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ABSTRACT

Node homophily shift—the mismatch in the tendency of nodes to have neighbors
with the same label between source and target graphs—poses a key challenge for
Graph Domain Adaptation (GDA) without target labels. We introduce Progressive
Structure Adjustment for Homophily Shift (PSAHS), which progressively reduces
homophily discrepancies: in the source graph by modifying existing edges and
adding new edges for low-homophily nodes, and in the target graph by making
analogous adjustments for nodes with consistent label predictions from Graph
Neural Networks (GNNs) and Multi-Layer Perceptrons (MLPs). After each re-
finement, GNNs are updated with domain-adversarial training for representation
alignment. This interplay of structure adjustment and representation learning mit-
igates homophily shift, tightens the target error bound, and yields consistent im-
provements over strong baselines, highlighting the necessity of node homophily
alignment for effective cross-graph transfer.

1 INTRODUCTION

Graph Neural Networks (GNNs) have achieved remarkable success in node classification by jointly
leveraging node attributes and graph structure. However, in many real-world applications—such
as cross-network recommendation (Zhao et al., 2025), bioinformatics (Li et al., 2025), and citation
analysis (He et al., 2023)—target-domain labels are scarce or even entirely unavailable, making it
difficult to train reliable models directly. This challenge motivates the study of Graph Domain Adap-
tation (GDA), which aims to transfer knowledge from a well-labeled source graph to an unlabeled
or sparsely labeled target graph.
The central difficulty in GDA lies in distributional shifts between source and target domains, span-
ning node attributes, graph structures, and label distributions. Existing GDA methods primarily
address this issue by aligning node features through adversarial training (Zhang et al., 2019; Wu
et al., 2020) or direct feature alignment (Wu et al., 2023; Chen et al., 2025), and then training a
shared classifier in the aligned space. However, since these approaches can also be applied to non-
graph data, they often overlook the unique structural properties of graphs and fail to capture how
graph-specific structures affect label prediction.
Recent work has started to explore structural shifts conditioned on labels. For example, Liu et al.
(2023; 2024c) model that the probability of an edge between two nodes is determined by the labels of
the node pair. To mitigate the class-conditional structure shift, they reweight each edge by the ratio
of class-conditional edge probabilities between domains, estimated from the labels of two endpoints.
Therefore, their shift formulation only captures the structure–label relation at the level of a single
edge level, making their approaches remain inherently local: each edge is adjusted solely based on
its two endpoints’ labels, without accounting for broader or global patterns of structural mismatch.
This limitation highlights the central importance of node homophily (Mao et al., 2023)—the pro-
portion of a node’s neighbors that share its label—which reflects the ability of an ego-network to
propagate label information. Node homophily thus captures a global structure–label property that
goes beyond isolated edges. Most prior work on homophily focuses on increasing the overall graph-
level homophily ratio (Zhu et al., 2020) by incorporating higher-order neighbors with the same labels
(Li et al., 2022) and reconstructing the graph via spectral clustering (Li et al., 2023). More detailed
related work is listed in Appendix A.2. By contrast, variation in node-level homophily has received
much less attention until studies (Ma et al., 2021; Mao et al., 2023), which show that within ho-
mophilic graphs, GNNs perform well on high-homophily nodes but deteriorate on low-homophily
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ones, and that such node homophily shifts strongly affect generalization in the node classification
problem. In the GDA setting, Fang et al. (2025b) further demonstrates that mismatched homophily
distributions—i.e., differences in the composition of high- versus low-homophily nodes across do-
mains—can significantly hinder knowledge transfer even when feature distributions are aligned. Yet
they still treat node homophily as intrinsic and immutable, attempting to address it only indirectly
through feature alignment rather than as a structure-label relation shift that can be explicitly reduced.

We propose Progressive Structure Adjustment for Homophily Shift (PSAHS), a new paradigm for
GDA grounded in a generalization error bound that links target performance to source error, ho-
mophily shift, and representation divergence. Our three-stage framework first enhances source
homophily by modifying the adjacency matrix entries of low-homophily nodes, then refines the
target graph by adjusting low-homophily nodes with consistent label predictions from the GNN and
MLP to align its homophily distribution with the source, and finally updates the GNN encoder via
domain-adversarial training for representation alignment. By alternating target refinement and rep-
resentation alignment, PSAHS progressively mitigates homophily shift, improves the reliability of
label prediction, and forms a self-reinforcing loop between structure adjustment and representation
learning. Guided by source labels and reliable target label predictions, PSAHS explicitly raises low
node homophily, provably reduces homophily shift, and enhances GDA performance.

Our contributions are threefold: (i) We present a theoretical analysis that explicitly connects ho-
mophily shift to cross-domain generalization error, motivating structural adjustment as a principled
solution. (ii) We propose a progressive homophily-aware structure adjustment framework that alter-
nates between target graph refinement and representation alignment. (iii) We validate our method on
multiple benchmarks, showing consistent improvements over strong GDA baselines, with especially
large gains under severe homophily mismatch, underscoring the importance of structural alignment
for effective cross-graph transfer.

2 PRELIMINARIES

2.1 NODE CLASSIFICATION

A graph is represented as G = (V, E , X), where V is the node set with |V| = n, E is the edge set, and
X := (Xu)u∈V ∈ Rn×F is the node attribute matrix, with each row Xu ∈ RF denoting the attribute
vector of node u. The adjacency matrix A = (Auv)u,v∈V encodes the graph structure, where
Auv ∈ {0, 1} indicates whether an edge exists between nodes u and v. For any n ∈ N∗, we denote
[n] := {1, 2, . . . , n}. We focus on the node-level classification task, where the goal is to predict the
label vector Y := (Yu)u∈V . For theoretical clarity, we assume binary labels Yu ∈ Y := {0, 1},
though our approach can be naturally extended to multi-class settings.

Graph Neural Networks (GNNs) (Wu et al., 2021) have become the dominant framework for graph
representation learning. An (L−1)-layer GNN iteratively updates node representations via message
passing. Formally, given adjacency matrix A and attribute matrix X , the GNN produces features
f := ϕ(X,A) ∈ Rn×F through L − 1 propagation layers. The final feature f is then fed into a
classifier g : Rn×F → Rn×M , where M is the number of classes. The overall model is g ◦ϕ(X,A),
and the output gu,m(ϕ(X,A)) gives the predicted probability that node u belongs to class m.

2.2 GRAPH DOMAIN ADAPTATION AND NODE HOMOPHILY SHIFT

Graph Domain Adaptation (GDA) studies the problem of transferring knowledge from a labeled
source graph to an unlabeled target graph, where the two domains exhibit distributional differences.
Formally, the source domain provides a labeled graph GS = (VS , ES , XS) with (XS , AS , Y S) ∼
PS , while the target domain provides an unlabeled graph GT = (VT , ET , XT ) with (XT , AT ) ∼
PT . The distributions PS and PT may differ in node attributes, graph topology, and even conditional
label distributions. The goal of GDA is to minimize the classification risk on PT by leveraging
labeled data from PS while accounting for these shifts.

A central structural property of graphs is node homophily, which measures the tendency of connected
nodes to share the same label. For a node u ∈ V with neighborhood Nu := {v ∈ V | Auv = 1},
the homophily ratio is defined as hG(u) := 1

du

∑
v∈Nu

1{Yu = Yv}, where 1{·} is the indicator
function and du := |Nu| is the degree of node u. This ratio captures the proportion of neighbors of
u that share its label. For notational clarity, we denote the homophily ratios in the source and target
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graphs as hS(u) := hGS
(u) and hT (u) := hGT

(u), respectively. The collection of all node-level
ratios {hG(u) : u ∈ V} defines the homophily distribution PG(h) of a graph G.

