regularization (SER), a simple yet scalable
method that decouples the two objectives: learning invariant representations via
standard SSL, while softly regularizing intermediate features with an equivari-
ance loss. Our approach necessitates neither a transformation label nor its predic-
tive objectives, but operates directly with group actions applied to the intermedi-
ate feature maps. We show that this soft equivariance regularization significantly
improves the generalization performance of ImageNet-1k pre-training of vision
transformers (ViT), leading to stronger downstream classification accuracy in Im-
ageNet and in its variants, including both natural distributions and broad types of
common corruptions and perturbations ImageNet-C and ImageNet-P. Our code is
available at https://anonymous.4open.science/r/erl-B5CE.

1 INTRODUCTION

Self-supervised learning (SSL) has become a cornerstone in modern machine learning, especially
within computer vision (Chen et al., 2020; Caron et al., 2021; Wang et al., 2023; Huang et al.,
2023), enabling the extraction of rich and generalizable representations from large-scale unlabeled
datasets. A prominent approach in SSL seeks representations invariant to predefined data augmen-
tations, such as random cropping, color jittering, and rotations, under the assumption that these
augmentations should not alter the underlying semantic content. While invariance encourages sta-
ble representation learning, relying solely on the invariance task may lead to the loss of valuable
transformation-dependent information, potentially yielding suboptimal representations for down-
stream tasks. Incorporating equivariance explicitly modeling how representations should transform
in response to input changes allows for the preservation and effective utilization of such information,
thereby enriching the learned features and enhancing their relevance across diverse tasks (Dangovski
et al., 2021; Marchetti et al., 2023).

This principle of equivariance ensures that representations transform predictably in response to
changes in the input. Instead of discarding transformation-specific information, equivariant methods
aim to encode it in a structured manner within the representation space. Existing approaches typi-
cally fall into two categories (Yu et al., 2024): implicit methods, which learn equivariance through
auxiliary tasks such as predicting transformations applied to input pairs (Dangovski et al., 2021; Lee
et al., 2021). Meanwhile, explicit methods directly model the transformation within the latent space,
often requiring transformation labels to learn the corresponding representation transformation (Dev-
illers & Lefort, 2023; Park et al., 2022; Garrido et al., 2023).
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However, in practice, explicit methods often encounter significant challenges (Yu et al., 2024). These
include reliance on transformation labels, which may not always be available; difficulty in captur-
ing inter-dependencies between combined transformations (e.g., simultaneous variations in cropping
and color); and limitations in modeling complex, non-atomic augmentations (Yu et al., 2024). Ad-
ditionally, most existing equivariant methods have been developed and evaluated predominantly on
convolutional neural networks (CNNs), particularly ResNet variants (Devillers & Lefort, 2023; Yu
et al., 2024). Their efficacy when applied to architectures with less inherent inductive bias, such
as Vision Transformers (ViTs) (Dosovitskiy et al., 2021), remains largely unexplored. Equivariant
self-supervised learning has been explored at ImageNet scale, including world-model–based ap-
proaches (Garrido et al., 2024). In contrast, we study explicit equivariance regularization on top
of strong invariance-based SSL methods (MoCo-v3, DINO, BarlowTwins) and show that it can im-
prove performance on ImageNet-scale datasets and robustness benchmarks. We hypothesize and
empirically validate that expecting a single representation to exhibit complete invariance and nu-
anced transformation responsiveness simultaneously is both technically challenging and generally
unnecessary.

To address these challenges, we propose a novel SSL framework that introduces transformation
equivariance through a fundamentally different perspective. Unlike previous methods that impose
equivariance constraints exclusively on spatially-collapsed representations via complex mecha-
nisms, our framework employs soft regularization to minimize equivariance errors at intermedi-
ate, (spatial) structure-preserving layers. This strategy decouples invariance learning, achieved by
standard contrastive objectives at the output layer, from equivariance learning, encouraged through
regularization at earlier layers with preserved spatial structure.

It is worth noting that our method does not depend on inherently equivariant architectures such as
CNNs for translation invariance. Instead, we utilize flexible models like ViTs suitable for large-
scale training as up-to-date state-of-the-art backbones (Dosovitskiy et al., 2021), and known to even
exceed architectures designed for certain symmetry, e.g., CNNs for translation, at learning equivari-
ance (Gruver et al., 2022) and introduce a soft inductive bias favoring equivariant representations.
This principle incorporating subtle structural bias rather than enforcing rigid constraints has been
demonstrated to enhance generalization both empirically and theoretically (Finzi et al., 2021; Kim
et al., 2023; Wilson, 2025). Our equivariance regularizer, defined through a straightforward group-
theoretic equivariance error, neither requires training transformation predictors nor access to explicit
transformation labels.

We evaluate our method extensively across standard vision benchmarks and downstream tasks, in-
cluding both natural distributions and broad types of common corruptions and perturbations. Our
experiments show that the proposed method scales effectively to ViTs pre-training on ImageNet,
consistently improving downstream classification performance across various base SSL methods
used for invariance learning.

To summarize, our contribution is threefold:

• We empirically demonstrate that imposing equivariance and invariance on the same final
layer is sub-optimal: it significantly degrades downstream accuracy while increasing trans-
formation sensitivity (Figure 3, Table 4). This validates our core conjecture that these two
objectives fundamentally conflict when applied jointly on the final representation.

• Motivated by this observation, we propose SER, a framework that decouples invariance and
equivariance learning by applying a soft equivariance regularizer at an intermediate, spa-
tially structured layer while keeping the final representation trained purely with a standard
invariance-based SSL objective. The method is mathematically simple, relying on direct
group actions on intermediate feature maps as the regularization mechanism.

• SER leverages known geometric group actions and avoids supervision from transforma-
tion labels or additional modules to model transformation information. When plugged into
strong invariance-based SSL methods (MoCo-v3, DINO, Barlow Twins), it consistently
improves performance on ImageNet-scale classification and robustness benchmarks (e.g.,
ImageNet-C/P) as well as downstream tasks such as COCO detection and 3DIEBench.
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2 BACKGROUNDS

2.1 SELF-SUPERVISED LEARNING

Self-supervised learning (SSL) leverages intrinsic supervisory signals derived directly from the data,
circumventing the need for costly human-annotated labels. SSL methods typically construct proxy
tasks such as predicting rotations (Gidaris et al., 2018), solving jigsaw puzzles (Noroozi & Favaro,
2016), or performing instance discrimination via contrastive learning (Chen et al., 2020; He et al.,
2020; Grill et al., 2020; Zbontar et al., 2021) to guide neural networks in learning meaningful repre-
sentations. Central to many SSL approaches is the enforcement of invariance to semantically irrel-
evant data augmentations, ensuring the representations capture intrinsic content rather than superfi-
cial variations. Recent advances demonstrate that enforcing invariance through contrastive losses or
similarity constraints yields representations competitive with or superior to supervised learning in
various vision tasks (Chen et al., 2020; Caron et al., 2021; Bardes et al., 2022).

