

PROGRESSIVE GRAPH STRUCTURE ADJUSTMENT FOR HOMOPHILY SHIFT IN GRAPH DOMAIN ADAPTATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Node homophily shift—the mismatch in the tendency of nodes to have neighbors with the same label between source and target graphs—poses a key challenge for *Graph Domain Adaptation (GDA)* without target labels. We introduce *Progressive Structure Adjustment for Homophily Shift (PSAHS)*, which progressively reduces homophily discrepancies: in the source graph by modifying existing edges and adding new edges for low-homophily nodes, and in the target graph by making analogous adjustments for nodes with consistent label predictions from *Graph Neural Networks (GNNs)* and *Multi-Layer Perceptrons (MLPs)*. After each refinement, GNNs are updated with domain-adversarial training for representation alignment. This interplay of structure adjustment and representation learning mitigates homophily shift, tightens the target error bound, and yields consistent improvements over strong baselines, highlighting the necessity of node homophily alignment for effective cross-graph transfer.

1 INTRODUCTION

Graph Neural Networks (GNNs) have achieved remarkable success in node classification by jointly leveraging node attributes and graph structure. However, in many real-world applications—such as cross-network recommendation (Zhao et al., 2025), bioinformatics (Li et al., 2025), and citation analysis (He et al., 2023)—target-domain labels are scarce or even entirely unavailable, making it difficult to train reliable models directly. This challenge motivates the study of *Graph Domain Adaptation (GDA)*, which aims to transfer knowledge from a well-labeled source graph to an unlabeled or sparsely labeled target graph.

The central difficulty in GDA lies in distributional shifts between source and target domains, spanning node attributes, graph structures, and label distributions. Existing GDA methods primarily address this issue by aligning node features through adversarial training (Zhang et al., 2019; Wu et al., 2020) or direct feature alignment (Wu et al., 2023; Chen et al., 2025), and then training a shared classifier in the aligned space. However, since these approaches can also be applied to non-graph data, they often overlook the unique structural properties of graphs and fail to capture how graph-specific structures affect label prediction.

Recent work has started to explore structural shifts conditioned on labels. For example, Liu et al. (2023; 2024c) model that the probability of an edge between two nodes is determined by the labels of the node pair. To mitigate the class-conditional structure shift, they reweight each edge by the ratio of class-conditional edge probabilities between domains, estimated from the labels of two endpoints. Therefore, their shift formulation only captures the structure–label relation at the level of a *single edge* level, making their approaches remain inherently local: each edge is adjusted solely based on its *two endpoints*’ labels, without accounting for broader or global patterns of structural mismatch.

This limitation highlights the central importance of *node homophily* (Mao et al., 2023)—the proportion of a node’s neighbors that share its label—which reflects the ability of an ego-network to propagate label information. Node homophily thus captures a global structure–label property that goes beyond isolated edges. Most prior work on homophily focuses on increasing the overall graph-level homophily ratio (Zhu et al., 2020) by incorporating higher-order neighbors with the same labels (Li et al., 2022) and reconstructing the graph via spectral clustering (Li et al., 2023). More detailed related work is listed in Appendix A.2. By contrast, variation in node-level homophily has received much less attention until studies (Ma et al., 2021; Mao et al., 2023), which show that within homophilic graphs, GNNs perform well on high-homophily nodes but deteriorate on low-homophily

054 ones, and that such node homophily shifts strongly affect generalization in the node classification
 055 problem. In the GDA setting, Fang et al. (2025b) further demonstrates that mismatched homophily
 056 distributions—i.e., differences in the composition of high- versus low-homophily nodes across do-
 057 mains—can significantly hinder knowledge transfer even when feature distributions are aligned. Yet
 058 they still treat node homophily as intrinsic and immutable, attempting to address it only indirectly
 059 through feature alignment rather than as a structure-label relation shift that can be explicitly reduced.

