
SKATE : Successive Rank-based Task Assignment for Proactive Online Planning

Primary Keywords:
Multi-Agent Planning;

Abstract

The development of online applications for services such
as package delivery, crowdsourcing, or taxi dispatching has
caught the attention of the research community to the domain
of online multi-agent multi-task allocation. In online service
applications, tasks (or requests) to be performed arrive over5

time and need to be dynamically assigned to agents. Such
planning problems are challenging because: (i) little or al-
most no information about future tasks is available for long-
term reasoning; (ii) agent number, as well as, task number
can be impressively high; and (iii) an efficient solution has10

to be reached in a limited amount of time. In this paper, we
propose SKATE, a successive rank-based task assignment al-
gorithm for online multi-agent planning. SKATE can be seen
as a meta-heuristic approach that successively assigns a task
to the best-ranked agent until all tasks have been assigned.15

We assessed the complexity of SKATE and showed it is cu-
bic in the number of agents and tasks. To investigate how
multi-agent multi-task assignment algorithms perform under
a high number of agents and tasks, we compare three multi-
task assignment methods in synthetic and real data bench-20

mark environments: Integer Linear Programming (ILP), Ge-
netic Algorithm (GA), and SKATE. In addition, a proactive
approach is nested to all methods to determine near-future
available agents (resources) using a receding-horizon. Based
on the results obtained, we can argue that the classical ILP25

offers the better quality solutions when treating a low number
of agents and tasks, i.e. low load despite the receding-horizon
size, while it struggles to respect the time constraint for high
load. SKATE performs better than the other methods in high
load conditions, and even better when a variable receding-30

horizon is used.

1 Introduction
In the last couple of years, new applications have emerged
where users make requests and a platform has to manage
its resources in order to satisfy users’ requests. Examples of35

these application domains are taxi dispatching (Dickerson
et al. 2018), ridesharing (Herbawi and Weber 2012), crowd-
sourcing (Wang, Zhao, and Xu 2020) or package delivery
(Cheikhrouhou and Khoufi 2021). All these application do-
mains have led to advances in the field of online multi-agent40

multi-task assignment. In online service applications, tasks
(or requests) arrive over time and need to be dynamically
assigned to agents (Dickerson et al. 2018). Such planning
problems are challenging because: (i) little or almost no in-

formation about future tasks is available for long-term rea- 45

soning; (ii) agent number, as well as, task number can be
impressively high; and (iii) an efficient solution has to be
reached in a limited amount of time. Regarding the first as-
pect, the requests arrival model is usually characterized with
probability distributions (Mehta 2013) that are then used for 50

planning (Alaei, Hajiaghayi, and Liaghat 2012), (Gong et al.
2022), (Hikima et al. 2022). The issue with this assumption
is that beforehand data on the requests is needed to learn the
model parameters and it can end up being very specific to
a given application rather than general. In the present work, 55

no assumption is made about the arrival requests model.
Another aspect is the nature of resources that can be dis-

posable or reusable. Disposable resources can only be used
once, while reusable resources will not be considered as
available for new assignments while completing their cur- 60

rent tasks but can receive new assignments once they are
free (Sumita et al. 2022). The present work assumes reusable
resources since this setting is commonly found in many ap-
plications, in particular ridesharing platforms. Linked to it,
time management for requests assignment is also important. 65

In online settings, planning is triggered for short time inter-
vals. And, at each decision-making step, assignments will
consider the requests that have arrived within the last time
interval (Alonso-Mora et al. 2017), (Lesmana, Zhang, and
Bei 2019). Differently, (Dickerson et al. 2018) assigns re- 70

quests to agents as soon as they arrive (i.e. continuous plan-
ning). Both approaches have qualities and drawbacks: for
the first one, and depending on the time interval, it is more
likely that (reusable) agents become available allowing for
efficient solutions (e.g. path cost) but the waiting time of 75

the requests to be assigned can be important; whereas for
the second one, the waiting time decreases as the request
is assigned to whatever available agent, however the solu-
tion is generally worse (Sumita et al. 2022). Interestingly,
(Conforto Nedelmann, Lacan, and Chanel 2023) proposed 80

a proactive approach that can be seen as a compromise be-
tween the approaches cited above. It uses a receding-horizon
in order to determine which agents will be available in a
near-future.

Additionally to the time management aspect, online solv- 85

ing can be particularly challenging because one may design
a solving method that has to be fast and efficient (e.g to find
efficient solutions in a limited amount of time). It can be

particularly challenging when the number of agents (e.g. re-
sources), as well as, the number of tasks (e.g. requests) is90

impressively high, a hard combinatorial problem present in
several real-life settings.

To address these issues, we propose SKATE, a successive
rank-based task assignment algorithm. SKATE is inspired
by MinPos, a method proposed in (Bautin, Simonin, and95

Charpillet 2012) and later improved in (Bautin 2013). This
meta-heuristic method was developed for the field of multi-
robot exploration in unknown environments. MinPos assigns
(only) a task (e.g. a location to be explored) for each robot.
MinPos applies a ranking method based on the distance be-100

tween the tasks and a robot while also taking into account the
position of the other robots. In its domain, MinPos achieved
good performance while being lightweight. SKATE extends
the MinPos algorithm to address online multi-agent multi-
task assignment. SKATE fits the online planning require-105

ments: it assigns several tasks to agents by adapting the
metrics and the ranking system, it does not need to assume
a task arrival model, and it is able to achieve good solu-
tions even for (very) large problems. Moreover, the proactive
approach proposed by (Conforto Nedelmann, Lacan, and110