In practice, SSL frameworks often employ multiple (usually 2) augmented views generated by in-
dependently sampling transformations from a predefined augmentation distribution. Increasing the
number of these views (crops) can easily improve representation quality but incurs extra compu-
tational and memory costs (Caron et al., 2020). Contemporary SSL algorithms utilize diverse in-
variance objectives: SimCLR and MoCo-v3 use noise-contrastive estimation losses; SimSiam and
BYOL rely on cosine similarity; and Barlow Twins combines covariance-based redundancy reduc-
tion with invariance constraints (Chen et al., 2020; He et al., 2020; Chen & He, 2021; Grill et al.,
2020; Zbontar et al., 2021). Our proposed method complements these approaches by introducing a
joint optimization of an equivariance regularization term alongside standard invariance-based objec-
tives (see Section 3.3).

2.2 EQUIVARIANT REPRESENTATION LEARNING

The goal of equivariant representation learning in SSL is to complement invariant representation
learning by encouraging representations to be responsive to transformations. Most existing ap-
proaches implement this by introducing additional loss functions to impose equivariance, typically
applied to the same layer from which invariant representations are derived. These losses capture
equivariance either implicitly or explicitly. For example, methods such as E-SSL (Dangovski et al.,
2021) and AugSelf (Lee et al., 2021) indirectly promote equivariance by training models to pre-
dict transformation labels applied to the inputs. However, such approaches often struggle to capture
structured or complex transformations precisely.

In contrast, explicit methods directly model transformations in the representation space. For exam-
ple, EquiMod (Devillers & Lefort, 2023) constrains latent spaces to predict embedding displace-
ments, but its heavy reliance on transformation labels limits its effectiveness with interdependent
or complex augmentations such as AugMix (Hendrycks et al., 2019). Self-supervised Transforma-
tion Learning (STL) (Yu et al., 2024), on the other hand, mitigates label dependency by modelling
transformation representations from image pairs, making it more flexible with complex augmenta-
tions. Nevertheless, STL can suffer from spatial collapse, reducing its sensitivity to subtle trans-
formations. Common limitations across existing methods include dependency on transformation la-
bels, difficulty handling multiple augmentations simultaneously, and restricted applicability beyond
CNN-based architectures. Our approach overcomes these issues by softly enforcing equivariance at
intermediate layers of ViTs, without relying on explicit labels or auxiliary modules to extract spatial
information once collapsed (e.g., through global average pooling). By directly applying group ac-
tions as regularization, our method preserves domain structure, avoids spatial collapse, and enhances
scalability and downstream task performance in ViTs.

2.3 SYMMETRY, GROUPS, AND EQUIVARIANCE

Symmetry refers to a transformation that leaves an object unchanged (Bronstein et al., 2021). For
example, rotating a perfect circle around its center does not alter its appearance. The set of all such
transformations that preserve an object’s structure forms a symmetry group. Formally, a group is a
mathematical structure consisting of a set of elements and a binary operation (here, composition of
transformations) that satisfies four properties: closure (the composition of two symmetries is also
a symmetry), associativity, existence of an identity element, and existence of inverses. Symmetry
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Forward
Equivariance
Invariance

Figure 1: An exemplary overview of our soft equivariance regularization for self-supervised learn-
ing. The image pair is created via the group actions g1 and g2. For simplicity, we omit the intensity
transformation applied to the original image (see Section 3.1).

arises in many domains, such as images defined on a 2D grid or molecules in 3D space, and encodes
a form of structure or redundancy in data. Leveraging such symmetries allows machine learning
models to generalize better from limited data, as they can capture invariances or equivariances in-
duced by the underlying group actions.

To formalize how functions respond to symmetries, we consider group representations. A represen-
tation of g in a group G on a Euclidean space Rn is a homomorphism ρg : G → GL(n), where
GL(n) is the group of invertible n×n matrices. This mapping preserves the group structure, mean-
ing ρgh(·) = ρgρh(·) for all g, h ∈ G. A function f : X → Y is said to be G-equivariant if for all
g ∈ G and x ∈ X ,

f
(
ρg(x)

)
= ρg

(
f(x)

)
.

Note that we unify the notation of the representation ρg for both X and Y for simplicity. In practice,
they use different representations due to different dimension size. Intuitively, section 2.3 means that
applying a transformation g to the input and then computing f is equivalent to computing f first
and then transforming the output by g. Equivariance implies that the function respects the structure
imposed by the group action, rather than discarding it.

CNNs exemplify this principle: their convolution layers are equivariant to translations, assuming an
idealized setting over R2. This built-in translation symmetry has been crucial to their success in im-
age analysis. Motivated by this, a wide range of architectures, such as group-equivariant CNNs (Co-
hen & Welling, 2016; 2017) and equivariant graph networks (Keriven & Peyré, 2019), have been
developed to encode other symmetry types, leading to improved generalization, data efficiency, and
interpretability.

3 SOFT EQUIVARIANCE REGULARIZATION FOR INVARIANT
SELF-SUPERVISED LEARNING

Previous methods for introducing equivariance into invariant SSL typically impose both invariance
and equivariance objectives on the output layer representations. However, these representations are
often spatially collapsed, which may be suitable for enforcing invariance but are generally inade-
quate for capturing transformation-sensitive equivariant structures. Therefore, we explicitly encour-
age equivariance at the intermediate representations computed at earlier layers, which retain spatial
structure and are better aligned with group actions.

3.1 SOFT EQUIVARIANCE AT INTERMEDIATE FEATURES

A straightforward way to introduce equivariance would be to impose it directly on the final rep-
resentation (e.g., globally pooled feature in ResNets or the [CLS] token in ViTs), as explored in
prior work. However, these final representations are spatially collapsed and no longer admit a natural
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spatial group action. We therefore leverage non [CLS]patch tokens where spatial structure is still
explicit (e.g., the gray feature maps in Figure 1).