Definition 2.1 (Node Homophily Shift). Let PS(h) and PT (h) denote the node homophily distri-
butions of the source and target graphs, respectively. We define a node homophily shift as the case
where PS(h) ̸= PT (h).

In this work, we study GDA by focusing on reducing the node homophily shift between the source
and target domains. This shift has been empirically observed across a wide range of citation and
social networks in Fang et al. (2025b). Our subsequent theoretical analysis shows that the target-
domain error bound explicitly depends on the node homophily shift, highlighting its impact on
cross-domain generalization.

Symbol Meaning Symbol Meaning

G = (V, E , X) graph with nodes, edges, and attributes ÃS , ÃT adjusted adjacency matrix of source/target domain
XS , XT node feature matrix of source/target domain f̃ := ϕ(X, Ã) GNN encoded feature matrix with adjusted structure
AS , AT adjacency matrix of source/target domain h̃S(u), h̃T (u) node homophily in adjusted source/target graph
Y S node labels of the source domain Ŷu the pseudo-label of node u

ϕ, g GNN encoder, GNN classifier ĥT (u) the estimated node homophily
f := ϕ(X,A) GNN encoded feature matrix, h the desired node homphily threshold
gu,m(ϕ(X,A)) predicted prob. of class m for node u, αu the node-wise edge adjustment strength
hS(u), hT (u) node homophily in source/target graph Vr

T reliable target node set where the GNN and MLP agree

Table 1: Summary of key notations used in the paper.

3 THEORETICAL ANALYSIS OF STRUCTURE ADJUSMENT STRATEGY UNDER
NODE HOMOPHILY SHIFT

To mitigate the homophily shift, a fundamental approach is to directly adjust node homophily in
both domains, thereby reducing the homophily gap. Since a node’s homophily ratio is jointly deter-
mined by the graph structure and node labels, a natural strategy is to manipulate the graph structure
rather than labels to mitigate the node homophily shift. Adjusting labels would inevitably introduce
noise and degrade classifier reliability, whereas structural refinement provides a principled way to
modify homophily while preserving label consistency. Formally, let ÃS and ÃT denote the adjusted
adjacency matrices of the original AS and AT in the source and target domains, respectively. By def-
inition, ÃS and AS have the same dimensions, but there exist nodes u, v ∈ V2 such that ÃS

uv ̸= AS
uv .

An analogous definition applies to ÃT and AT . Given ÃS and ÃT , we denote the corresponding
homophily ratio and aggregated feature of node u as h̃u and f̃u, respectively.

After transforming from the original AS and AT to the adjusted structure ÃS and ÃT , we study a
GNN classifier trained on the adjusted source graph and applied to the adjusted target graph. In what
follows, we derive a target-domain error bound for this classifier, which provide explicit guidance
for designing a specific structure adjustment approach and lays the theoretical foundation for our
subsequent methodology.

Following Mao et al. (2023), we adopt the Simplifying Graph Convolutional Networks (SGN) model
(Wu et al., 2019) as the base GNN classifier. In this setting, the classifier g ◦ ϕ is an MLP op-
erating on aggregated features, formally defined as g ◦ ϕ(X,A) := MLP

(
D−1AX; {W ℓ}Lℓ=1

)
,

where D is the degree matrix and W ℓ are the learnable parameters of the ℓ-th layer. For theoret-
ical analysis, we consider the margin loss function with margin parameter γ ≥ 0: R̂γ

S(g ◦ ϕ) :=
1
ns

∑ns

i=1 1{gi,Y S (ϕ(XS , AS)) ≤ γ + maxk ̸=Y S gi,k(ϕ(X
S , AS))}. The expected margin loss is

then Rγ
S(g ◦ ϕ) := EYu∼PS(Y |fu(XS ,ÃS))

[
R̂γ

S(g ◦ ϕ)
]
. When γ = 0, this reduces to the standard

classification loss RS(g ◦ ϕ) := R0
S(g ◦ ϕ). Similar definitions hold for the target domain.

Building on the PAC-Bayesian framework, we next derive theoretical results showing how graph
structure adjustment influences target-domain error through the adjusted homophily ratios and ag-
gregated features in the two domains.
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Figure 1: Framework of Progressive Structure Adjustment for Homophily Shift (PSAHS).

Theorem 3.1. Under the SGN model, let g ◦ ϕ be a classifier from the hypothesis space of GNN
classifiers. Denote by f̃u (resp. f̃v) the aggregated feature of a source node u ∈ VS (resp. target
node v ∈ VT ) under the adjusted graph structure ÃS (resp. ÃT ). Similarly, let h̃S(u) and h̃T (v)
denote the corresponding node homophily ratios. Then for any γ > 0, δ ∈ (0, 1), α ∈ (0, 1/4), and
sufficiently large ns, there exists a constant c independent of n such that with probability at least
1− δ, the target margin loss RT (g ◦ ϕ), can be upper bounded by

R̂γ
S(g ◦ ϕ) + c

(
1

nsnt

∑
u∈VS

∑
v∈VT

(
|h̃S(u)− h̃T (v)|+ ∥f̃u − f̃v∥2

)
+

1

nα
s

+
ln(1/δ)

n2α
s

)
. (1)

Therefore, Theorem 3.1, whose proof is given in Appendix C.1, establishes that minimizing the
target classification error requires jointly reducing the following three components.

(I) Empirical source margin loss R̂S(g ◦ϕ). This term reflects the classification performance on
the source domain. As shown in Mao et al. (2023), since homophily shifts between high- and low-
homophily node subgroups degrade performance on the minority subgroup, making it difficult for
GNNs to perform well on both simultaneously. Hence, the source error can be reduced by increasing
the node homophily of low-homophily nodes. To this end, we refine the source graph structure by
down-weighting inter-class edges and introducing additional intra-class edges for low-homophily
nodes, as described in Section 4.1.

(II) Discrepancy in node homophily ratios across domains
∑

u∈VS

∑
v∈VT

|h̃S(u) − h̃T (v)|.
After adjusting the source graph as in (I), the values h̃S(u) become fixed. To reduce the remaining
discrepency, we adjust the target graph structure to modify h̃T (v), thereby aligning the homophily
distributions of the two domains (see Section 4.2).

(III) Discrepency in aggregated node representations
∑

u∈VS

∑
v∈VT

∥f̃u − f̃v∥2. This term
quantifies representation-level misalignment between domains. We address it by aligning the distri-
butions of node representations through domain-adversarial neural networks (see Section 4.3).

It is important to note that prior work such as Fang et al. (2025b) also introduces a homophily
shift term similar to (II). However, in their formulation, the homophily ratios hS(u) and hT (v)
are intrinsic and fixed by the original graph structure, making them unmodifiable. In contrast, our
framework leverages the adjusted homophily ratios h̃S(u) and h̃T (v), which can be actively refined
through structural adjustments. This flexibility allows us not only to enhance source homophily
(thereby reducing (I)) but also to explicitly align homophily distributions across domains (thereby
reducing (II)), jointly tightening the target error bound.

4
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4 METHODOLOGY

In this section, we propose a homophily-aware structure adjustment framework for graph domain
adaptation to mitigate the three error components shown in Theorem 3.1. As shown in Figure 1,
our method progressively refines graph structures in both domains while aligning node representa-
tions, thus minimizing the three error components in the error bound. Specifically, we (i) enhance
source homophily by modifying inter-class edges and adding intra-class edges for low-homophily
nodes, then train a GNN and MLP to generate target pseudo-labels; (ii) reduce cross-domain ho-
mophily shift by adjusting target structures based on the consistent pseudo-labels; and (iii) mitigate
representation misalignment via domain-adversarial training. These steps alternate iteratively until
convergence, producing an effective target-domain classifier with tighter error bounds.