Chanel 2023) is nested to SKATE to determine near-future
available agents (resources) using a receding-horizon. In this
way, SKATE can be seen as a flexible approach that eval-
uates different sets of (available) agents to define the best
assignments.115

In the following section, related works are reviewed. Then
the planning problem is formally described. Afterwards, the
proactive approach and SKATE are presented followed by
experiments which results are discussed. Future research di-
rections concludes the paper.120

2 Related Work
The present work addresses the online multi-task assignment
with reusable resources problem. In this class of problem,
one may manage the resources (i.e the agents of a fleet) in
order to accomplish some tasks efficiently (Khamis, Hus-125

sein, and Elmogy 2015), (Hussein and Khamis 2013). In de-
tail, one may minimize the overall traveled distance of the
fleet while also minimizing the time between the registra-
tion of a request and its execution. This problem is close to
the Multiple Traveling Salesmen Problem (MTSP), a classi-130

cal optimization problem for which several solving methods
have been proposed (Cheikhrouhou and Khoufi 2021). Ac-
cording to the taxonomy, our problem is a sub-variant called
open-path multiple depots since the agents do not go back to
their initial location when they finish the assigned tasks, and135

the initial position of multiple agents are different.
(Dickerson et al. 2018) introduced the concept of reusable

resources, which has been widely used as for example in
(Sumita et al. 2022), (Gong et al. 2022) and (Hikima et al.
2022). For time management, both immediate assignment140

((Hikima et al. 2022), (Sumita et al. 2022)) and assign-
ment in time intervals ((Alonso-Mora et al. 2017), (Les-
mana, Zhang, and Bei 2019)) are common. There are even
some works that combine the two aspects such as (Wang
and Bei 2022), where the goal is to find a balance between145

wanting more agents to become available while avoiding

the requests withdrawal when the waiting time becomes too
long. A majority of works assume a tasks arrival model de-
scribing the time of arrival and/or the position of future re-
quests which allows them to reason in long-term. In (Nanda 150

et al. 2020), agents can reject specific requests based on the
model. (Hikima et al. 2022) has developed a strategy when
the requests arrival model is linked to the rewards for as-
signing a request to a resource. In (Burns et al. 2012), they
determine the likely characteristics of requests a couple of 155

time steps ahead of the assignment then place their agents
accordingly. In (De Filippo, Lombardi, and Milano 2019),
the authors use previous accounting of requests to build of-
fline a model that gives the more likely scenarios.

Several methods have been used in the literature to solve 160

this optimization problem. The most used method is Lin-
ear Programming (LP) and its variants (e.g. Integer Linear
Programming). This approach is preferred because it finds
the optimal solution (Dickerson et al. 2018), (Sumita et al.
2022). However, it is mainly used for immediate assignment 165

because Linear Programming has a potential high complex-
ity (Basu et al. 2022). In order to respect the online time
constraint, it handles only a small number of agents and
requests. Genetic Algorithm (GA) is a meta-heuristic ap-
proach. The use of GA has been popular since it can provide 170

solutions for large problems in a shorter amount of time than
LP. They also provide good performance for multi-criteria
objectives (Rangriz, Davoodi, and Saberian 2019). In the
context of ridesharing, (Herbawi and Weber 2011) has com-
pared the solution efficiency of a GA and several variants of 175

Ant Colony Optimization. They found that at its best the Ant
Colony Optimization gave similar performance than the GA,
and that the GA was significantly faster than the Ant Colony
Optimization. (Wang, Zhao, and Xu 2020) used a variant of
Genetic Algorithm with some elements of Ant Colony Op- 180

timization in the context of crowdsourcing. Their approach
produced good solutions but was slightly slower than a clas-
sical GA.

Finally, in terms of experimental settings, papers focus on
a small amount of agents and requests, particularly when 185

using LP. (Sumita et al. 2022) and (Dickerson et al. 2018)
apply their methods to a real-life scenario of taxi dispatch-
ing in New York, however they limited their evaluation to
30 taxis and 100 or 550 requests, respectively. This is far
from reality where hundreds of requests in New York can 190

be received in a time span of 5 minutes. Regarding Genetic
Algorithm use, we found that (Herbawi and Weber 2012)
has considered 250 drivers and 448 requests for their ex-
periments in the context of ridesharing, which is higher but
still much less than what can be present in real-life settings. 195

In the present work, we will show that SKATE can handle
much more agents and requests being a promising and com-
petitive approach for online multi-agent multi-task assign-
ment planning problem.

3 Problem statement 200

The multi-task assignment is a combinatorial optimization
problem. Over the entire time horizon, we aim to minimize
the distance traveled by the fleet of agents (i.e. resources)

while also minimizing the amount of time between the mo-
ment a request was registered and the moment it was ex-205

ecuted (i.e. task). In the following, we will call the latter
criterion the request’s waiting time. Generally speaking, we
optimize both: user satisfaction while also economizing on
the use of resources.