For ViTs, which are our primary focus, spatial structure is disrupted after the introduction of the
[CLS] token. To preserve a spatial lattice for equivariance, we decompose the encoder f into two
components:

f = f (2) ◦ f (1),

where f (1) is a structure-preserving, equivariant feature extractor, and f (2) is an invariance-oriented
head. The [CLS] token is introduced only at the input of f (2), so it does not affect the feature maps
produced by f (1). As a result, the outputs of f (1) remain defined on a regular spatial grid and are
amenable to group actions. The overall architecture is illustrated in Figure 2.

We adopt the standard two-view SSL protocol, following the principle of Gupta et al. (2023) that
equivariance should be learned from pairs of augmented samples, analogous to invariant contrastive
learning. Given an image x and two sampled transformations g1, g2 ∼ G, we form two views

x1 = ρg1(x), x2 = ρg2(x) = ρg(x1),

where the relative group element g = g2g
−1
1 maps x1 to x2. We exploit this relative transform both

in input space and feature space. On the feature side, we apply g to the intermediate representation
via the group action ρg to obtain ρg

(
f (1)(x)

)
, and we compare it to the representation obtained by

transforming the input first and then encoding:

ρg
(
f (1)(x)

)
vs. f (1)

(
ρg(x)

)
.

The equivariance constraint is formalized as

Lequiv = Ex, (g1,g2)∼G

[
d
(
ρg(f

(1)(x)), f (1)(ρg(x))
)]
, g = g2g

−1
1 , (1)

where d(·, ·) is a distance measure between feature maps; in this work we instantiate d with a con-
trastive loss as described in Section 3.3. This form of equivariance objective has appeared before
(e.g., Eq. 4 in Yu et al. (2024)); our key difference is that we apply it to an intermediate, spatially
structured representation and use the known group action ρg directly, without training an additional
transformation-prediction module or latent action network. Minimizing Lequiv does not enforce ex-
act equivariance, but rather encourages soft equivariance at that layer.

Because Lequiv alone does not provide an instance-discrimination signal for the final representation,
we jointly train the invariance-oriented head f (2) with a standard SSL loss on the [CLS] token, as
in MoCo-v3, DINO, and Barlow Twins (Chen et al., 2020; He et al., 2020; Grill et al., 2020; Zbontar
et al., 2021). The full procedure is summarized in Figure 1. Importantly, we do not augment the
network with any extra module to model transformations (unlike, e.g., EquiMod or STL (Devillers
& Lefort, 2023; Yu et al., 2024)); instead, we reuse the known image-level group actions to define
ρg on the intermediate feature maps and regularize the encoder accordingly.

3.2 AUGMENTATION POLICY AND BATCH PARTITIONING

Typical augmentation policies used in invariance-based SSL include RandomResizedCrop,
RandomHorizontalFlip, and photometric modifications such as color jittering and grayscale.
However, RandomResizedCrop does not form a group; after cropping, the discarded region
cannot be recovered by applying another crop, so no inverse exists (see Section 2.3). Most impor-
tantly, it changes the spatial support of the image; as a result, the relative transform g = g2g

−1
1

and the corresponding ρg for the spatially-structured feature map cannot be well-defined with
RandomResizedCrop. Therefore, we split each mini-batch into two sub-batches, i.e., b1 and
b2 (see Figure 2).

b1 employs the existing invariant SSL framework (including its augmentation policy denoted as T ),
which SER aims to enhance. On the other hand, b2 leverages G, which is the modified version of T ;
it excludes RandomResizedCrop and adds Rotation90◦:

b1 : T , b2 : G = T \ {Random Crop} ∪ {Rotation 90◦}.

5
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Equivariant Invariant

Image Encoder, e.g., ViT

mini-batch partition b1

mini-batch partition b2

CLS

Figure 2: An overview of the training pipeline. Mini-batch is randomly divided into two partitions;
the standard augmentation set for self-supervised learning applies to partition 1, whereas a slightly
modified policy applies to subset 2. Differences are as follows: 1) random crop is removed from T
because symmetry cannot hold for crop, and 2) rotation 90° is added to G.

Moreover, within G, we define the group action ρg only on the (invertible) geomet-
ric subset (anisotropic scaling inherited from RandomResizedCrop without cropping,
RandomHorizontalFlip, and Rotation90◦). Photometric augmentations (color jitter,
grayscale, blur, solarization) are retained in G but do not contribute to equivariance, for no group
action is associated with them. In summary, we randomly split the mini-batch into b1 and b2. b1
adopts the exact baseline invariant SSL algorithm including T and its loss function that yields Linv1,
whereas b2 employs G, and we define the group action ρg only on the geometric subset of G. Note
that b2 outputs both Linv2 (using the same invariant loss function for b1) and Lequiv, which we de-
scribe in Section 3.3.

3.3 TRAINING OBJECTIVE FOR SOFT EQUIVARIANCE REGULARIZATION

To encourage predictable responses to input transformations, we introduced the equivariance reg-
ularizer in Equation (1) as a patch-wise NT-Xent (noise-contrastive) loss applied on the sub-batch
b2 (Chen et al., 2020). Let Hf ,Wf , and Df denote the height, width, and channel dimension of the
intermediate feature maps. We write

z = ρg
(
f (1)(x)

)
and z′ = f (1)

(
ρg(x)

)
,

with z, z′ ∈ RHf×Wf×Df the two transformed feature maps for a given relative group element
g = g2g

−1
1 . We index images in b2 by i and spatial locations by j ∈ {0, . . . , HfWf − 1}, and

denote by zij and z′ij the corresponding feature vectors from z and z′, respectively. Each vector is
first projected by a 2-layer MLP with GELU into a 512-dimensional space (Caron et al., 2021). The
equivariance contrastive loss for anchor (i, j) is then

Li,j
equiv = − log

exp
(
s(zij , z

′
ij)

)
exp

(
s(zij , z′ij)

)
+

∑
m̸=i

∑
n

[
exp

(
s(zij , zmn)

)
+ exp

(
s(zij , z′mn)