4.1 ENHANCING SOURCE HOMOPHILY VIA GRAPH STRUCTURE ADJUSTMENT

To improve classification performance in the source domain, our goal is to increase node homophily
ratios, particularly for nodes with initially low homophily, as motivated by the theoretical results in
Appendix B.

We refine the source graph structure by reweighting edges of low-homophily nodes and introduc-
ing additional intra-class connections, while keeping the adjacency of high-homophily nodes un-
changed. Specifically, for each node u with hS(u) < h, we decrease the weights of its inter-class
edges to 1 − αu and increase the weights of its intra-class edges to 1 + αu, where αu ∈ [0, 1] is a
node-specific edge adjustment strength, with its precise value provided in Theorem 4.2. To further
promote intra-class connectivity, we randomly select du(1 − hS(u)) non-neighbor nodes v with
Yv = Yu and connect them to u with weight αu. For nodes with hS(u) ≥ h, we retain their original
adjacency entries. Formally, the adjusted adjacency matrix ÃS is defined as

ÃS
uv :=



AS
uv, if v ∈ VS , hS(u) ≥ h,

1 + αu, if v ∈ VS , hS(u) < h, AS
uv = 1, Yu = Yv,

1− αu, if v ∈ VS , hS(u) < h, AS
uv = 1, Yu ̸= Yv,

αu, if v ∈ VS , hS(u) < h, AS
uv = 0, v ∈ N ′

u,

0, if v ∈ VS , hS(u) < h, AS
uv = 0, v /∈ N ′

u,

(2)

where N ′
u ⊂ V \ Nu denotes the newly added set of same-label neighbors for node u.

Figure 2: Left subfigure: four nodes A,B,C,D,E from class 0 and three nodes F,G,H from class 1. The ho-
mophily ratios of nodes A,E,F,H equal 1, while those of nodes B,C,D,G equal 0.5. Middle box: Set
the desired homophily level to h = 0.8, nodes B,C,D,G are identified as low-homophily nodes. For
each u ∈ {B,C,D,G}, the edge adjustment strength is computed as αu = h−h(u)/(1−h·h(u)) =
(0.8−0.5)/(1−0.8 ·0.5) = 0.5. Right subfigure: for each low-homophily node u ∈ {B,C,D,G},
we increase its homophilous edge weight to 1 + αu = 1.5 (thicker black edges), decrease its het-
erophilous edge weight to 1 − αu = 0.5 (thinner green edges), and add new homophilous edges
with the strength αu = 0.5 (thin yellow edges). As a result, the adjusted homophily ratios defined
in Eq. (3) increase to h̃(u) = 0.8. This example visually demonstrates how our strategy ensures that
every node reaches the desired homophily level h.
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Since ÃS is no longer binary, we extend the definition of the homophily ratio under the adjusted
structure as

h̃S(u) =

∑
v∈VS , Yu=Yv

ÃS
uv∑

v∈VS
ÃS

uv

. (3)

For nodes with hS(u) ≥ h, the ratios remain unchanged, i.e., h̃S(u) = hS(u) ≥ h. For nodes with
hS(u) < h, the following theorem guarantees that the adjustment increases their homophily to at
least the desired threshold:

Theorem 4.1. For any h ∈ (0, 1], if αu ∈
[
(h− hS(u))/(1− h · hS(u)), 1

)
is chosen in Eq. (2) for

a node u with hS(u) < h, then the adjusted homophily in Eq. (3) satisfies h̃S(u) ≥ h.

Theorem 4.1, whose proof is given in Appendix C.2, demonstrates that our adjustment strategy
successfully elevates the homophily of initially low-homophily nodes above the specified threshold,
thereby enhancing source-domain classification and reducing the source margin loss term (I) in the
target error bound in Eq. (10).

4.2 ALIGNING TARGET HOMOPHILY VIA GRAPH STRUCTURE ADJUSTMENT

We now aim to align node homophily ratios across domains to reduce the shift term (II) in The-
orem 3.1. Recall that in the source domain, all nodes have been refined to achieve homophily at
least h through the adjustment in Eq. (2). Thus, the remaining task is to promote low-homophily
nodes in the target domain to reach the same threshold h, thereby aligning homophily distributions
across domains, which is guaranteed by Theorem 4.2. A key challenge is that computing homophily
ratios requires node labels, which are unavailable in the target domain. To overcome this, we em-
ploy a GNN classifier g ◦ϕ trained on the source domain to generate pseudo-labels for target nodes:
Ŷu := argmaxm∈[M ] gu,m(ϕ(XT , ÃT )), u ∈ VT , where initially ÃT := AT .

To improve the reliability of label prediction, we introduce an auxiliary MLP trained only on source
data. We then identify target nodes where the GNN and MLP predictions agree as reliable nodes,
which form the reliable target set Vr

T . For high-homophily reliable nodes, GNNs are typically more
accurate than MLPs, as homophilous edges enable the aggregation of more same-class features that
enhance discriminability. For low-homophily nodes, MLPs often outperform GNNs, as MLPs are
unaffected by the noisy signals introduced by heterophilous edges. Thus, when both models yield the
same prediction—consistent from raw attributes X and from aggregated features via the adjacency
matrix—the prediction is regarded as high-confidence and reliable.

For each node in the reliable target set u ∈ Vr
T , based on the target reliable pseudo-labels Ŷu, we

estimate its homophily ratio as

ĥT (u) :=

∑
v∈Nu∩Vr

T
1{Ŷu = Ŷv}

|Nu ∩ Vr
T |

. (4)

To mitigate the node homophily shift, we need to improve the homophily of reliable target nodes to
the same threshold h as used in the source domain. Reliable low-homophily nodes u ∈ Vr

T satisfying
ĥT (u) < h are the target nodes whose adjacency entries Au· are adjusted following a scheme similar
to Section 4.1, while the adjacency entries of non-reliable nodes and reliable high-homophily nodes
remain unchanged. Specifically, given the target labels are unobserved, the target adjacency matrix
will be adjusted to ÃT

uv in the same way as in Eq. (2) by only replacing VS , Yu, Yv hS with Vr
T ,

Ŷu, Ŷv , ĥT , and changing the construction way of the newly added neighbor set N ′
u. To construct

N ′
u in the target domain, we select (h − ĥT (u))du reliable non-neighbor nodes v ∈ Vr

T \ Nu

(i) sharing the same predicted label Ŷv = Ŷu and (ii) having the highest GNN confidence scores
gv,Ŷu

(ϕ(XT , ÃT )).

This edge refinement increases homophily for the adjusted low-homophily nodes and their neigh-
bors, including originally heterophilous neighbors and newly connected same-class neighbors,
thereby improving separability of the aggregated features. In particular, the neighbors of reliable

6
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low-homophily nodes are often themselves low-homophily and prone to misclassification. There-
fore, adjusting the edge weights between them is crucial for these neighbors to enhance node ho-
mophily and improve the predictive ability. Furthermore, by restricting edge adjustments only to
low-homophily nodes with consistent predictions, our approach captures the key to performance
improvement while avoiding erroneous adjustments.

The generalized homophily ratio of target node u ∈ Vr
T under the adjusted structure is then

h̃T (u) =

∑
v∈Vr

T , Ŷu=Ŷv
ÃT

uv∑
v∈Vr

T
ÃT

uv

. (5)

Theorem 4.2. Let h̃S and h̃T be the adjusted homophily as in Eq. (3) and Eq. (5), respectively. For
any h ∈ (0, 1], if we take αu = (h − hS(u))/(1 − h · hS(u)) for source nodes u with hS(u) < h
and αv = (h− hT (v))/(1− h · hT (v)) for target nodes v with hT (v) < h, then∑

u∈VS

∑
v∈VT

|h̃S(u)− h̃T (v)| ≤
∑
u∈VS

∑
v∈VT

|hS(u)− hT (v)|.

In other words, the shift in homophily ratios between domains after structure adjustment is no larger
than that without adjustment.