We consider a set of n agents denoted by A =210

{a1, a2, . . . , an}. The location of the agents is denoted by
pa for all a ∈ A. We assume requests arrive time-to-time
throughout the planning horizon T . The planning horizon T
is divided into small intervals called time steps or time win-
dows. The time windows are indexed by τ and their duration215

is a constant equal to δ. For a time step τ ∈ T , we assume
the set of requests Rτ . A request r ∈ Rτ can be described
by its location pr and the time it was registered tbr. Thus, a
single request r ∈ Rτ can be written as r = (pr, t

b
r). It is

assumed a request can be assigned to only one agent a ∈ A.220

We note the set of requests that can be assigned to an agent
a ∈ A as Ra = {r1a, r2a, ..., rma }, where m is the number
of requests assigned to this agent a at a given time. To de-
scribe if r ∈ Rτ has been assigned to a ∈ A, we use the
binary variable xa,r with xa,r = 1 and xa,r = 0 if that’s225

not the case. The set of requests assigned to a ∈ A can also
be described as Ra = {

⋃
r∈Rτ

r|xa,r = 1}. Assuming an
ordered set Ra, the distance between the expected location
of agent a and the location of request r, and the fact that
agents move with a constant speed va, one can compute the230

expected execution time of a request r ∈ Ra, noted as texr .
Therefore, the general optimization problem we address

can be formalized as:

min

[
T−1∑
τ=0

(
α
∑
a∈A

dRa

(⋃
r∈Rτ

r|xa,r = 1
)

+ (1− α)
(∑

a∈A

wRa

(⋃
r∈Rτ

r|xa,r = 1
)))]

(1)

subject to: ∑
a∈A

xa,r ≤ 1,∀r ∈ Rτ (2)

with :

dRa
= ∥pa − pr1∥+

|Ra|−1∑
i=1

∥pri − pri+1
∥, (3)

wRa
=

∑
r∈Ra

(texr − tbr) (4)

α ∈ [0, 1] and (1 − α) are weights used to balance the im-235

portance between the two criteria. The formulation of dRa

was inspired by (Cheikhrouhou and Khoufi 2021) that uses
it for a MTSP open-path multi-depot, and denotes the total
(Euclidean) path distance from the initial position of a ∈ A
until the position of its last assigned request rma . Then, we240

define the waiting time wra as the duration between the time
of registration of the request r ∈ Rτ and its execution by
agent a.

The problem with such a formulation is that one may
know which requests will be received for each time step τ 245

in the given horizon T . Here, and in several application do-
mains (e.g. taxi dispatching, package delivery, crowdsourc-
ing) little information is available about the requests’ arrival,
either on their number or their locations. As a result, it is ex-
tremely hard to solve this general optimization problem over 250

the entire time horizon T .
To treat this problem online with no assumption regarding

the requests arrival model, we were inspired by the proactive
approach presented in (Conforto Nedelmann, Lacan, and
Chanel 2023). In this paper, instead of solving the general 255

optimization problem, they broke it into a small problem at
each time step τ to consider the (new) set of tasks Rτ with a
proactive perspective. For that, they proposed the concept of
available agents. In classical reactive approaches, available
agents would be the ones that have already finished execut- 260

ing their previous requests at τ . Whereas in the article cited
above, a receding-horizon approach was used for determin-
ing the agents to be used at τ : the said available agents are
the ones that will complete their previously assigned tasks
within an immediate horizon H(k) = kδ with k ≥ 0 (e.g. 265

H(5) = 5δ or H(5) = τ + 5). This allows to anticipate
the availability of resources and not have to wait for agents
to finish their requests before assigning new ones to them.
We call Aτ (H) the available agents at τ for a certain time
horizon H(k). 270

With this in mind, and adopting a similar proactive ap-
proach, we will assign requests at each time step τ account-
ing with the agents considered as available within the hori-
zon H . Thus, we search for a solution for:

min

α ∑
a∈Aτ (H)

dRa

(⋃
r∈Rτ

r|xa,r = 1
)

+ (1− α)
(∑

a∈Aτ (H)

wRa

(⋃
r∈Rτ

r|xa,r = 1
)) (5)

subject to: 275∑
a∈Aτ (H)

xa,r ≤ 1,∀r ∈ Rτ (6)

4 Proactive online task assignment approach
In online service applications, tasks (or requests) to be per-
formed arrive over time and need to be dynamically assigned
to agents. In the following, we will first explain the general
proactive online process for task assignment. 280

General process In the general process (illustrated in Alg.
1), at each time step τ , we get the new requests Rτ that have
arrived during the last time window and have been stored in
the buffer B (line 6). Then we check the availability at hori-
zon H of the agents (lines 8 - 9). For that we use a variable 285

tocca indicating the time at which the agent a will finish its
last assigned request. Finally, we use an algorithm to assign
the tasks of Rτ to the available agents Aτ (H).

Note that this process is general and can implement any
task assignment algorithm able to solve the optimization290

problem presented in Eq. 5. However, this planning problem
can be challenging because the number of agents, as well as
the number of tasks can be large; yet an efficient solution has
to be reached in a limited amount of time. In this context,
classical approaches such as Integer Linear Programming,295

or meta-heuristic approaches (e.g. Genetic Algorithms) may
be blocked or only find mediocre solutions. In the following,
we propose a method we called Successive Rank-based Task
Assignment (SKATE), a simple yet efficient online method
for multi-agent multi-task assignment that can be eventually300

used in line 10 of Algorithm 1. SKATE can be seen as a
meta-heuristic solving process.