060 We propose *Progressive Structure Adjustment for Homophily Shift (PSAHS)*, a new paradigm for
 061 GDA grounded in a generalization error bound that links target performance to source error, ho-
 062 mophily shift, and representation divergence. Our three-stage framework first enhances source
 063 homophily by modifying the adjacency matrix entries of low-homophily nodes, then refines the
 064 target graph by adjusting low-homophily nodes with consistent label predictions from the GNN and
 065 MLP to align its homophily distribution with the source, and finally updates the GNN encoder via
 066 domain-adversarial training for representation alignment. By alternating target refinement and rep-
 067 resentation alignment, PSAHS progressively mitigates homophily shift, improves the reliability of
 068 label prediction, and forms a self-reinforcing loop between structure adjustment and representation
 069 learning. Guided by source labels and reliable target label predictions, PSAHS explicitly raises low
 070 node homophily, provably reduces homophily shift, and enhances GDA performance.

071 Our contributions are threefold: (i) We present a theoretical analysis that explicitly connects ho-
 072 mophily shift to cross-domain generalization error, motivating structural adjustment as a principled
 073 solution. (ii) We propose a progressive homophily-aware structure adjustment framework that alter-
 074 nates between target graph refinement and representation alignment. (iii) We validate our method on
 075 multiple benchmarks, showing consistent improvements over strong GDA baselines, with especially
 076 large gains under severe homophily mismatch, underscoring the importance of structural alignment
 077 for effective cross-graph transfer.

078 2 PRELIMINARIES

079 2.1 NODE CLASSIFICATION

080 A graph is represented as $\mathcal{G} = (\mathcal{V}, \mathcal{E}, X)$, where \mathcal{V} is the node set with $|\mathcal{V}| = n$, \mathcal{E} is the edge set, and
 081 $X := (X_u)_{u \in \mathcal{V}} \in \mathbb{R}^{n \times F}$ is the node attribute matrix, with each row $X_u \in \mathbb{R}^F$ denoting the attribute
 082 vector of node u . The adjacency matrix $A = (A_{uv})_{u, v \in \mathcal{V}}$ encodes the graph structure, where
 083 $A_{uv} \in \{0, 1\}$ indicates whether an edge exists between nodes u and v . For any $n \in \mathbb{N}^*$, we denote
 084 $[n] := \{1, 2, \dots, n\}$. We focus on the node-level classification task, where the goal is to predict the
 085 label vector $Y := (Y_u)_{u \in \mathcal{V}}$. For theoretical clarity, we assume binary labels $Y_u \in \mathcal{Y} := \{0, 1\}$,
 086 though our approach can be naturally extended to multi-class settings.

087 *Graph Neural Networks (GNNs)* (Wu et al., 2021) have become the dominant framework for graph
 088 representation learning. An $(L-1)$ -layer GNN iteratively updates node representations via message
 089 passing. Formally, given adjacency matrix A and attribute matrix X , the GNN produces **features**
 090 $f := \phi(X, A) \in \mathbb{R}^{n \times F}$ through $L-1$ propagation layers. The final feature f is then fed into a
 091 classifier $g : \mathbb{R}^{n \times F} \rightarrow \mathbb{R}^{n \times M}$, where M is the number of classes. The overall model is $g \circ \phi(X, A)$,
 092 and the output $g_{u,m}(\phi(X, A))$ gives the predicted probability that node u belongs to class m .

093 2.2 GRAPH DOMAIN ADAPTATION AND NODE HOMOPHILY SHIFT

094 *Graph Domain Adaptation (GDA)* studies the problem of transferring knowledge from a labeled
 095 source graph to an unlabeled target graph, where the two domains exhibit distributional differences.
 096 Formally, the source domain provides a labeled graph $\mathcal{G}_S = (\mathcal{V}_S, \mathcal{E}_S, X^S)$ with $(X^S, A^S, Y^S) \sim P_S$, while the target domain provides an unlabeled graph $\mathcal{G}_T = (\mathcal{V}_T, \mathcal{E}_T, X^T)$ with $(X^T, A^T) \sim P_T$. The distributions P_S and P_T may differ in node attributes, graph topology, and even conditional
 097 label distributions. The goal of GDA is to minimize the classification risk on P_T by leveraging
 098 labeled data from P_S while accounting for these shifts.