Theorem 4.2, whose proof is given in Appendix C.2, shows that, with proper node-wise choices of
αu, adjusting the source and target graph structure as in the scheme of Eq. (2), can reduce the node
homophily shift between domains. This result informs the selection of αu values in our experiments.
In summary, our adjustment strategy modifies existing edges and adds new intra-class edges based
on reliable pseudo-labels. Unlike prior methods such as Liu et al. (2023; 2024c), which reweight all
existing edges for all source nodes, our approach specifically targets low-homophily nodes in both
domains and additionally introduces new homophilous edges, making the process more focused,
adaptive, and effective for cross-domain alignment.

4.3 REPRESENTATION ALIGNMENT ACROSS DOMAINS

To address the discrepancy in aggregated features across domains and reduce the error term (III) in
Theorem 3.1, we adopt a domain-adversarial training framework to learn a domain-invariant GNN
encoder ϕ. Specifically, we solve the following minimax problem:

min
ϕ

max
ξ

[
1

|VS |
∑
u∈VS

log
(
ξ(ϕu(X

S , ÃS))
)
+

1

|VT |
∑
u∈VT

log
(
1− ξ(ϕu(X

T , ÃT ))
)]
,

where ξ is a domain discriminator. We denote the corresponding alignment loss as RRA(ϕ).

For supervised learning on the source domain, we use the cross-entropy loss:

RCE(ϕ, g) = − 1

|VS |
∑
u∈VS

LCE

(
gu(ϕ(X

S , ÃS)), Yu

)
,

where gu(·) denotes the predicted class probability for node u.

The overall training objective integrates representation alignment and source supervision:

min
ϕ,g

[
RCE(ϕ, g)︸ ︷︷ ︸
Supervised Loss

+ γRA · RRA(ϕ)︸ ︷︷ ︸
Repres. Alignment

]
, (6)

where γRA > 0 is a balancing hyperparameter. This adversarial framework encourages ϕ to generate
domain-invariant representations while maintaining predictive power on the source.

4.4 PROGRESSIVE HOMOPHILY AND REPRESENTATION ALIGNMENT ACROSS DOMAINS

Our algorithm begins by fixing the adjusted source graph structure and training an initial GNN clas-
sifier using the labeled source data in Section 4.1. Then, it iteratively performs two interdependent
steps: (i) adjusting edges in the target graph (Section 4.2) and (ii) updating the GNN parameters
(Section 4.3). This progressive training scheme enables the target graph refinement and representa-
tion alignment to mutually reinforce each other, gradually enhancing target-domain performance and
ultimately yielding a GNN classifier that minimizes the target error bound. The complete procedure
is summarized in Algorithm 1.
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Algorithm 1 Progressive Structure Adjustment for Homophily Shift (PSAHS)

Input: Source graph GS with labels YS ; unlabeled target graph GT ; GNN encoder ϕ and classifier
g; auxiliary MLP classifier; homophily threshold h ∈ (0, 1).
Adjust source graph adjacency to obtain ÃS using Eq. (2).
Train initial GNN classifier g ◦ ϕ and auxiliary MLP on source data.
while not converged and minu∈Vr

T
ĥT (u) < h do

Predict labels of target nodes using g ◦ ϕ.
Update reliable set Vr

T by comparing predictions of GNN and MLP.
Adjust target graph adjacency to obtain ÃT .
Update ϕ and g by minimizing the joint objective in Eq. (6).

end while
Output: Adjusted adjacency matrices ÃS , ÃT ; trained encoder ϕ and classifier g.

5 EXPERIMENTS

Baselines. We compare our approach PSAHS against the following representative baselines: fea-
ture alignment methods UDA-GCN (Wu et al., 2020), ASN (Zhang et al., 2021a), GraphAlign
(Huang et al., 2024), and JHGDA (Shi et al., 2023); structure-shift methods StruRW (Liu et al.,
2023) and PairAlign (Liu et al., 2024c); and the homophily-based method HGDA (Fang et al.,
2025b).

Synthetic Experiments. We evaluate the performance of our method PSAHS under different lev-
els of node homophily shift on the simulated data generated by the stochastic block model (SBM).
For each class, we generate an equal number of nodes from three classes. In the source domain,
the node attributes are drawn from class-specific 10-dimension Gaussian distributions: the means of
the three Gaussians are [−1, 0, 08], [1, 0, 08] and [0, 1, 08] for the source domain, and [−1.5, 0.5, 08],
[1.5,−0.5, 08] and [0.5, 1.5, 08] for the target domain, where 08 denotes the 8-dimension all-zero
vector. The covariance matrices for the three Gaussians are random rotations of three diagonal
matrices: diag([45, (1/4)5]), diag(|arange(10) − 9/2|/(9/2)), and diag([4, 1/4, 4, . . . , 1/4]),
where diag(·) means the diagonal matrix with some vectors. To generate the homophily shift, we
fix one domain’s node homophily by setting the intra-class probability p = 0.02 and the inter-class
probability q = 0.002, which yields a graph homophily of 0.832. For the other domain, we itera-
tively decrease graph homophily by randomly selecting two homophilous edges (u, u′) and (v, v′),
where Yu = Yu′ ̸= Yv = Yv′ , removing them, and then reconnecting the heterogeneous edges (u, v)
and (u′, v′) to decrease the graph homophily. This procedure is repeated until the graph homophily
reaches desired values ranging from 0.8 to 0.1. Additional visualizations of attribute distributions
are presented in Appendix D.3.2.
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Figure 3: Accuracy under different homophily settings.

Figure 3 presents the GDA accuracy
on the synthetic datasets. It reveals
that our model PSAHS consistently
outperforms baseline methods across
varying degrees of node homophily
shift, regardless of whether the
source or target domain has higher
graph homophily. This demonstrates
the effectiveness of PSAHS in miti-
gating node homophily shift.

Benchmark Datasets. We conduct
comprehensive experiments on four
real-world datasets, including Citation dataset (Tang et al., 2008; Wu et al., 2022), Airport
dataset (Ribeiro et al., 2017), Blog dataset (Shen et al., 2020a), and Twitch dataset (Rozemberczki
et al., 2021). The Citation dataset consists of two networks, DBLPv8 (D) and ACMv9 (A), where
nodes correspond to articles and edges represent citation relations. The Airport dataset includes
three air-traffic networks from the USA (U), Brazil (B), and Europe (E), where each node is an
airport, and each edge represents a flight route. The Twitch dataset contains six regional gamer
networks from Germany (DE), England (EN), Spain (ES), France (FR), Portugal (PT), and
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Russia (RU), with nodes indicating users and edges reflecting friendships. The Blog dataset com-
prises two disjoint social networks, Blog1 and Blog2. Both are derived from BlogCatalog,
where nodes denote bloggers and edges indicate friendship ties. More details, including the statistics
of the datasets, can be checked in Appendix D.3.1.

Result Analysis. Tables 2 and 3 show that our method PSAHS consistently outperforms all base-
lines across 15 GDA tasks, achieving up to a 21.94% improvement on B2-B1. These gains highlight
the effectiveness of jointly enhancing source homophily and mitigating node homophily shift across
domains for GDA on diverse real-world datasets, especially on low-homophily graph datasets such
as Blog (0.38 average node homophily). In contrast, prior algorithms that rely on the feature ag-
gregation over the original graphs perform poorly, as low-homophily structures hinder homophilous
feature aggregation during message passing, and mismatched node homophily distributions across
domains obstruct knowledge transfer. Details for hyperparameters can be found in Appendix D.4.

Table 2: Performance on DBLP/ACM and Airport datasets.