)] ,
where s(x, y) denotes temperature-scaled cosine similarity, s(x, y) = 1

τ x⊤y/(∥x∥∥y∥). We set
τ = 0.3 for MoCo-v3 and Barlow Twins, and τ = 0.5 for DINO. Following O Pinheiro et al.
(2020), negatives are sampled only from other images in the batch; i.e., we omit all tokens from the
same image as the anchor. The overall equivariance loss averages this quantity over all images and
spatial locations in b2,

Lequiv =
1

|b2|HfWf

∑
i

∑
j

Li,j
equiv.
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The full training objective combines the standard invariance loss with our equivariance regularizer:

L = Linv1 + Linv2 + λLequiv,

where the hyperparameter λ > 0 controls the strength of equivariance regularization. BothLinv1 and
Linv2 employ exactly the baseline invariance loss function (e.g., MoCo-v3, DINO, Barlow Twins)
but applied to sub-batches b1 and b2, respectively. Thus, our objective is agnostic to the choice of
base SSL algorithm and can be seamlessly integrated with different invariance-based methods, con-
sistently improving downstream classification performance (see Section 4.3). This loss encourages
soft equivariance at a spatially-structured representation, thereby preserving flexibility of the repre-
sentation space.

4 EXPERIMENTS

In this section, we empirically demonstrate the effectiveness of the proposed SSL algorithm with
soft equivariance regularization against state-of-the-art equivariant representation learning baselines
through comprehensive experiments. We first detail our experimental setup in Section 4.1, and sub-
sequently address the following key research questions in our experimental results:

• Does the proposed soft equivariant regularization improve the generalization performance
of ViTs compared to purely invariant and other equivariant SSL baselines?

• Does our approach scale to large-scale pre-training scenarios, and what is its impact on
downstream classification tasks that rely on transformation-specific information?

• How robust is our approach when facing complex and combined augmentations or shifts
that challenge existing equivariant representation methods?

4.1 EXPERIMENTAL SETUP

Baselines. We evaluate our method by comparing it with other approaches designed to encourage
equivariance within self-supervised learning frameworks. Our baselines include both implicit equiv-
ariance methods such as E-SSL (Dangovski et al., 2021) and AugSelf (Lee et al., 2021) and explicit
equivariance methods, including EquiMod (Devillers & Lefort, 2023) and STL (Yu et al., 2024). No-
tably, EquiMod utilizes three global crops, whereas E-SSL employs two global and four local crops,
making direct comparison challenging due to these differing cropping strategies. It is well-known
that increasing the number of crops generally improves performance, albeit at the expense of greater
memory usage and computational cost (Caron et al., 2020; 2021). To address this discrepancy and
ensure a fair evaluation, we reimplement our method using a consistent 2+4 cropping scheme and
report these adjusted results as well.

Dataset. To assess the efficacy and scalability of our equivariance regularization approach, we
conduct pre-training and evaluation experiments using the ImageNet-1k dataset (Deng et al., 2009),
adhering to standard evaluation protocols established in the self-supervised learning literature (Chen
et al., 2020; Caron et al., 2021). Additionally, we evaluate our method on ImageNet variants specif-
ically designed to measure robustness and generalizability to a broad spectrum of natural distri-
bution shifts, ImageNet-Sketch (Wang et al., 2019), ImageNet-V2 (Recht et al., 2019), ImageNet-
R (Hendrycks et al., 2021) and commonly-induced corruptions and perturbations ImageNet-C, and
ImageNet-P (Hendrycks & Dietterich, 2019). Though these sets are all designed to evaluate whether
the model is robust to corruption and perturbation, it has to be noted that ImageNet-P is more cor-
rupted with geometric distortion, e.g., translation, rotation, and scaling, whereas the distortion to
ImageNet-C is primarily focused on appearance-based corruption e.g., blurring, pixel noise, bright-
ness changes, fog), which affect the texture or color of the image rather than its geometric structure.
In addition, we employ the 3DIEBench dataset (Garrido et al., 2023) as an out-of-domain dataset
for transfer learning on semantic classification, especially suited for evaluating the model’s ability
towards invariance and equivariance equipped with realistic 3D transformation. As a whole, this
comprehensive evaluation aims to demonstrate the improved generalization capabilities enabled by
our soft equivariance regularization.

Implementation Details. Unless otherwise noted, we pretrained ViT-small using the ImageNet-1k
dataset. We follow standard augmentation practices with a scaling ranging between 0.7 and 1.3. As

7
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Table 1: Top-1 and top-5 accuracy (%) under linear evaluation. Note that all equivariant repre-
sentation learning methods use MoCo (He et al., 2020) as their baseline, which outperformed DINO
and BarlowTwins in our setting (see Table 2). Concatenated [CLS] tokens from the last 4 layers
were used as an input to the linear classifier, following the feature-based evaluations in (Devlin et al.,
2019; Caron et al., 2021). ‘View’ refers to the number of crops sampled per image (see Section B
for more detail). ImageNet-1k scores are averaged over 3 runs.

View Algorithm Param (M) ImageNet-1k ImageNet-Sketch ImageNet-V2 ImageNet-R 3DIEBench
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

2 view

MoCo-v3 42.9 68.44
±0.07

88.02
±0.04 17.65 31.87 56.54 78.68 18.59 30.08 68.43 91.96

+ AugSelf 43.7 67.55
±0.05

87.62
±0.05 13.30 25.35 53.74 76.68 17.62 28.66 64.97 90.73

+ STL 62.2 65.49
±0.12

85.91
±0.08 15.40 28.96 55.43 78.02 17.22 28.49 - -

+ Ours 43.4 69.28
±0.01

88.79
±0.02 17.68 32.54 56.95 79.29 18.95 30.72 70.17 92.78

3 view + EquiMod 43.3 68.95
±0.02

88.87
±0.01 14.81 28.11 56.31 79.93 16.54 27.32 67.97 91.97

2+4 view
+ E-SSL 43.3 70.6

±0.04
89.85
±0.02 19.23 34.77 58.33 80.93 19.86 32.36 - -

+ Ours 43.4 71.56
±0.03

90.04
±0.01 19.76 34.81 59.50 80.72 20.27 32.54 70.91 93.15

Table 2: Top-1 and top-5 accuracy (%) under linear evaluation with different baseline invari-
ant self-supervised learning (SSL) methods. All methods use 2-view augmentation policy, and
ImageNet-1k scores are averaged over 3 runs.