099 A central structural property of graphs is *node homophily*, which measures the tendency of connected
 100 nodes to share the same label. For a node $u \in \mathcal{V}$ with neighborhood $\mathcal{N}_u := \{v \in \mathcal{V} \mid A_{uv} = 1\}$,
 101 the *homophily ratio* is defined as $h_G(u) := \frac{1}{d_u} \sum_{v \in \mathcal{N}_u} \mathbf{1}\{Y_u = Y_v\}$, where $\mathbf{1}\{\cdot\}$ is the indicator
 102 function and $d_u := |\mathcal{N}_u|$ is the degree of node u . This ratio captures the proportion of neighbors of
 103 u that share its label. For notational clarity, we denote the homophily ratios in the source and target

graphs as $h_S(u) := h_{\mathcal{G}_S}(u)$ and $h_T(u) := h_{\mathcal{G}_T}(u)$, respectively. The collection of all node-level ratios $\{h_{\mathcal{G}}(u) : u \in \mathcal{V}\}$ defines the *homophily distribution* $P_{\mathcal{G}}(h)$ of a graph \mathcal{G} .

Definition 2.1 (Node Homophily Shift). Let $P_S(h)$ and $P_T(h)$ denote the node homophily distributions of the source and target graphs, respectively. We define a *node homophily shift* as the case where $P_S(h) \neq P_T(h)$.

In this work, we study GDA by focusing on reducing the *node homophily shift* between the source and target domains. This shift has been empirically observed across a wide range of citation and social networks in Fang et al. (2025b). Our subsequent theoretical analysis shows that the target-domain error bound explicitly depends on the node homophily shift, highlighting its impact on cross-domain generalization.

Symbol	Meaning	Symbol	Meaning
$\mathcal{G} = (\mathcal{V}, \mathcal{E}, X)$	graph with nodes, edges, and attributes	\tilde{A}^S, \tilde{A}^T	adjusted adjacency matrix of source/target domain
X^S, X^T	node feature matrix of source/target domain	$\tilde{f} := \phi(X, \tilde{A})$	GNN encoded feature matrix with adjusted structure
A^S, A^T	adjacency matrix of source/target domain	$\tilde{h}_S(u), \tilde{h}_T(u)$	node homophily in adjusted source/target graph
Y^S	node labels of the source domain	\hat{Y}_u	the pseudo-label of node u
ϕ, g	GNN encoder, GNN classifier	$\hat{h}_T(u)$	the estimated node homophily
$f := \phi(X, A)$	GNN encoded feature matrix,	h	the desired node homophily threshold
$g_{u,m}(\phi(X, A))$	predicted prob. of class m for node u ,	α_u	the node-wise edge adjustment strength
$h_S(u), h_T(u)$	node homophily in source/target graph	\mathcal{V}_T^r	reliable target node set where the GNN and MLP agree

Table 1: Summary of key notations used in the paper.

3 THEORETICAL ANALYSIS OF STRUCTURE ADJUSMENT STRATEGY UNDER NODE HOMOPHILY SHIFT

To mitigate the homophily shift, a fundamental approach is to directly adjust node homophily in both domains, thereby reducing the homophily gap. Since a node’s homophily ratio is jointly determined by the graph structure and node labels, a natural strategy is to manipulate the graph structure rather than labels to mitigate the node homophily shift. Adjusting labels would inevitably introduce noise and degrade classifier reliability, whereas structural refinement provides a principled way to modify homophily while preserving label consistency. Formally, let \tilde{A}^S and \tilde{A}^T denote the adjusted adjacency matrices of the original A^S and A^T in the source and target domains, respectively. By definition, \tilde{A}^S and A^S have the same dimensions, but there exist nodes $u, v \in \mathcal{V}^2$ such that $\tilde{A}_{uv}^S \neq A_{uv}^S$. An analogous definition applies to \tilde{A}^T and A^T . Given \tilde{A}^S and \tilde{A}^T , we denote the corresponding homophily ratio and aggregated feature of node u as \tilde{h}_u and \tilde{f}_u , respectively.