4.1 Successive Rank-based Task Assignment
The main principle of SKATE is the ranking of the requests
for each agent while taking into account the expected loca-305

tion of the other agents. We present SKATE in Algorithm
2. SKATE assigns all the registered requests Rτ to the set
of available agents Aτ (H) of size n. This assignment is im-
plemented into several rounds where at each round, a max-
imum of n requests are assigned. The process is repeated310

until there is no request left (line 2).
More specifically, to proceed with the assignment we fill a

cost matrix MC of size |Aτ (H)| × |Rτ | where we calculate
the cost to assign any request rj ∈ Rτ to any agent ai ∈
Aτ (H) (line 4). Since we are interested in minimizing both315

the traveled distance and the waiting time, the cost function
will be a combination of these two criteria such as:

cost(ai, rj) = α
d(ai, rj)

vai

+ (1− α)wai
(rj) (7)

with:

d(ai, rj) = ∥pai−prj∥, and wai(rj) = toccai
+
d(ai, rj)

vai

−tbrj

where d(ai, rj) is the Euclidean distance between the antic-
ipated position of ai and the position of the request rj . To320

be able to compare the two criteria, we converted this dis-
tance term into time, by dividing it with the velocity of the
agent vai assumed constant. The waiting time wai(rj) cor-
responds to the time between the time the request was gen-
erated (tbrj) and the time needed for the agent to go from his325

expected location to that of the request (texrj). The term toccai

Algorithm 1: Proactive online task assignment process
1: Agents A at position pa and taocc = 0, ∀a ∈ A
2: Horizon H = kδ
3: Rτ=0 ← ∅
4: for each time step τ do
5: Aτ (H)← ∅
6: Rτ ← GetTasksFrom(Bτ , Rτ−1)
7: for a ∈ A do
8: if taocc < τ +H then
9: Aτ (H)← a

10: Assign Rτ tasks to Aτ (H) agents

Algorithm 2: Successive Rank Based Task Assignment

1: procedure SKATE(Aτ (H), Rτ)
2: while Rτ ̸= [] do
3: A = Aτ (H)
4: Compute the cost matrix MC such as MC

i,j =
cost(ai, rj), ∀ai ∈ A and ∀rj ∈ Rτ

5: Compute the rank matrix MR such as MR
i,j =

Card(Ā) with Ā = {∀ak ∈ A|MC
k,j < MC

i,j}
6: Definition of the variable of ranking S=0
7: while Rτ ̸= ∅ and A ̸= ∅ do
8: for a ∈ A do
9: rankmin = min(MR

a,r∀r ∈ Rτ)
10: if rankmin = S then
11: assign r to a

12: texr = wa(r) and tocca = tocca + d(a,r)
va

13: A = A \ a and Rτ = Rτ \ r
14: S = S+1
15: for a ∈ A do
16: Get last request r assigned to a
17: pa = pr

18: end procedure

refers to the time the agent is considered busy (e.g. executing
previous requests) until it can execute rj .

To rank the requests for an agent ai ∈ A, we will not
simply consider only the value of the cost for that agent, but 330

also take into account the costs of the other agents for each
specific request r ∈ Rτ (line 5). For that, we look at the cost
MC

k,j for A = A \ a. If all MC
k,j > MC

i,j , then it means ai
is the most interesting agent to assign that request to and get
MR

i,j = 0. Otherwise, its ranking is equal to the number of 335

agents that have a lower cost for that request. Note, some
agents can have multiple requests ranked 0 (they have lower
costs for more than one request) and some can have none.
If two requests have the same minimal ranking value, then
we assign to the agent the request with the lower cost. The 340

assigned request and the agent then both become occupied
(line 13) and we update the waiting time of the assigned re-
quest and the time until which the agent is occupied (line
12). When all of the agents have become occupied, we con-
sider that this round of assignment is over and start the pro- 345

cess again (line 3). For the new round, we update the position
of the agents using the position of the last request assigned
to each of them (line 17).

Complexity of SKATE As we can see in Algorithm 2,
the two necessary inputs are the available agents and the re- 350

quests to assign. To analyze the complexity of SKATE, we
consider that there are n agents and m requests. First con-
sider the case where the loop of line 2 is only done once.
The filling of the cost matrix in line 4 has a cost of mn.
And, ranking these requests for each agent while taking into 355

account the position of all of the other agents is n2m ex-
pensive. We now go back to the original algorithm, going
through the loop of line 2 several times, which means that

several requests have to be assigned at least to an agent. Af-
ter the first assignment round, there are m− n requests left.360

This means that to assign all the requests, the process of fill-
ing the cost matrix, ranking matrix, and assignment must be
done m

n
− 1 times. In the following, we detail the calcula-

tion of the complexity C(m,n) or C of SKATE for the the
m
n − 1 rounds:365

C =

Cost matrix filling︷ ︸︸ ︷
m
n −1∑
i=0

n(m− in)+

Ranking︷ ︸︸ ︷
m
n −1∑
i=0

n2(m− in)+

Assignment︷ ︸︸ ︷
m
n −1∑
i=0

n2(m− in)

=

m
n −1∑
i=0

mn− n2

m
n −1∑
i=0

i+ 2(

m
n −1∑
i=0

mn2 − n3

m
n −1∑
i=0

i)+

+
m

n
mn− n2

m
n −1∑
i=0

i+ 2(
m

n
n2m− n3 m

2n
(
m

n
− 1))

= m2 − 1

2
n2m

n
(
m

n
− 1) + 2(m2 − n

m2

2
+

n2m

2
)

= m2 +
mn

2
+m2n+ n2m = m2n+ n2m (8)

In the next section, we present the methodology applied to
evaluate the proactive online multi-agent multi-task assign-
ment approach using SKATE.