Models Citation Airport

A-D D-A U-E E-U B-E E-B B-U U-B

UDAGCN 0.6886 0.6391 0.4887 0.4341 0.5077 0.4762 0.4978 0.6122
ASN 0.7270 0.7162 0.4645 0.4625 0.4962 0.5903 0.4986 0.5191
JHGDA 0.7558 0.7322 0.5075 0.5227 0.5664 0.7313 0.5020 0.6927
StruRW 0.7019 0.6657 0.5377 0.4967 0.5606 0.6565 0.5219 0.6284
PairAlign 0.7524 0.7477 0.5539 0.5428 0.5572 0.5290 0.5278 0.6786
GraphAlign 0.7865 0.7506 0.5432 0.5734 0.5880 0.7312 0.5438 0.6290
HGDA 0.7910 0.7560 0.5720 0.5700 0.5840 0.7210 0.5690 0.7210

PSAHS 0.8261 0.7583 0.5920 0.5776 0.5948 0.7434 0.5738 0.7245
The best and second-best performances are marked as bold and underline, respectively.

Table 3: Performance on Blog and Twitch datasets.

Models Blog Twitch

B1-B2 B2-B1 DE-EN DE-ES DE-FR DE-PT DE-RU

UDAGCN 0.4710 0.4680 0.5397 0.5749 0.5453 0.5532 0.6359
ASN 0.6320 0.5240 0.5258 0.5468 0.5279 0.5603 0.6618
JHGDA 0.6190 0.6430 0.5580 0.6235 0.5921 0.6285 0.7205
StruRW 0.6359 0.6264 0.5481 0.6603 0.6048 0.6396 0.7227
PairAlign 0.6620 0.6540 0.5669 0.6529 0.5752 0.6250 0.7328
HGDA 0.6830 0.6770 0.4993 0.5443 0.5494 0.4825 0.5460
GraphAlign 0.4714 0.4583 0.5602 0.6904 0.6246 0.6574 0.7179

PSAHS 0.8805 0.8964 0.5797 0.7129 0.6463 0.6684 0.7413
The best and second-best performances are marked as bold and underline, respectively.

Ablation Studies. We evaluate three variants of our model PSAHS to examine how the choice
of domain for structure adjustment affects GDA performance. The variants include DANN (Ganin
et al., 2016), a classic adversarial alignment method adapted to GNN encoded representations for
GDA; w/o source, which iteratively adjusts the graph structure on the target domain without initial
edge adjustment on the source graph; and w/o target, which only refines the source graph structure
to reach high homophily while leaving the target graph unchanged.

The ablation results in Table 4 show that both the “w/o source” and “w/o target” variants outperform
the baseline DANN, indicating that adjusting either the source or target graph alone can improve
GDA performance. More importantly, our full model PSAHS significantly outperforms these single-
graph variants, demonstrating the benefits of simultaneously enhancing homophily and mitigating
node homophily shift between domains.

Table 4: Ablation study on Blog and Airport datasets.

Models Blog Airport

B1-B2 B2-B1 U-E E-U B-E E-B B-U U-B

DANN 0.5430 0.5625 0.4933 0.4776 0.5099 0.6754 0.5062 0.6547
w/o source 0.8210 0.8288 0.5587 0.5466 0.5558 0.6986 0.5256 0.7075
w/o target 0.6166 0.6017 0.5242 0.5607 0.5434 0.7275 0.5408 0.6918

PSAHS 0.8805 0.8964 0.5920 0.5776 0.5948 0.7434 0.5738 0.7245

Model Analysis Due to the lack of true target labels, pseudo-labels are important for target graph
refinement. In this part, we analyze the impact of different pseudo-labeling strategies on GDA
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performance. Our model PSAHS adopts consistent label predictions from the GNN and MLP as
node pseudo-labels (PLs) and refines edges only for nodes with PLs. For comparison, we consider
four variants of PL strategy. GNN PL directly uses all pseudo labels predicted by the GNN classifier.
MLP PL adopts all pseudo labels predicted by an auxiliary MLP classifier. Curriculum PL adopts a
progressive scheme. Specifically, it begins with adjusting the edges for the top 20% most confident
target nodes for graph refinement and gradually increases the ratio to 80% as training proceeds.
Prototype PL employs prototypical denoising, where pseudo-labels are reweighted based on their
distances to class prototypes that are updated online via moving averages.
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Our model
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Figure 4: GDA performance of different PL strategies.

Figure 4 reports the GDA performance on
Blog dataset. Our model PSAHS outper-
forms all variants, demonstrating the bene-
fits of integrating both structural and attribute-
based views. Since structure adjustment is ap-
plied only to the low-homophily nodes that
are vulnerable to the disruptive effect of het-
erophilic edges, leveraging the auxiliary MLP
view, which relies solely on attribute infor-
mation, yields more accurate label predictions
for these nodes and drives a clear performance
gain.

6 CONCLUSION AND FUTURE WORK

In this paper, we investigated the challenge of node homophily shift in GDA, a structural mismatch
that hinders cross-domain transfer even when feature distributions are aligned. We proposed a pro-
gressive structure adjustment framework that alternates between source-side homophily enhance-
ment, target-side homophily alignment guided by pseudo-labels, and cross-domain representation
alignment via adversarial training. Our theoretical analysis established an explicit connection be-
tween homophily distributions and the target error bound, thereby motivating structural refinement
as a principled approach. Extensive experiments on both synthetic and real-world benchmarks
demonstrated that the proposed method consistently outperforms strong baselines, with particularly
large improvements under severe homophily mismatch. These results highlight the critical role of
structural alignment in enabling effective cross-graph transfer.

While our framework effectively reduces node homophily shift across domains, addressing fairness
and subgroup generalization under node homophily shift across domains remains a promising direc-
tion for future work. Such investigations could offer deeper insights into the equitable deployment
of GDA methods in real-world applications.

ETHICS STATEMENT

This work makes use of publicly available datasets and models. No private or sensitive data is
involved, and no harmful content is included. Therefore, we believe this paper does not raise any
ethical concerns.

REPRODUCIBILITY STATEMENT

Implementation details for our proposed algorithm are provided in Appendix D.1, and the corre-
sponding code is available via the anonymous link https://anonymous.4open.science/
r/PSAHS. Descriptions and statistics of all datasets are presented in Section 5 and Appendix D.3,
with the data processing scripts also provided via the anonymous link. Full proofs of the theoretical
claims are included in Appendix C.
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This appendix complements the main text by providing additional theoretical analysis, detailed
proofs, and extended experimental results. Specifically, Appendix A introduces the related works
about graph domain adaptation and graph learning with homophily. Appendix B analyzes how node
homophily ratios influence class separability under the CSBM-structure model. Appendix C con-
tains the formal proofs of the theorems presented in Sections 3 and 4. Finally, Appendix D reports
supplementary experimental results, including dataset descriptions, implementation details, model
analyses, and parameter sensitivity studies.

A RELATED WORKS

A.1 GRAPH DOMAIN ADAPTATION

Early research on graph domain adaptation (GDA), often referred to as cross-network classification,
mainly focused on learning shared features across networks based solely on graph structures (Shen
et al., 2020b). With the development of graph neural networks (GNNs), GDA research has expanded
to attributed graphs, where both structural and attribute shifts are taken into consideration (Liu et al.,
2024b). These methods typically integrate GNNs with traditional domain adaptation strategies to
learn transferable node representations. For instance, adversarial learning has been employed to
extract domain-invariant features (Zhang et al., 2019; Wu et al., 2020; Zhang et al., 2021b). Other
approaches adopt direct feature alignment techniques that use various distance metrics to encourage
feature consistency, such as maximum mean discrepancy (MMD) (Shi et al., 2023), total variation
distance (Chen et al., 2025), graph subtree discrepancy (Wu et al., 2023), and optimal transport
distance (Chen et al., 2020). However, the standard GNN architectures are often inadequate for
capturing the complex structures inherent in graph data. To address this limitation, some methods
enhance node features by incorporating richer structural information, including high-order structures
(Dan et al., 2024; Yin et al., 2025), substructures (Luo et al., 2024), and spectral properties (You
et al., 2023; Xiao et al., 2024). Meanwhile, the message-passing mechanism of GNNs can also be
improved to better support GDA (Liu et al., 2024a).