After transforming from the original A^S and A^T to the adjusted structure \tilde{A}^S and \tilde{A}^T , we study a GNN classifier trained on the adjusted source graph and applied to the adjusted target graph. In what follows, we derive a target-domain error bound for this classifier, which provide explicit guidance for designing a specific structure adjustment approach and lays the theoretical foundation for our subsequent methodology.

Following Mao et al. (2023), we adopt the *Simplifying Graph Convolutional Networks (SGN)* model (Wu et al., 2019) as the base GNN classifier. In this setting, the classifier $g \circ \phi$ is an MLP operating on aggregated features, formally defined as $g \circ \phi(X, A) := \text{MLP}(D^{-1}AX; \{W^{\ell}\}_{\ell=1}^L)$, where D is the degree matrix and W^{ℓ} are the learnable parameters of the ℓ -th layer. For theoretical analysis, we consider the *margin loss function* with margin parameter $\gamma \geq 0$: $\widehat{\mathcal{R}}_S^{\gamma}(g \circ \phi) := \frac{1}{n_s} \sum_{i=1}^{n_s} \mathbf{1}\{g_{i,Y^S}(\phi(X^S, A^S)) \leq \gamma + \max_{k \neq Y^S} g_{i,k}(\phi(X^S, A^S))\}$. The expected margin loss is then $\mathcal{R}_S^{\gamma}(g \circ \phi) := \mathbb{E}_{Y_u \sim P_S(Y|f_u(X^S, \tilde{A}^S))} [\widehat{\mathcal{R}}_S^{\gamma}(g \circ \phi)]$. When $\gamma = 0$, this reduces to the standard classification loss $\mathcal{R}_S(g \circ \phi) := \mathcal{R}_S^0(g \circ \phi)$. Similar definitions hold for the target domain.

Building on the PAC-Bayesian framework, we next derive theoretical results showing how graph structure adjustment influences target-domain error through the adjusted homophily ratios and aggregated features in the two domains.

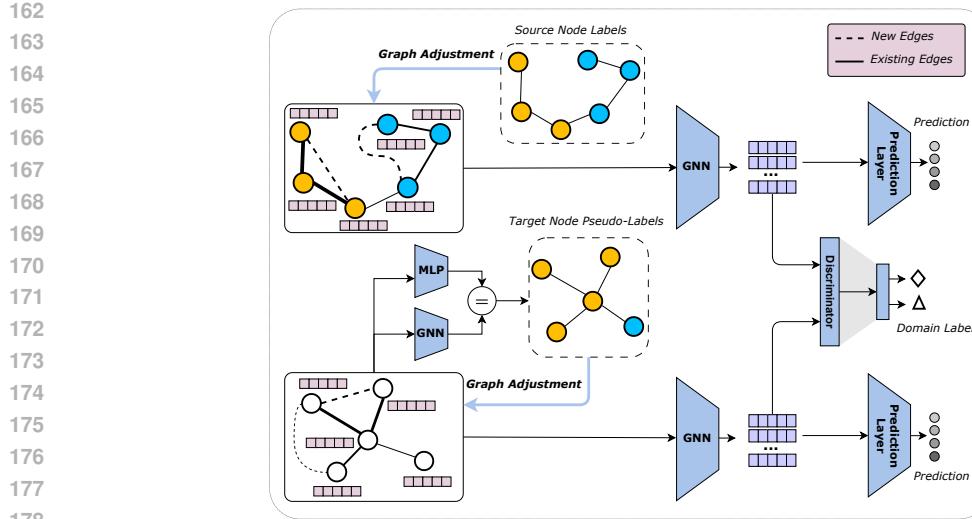


Figure 1: Framework of Progressive Structure Adjustment for Homophily Shift (PSAHS).