5 Experiments & Results
To evaluate the impact of the use of the proactive approach,370

we first compute the assignments based on a reactive ap-
proach (no anticipation about agents availability), that we
note H(0), then using the receding-horizon to anticipate re-
sources from one to five time windows, denoted as H(1) to
H(5). We also use a variable receding-horizon H(v) as pro-375

posed by (Conforto Nedelmann, Lacan, and Chanel 2023),
where the assignments using different receding-horizons
(from H(0) to H(5)) are computed in parallel and the best
solution is chosen. To evaluate the solutions proposed by
SKATE, assignments are also computed using two baselines380

from the literature. More specifically, a baseline applying
Integer Linear Programming (i.e. branch-and-bound algo-
rithm), and another one applying a Genetic Algorithm. Fi-
nally, assignment methods are evaluated on two benchmarks
mainly to analyze their solution efficiency and scalability.385

The first benchmark is a synthetic one for which we have a
constant number of requests arriving every τ ∈ T . The sec-
ond benchmark, already used in the literature (Sumita et al.
2022), is based on registered requests of taxis in New York in
January 2013 1. This realistic scenario is particularly inter-390

esting for mimicking a high-load problem, where we need
to find, online, assignments for a high number of requests
and agents in a limited amount of time. In all experiments
and for all methods the α parameter was set to 0.75, putting
more evidence on the traveled distance criterion.395

Metrics The metrics used to quantify the impact of the use
of a receding-horizon and to compare the efficiency of the

1available at: http://www.andresmh.com/nyctaxitrips/

three solving methods are: (i) the overall distance traveled by
the (fleet of) agents; (ii) the percentage of assigned requests;
(iii) the average waiting time for requests; and (iv) the time 400

necessary for computing the assignments.

5.1 Baselines
Integer Linear Programming To build the Integer Lin-
ear Programming (ILP) model we were inspired by the work
presented in (Kara and Bektas 2006). This work details the 405

objective function and constraints of the classical MTSP and
variants, including the MTSP open-path multi-depot. In or-
der to assign a sequence of requests Ra to an agent a ∈ A,
we use the set L = Aτ (H)∪Rτ and a the cost matrix MC of
size |L| × |L| where MC

i,j = ci,j ,∀(i, j) ∈ L2, i ̸= j. Each 410

element on this matrix refers to the cost between agents and
requests (including between 2 agents or 2 requests), such as:

ci,j = α
d(i, j)

va
+ (1− α)wa(i, j), ∀i, j ∈ L

The objective function and its constraints are defined as:

minimize
(∑

i∈L

∑
j∈L

ci,jxi,j

)
(9)

subject to:∑
i∈L

∑
j∈Aτ (H)

xi,j = 0 and
∑
j∈Rτ

xi,j ≤ 1, ∀i ∈ L

415∑
i∈L

xi,j = 1, ∀j ∈ Rτ and xi,j + xj,i ≤ 1, ∀(i, j) ∈ L2

The first constraint clarifies that we can not assign an agent
to another agent or a request to an agent since an agent
is supposed to move towards requests. The second models
the last request an agent has to complete (open-path condi-
tion in the MTSP). The third imposes that all the requests 420

must be assigned. The last constraint avoids an agent going
back and forth between two positions. To solve this model,
we use the Gurobi Optimizer, which employs the branch-
and-bound algorithm to find a solution for the ILP problem.
The solver explores possible solutions and tries to find the 425

optimal one. Note that the branch-and-bound can be time-
consuming: in the worst-case scenario we have a complexity
of O(2n) (Basu et al. 2022), which is significantly more than
SKATE (O(m2n+ n2m)).

Genetic Algorithm The Genetic Algorithm (GA) is an 430

evolutionary algorithm inspired by the natural selection pro-
cess. The general principle is that we start with a random set
of chromosomes called population (e.g. initial assignments).
These chromosomes will be evaluated and the ones with the
better scores (e.g. cost) will be used to create a new popu- 435

lation (e.g. new set of solutions). This way, the population
can hopefully improve generation after generation (regard-
ing their scores). The operations used to build a new gen-
eration are the crossover (where we take two parent chro-
mosomes and fuse them) and mutations (where we swap the 440

order of the requests or swap two requests between two dif-
ferent agents). The algorithm stops when a stopping condi-
tion is reached, in general, either the solution is no longer

improving or a time limit is reached. For the problem ad-
dressed in this work, each chromosome represents a specific445

assignment of the requests to the available agents. We have
almost used the same approach structure and parameters as
(Conforto Nedelmann, Lacan, and Chanel 2023). However,
the optimization problem we tackle differs. As we focus on
minimizing both the overall traveled distance of the agents450

and the waiting time of the request, the fitness function we
use is different and is expressed as follows:

α
(∑

a∈Aτ (H)

da
1

Dmax

)
+ (1− α)

(∑
a∈Aτ (H)

wa
1

Wmax

)
where da is the distance traveled by a ∈ A to execute all its
Ra requests in the proposed chromosome, wa =

∑
r∈Ra

wr

as the sum of the waiting time of the requests assigned to455

a in this chromosome. To compare it to the first generation,
we normalize each term of the fitness by Dmax and Wmax,
which are the maximum values obtained in the first genera-
tion for the total traveled distance and waiting time respec-
tively. We consider these values as the worst case because460

the first generation is filled randomly.

5.2 Synthetic Benchmark Experiments & Results
Setup We consider two different set-ups: for the first,
at each time step 20 requests are randomly placed in the
workspace defined by a square of 10m x 10m; the second465

with 50 requests being generated at each time step. For both
of them, the fleet will be composed of 10 agents which move
at a constant speed of 1m/s. The duration of a time win-
dow is 5 seconds (i.e. time step interval). The total simula-
tion horizon is composed of 30 time steps. The simulation470

process is executed 10 times. In this synthetic benchmark,
we consider that the requests are executed when the agents
reach their locations.