Algorithm
ImageNet-1k ImageNet-Sketch ImageNet-V2 ImageNet-R

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

MoCo-v3 68.44
±0.07

88.02
±0.04 17.65 31.87 56.54 78.68 18.59 30.08

+ Ours 69.28
±0.01

88.79
±0.02 17.68 32.54 56.95 79.29 18.95 30.72

DINO 67.37
±0.02

87.55
±0.01 17.13 32.09 55.00 77.38 18.28 30.38

+ Ours 67.63
±0.01

87.56
±0.01 18.07 34.03 55.19 77.84 18.96 31.55

Barlow Twins 63.34
±0.03

84.3
±0.04 10.90 21.17 47.69 70.73 12.30 20.94

+ Ours 64.02
±0.03

84.73
±0.01 12.39 24.39 50.89 74.20 13.90 23.99

our approach integrates seamlessly into existing SSL frameworks (MoCo-v3 (Chen et al., 2021),
DINO (Caron et al., 2021), and Barlow Twins (Zbontar et al., 2021)), we preserve their original
architectures and hyperparameters. Our modifications are limited to: (i) partitioning the mini-batch
into subsets with one subset subjected to group transformations; (ii) adjusting the position of the
[CLS] token to accommodate our equivariance objective whereas the other applies to the con-
ventional augmentation including crop; and (iii) introducing the soft equivariance regularization
constraint and its corresponding projection MLP layers. For all studies in this paper, we pre-trained
ViT-S/16 with ImageNet using the AdamW optimizer. Similar to SimCLR (Chen et al., 2020), we
pre-trained the network at batch size 2048 for 100 epochs with linear warmup for the first 10 epochs
and decayed the learning rate using the cosine decay scheduler (without restart). For the linear eval-
uation protocol for ViT, we concatenated [CLS] tokens from the last 4 layers as an input to the
linear classifier following (Devlin et al., 2019; Caron et al., 2021). A single linear layer is trained for
50 epochs with a cosine decaying learning schedule without a warmup, similar to Chen et al. (2020).

4.2 MAIN RESULTS

Linear Evaluation. To assess the quality of the representation from our regularization constraint,
we apply the linear evaluation method on the ImageNet-1k dataset. As shown in Table 1, we compare
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Table 3: Nonlinear evaluations using ImageNet-1k with different equivariant representation
learning methods. Note that all equivariant representation learning methods use MoCo as their
baseline. View refers to the number of crops sampled per image.

View Algorithm MLP 20-NN Fine-tune
Top-1 Top-5 Top-1 Top-1 Top-5

2 view

MoCo-v3 67.84 88.37 61.56 73.83 91.91
+ AugSelf 63.24 85.86 60.63 73.50 91.67
+ STL 65.74 86.32 57.34 73.90 91.49
+ Ours 68.04 88.37 61.64 74.33 91.79

3 view + EquiMod 68.33 88.50 58.28 74.08 91.75

2+4 view + E-SSL 68.45 88.31 64.56 75.00 92.36
+ Ours 70.99 89.72 65.32 75.02 92.12

the performance of our method with that of both implicit (E-SSL, AugSelf) and explicit methods
(STL, EquiMod) as addressed in Section 4.1. Note that Equimod and E-SSL utilize three global
views and two global with four additional local views, which can be denoted as a 2+4 view setting,
respectively (Caron et al., 2020; 2021). Due to the discrepancies in the number of views used in
differing equivariance algorithms, direct comparison in performance is undesirable as addressed
in Section 2.1, and we therefore adopt our method to 2+4 setting, i.e., 2 global and 4 local views,
and report the performance in Table 1 to compare the performance with E-SSL. We omit reproducing
our method for the three global views, as our method with 2 views already outperforms EquiMod
in most scenarios. Note that in the conventional 2-view self-supervised learning setup, only our
method scores higher than the baseline MoCo-v3, which may indicate that other methods to impose
equivariance may have increased the equivariance at the last layer but sacrificed the downstream task
performance. Other than Top-5 accuracy on ImageNet-v2, our method scores the highest on every
side. Note that the parameter increment by adding our method on the conventional SSL method, i.e.,
MoCo, is marginal, because we do not have to train an additional module.

Generalizability to diverse SSL methods Though we have mainly used MoCo-v3 as a baseline
SSL method due to its performance superiority over others, we evaluate the benefit of adding our
method to diverse invariant SSL algorithms, i.e., DINO (Caron et al., 2021) and BarlowTwins
(Zbontar et al., 2021), and show the results in Table 2. Note that our method always brings a perfor-
mance increment when combined with diverse invariant SSL methods, as shown in Table 2.

Nonlinear Evaluation. Following the evaluation protocol from (Garrido et al., 2023), we also
evaluate our learned representation in a nonlinear evaluation setting, i.e., 3-layer MLP as well as
20-nearest neighbour following (Caron et al., 2021). We also evaluate via finetuning the whole ViT
encoder, and show the result at Table 3

4.3 ABLATION AND ANALYSIS

One of the key contributions of our study is to encourage equivariance to the intermediate represen-
tation, while previously suggested approaches impose both invariance and equivariance at the last
layer (Lee et al., 2021; Dangovski et al., 2021; Devillers & Lefort, 2023; Yu et al., 2024). Note that,
in addition, we append the [CLS] not at the beginning but at the following layer of equivariance
loss imposition as illustrated in Section 3.1. Figure 3 shows that there exists a sweet spot for both
equivariance loss and [CLS]. When ablating [CLS] locations, we fixed the location to impose
equivariance loss (layer 3).

Furthermore, we examine the relationship between the level of equivariance and the discrimination
quality of the final representation when moving the equivariance loss layer closer to the final layer.
As we shift the equivariance loss location towards the final layer, the equivariance score of vari-
ous transformations at the final layer increased, albeit at the expense of representation quality as
described in Table 4. More details can be found in Section B.
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Figure 3: Ablation study on the location to regularize towards equivariance (left) and to insert
the [CLS] token in the ViT encoder with fixed equivariance regularization layer at the 3rd layer
(right). Both Top-1 (left) and Top-5 (right) accuracies peak when the equivariance loss and [CLS]
is introduced near the middle of the network.