Theorem 3.1. *Under the SGN model*, let $g \circ \phi$ be a classifier from the hypothesis space of GNN classifiers. Denote by \tilde{f}_u (resp. \tilde{f}_v) the aggregated feature of a source node $u \in \mathcal{V}_S$ (resp. target node $v \in \mathcal{V}_T$) under the adjusted graph structure \tilde{A}^S (resp. \tilde{A}^T). Similarly, let $\tilde{h}_S(u)$ and $\tilde{h}_T(v)$ denote the corresponding node homophily ratios. Then for any $\gamma > 0$, $\delta \in (0, 1)$, $\alpha \in (0, 1/4)$, and sufficiently large n_s , there exists a constant c independent of n such that with probability at least $1 - \delta$, the target margin loss $\mathcal{R}_T(g \circ \phi)$, can be upper bounded by

$$\widehat{\mathcal{R}}_S^\gamma(g \circ \phi) + c \left(\frac{1}{n_s n_t} \sum_{u \in \mathcal{V}_S} \sum_{v \in \mathcal{V}_T} (|\tilde{h}_S(u) - \tilde{h}_T(v)| + \|\tilde{f}_u - \tilde{f}_v\|_2) + \frac{1}{n_s^\alpha} + \frac{\ln(1/\delta)}{n_s^{2\alpha}} \right). \quad (1)$$

Therefore, Theorem 3.1, whose proof is given in Appendix C.1, establishes that minimizing the target classification error requires jointly reducing the following three components.

(I) Empirical source margin loss $\widehat{\mathcal{R}}_S(g \circ \phi)$. This term reflects the classification performance on the source domain. As shown in Mao et al. (2023), since homophily shifts between high- and low-homophily node subgroups degrade performance on the minority subgroup, making it difficult for GNNs to perform well on both simultaneously. Hence, the source error can be reduced by increasing the node homophily of low-homophily nodes. To this end, we refine the source graph structure by down-weighting inter-class edges and introducing additional intra-class edges for low-homophily nodes, as described in Section 4.1.

(II) Discrepancy in node homophily ratios across domains $\sum_{u \in \mathcal{V}_S} \sum_{v \in \mathcal{V}_T} |\tilde{h}_S(u) - \tilde{h}_T(v)|$. After adjusting the source graph as in (I), the values $\tilde{h}_S(u)$ become fixed. To reduce the remaining discrepancy, we adjust the target graph structure to modify $\tilde{h}_T(v)$, thereby aligning the homophily distributions of the two domains (see Section 4.2).

(III) Discrepancy in aggregated node representations $\sum_{u \in \mathcal{V}_S} \sum_{v \in \mathcal{V}_T} \|\tilde{f}_u - \tilde{f}_v\|_2$. This term quantifies representation-level misalignment between domains. We address it by aligning the distributions of node representations through domain-adversarial neural networks (see Section 4.3).

It is important to note that prior work such as Fang et al. (2025b) also introduces a homophily shift term similar to (II). However, in their formulation, the homophily ratios $h_S(u)$ and $h_T(v)$ are intrinsic and fixed by the original graph structure, making them unmodifiable. In contrast, our framework leverages the adjusted homophily ratios $\tilde{h}_S(u)$ and $\tilde{h}_T(v)$, which can be actively refined through structural adjustments. This flexibility allows us not only to enhance source homophily (thereby reducing (I)) but also to explicitly align homophily distributions across domains (thereby reducing (II)), jointly tightening the target error bound.