Most GDA methods in the feature space typically borrow conventional alignment strategies from
other domains and often overlook the unique properties of graph data. Recently, increasing efforts
have been made to directly tackle structural shifts and develop adaptation methods on the input
graph structures. For example, Huang et al. (2024) adopts a data-centric approach that constructs
a smaller yet more transferable source graph to better align with the target graph. Several studies
address conditional structure shifts induced by labels and propose reweighting strategies to adjust
graph edges accordingly (Liu et al., 2023; 2024c). Fang et al. (2025a) further considers attribute
shifts and combines topology and attribute graphs for GDA, while Fang et al. (2025b) emphasizes
the influence of graph homophily and develops mixed graph filters to improve adaptation.

A.2 GRAPH LEARNING WITH HOMOPHILY AND HETEROPHILY

Developing GNNs in heterophilic graphs has received increasing attention. The primary goal is
to investigate the consistency of raw graph structure and node label similarities, where homophily
originally refers to the matching of edges with label similarities and vice versa (Zhu et al., 2020).
The definition of homophily varies in different settings, such as local-global homophily (Li et al.,
2022), and structural-feature-label homophily (Zheng et al., 2024).

In general, current research for homophily GNNs can be categorized as data-based and model-based
methods. Data-based methods focus on improving the homophily ratios by refining existing or
discovering new neighbors for a given node. The intuitive strategy is to incorporate higher-order
neighbors with the same labels (Li et al., 2022). Particularly, Zhu et al. (2020) has theoretically
demonstrated that the 2-hop neighbors of nodes are homophily-dominant and can therefore facilitate
the feature aggregation in GNNs. Zheng et al. (2023) constructs a complementary graph to discover
potential neighbors and uses the complemented graph convolution to leverage both homophily and
heterophily connections. The graphs can also be rewired or reconstructed to high-homophily coun-
terparts by further calculating feature distances (Li et al., 2023) or structural similarities (Suresh
et al., 2021).

The model-based methods aim to develop new aggregation and updating processes in GNNs to
strengthen homophilic information and debilitate heterophilic information. A line of methods ex-
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tends the uniform message passing schemes into diverse ones (Yang et al., 2021; Chanpuriya &
Musco, 2022), such as combining low-pass filter in GNNs with high-pass filters (Luan et al., 2022;
Duan et al., 2024) and heat kernels (Li et al., 2024), incorporating homophily-enhanced neighbor
aggregation (Wang et al., 2022; Jin et al., 2022). The architecture of GNN can also be adjusted to
fit the homophilic and heterophilic patterns in graphs. For example, Yan et al. (2023) redefines the
number of aggregation layers in GNNs as a tunable real number and shows that adaptive layer depth
can better filter low/high signals in homophilic/heterophilic graphs.

B EFFECT OF NODE HOMOPHILY ON CLASS SEPARABILITY

In this section, we examine how node homophily ratios influence the separability of aggregated
features under the contextual stochastic block model with structure (CSBM-S) proposed by Mao
et al. (2023).

Specifically, we generate two disjoint node sets, C1 and C2. Each node attribute Xu is sampled from
N (µi, I) with i ∈ {1, 2}, and the class prior is balanced, i.e., P (Y = 1) = P (Y = 2) = 1/2. To
induce different distributions of node homophily ratios, each set Ci is divided into two groups:

• C1
i : high-homophily nodes with intra-class and inter-class edge probabilities p1 > q1;

• C2
i : low-homophily nodes with probabilities p2 < q2.

We further assume that all nodes follow the same degree distribution, ensuring p1 + q1 = p2 + q2.

Aggregated Feature Distributions. Let F = D−1AX denote the aggregated node features. The
means of these features for the two homophily groups can be expressed as

f j
i ∼ N

(
pjµ1 + qjµ2

pj + qj
,
I

di

)
, i ∈ Cj

1; f j
i ∼ N

(
qjµ1 + pjµ2

pj + qj
,
I

di

)
, i ∈ Cj

2, (7)

where f j
i denotes the aggregated features of group j in class i.

From Eq. (7), when q1 = p2 and p1 = q2, we obtain Ef1
i = Ef2

i′ and Ef2
i = Ef1

i′ , where i ∈ C1,
i′ ∈ C2. This implies that the aggregated features of high-homophily nodes in one class overlap
with those of low-homophily nodes in the other class, making the two classes indistinguishable after
aggregation.

Separability Analysis. To investigate which graph structures in the CSBM-S model lead to good
class separability, we analyze the feature margin. As shown in Theorem B.1, the margin between
two classes, defined as

M := min
j,j′∈{1,2}

∥∥Ef j
i − Ef j′

i′

∥∥
2
, i ∈ Cj

1, i
′ ∈ Cj′

2 , (8)

is maximized when all nodes are highly homophilous.

Theorem B.1 (Largest Margin when All Nodes are High-homophily). Consider the CSBM-S model
described above and let the class margin be defined as in Eq. (8). Then

max
G

M = ∥µ1 − µ2∥2,

and the maximum is attained if and only if

q1 = 0, C2
1 = C2

2 = ∅. (9)

That is, the graph exhibits high-homophily across all nodes, with no low-homophily groups present.

Proof of Theorem B.1. From Eq. (7), the mean of the aggregated features for a node in group j of
class 1 is

Ef j
(1) =

pj
pj + qj

µ1 +
qj

pj + qj
µ2,
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and for a node in group j of class 2,

Ef j
(2) =

qj
pj + qj

µ1 +
pj

pj + qj
µ2.

Thus both expectations lie on the line segment between µ1 and µ2, i.e.,

Ef ∈ conv{µ1, µ2}.

Define αj :=
pj

pj+qj
. Then the expectations can be written as

Ef j
(1) = αjµ1 + (1− αj)µ2, Ef j

(2) = (1− αj)µ1 + αjµ2.

The distance between the aggregated means of group j in class 1 and group j′ in class 2 is∥∥Ef j
(1) − Ef j′

(2)

∥∥ =
∣∣αj + αj′ − 1

∣∣ ∥µ1 − µ2∥.

By definition,

M = min
j,j′

∥∥Ef j
(1) − Ef j′

(2)

∥∥ ≤ ∥µ1 − µ2∥,

with equality if and only if αj = 1 for every nonempty group j. Equivalently, this requires qj = 0
for all such groups. Under the degree constraint q2 > p2, the condition qj = 0 forces the low-
homophily groups C2

1 , C2
2 to be empty.

Therefore, under high-homophily we obtain

M = ∥µ1 − µ2∥2,

which is the largest possible margin. This completes the proof.

Theorem B.1 shows that maintaining consistently high homophily ratios across all nodes—rather
than mixing high- and low-homophily nodes—maximizes class separability. Moreover, in a highly
homophilous graph, increasing the degree di of node i reduces the variance of f j

i , thereby further
lowering the classification error. This leads to Theorem B.2.
Theorem B.2. Consider a linear classifier h(x) = sign(w⊤x + b) trained on aggregated features
f j
i . Let ϵ(h) denote its misclassification error. Then

min
G

ϵ(h) is attained when (u, v) ∈ E ⇐⇒ Yu = Yv.