Table 4: Layer-wise equivariance score and representation quality from learned representa-
tion. Higher ↑ indicate greater equivariance, measured at the final representation layer. Regularizing
equivariance at progressively later layers increases the equivariance score of the final representation,
but at the cost of lower Top-1 accuracy, illustrating a trade-off between transformation sensitivity
and discriminative power (see Section B for more detail)

Metric
MoCo + Ours

MoCo + STL MoCo + AugSelf
Lequiv@layer3 Lequiv@layer9 Lequiv@layer12

Top-1 69.21 68.72 68.18 67.58 64.98
Rotation ↑ 0.840 0.873 0.875 0.731 0.997
H-Flip ↑ 0.963 0.970 0.974 0.944 0.999
Scale ↑ 0.937 0.946 0.946 0.915 0.999

5 CONCLUSION

In this paper, we have introduced a novel soft equivariance regularization framework that seamlessly
integrates existing invariant self-supervised learning algorithms. Recognizing that purely invariant
SSL methods may suppress valuable transformation-related information, our approach decouples
invariance and equivariance by using standard SSL for invariant final representations and softly
enforcing equivariance at intermediate layers. Our method avoids complexities like explicit trans-
formation labels, additional modules, or auxiliary prediction tasks. Instead, we directly apply group
actions as a soft regularization, preserving domain structure, preventing spatial collapse, and en-
hancing robustness against minor distortions. Empirical evaluations show our approach significantly
improves downstream classification performance for ViTs pre-trained on ImageNet, effectively scal-
ing to large datasets and consistently outperforming invariant baselines. We believe this strategy pro-
vides a simple yet effective means of incorporating equivariance into SSL, enhancing generalization
and applicability for ViT architectures.
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A ALGORITHM

Algorithm 1 outlines our proposed soft equivariance regularization for invariant self-supervised
learning, employing consistent notation with Figure 1.

Algorithm 1 Soft Equivariance Regularization for Invariant Self-Supervised Learning
1: Input: Batch B, partition ratio r, SSL augmentation T , equivariant group G, encoder f =

f (2) ◦ f (1), invariance distance d(·, ·), weight λ
2: Partition B into B1 and B2 where |B2| = r|B| and |B1| = (1− r)|B|
3: // Invariance-only path on B1

4: Initialize Linv1 ← 0
5: for each x ∈ B1 do
6: Sample two views t1, t2 ∼ T
7: Compute invariance loss:

Linv1 ← Linv1 + d
(
f(t1(x)), f(t2(x))

)
8: end for
9: // Joint invariance and equivariance on B2

10: Initialize Linv2 ← 0, Lequiv ← 0
11: for each x ∈ B2 do
12: Sample two views g1, g2 ∼ G
13: Extract intermediate features z1 = f (1)(g1(x)) and z2 = f (1)(g2(x))
14: Compute invariance loss:

Linv2 ← Linv2 + d
(
f (2)(z1), f

(2)(z2)
)

15: Apply group action to intermediate features: ẑ1 = ρg(z1), g = g2g
−1
1

16: Update equivariance loss:

Lequiv ← Lequiv + d
(
ẑ1, z2

)
17: end for
18: // Combine losses
19: Total loss:

L ← Linv1 + Linv2 + λLequiv

20: Update encoder parameters by minimizing L
21: Output: Pre-trained model parameters

B FURTHER DISCUSSIONS AND EXPERIMENTS

B.1 DIVERSE NUMBER OF AUGMENTATION

It is well established that increasing the number of global or local views (augmentations) improves
representational quality, albeit with additional computational cost (Caron et al., 2020; 2021). Hence,
comparing algorithms that use different numbers of augmentations can lead to unfair evaluations.
In particular, direct comparisons between E-SSL, Equimod, and other equivariance-based methods
are misleading, as E-SSL relies on a 2+4-view strategy (2 global and 4 local views), while Equimod
employs a 3-view strategy (3 global views). To ensure fairness, we also implemented our method
under the 2+4-view setting. Specifically, following the "local-to-global" design from DINO (Caron
et al., 2021), we do not pass all four local views through the MoCo momentum encoder, avoiding
loss computation among local views. For the equivariance loss, we form one global pair and two
local pairs, with losses computed only within each pair. The results of this 2+4-view variant are
reported separately under the "2+4-view" row in the tables.
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Table 5: Transformation prediction. Evaluation of transformation label prediction from the learned
representation of different layers (see Section B for more detail)

Tasks Methods Layer 1 Layer 3 Layer 6 Layer 9 Layer 12

Rotation Prediction (%)
MoCo + Ours 79.97 93.34 99.52 99.73 96.59
MoCo + STL 79.56 92.8 99.46 99.76 98.08
MoCo + augself 81.55 96.71 99.71 99.13 68.74

HFlip Prediction (%)
MoCo + Ours 63.02 78.68 92.87 96.59 75.95
MoCo + STL 62.91 82.09 88.83 97.22 83.27
MoCo + augself 63.24 85.66 96.48 91.51 62.68

B.2 ABLATION STUDIES

In Section 4.3, we examine the current practice of imposing equivariance loss concurrently with
invariance loss at the encoder’s final layer. Our results show that applying equivariance loss either
too early or too late leads to suboptimal downstream performance. Instead, peak accuracy is achieved
by applying equivariance regularization at an intermediate stage (in our study, we found the third
layer to be optimal); by using the intermediate representation, equivariance can avoid conflict with
invariance loss and can be facilitated with group action to operate as an objective function. Similarly,
we observe that the insertion of the [CLS] token critically affects the effectiveness of equivariance
regularization as described in Figure 3. Early insertion can impede the ability of the model to learn
equivariant representations at intermediate layers. Conversely, inserting the [CLS] token too late
deteriorates the ability to learn invariance.

In Table 4, we examined the changes when shifting the equivariance loss layer closer to the final
representation. Here, we describe how we measure the equivariance score. Specifically, because
our method leverages the token features instead of [CLS], we measured the equivariance score
in a similar manner. Following (Zhang, 2019), we sampled the Transformation parameter from
Rotation90°, horizontal flip, and scaling, and measured the equivariance by computing the following:

Equivariance = Ex, (g1,g2)∼G [d (ρg(f(x)), f(ρg(x)))] , g = g2g
−1
1 ,

Note that we use cosine similarity for the distance function d and measure equivariance at the last
layer, thereby replacing f (1) to f .

Furthermore, in Table 5, we measured the transformation label following the implementation from
(Garrido et al., 2023). Note that this is a classification score instead of R2 regression, e.g., HFlip
is a binary classification task. Though our method trains the sensitivity towards transformation at
mid-layer, its representation at late layers holds sensitivity towards transformation.