20 requests every time step The results in this set-up
are illustrated in Figure 1. Regarding the percentage of as-475

signed requests (Figure 1b) almost all of them are assigned
for all three methods, confirming they all can handle such a
scenario. In terms of traveled distance (Figure 1a), for all
receding-horizons, the ILP method gives the best results.
This is expected since the ILP looks for (sub-)optimal so-480

lutions. Between the GA and SKATE, the GA is more in-
teresting when using the reactive approach (H(0)), however
SKATE produces better values when using the proactive ap-
proach (H(k) with k > 0). Note that the proactive approach
provides improvements for all solving methods helping to485

reduce the traveled distance for the ILP, with a most impor-
tant impact on these values for the GA and SKATE methods.
For all three methods, the better results are given when using
the variable receding-horizon H(v) and in that case, SKATE
achieves values close to the ILP ones. Table 1 shows the490

mean waiting time for the requests for ILP, GA and SKATE
for H(v). Once again, ILP gives the better solution however
SKATE solutions are competitive. GA has a larger mean
than the others, which is coherent with its higher traveled
distance. Figure 1c compares the solving time of the three495

methods, i.e. the time necessary for computing assignments.
Central line dots correspond to the mean time for a given

Assignment method
ILP GA SKATE

Rτ = 20 22.52 33.6 23.5
Rτ = 50 51.03 263.96 55.87

Table 1: Average waiting time of assigned requests (in sec-
onds) for A = 10 and H(v).

time step calculations across the 10 executions. The shadow
area corresponds to the min-max values. We notice the ILP
method is already reaching its time limit at 5 seconds, which 500

corresponds to the time limit for online computations and
the duration of the time window δ. The GA method needs,
on average, 3 seconds and SKATE less than a second. This
highlights that SKATE is much more light-weighted than the
other methods used and suggests it could be particularly in- 505

teresting in higher-load setup. As a result, ILP gives the best
performances (followed by SKATE and then GA) but is al-
most reaching the time budget in this set-up.

50 requests every time step The results for this heavier
set-up are given in Figure 2. The first observation is about 510

the disparity in terms of the percentage of assigned requests
shown in Figure 2b. SKATE manages to assign close to
100% of the requests in general, though we notice a slight
improvement using the proactive approach compared to the
reactive approach. For GA, the percentage of the assigned 515

requests is lower than for SKATE but it still manages to
assign almost 90% or more of the requests both for reac-
tive and proactive approaches. In particular, this improve-
ment is even more noticeable when the size of the reced-
ing horizon increases, and for H(v), the value achieved is 520

close to the SKATE one. Surprisingly, the outlier results con-
cern ILP which is far from assigning all the requests. We
investigated why these percentages are so low and we dis-
covered that if agents are unavailable two subsequent time
steps (which means there would be 150 requests to assign 525

at the next time step), the ILP approach can not handle such
a load and reaches the time limit before managing to find
any solution. In the same situation, GA and SKATE are able
to handle this additional load. We notice improvements in
solution efficiency for ILP when the proactive approach is 530

used: anticipating the availability of the agents allows to de-
lay or even not encounter the problem of getting stuck. These
results are detailed in supplementary materials. In terms of
traveled distance (see Fig. 2a), SKATE gives better results
than the GA regardless of the size of the receding-horizon. 535

The ILP method shows fluctuations but we speculate it is
linked to the low number of assigned requests. As the size
of the receding-horizon grows, the traveled distance for the
ILP also grows since more requests have been assigned. But
this does not give us the optimal: when a solution is ob- 540

tained, it is in majority a sub-optimal solution. Regarding
the average request waiting time (see Table 1), ILP still gives
the lowest value. However, it only gives partial information
since this average only takes into account the assigned re-
quests. SKATE has an average waiting time which is 4 sec- 545

onds higher than ILP however it assigns more requests than
ILP. As a result, we judge that ILP is not able to handle a
higher-load set-up since it could not produce relevant so-

(a) Overall traveled distance (b) Percentage of assigned requests (c) Average computation time per time step.

Figure 1: Comparison of reactive and proactive approaches for ILP, GA and SKATE and for Rτ = 20.

(a) Overall traveled distance (b) Percentage of assigned requests (c) Average computation time per time step.

Figure 2: Comparison of reactive and proactive approaches for ILP, GA and SKATE for Rτ = 50.

lutions in the defined computation time limit. Between the
GA and SKATE, SKATE gives consistently better results550

whether in terms of distance, number of assigned requests
or average waiting time.

5.3 Real-life data Experiments & Results
Setup To confront solving methods to realistic settings,
we exploit an open data set listing taxi requests in New York555

City. In this data set, a request characterizes a real-life taxi
call with a starting point located at prs , a final point at prf ,
and a request registration time. In this benchmark, we con-
sider the pickup time as the request registration time trb , and
the request is executed once the agent has reached the des-560

tination location. The distance cost is then adapted to ac-
count as: da,r = ∥pa−prs∥+∥prs −prf ∥. This additional
distance is also taken into account for the waiting time cal-
culation. The total distance for an agent to execute all its
assigned requests is defined as:565

da = ∥pa−pr1s
∥+

m−1∑
i=1

∥pris
−prif

∥+
m−1∑
i=1

∥prif
−pri+1s

∥

We evaluate SKATE and GA methods with a reactive and
proactive approach over 3 nights, from January 7th to Jan-
uary 9th 2013 from 12AM to 7AM. Each night corresponds
to an independent simulation. The time window δ (i.e. dif-
ference between two time steps) has a duration of 5 minutes.570

We consider a fleet of 1000 agents traveling at a constant ve-
locity of 30 mph (the speed limit in New York). We included
the representation of the varying number of requests arrival
in supplementary materials. Contrary to the previous bench-
mark, here we address a variable number of requests arriv-575

ing throughout the simulation. Moreover, such a simulation
has a heavier load than the previous benchmark, since we

have more requests and agents (1000 agents and 200-1200
requests) and still a limited amount of time for calculations.
Since ILP was already struggling in the previous benchmark, 580

we do not include it in this part. Instead, we will be focusing
only on the GA and SKATE results.