216 4 METHODOLOGY
217

218 In this section, we propose a homophily-aware structure adjustment framework for graph domain
219 adaptation to mitigate the three error components shown in Theorem 3.1. As shown in Figure 1,
220 our method progressively refines graph structures in both domains while aligning node representa-
221 tions, thus minimizing the three error components in the error bound. Specifically, we (i) enhance
222 source homophily by modifying inter-class edges and adding intra-class edges for low-homophily
223 nodes, then train a GNN and MLP to generate target pseudo-labels; (ii) reduce cross-domain ho-
224 mophily shift by adjusting target structures based on the consistent pseudo-labels; and (iii) mitigate
225 representation misalignment via domain-adversarial training. These steps alternate iteratively until
226 convergence, producing an effective target-domain classifier with tighter error bounds.
227

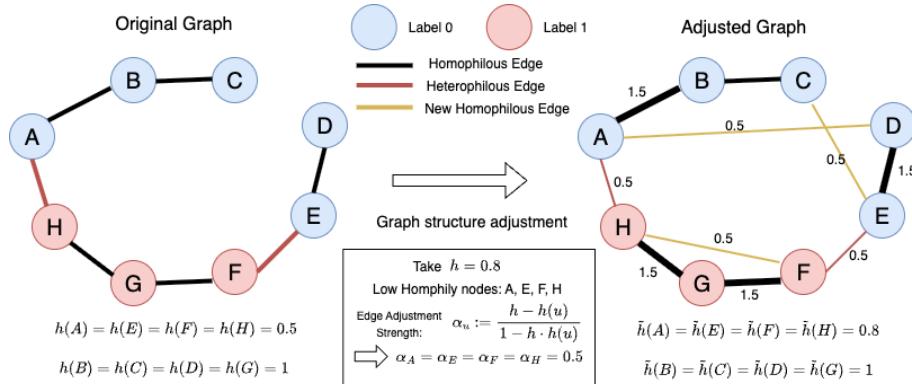
228 4.1 ENHANCING SOURCE HOMOPHILY VIA GRAPH STRUCTURE ADJUSTMENT
229

230 To improve classification performance in the source domain, our goal is to increase node homophily
231 ratios, particularly for nodes with initially low homophily, as motivated by the theoretical results in
232 Appendix B.

233 We refine the source graph structure by reweighting edges of low-homophily nodes and introduc-
234 ing additional intra-class connections, while keeping the adjacency of high-homophily nodes un-
235 changed. Specifically, for each node u with $h_S(u) < h$, we decrease the weights of its inter-class
236 edges to $1 - \alpha_u$ and increase the weights of its intra-class edges to $1 + \alpha_u$, where $\alpha_u \in [0, 1]$ is a
237 node-specific edge adjustment strength, with its precise value provided in Theorem 4.2. To further
238 promote intra-class connectivity, we randomly select $d_u(1 - h_S(u))$ non-neighbor nodes v with
239 $Y_v = Y_u$ and connect them to u with weight α_u . For nodes with $h_S(u) \geq h$, we retain their original
240 adjacency entries. Formally, the adjusted adjacency matrix \tilde{A}^S is defined as
241

$$\tilde{A}_{uv}^S := \begin{cases} A_{uv}^S, & \text{if } v \in \mathcal{V}_S, h_S(u) \geq h, \\ 1 + \alpha_u, & \text{if } v \in \mathcal{V}_S, h_S(u) < h, A_{uv}^S = 1, Y_u = Y_v, \\ 1 - \alpha_u, & \text{if } v \in \mathcal{V}_S, h_S(u) < h, A_{uv}^S = 1, Y_u \neq Y_v, \\ \alpha_u, & \text{if } v \in \mathcal{V}_S, h_S(u) < h, A_{uv}^S = 0, v \in \mathcal{N}'_u, \\ 0, & \text{if } v \in \mathcal{V}_S, h_S(u) < h, A_{uv}^S = 0, v \notin \mathcal{N}'_u, \end{cases} \quad (2)$$

242 where $\mathcal{N}'_u \subset \mathcal{V} \setminus \mathcal{N}_u$ denotes the newly added set of same-label neighbors for node u .
243