B.3 OBJECT DETECTION

Equivariance is expected to be particularly beneficial for tasks requiring finer-grained spatial sen-
sitivity than classification. To further examine the impact of equivariant regularization on transfer
learning, we evaluate frozen-encoder object detection on the COCO dataset Lin et al. (2014). As
illustrated in Table 6, our method achieves the highest detection accuracy across all metrics, indi-
cating that equivariance regularization leads to more spatially informative representations, which
transfer better to object detection than both invariance and prior equivariant baselines. Note that we
did not aim to achieve a high score but to show that our approach benefits task that demands more
spatial sensitivity than classification and outperforms other approaches, as in classification. There-
fore, following the protocol of Oquab et al. (2023), we froze the encoder weights and only train the
rest. We trained for 45000 iteration with a mini-batch size of 32. We trained with the COCO2017
train set and report the performance on the COCO2017 validation set. Importantly, all methods are
trained under an identical setup, varying only the encoder weights.

B.4 TRIVIAL INVARIANT INTERMEDIATE REPRESENTATION

In this section, we explain that our method does not collapse to a trivial solution. Minimizing Lequiv

corresponds to minimizing d(ρg(f
(1)(x)), f (1)(ρg(x))). First, trivial invariance does not result in
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Table 6: COCO object-detection results with a frozen backbone (higher is better).
Metric MoCo MoCo + Ours MoCo + STL MoCo + AugSelf

mAP 0.225 0.242 0.221 0.197
mAP@50 0.404 0.428 0.400 0.359
mAP@75 0.222 0.244 0.218 0.192

Table 7: Top-1 accuracy comparison on ImageNet-C, including 15 types of common corruptions,
for our method and other equivariant representation learning methods built upon the invariant repre-
sentation learning baseline MoCo (He et al., 2020).

Algorithm
Noise Blur Weather Digital

Avg.
Gauss. Shot Impul. Defo. Glass Motion Zoom Snow Frost Fog Bright. Cont. Elas. Pixel JPEG

MoCo-v3 39.18 37.81 36.09 33.51 13.85 31.49 25.86 30.61 30.03 35.02 62.81 52.00 54.65 55.78 53.37 39.47
+ AugSelf 34.91 31.81 31.44 35.06 17.12 34.28 27.67 31.99 28.50 35.01 61.99 50.64 55.48 54.88 53.17 38.93
+ STL 17.78 16.26 14.65 29.51 15.13 27.33 25.77 29.50 27.60 34.40 61.81 48.84 54.31 46.40 50.63 33.33
+ Ours 39.42 38.30 36.85 36.23 15.91 34.90 27.35 30.71 30.12 36.04 63.60 52.81 55.85 56.63 54.03 40.58

+ EquiMod† 34.33 32.59 31.95 31.81 15.37 31.76 27.38 29.08 25.73 31.38 61.94 47.41 55.07 53.58 52.40 37.45

+ E-SSL‡ 43.80 42.59 40.80 38.44 16.40 36.73 28.20 34.22 32.24 37.93 65.50 55.89 56.12 55.80 55.21 42.66
+ Ours‡ 39.88 39.27 37.18 36.21 19.58 34.16 31.90 36.07 35.87 40.74 66.76 54.90 57.87 56.42 56.79 42.91

Table 8: Top-1 accuracy comparison on ImageNet-P, including 14 perturbation types, for our method
and other equivariant representation learning methods built upon the invariant representation learn-
ing baseline MoCo (He et al., 2020).

Algorithm
Noise Blur Weather Digital

Avg.
Gau. N. Shot Speck. Motion Zoom Gau. B. Snow Spatter Bright. Trans. Rot. Tilt Scale Shear

MoCo-v3 67.85 67.85 67.97 57.31 68.30 68.28 56.57 66.57 63.43 68.05 64.55 67.58 45.18 65.32 63.91
+ AugSelf 67.44 67.47 67.47 57.51 67.76 67.81 56.77 66.15 60.77 67.39 64.41 67.10 47.15 64.96 63.58
+ STL 66.19 66.14 66.15 54.97 66.29 66.32 54.38 64.71 61.16 66.00 62.07 65.86 42.53 63.17 61.85
+ Ours 68.97 69.01 69.00 59.09 69.46 69.35 58.02 67.86 64.58 69.04 65.76 68.60 46.78 66.34 65.13

+ EquiMod† 68.60 68.70 68.78 57.08 69.17 69.13 56.97 67.51 60.88 68.75 65.18 68.27 47.04 66.17 64.44

+ E-SSL‡ 70.26 70.19 70.22 61.49 70.65 70.54 60.60 68.87 65.82 70.27 66.92 69.82 48.86 67.59 66.58
+ Ours‡ 71.68 71.65 71.67 60.36 71.87 71.87 61.92 70.47 67.18 71.62 68.62 71.34 52.74 68.99 68.00

zero loss, and therefore our equivariance loss is not collapsed toward trivial invariance; under in-
variance (f (1)(ρg(x)) = f (1)(x)), the loss simplifies to d(ρg(f

(1)(x)), f (1)(x)), which is nonzero
unless f (1)(x) is invariant under ρg (e.g., spatially constant map). Second, our contrastive Lequiv not
only avoids model collapse, but it also promotes uniformity among negatives, which are sampled
features from all positions of non-anchor images, encouraging uniformity on the hypersphere, thus
preventing spatial constancy, as intra-image features must diversify to minimize the loss. Please
refer to (Wang & Isola, 2020) for more details. Third, joint optimization with Linv (e.g., MoCo)
further promotes rich, non-constant representations to discriminate instances. Last, our method can
predict the transformation information with a comparable accuracy to other equivariance algorithms,
as shown in Table 5.

B.5 LATENT SPACE VISUALIZATION

Beyond quantitative metrics, we also conduct additional qualitative analysis by comparing latent
space features extracted from MoCo (trained with invariance loss alone) and MoCo + Ours. Due
to ImageNet’s large class count of 1000, we randomly sample 20 classes for analysis. As shown
in Figures 4 and 5, we confirm that incorporating equivariance through our method also benefits
downstream tasks that require invariance by promoting better class clustering; this provides novel
evidence supporting our claim that equivariance and invariance layers should be decoupled.
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Table 9: Experiments with various SSL algorithms. Top-1 accuracy (%) on ImageNet-P. All models
are trained with the setting addressed in Section 4.1. See Table 8 for the results from MoCo.