Proof of Theorem B.2. From Theorem B.1, the largest class margin ∥µ1 − µ2∥2 is obtained under
Eq. (9). The linear classifier for two Gaussian N (µk, σ

2
kI), k = 1, 2 is given by

h(x) := sign
(

µ1 − µ2

∥µ1 − µ2∥
x− t

)
,

where t ∈ R is the bias parameter of the optimal classifier. The risk of the classifier is

ϵ(h) =
1

2
Φ

(
t− ∥µ1 − µ2∥

σ1

)
+

1

2

(
1− Φ

(
t

σ2

))
,

where Φ is the standard Gaussian cumulative density function. From Eq. (7), for any i ∈ C1 and
i′ ∈ C2, we have

σ2
1 = 1/d1, σ2

2 = 1/di′ .

Therefore, the minimal risk ϵ(h) decreases as the degree di increases for all nodes. Hence minimiz-
ing ϵ(h) requires:

(i) maximizing the margin M (achieved when all nodes are high-homophily), and

(ii) maximizing node degrees di while preserving homophily.
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This is achieved when each node is connected to all nodes with the same label, which proves the
assertion.

Theorem B.2 highlights that, beyond removing inter-class edges, class separability also benefits
from adding more intra-class edges. This directly motivates the source-domain adjustment strategy
in Section 4.1, where inter-class edges are pruned and additional intra-class edges are introduced for
low-homophily nodes. Since source labels are fully observable, such modifications are both natural
and straightforward to implement.

C PROOFS

C.1 PROOFS RELATED TO SECTION 3

The proof of Theorem 3.1 builds on the PAC-Bayesian framework for domain adaptation. We start
from the generalization bound in Mao et al. (2023), which relates the target error to the source
error, a KL-divergence term, and a discrepancy term between source and target. By incorporating
the adjusted homophily ratios and node representations, and applying the inequality in Fang et al.
(2025b), the discrepancy can be bounded by the average difference in homophily and representation
across domains. Choosing λ = n2α

s and following the concentration arguments of Mao et al. (2023),
we obtain the final bound where the target risk is controlled by: (i) the empirical source margin
loss, (ii) the cross-domain homophily difference, and (iii) the feature representation discrepancy.
This shows that structural refinement (to adjust homophily) and representation alignment (to reduce
embedding discrepancy) are both crucial for tightening the bound.
Assumption C.1 (Data follows Generalized CSBM-S model assumption). The graph data is gen-
erated from the Generalized CSBM-S model.
Definition C.2 (Distance To Training Set and Near Set). Define the distance from the target graph
to the source graph as

ϵ := max
j∈Vt

min
i∈Vs

∥fi(X,A)− fj(X,A)∥2.

Further, for each i ∈ Vs, define the near set of i with respect to Vt as

V
(i)
t := {j ∈ Vt | ∥fi(X,A)− fj(X,A)∥2 ≤ ϵ}.

Clearly,
Vt = ∪i∈Vs

V
(i)
t .

Assumption C.3 (Equal-Sized and Disjoint Near Sets ). Assume the near sets of each i ∈ Vs with
respect to Vt are disjoint and have the same size s ∈ N+.

Assumption C.3 assumes that the target nodes can be divided into equally sized partitions, where all
nodes in each partition share a same closest source node. It assumes that target nodes are closely
aligned with the respective source node, while distant to the other source nodes.
Assumption C.4 (Concentrated Expected Loss Difference). Let P be a distribution on H, defined
by sampling the vectorized MLP parameters from N (0, σ2I) for some σ2 ≤ (γ/8ϵm)2/L

2b(λN−α
0 +ln 2bL)

.

For any L-layer GNN classifier h ∈ H with model parameters Wh
1 , . . . ,W

h
L , define Th :=

maxl=1,...,L ∥Wh
l ∥2. Assume that there exists some 0 < α < 1

4 satisfying

Pr
h∼P

(
Lγ/4
m (h)− Lγ/2

0 (h) > N−α
0 + cKϵm | TL

h ϵm >
γ

8

)
≤ e−N2α

0 .

Assumption C.4 postulates that the expected margin loss on the target graph, is not significantly
larger that on the train node subgroup, as the number of source graph becomes larger.
Theorem (Restate of Theorem 3.1). Under the SGN model and assumptions C.1-C.4, let g ◦ ϕ be
a classifier from the hypothesis space of GNN classifiers. Denote by f̃u (resp. f̃v) the aggregated
feature of a source node u ∈ VS (resp. target node v ∈ VT ) under the adjusted graph structure
ÃS (resp. ÃT ). Similarly, let h̃S(u) and h̃T (v) denote the corresponding node homophily ratios.
Then for any γ > 0, δ ∈ (0, 1), α ∈ (0, 1/4), and sufficiently large ns, there exists a constant c
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independent of n such that with probability at least 1− δ, the target margin loss RT (g ◦ ϕ), can be
upper bounded by

R̂γ
S(g ◦ ϕ) + c

(
1

nsnt

∑
u∈VS

∑
v∈VT

(
|h̃S(u)− h̃T (v)|+ ∥f̃u − f̃v∥2

)
+

1

nα
s

+
ln(1/δ)

n2α
s

)
. (10)

Proof of Theorem 3.1. Combining Lemma 6 and Theorem 2 in Mao et al. (2023), we obtain that

RT (g ◦ ϕ)− R̂γ
S(g ◦ ϕ) ≤

1

λ

(
2
(
DKL(Q ∥P ) + 1

)
+ ln

(
1

δ

)
+

λ2

4ns
+D

γ/2
T,S(P, λ)

)
(11)

holds with probability at least 1− δ, where

D
γ/2
T,S(P, λ) := lnEϕ∼P exp

(
λ
(
Rγ/4

T (g ◦ ϕ)−Rγ/2
S (g ◦ ϕ)

))
.

By applying Inequality (22) in Fang et al. (2025b) to the adjusted node homophily h̃u and the
adjusted GNN representation f̃u, we have

D
γ/2
T,S(P, λ) ≤

1

nsnt

∑
u∈VS

∑
v∈VT

(
ln 3 +

2λρ√
2πσ

(
∥f̃u − f̃v∥2 + ρ · |h̃u − h̃v|

))
, (12)

where ρ := ∥µ1 − µ2∥2.

Substituting Eq. (12) into Eq. (11), we obtain

RT (ϕ)− R̂γ
S(ϕ) ≤

1

λ

(
2(DKL(Q||P ) + 1) + ln

(
1

δ

)
+

λ2

4ns

+
1

nsnt

∑
u∈VS

∑
v∈VT

(
ln 3 +

2λρ√
2πσ

(
∥f̃u − f̃v∥2 + ρ · |h̃u − h̃v|

)))
.

Next, set λ = n2α
s and apply the same analysis as in Inequality (47) of Mao et al. (2023). This yields

RT (ϕ)− R̂γ
S(ϕ)

≤ c′
(

ρ

nsnt

∑
u∈VS

∑
v∈VT

(
∥f̃u − f̃v∥2 + ρ · |h̃u − h̃v|

)
+

∑L
ℓ=1 ∥Wℓ∥2F

nα
s

+
1

n1−2α
s

+
ln(1/δ)

n2α
s

)
≤ c

(
1

nsnt

∑
u∈VS

∑
v∈VT

(
∥f̃u − f̃v∥2 + ρ · |h̃u − h̃v|

)
+

1

nα
s

+
ln(1/δ)

n2α
s

)
,

with probability at least 1− δ, where c and c′ are constants depending on γ, the maximum norm of
node representations, and the maximum hidden-layer width. This finishes the proof.

C.2 PROOFS RELATED TO SECTION 4

Proof of Theorem 4.1. By the definition of h̃S(u), we have

h̃S(u) =
α(1− hS(u)) + (1 + α)hS(u)

α(1− hS(u)) + (1 + α)hS(u) + (1− α)(1− hS(u))
=

α+ hS(u)

1 + αhS(u)
.