Comparison for 1000 agents The results of experiments
using real-life data are presented in Figure 3. Looking at the
percentage of assigned requests in Fig. 3a, SKATE is more 585

efficient than GA. However, SKATE is not able to assign
more than 80% of the requests. The reason is the significant
amount of requests arriving between 6 and 7 AM. With that
amount of requests (end of the simulation), the agents stay
busy for more time than the receding-horizon size, being 590

not available until the end of the simulation. GA is further
impacted because of less efficient assignments: the agents
cover a greater distance being busy for an even longer time.
In the time limit of 5 minutes, GA only computes a cou-
ple of generations, preventing GA to improve solutions. It 595

is confirmed by the solving time (see Fig. 3c). GA strug-
gles to find an efficient assignment within time budget when
compared to SKATE. Poor solutions also have an impact on
the waiting time which is bigger for GA than for SKATE
(results detailed in supplementary materials). Interestingly, 600

the proactive approach increases the percentage of assigned
requests for both approaches but the progression is more im-
portant for GA. Additionally, we compare the time needed
for assignment calculations and the theoretical complexity
for SKATE shown in Figure 5 for H(v). The similarity of 605

curves shows that the complexity we calculated is correct.

SKATE with different fleet sizes The experiments above
showed that a fleet of 1000 agents is not sufficient to handle
all of the requests. To estimate how many agents would be
necessary, we studied the impact of the fleet size on the per- 610

(a) Overall traveled distance. (b) Percentage of assigned requests. (c) Average computation time per time step.

Figure 3: Comparison of reactive and proactive approaches for GA and SKATE in real-life settings.

(a) Comparison of traveled distance. (b) Percentage of assigned requests. (c) Idle time.

Figure 4: Comparison of the overall distance, number of assigned requests and idle time regarding the fleet size.

centage of assigned requests and waiting time.To see how
occupied the agents are, we have recorded how much time
the agents stay idle waiting for a new assignment. We tested
a fleet of 500, 750, 1000, 1250 and 1500 agents.

Results are compiled in Figure 4 and Table 2. They sum-615

marized only the results for the variable receding-horizon
H(v) since it consistently gives the best results in previous
experiments. First, Fig. 4a shows only a small variation of
the overall distance covered by agents with SKATE. We no-
tice that considering there are more agents, the individual620

distance traveled by agents is lower. It also suggests a bet-
ter distribution of the requests across the agents, as we see
in Fig. 4b that the number of assigned requests increases
with the number of agents and gets close to 100%. In terms
of waiting time (see Tab. 2), it decreases when the number625

of agents increases since the better distribution leads to less
waiting time. We note a sort of threshold around 15 min-
utes, waiting time decreases marginally for more than 1000
agents. We speculate it is linked to the physical aspects of
the problem (distance between the starting and final point).630

Looking at idle time (i.e. when agents wait for their new as-
signments) in Fig. 4c, it increases alongside the increase of

Figure 5: Time and complexity for SKATE per time step.

Size of the fleet
500 750 1000 1250 1500

w̄r 51.52 29.44 16.3 14.64 13.36

Table 2: Average waiting time w̄r (in minutes).

the number of agents. It is mainly due to the agents having
to wait one or several rounds for their first assignment at
the start of the night, and a smaller part is due to the lower 635

amount of requests between 3:30AM and 5:00AM.

6 Conclusion and Future work
One of the main challenges of the online multi-agent multi-
task assignment field is to design solving methods able to
find efficient solutions while scaling well (lightweight) given 640

the combinatorial aspect of such planning problems. We pro-
posed SKATE, a successive rank-based task assignment al-
gorithm for online multi-agent planning. Built upon a rank-
ing method considering agent-to-task costs, SKATE succes-
sively assigns a task to the best-ranked agent until all tasks 645

have been assigned. We compared SKATE with two base-
line methods already used for online planning: GA and ILP.
We found from a theoretical and experimental approach that
SKATE is faster than the other methods. For light-load, ILP
gives better cost-wise results, however in high-load, ILP 650

struggles whereas SKATE scales well giving efficient solu-
tions. SKATE and GA were also compared in real-life set-
tings (e.g. taxi dispatching). SKATE is the best method be-
tween the two. Regarding the results achieved with SKATE
and different fleet sizes, we plan to further improve our ap- 655

proach to also determine, online, the correct fleet size to met
current demands. For instance, by reducing the number of
agents when requests are low or by increasing it when the
number of requests increases.