Algorithm
Noise Blur Weather Digital / Geometric

Avg.
G.Nse Shot Spkl Mot. Zoom G.Blr Snow Spat Brt. Tran Rot Tilt Scal Shear

DINO 66.69 66.67 66.70 52.74 67.02 66.94 55.83 65.60 61.27 66.70 62.73 66.49 42.96 63.51 62.27
+ Ours 67.39 67.31 67.41 54.41 67.69 67.66 56.19 66.06 62.13 67.22 63.33 67.02 42.76 64.31 62.92
Barlow Twins 60.09 60.08 60.12 42.25 60.53 60.53 46.37 58.84 52.92 60.22 55.47 59.37 33.15 56.79 54.77
+ Ours 63.85 63.93 63.91 49.18 64.29 64.19 50.09 62.34 57.93 63.89 59.63 63.38 37.29 60.56 58.89

Table 10: Top-5 accuracy comparison on ImageNet-C, including 15 types of common corruptions,
for our method and other equivariant representation learning methods built upon the invariant repre-
sentation learning baseline MoCo (He et al., 2020).

Algorithm
Noise Blur Weather Digital

Avg.
Gauss. Shot Impul. Defo. Glass Motion Zoom Snow Frost Fog Bright. Cont. Elas. Pixel JPEG

MoCo-v3 63.30 61.68 59.76 56.22 28.46 53.52 45.98 52.52 50.54 58.64 84.47 76.74 77.38 79.44 77.76 61.76
+ AugSelf 58.96 55.21 54.61 59.06 34.52 57.55 48.71 55.05 49.48 59.30 84.39 76.26 78.25 79.15 78.02 61.90
+ STL 37.10 34.36 32.04 52.71 31.08 48.45 46.35 50.96 47.60 59.05 84.07 74.74 76.96 71.37 75.66 54.83
+ Ours 64.16 62.70 61.21 59.92 32.28 58.17 48.22 53.23 51.26 60.49 85.68 77.94 78.55 80.52 78.58 63.53

+ EquiMod† 58.63 56.28 55.34 55.28 31.48 54.45 48.20 51.11 45.88 55.49 84.63 73.66 78.51 78.46 77.62 60.33

+ E-SSL‡ 68.70 67.42 65.64 63.00 33.09 60.35 49.83 57.64 53.72 62.83 86.80 80.33 79.05 80.32 80.05 65.92
+ Ours‡ 64.00 62.89 60.60 60.01 37.02 56.65 53.40 58.81 57.43 65.06 87.36 79.14 79.60 79.82 80.42 65.48

Table 11: Top-5 accuracy comparison on ImageNet-P, including 14 perturbation types, for our
method and other equivariant representation learning methods built upon the invariant represen-
tation learning baseline MoCo (He et al., 2020).

Algorithm
Noise Blur Weather Digital

Avg.
Gau. N. Shot Speck. Motion Zoom Gau. B. Snow Spatter Bright. Trans. Rot. Tilt Scale Shear

MoCo-v3 87.75 87.81 87.82 80.34 87.91 87.94 79.22 86.75 84.54 87.72 85.16 87.48 69.08 85.84 84.67
+ AugSelf 87.58 87.50 87.59 80.81 87.73 87.67 79.70 86.50 83.07 87.66 85.25 87.31 71.44 85.83 84.69
+ STL 86.67 86.65 86.66 78.33 86.82 86.77 77.62 85.59 83.21 86.50 83.81 86.50 66.31 84.75 83.30
+ Ours 88.62 88.59 88.60 82.01 88.66 88.68 80.56 87.58 85.59 88.52 86.01 88.17 71.25 86.78 85.69

+ EquiMod† 88.78 88.79 88.75 80.86 88.93 88.98 80.16 87.95 83.41 88.68 86.38 88.51 71.89 87.13 85.66

+ E-SSL‡ 89.60 89.58 89.64 83.94 89.78 89.72 82.95 88.80 86.88 89.47 87.25 89.31 73.39 87.79 87.01
+ Ours‡ 89.96 89.93 90.00 82.50 90.10 90.08 83.23 89.15 87.30 89.93 87.80 89.68 75.80 88.29 87.41

Table 12: Computation overhead. Measured FLOPs includes both forward and backward pass with
a 2-view augmentation policy, and "Relative overhead" is the relative FLOPs to vanilla MoCo-v3.
FLOPs for ours were measured for the overall mini-batch computation and divided by the mini-batch
sample number (including both b1 and b2 as illustrated in Figure 2)

Method Per-image FLOPs Relative overhead

MoCo-v3 18.48G 1.0x
+ Ours 18.63G 1.008x

C LIMITATIONS

Our method significantly advances equivariant representation learning but faces key limitations. Pri-
marily, it relies on structured geometric transformations, such as rotations, scaling, and flips, limiting
its use to image-based tasks where these transformations are meaningful. Extending the approach
to modalities without clearly defined transformations (e.g., text, audio, graphs) is challenging. Sec-
ond, despite scalability, the added regularization introduces computational overhead, particularly
significant in large-scale or resource-limited environments.
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D USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) to provide writing assistance during the preparation of this
manuscript. The LLMs were used in the following ways:

• Polishing and rephrasing sentences for clarity and readability, including parts of the intro-
duction, background, and experiments.

• Condensing text to meet page limits.

Importantly, the LLMs were not used for research ideation, experimental design, implementation,
or result generation. All conceptual contributions, algorithm development, theoretical analysis, and
experimental work were conceived, conducted, and verified entirely by the authors.
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(a) MoCo-v3 (b) MoCo-v3 + Ours

Figure 4: t-SNE visualization of latent space features from 20 randomly sampled ImageNet-1k
classes, comparing (a) MoCo-v3 (trained with invariance loss alone) and (b) MoCo-v3 + Ours.
Our method promotes better class clustering, demonstrating that incorporating equivariance benefits
downstream tasks requiring invariance.

(a) MoCo-v3 (b) MoCo-v3 + Ours

Figure 5: t-SNE visualization of latent space features from 20 randomly sampled ImageNet-C
classes under defocus blur corruption, comparing (a) MoCo-v3 (trained with invariance loss alone)
and (b) MoCo-v3 + Ours. Our method maintains better class clustering under corruption, demon-
strating robustness benefits of incorporating equivariance.
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