If α > h−hS(u)
1−h·hS(u) , then

α+ hS(u)

1 + αhS(u)
> h,

which implies h̃S(u) > h.
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Proof of Theorem 4.2. By Theorem 4.1, for any source node u and target node v with hS(u) < h

and hT (v) < h, we have h̃S(u) = h and h̃T (v) = h. Hence,

|h̃S(u)− h̃T (v)| = 0 < |hS(u)− hT (v)|.

For hS(u) ≥ h and hT (v) < h, we obtain h̃S(u) = hS(u) and h̃T (v) = h, which yields

|h̃S(u)− h̃T (v)| = hS(u)− h ≤ hS(u)− hT (v) = |hS(u)− hT (v)|.

Moreover, |h̃S(u)− h̃T (v)| is non-decreasing in h.

For hS(u) < h and hT (v) ≥ h, we get h̃S(u) = h and h̃T (v) = hT (v), so

|h̃S(u)− h̃T (v)| = hT (v)− h ≤ hT (v)− hS(u) = |hS(u)− hT (v)|.

Finally, when hS(u) ≥ h and hT (v) ≥ h, we have h̃S(u) = hS(u) and h̃T (v) = hT (v), giving

|h̃S(u)− h̃T (v)| = |hS(u)− hT (v)|.

These cases together establish the claim.

D COMPLEMENTARY EXPERIMENTS

D.1 EXPERIMENTAL SETUP

The experiments are implemented using the PyTorch platform on a workstation equipped with an
Intel(R) Core(TM) i7-14700K CPU@3.40GHz and a NVIDIA GeForce RTX 4080
16GB GPU. For all datasets, we adopt a k-layer GNN, where k ranges from 2 to 5 and the hidden
dimension is selected from 32, 64, 128, 512. Both the domain discriminator and the classifier are
implemented as two-layer MLPs with hidden dimensions chosen from 16, 32, 64, 128. To improve
the quality of pseudo labels on the target dataset, we pretrain an auxiliary MLP classifier with a
128-64-64 architecture on the source domain, which provides pseudo labels from a complementary
perspective. We select the learning rate in {0.0001, 0.001, 0.003, 0.01}. The setting of hyperparam-
eters γRA follows the schedule: min{2/(1 + e−10p) − 1, 0.1}, where p changes from 0 to 1 during
the training process, as described in Ganin et al. (2016). Additionally, the parameter grid for the
homophily threshold h is {0.5, 0.6, . . . , 0.9, 1.0}. Guided by Theorem 4.2, for source nodes u with
hS(u) < h, we take αu = (h − hS(u))/(1 − h · hS(u)) and for target nodes v with ĥT (v) < h

where ĥT is defined as in Eq. (4), we take αv = (h− ĥT (v))/(1− h · ĥT (v)).

The total number of training epochs is set to 300. Since the pseudo-labels generated for the target
domain are unreliable at the early stage, we adopt a warm-up strategy to stabilize training. Specifi-
cally, we introduce a starting epoch e and a reweighting frequency t, so that the model can gradually
adapt to the evolving graph structure instead of being continuously updated from the beginning. The
starting epoch determines when to begin imposing edge weights on the target graph. The reweight-
ing frequency specifies how often the edge weights are updated. The search spaces for e and t are
{100, 150, 200, 250} and {1, 5, 10, 15}. We repeatedly train and test our model for five times with
the same partition of dataset and then report the average of accuracy.

D.2 COMPARED METHODS

We compare our method with the following representative methods. UDA-GCN (Wu et al., 2020)
develops a dual graph convolutional network that jointly exploits local and global consistency
for better adaptation. ASN (Zhang et al., 2021a) improves node representations by disentangling
domain-specific and domain-invariant factors through private and shared encoders. JHGDA (Shi
et al., 2023) explores information from different levels of network hierarchy by hierarchical pooling
model. StruRW (Liu et al., 2023) and PairAlign (Liu et al., 2024c) reweight edges in the source
graph to reduce the conditional shift of neighborhoods. GraphAlign (Huang et al., 2024) gener-
ates a small yet transferable graph that aligns with the target via MMD and preserves transferable
knowledge through gradient matching. HGDA (Fang et al., 2025b) mitigates the homophily shift by
aligning multi-view feature representations across domains.
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Table 5: Dataset Statistics.
Dataset # Domains # Nodes # Edges # Node Homo # Edge Homo # Feat Dims # Labels

Airport
USA 1,190 27,198 0.3728 0.6978

241 4BRAZIL 131 2,148 0.2478 0.4683
EUROPE 399 11,990 0.2195 0.4048

Blog
Blog1 2,300 66,942 0.3887 0.3991 8,189 6
Blog2 2,896 107,672 0.3728 0.4002

Citation
DBLPv8 5,578 7,341 0.9750 0.9654 7,537 6
ACMv9 7,410 11,135 0.8179 0.8335

Twitch

England 7,126 35,324 0.5536 0.5560

3,170 2

Germany 9,498 153,138 0.5974 0.6322
France 6,566 65,955 0.5716 0.5595
Russia 4,385 37,304 0.6300 0.6176
Spain 4,648 59,382 0.6137 0.5800

Portugal 1,912 31,299 0.5945 0.5708

D.3 DATASET

D.3.1 DATASET STATISTICS

Table 5 presents the basic statistics of each dataset, such as the numbers of nodes, the numbers of
edges, feature dimensions, and labels. In addition, we report the average node and edge homophily,
providing a measure of dataset homophily.

D.3.2 VISUALIZATION FOR SYNTHETIC DATASET

We take a two-dimensional example with the same attribute generation procedure as in the main
text. For each class, we generate an equal number of nodes from three classes. In the source
domain, the node attributes are drawn from class-specific 2-dimension Gaussian distributions: the
means of the three Gaussians are [−1, 0], [1, 0] and [0, 1] for the source domain, and [−1.5, 0.5],
[1.5,−0.5] and [0.5, 1.5] for the target domain. The covariance matrices for the three Gaussians are
random rotations of three diagonal matrices: diag([45, (1/4)5]), diag(|arange(10)−9/2|/(9/2)),
and diag([4, 1/4, 4, . . . , 1/4]), where diag(·) means the diagonal matrix with some vectors.

Figure 5(a) presents class-wise attribute contours on source (dashed) and target (solid) domains. For
each class, we estimate a Gaussian density from its samples and plot two equal-probability contour
levels. Differences in separation, overlap, and orientation across domains reflect both mean and co-
variance shifts in the conditional distributions P (X | Y ). To further visualize marginal distribution
shift, Figure 5(b) (right) applies kernel density estimation (KDE) on all node attributes regardless of
labels. The resulting contours approximate the overall PX in the source and target domains, provid-
ing a more realistic representation of domain-level attribute distribution than Gaussian formulations.
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Figure 5: Visualization of synthetic data.
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D.4 PARAMETER ANALYSIS

In this part, we analyze the influence of the homophily threshold h on the performance of our model.
As shown in Figure 6, simply increasing the homophily threshold h does not always guarantee bet-
ter performance. On datasets such as Blog, adding more homophilous edges steadily improves
performance. In contrast, on datasets like Airport, performance peaks at an intermediate thresh-
old and then declines. We attribute this to the amplification of noise in pseudo-labels. When the
target domain contains higher label uncertainty, enforcing too many additional homophilous edges
propagates and magnifies such errors, which compromises the benefits of structural refinement.

0.5 0.6 0.7 0.8 0.9 1.0
Homophily threshold h

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

B1-B2

0.5 0.6 0.7 0.8 0.9 1.0
Homophily threshold h

0.65

0.70

0.75

0.80

0.85

0.90

0.95
B2-B1

(a) Performance on Blog with varied h.
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Figure 6: Parameter Analysis of homophily threshold h.

THE USE OF LARGE LANGUAGE MODELS (LLM)

We commit to using LLMs for text polishing based on prompts. All polished text are double-checked
by authors to ensure accuracy, avoid over-claims, and prevent confusion.
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