References660

Alaei, S.; Hajiaghayi, M.; and Liaghat, V. 2012. Online
Prophet-Inequality Matching with Applications to Ad Allo-
cation. In Proceedings of the 13th ACM Conference on Elec-
tronic Commerce, EC ’12, 18–35. New York, NY, USA: As-
sociation for Computing Machinery. ISBN 9781450314152.665

Alonso-Mora, J.; Samaranayake, S.; Wallar, A.; Frazzoli, E.;
and Rus, D. 2017. On-demand high-capacity ride-sharing
via dynamic trip-vehicle assignment. Proceedings of the Na-
tional Academy of Sciences, 114(3): 462–467.
Basu, A.; Conforti, M.; Di Summa, M.; and Jiang, H.670

2022. Complexity of Branch-and-Bound and Cutting Planes
in Mixed-Integer Optimization. Math. Program., 198(1):
787–810.
Bautin, A. 2013. Stratégie d’exploration multirobot fondées
sur le calcul de champs de potentiels. Theses, Université de675

Lorraine.
Bautin, A.; Simonin, O.; and Charpillet, F. 2012. MinPos :
A Novel Frontier Allocation Algorithm for Multi-robot Ex-
ploration. In Su, C.-Y.; Rakheja, S.; and Liu, H., eds., Intel-
ligent Robotics and Applications, 496–508. Berlin, Heidel-680

berg: Springer Berlin Heidelberg. ISBN 978-3-642-33515-
0.
Burns, E.; Benton, J.; Ruml, W.; Yoon, S.; and Do, M. 2012.
Anticipatory On-Line Planning. Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling,685

22(1): 333–337.
Cheikhrouhou, O.; and Khoufi, I. 2021. A comprehensive
survey on the Multiple Traveling Salesman Problem: Appli-
cations, approaches and taxonomy. Computer Science Re-
view, 40: 100369.690

Conforto Nedelmann, D.; Lacan, J.; and Chanel, C. 2023.
Online Proactive Multi-Task Assignment with Resource
Availability Anticipation. In Ferrando, A.; and Cardoso,
R., eds., Proceedings of the Third Workshop on Agents and
Robots for reliable Engineered Autonomy, Krakow, Poland,695

1st October 2023, volume 391 of Electronic Proceedings in
Theoretical Computer Science, 3–17. Open Publishing As-
sociation.
De Filippo, A.; Lombardi, M.; and Milano, M. 2019. How
to Tame Your Anticipatory Algorithm. In Proceedings of700

the 28th International Joint Conference on Artificial Intelli-
gence, 1071–1077. AAAI Press. ISBN 9780999241141.
Dickerson, J.; Sankararaman, K.; Srinivasan, A.; and Xu, P.
2018. Allocation Problems in Ride-Sharing Platforms: On-
line Matching With Offline Reusable Resources. Proceed-705

ings of the AAAI Conference on Artificial Intelligence, 32(1).
Gong, X.-Y.; Goyal, V.; Iyengar, G. N.; Simchi-Levi, D.; Ud-
wani, R.; and Wang, S. 2022. Online Assortment Optimiza-
tion with Reusable Resources. Management Science, 68(7):
4772–4785.710

Herbawi, W.; and Weber, M. 2011. Ant Colony vs. Ge-
netic Multiobjective Route Planning in Dynamic Multi-Hop
Ridesharing. In Proceedings of the 2011 IEEE 23rd Interna-
tional Conference on Tools with Artificial Intelligence, IC-
TAI ’11, 282–288. USA: IEEE Computer Society. ISBN715

9780769545967.

Herbawi, W.; and Weber, M. 2012. The ridematching prob-
lem with time windows in dynamic ridesharing: A model
and a genetic algorithm. 1–8. ISBN 978-1-4673-1510-4.
Hikima, Y.; Akagi, Y.; Marumo, N.; and Kim, H. 2022. On- 720

line Matching with Controllable Rewards and Arrival Prob-
abilities. In Raedt, L. D., ed., Proceedings of the Thirty-First
International Joint Conference on Artificial Intelligence,
IJCAI-22, 1825–1833. International Joint Conferences on
Artificial Intelligence Organization. Main Track. 725

Hussein, A.; and Khamis, A. 2013. Market-based approach
to Multi-robot Task Allocation. 69–74.
Kara, I.; and Bektas, T. 2006. Integer linear programming
formulations of multiple salesman problems and its varia-
tions. European Journal of Operational Research, 174(3): 730

1449–1458.
Khamis, A.; Hussein, A.; and Elmogy, A. 2015. Multi-robot
Task Allocation: A Review of the State-of-the-Art, volume
604, 31–51. ISBN 978-3-319-18299-5.
Lesmana, N. S.; Zhang, X.; and Bei, X. 2019. Balancing 735

Efficiency and Fairness in On-Demand Ridesourcing, vol-
ume 32. Curran Associates, Inc.
Mehta, A. 2013. Online Matching and Ad Allocation.
Found. Trends Theor. Comput. Sci., 8(4): 265–368.
Nanda, V.; Xu, P.; Sankararaman, K. A.; Dickerson, J.; and 740

Srinivasan, A. 2020. Balancing the Tradeoff between Profit
and Fairness in Rideshare Platforms during High-Demand
Hours. Proceedings of the AAAI Conference on Artificial
Intelligence, 34(02): 2210–2217.
Rangriz, S.; Davoodi, M.; and Saberian, J. 2019. A NOVEL 745

APPROACH TO OPTIMIZE THE RIDESHARING PROB-
LEM USING GENETIC ALGORITHM. The International
Archives of the Photogrammetry, Remote Sensing and Spa-
tial Information Sciences, XLII-4/W18: 875–878.
Sumita, H.; Ito, S.; Takemura, K.; Hatano, D.; Fukunaga, 750

T.; Kakimura, N.; and Kawarabayashi, K.-i. 2022. Online
Task Assignment Problems with Reusable Resources. Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
36(5): 5199–5207.
Wang, H.; and Bei, X. 2022. Real-Time Driver-Request As- 755

signment in Ridesourcing. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 36(4): 3840–3849.
Wang, Y.; Zhao, C.; and Xu, S. 2020. Method for Spa-
tial Crowdsourcing Task Assignment Based on Integrating
of Genetic Algorithm and Ant Colony Optimization. IEEE 760

Access, 8: 68311–68319.