244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
Figure 2: Left subfigure: four nodes A,B,C,D,E from class 0 and three nodes F,G,H from class 1. The ho-
mophily ratios of nodes A,E,F,H equal 1, while those of nodes B,C,D,G equal 0.5. Middle box: Set
the desired homophily level to $h = 0.8$, nodes B,C,D,G are identified as low-homophily nodes. For
each $u \in \{B, C, D, G\}$, the edge adjustment strength is computed as $\alpha_u = h - h(u) / (1 - h \cdot h(u)) =$
 $(0.8 - 0.5) / (1 - 0.8 \cdot 0.5) = 0.5$. Right subfigure: for each low-homophily node $u \in \{B, C, D, G\}$,
we increase its homophilous edge weight to $1 + \alpha_u = 1.5$ (thicker black edges), decrease its heterophilous edge weight to $1 - \alpha_u = 0.5$ (thinner green edges), and add new homophilous edges with the strength $\alpha_u = 0.5$ (thin yellow edges). As a result, the adjusted homophily ratios defined
in Eq. (3) increase to $\tilde{h}(u) = 0.8$. This example visually demonstrates how our strategy ensures that
every node reaches the desired homophily level h .

270 Since \tilde{A}^S is no longer binary, we extend the definition of the homophily ratio under the adjusted
 271 structure as

$$273 \quad \tilde{h}_S(u) = \frac{\sum_{v \in \mathcal{V}_S, Y_u = Y_v} \tilde{A}_{uv}^S}{\sum_{v \in \mathcal{V}_S} \tilde{A}_{uv}^S}. \quad (3)$$

276 For nodes with $h_S(u) \geq h$, the ratios remain unchanged, i.e., $\tilde{h}_S(u) = h_S(u) \geq h$. For nodes with
 277 $h_S(u) < h$, the following theorem guarantees that the adjustment increases their homophily to at
 278 least the desired threshold:

279 **Theorem 4.1.** *For any $h \in (0, 1]$, if $\alpha_u \in [(h - h_S(u))/(1 - h \cdot h_S(u)), 1)$ is chosen in Eq. (2) for
 280 a node u with $h_S(u) < h$, then the adjusted homophily in Eq. (3) satisfies $\tilde{h}_S(u) \geq h$.*

282 Theorem 4.1, whose proof is given in Appendix C.2, demonstrates that our adjustment strategy
 283 successfully elevates the homophily of initially low-homophily nodes above the specified threshold,
 284 thereby enhancing source-domain classification and reducing the source margin loss term (I) in the
 285 target error bound in Eq. (10).

287 4.2 ALIGNING TARGET HOMOPHILY VIA GRAPH STRUCTURE ADJUSTMENT

289 We now aim to align node homophily ratios across domains to reduce the shift term (II) in The-
 290 orems 3.1. Recall that in the source domain, all nodes have been refined to achieve homophily at
 291 least h through the adjustment in Eq. (2). Thus, the remaining task is to promote low-homophily
 292 nodes in the target domain to reach the same threshold h , thereby aligning homophily distributions
 293 across domains, which is guaranteed by Theorem 4.2. A key challenge is that computing homophily
 294 ratios requires node labels, which are unavailable in the target domain. To overcome this, we em-
 295 ploy a GNN classifier $g \circ \phi$ trained on the source domain to generate pseudo-labels for target nodes:
 296 $\hat{Y}_u := \arg \max_{m \in [M]} g_{u,m}(\phi(X^T, \tilde{A}^T))$, $u \in \mathcal{V}_T$, where initially $\tilde{A}^T := A^T$.

297 To improve the reliability of label prediction, we introduce an auxiliary MLP trained only on source
 298 data. We then identify target nodes where the GNN and MLP predictions agree as *reliable nodes*,
 299 which form the reliable target set \mathcal{V}_T^r . For high-homophily reliable nodes, GNNs are typically more
 300 accurate than MLPs, as homophilous edges enable the aggregation of more same-class features that
 301 enhance discriminability. For low-homophily nodes, MLPs often outperform GNNs, as MLPs are
 302 unaffected by the noisy signals introduced by heterophilous edges. Thus, when both models yield the
 303 same prediction—consistent from raw attributes X and from aggregated features via the adjacency
 304 matrix—the prediction is regarded as high-confidence and reliable.

305 For each node in the reliable target set $u \in \mathcal{V}_T^r$, based on the target reliable pseudo-labels \hat{Y}_u , we
 306 estimate its homophily ratio as

$$307 \quad \hat{h}_T(u) := \frac{\sum_{v \in \mathcal{N}_u \cap \mathcal{V}_T^r} \mathbf{1}\{\hat{Y}_u = \hat{Y}_v\}}{|\mathcal{N}_u \cap \mathcal{V}_T^r|}. \quad (4)$$

311 To mitigate the node homophily shift, we need to improve the homophily of reliable target nodes to
 312 the same threshold h as used in the source domain. Reliable low-homophily nodes $u \in \mathcal{V}_T^r$ satisfying
 $\hat{h}_T(u) < h$ are the target nodes whose adjacency entries A_{uv} are adjusted following a scheme similar
 313 to Section 4.1, while the adjacency entries of non-reliable nodes and reliable high-homophily nodes
 314 remain unchanged. Specifically, given the target labels are unobserved, the target adjacency matrix
 315 will be adjusted to \tilde{A}_{uv}^T in the same way as in Eq. (2) by only replacing $\mathcal{V}_S, Y_u, Y_v, h_S$ with \mathcal{V}_T^r ,
 316 $\hat{Y}_u, \hat{Y}_v, \hat{h}_T$, and changing the construction way of the newly added neighbor set \mathcal{N}'_u . To construct
 317 \mathcal{N}'_u in the target domain, we select $(h - \hat{h}_T(u))d_u$ reliable non-neighbor nodes $v \in \mathcal{V}_T^r \setminus \mathcal{N}_u$
 318 (i) sharing the same predicted label $\hat{Y}_v = \hat{Y}_u$ and (ii) having the highest GNN confidence scores
 319 $g_{v,\hat{Y}_u}(\phi(X^T, \tilde{A}^T))$.

322 This edge refinement increases homophily for the adjusted low-homophily nodes and their neigh-
 323 bors, including originally heterophilous neighbors and newly connected same-class neighbors,
 thereby improving separability of the aggregated features. In particular, the neighbors of reliable

324 low-homophily nodes are often themselves low-homophily and prone to misclassification. Therefore,
 325 adjusting the edge weights between them is crucial for these neighbors to enhance node ho-
 326 mophily and improve the predictive ability. Furthermore, by restricting edge adjustments only to
 327 low-homophily nodes with consistent predictions, our approach captures the key to performance
 328 improvement while avoiding erroneous adjustments.

329 The generalized homophily ratio of target node $u \in \mathcal{V}_T^r$ under the adjusted structure is then
 330

$$\tilde{h}_T(u) = \frac{\sum_{v \in \mathcal{V}_T^r, \hat{Y}_u = \hat{Y}_v} \tilde{A}_{uv}^T}{\sum_{v \in \mathcal{V}_T^r} \tilde{A}_{uv}^T}. \quad (5)$$

334 **Theorem 4.2.** Let \tilde{h}_S and \tilde{h}_T be the adjusted homophily as in Eq. (3) and Eq. (5), respectively. For
 335 any $h \in (0, 1]$, if we take $\alpha_u = (h - h_S(u))/(1 - h \cdot h_S(u))$ for source nodes u with $h_S(u) < h$
 336 and $\alpha_v = (h - h_T(v))/(1 - h \cdot h_T(v))$ for target nodes v with $h_T(v) < h$, then

$$\sum_{u \in \mathcal{V}_S} \sum_{v \in \mathcal{V}_T} |\tilde{h}_S(u) - \tilde{h}_T(v)| \leq \sum_{u \in \mathcal{V}_S} \sum_{v \in \mathcal{V}_T} |h_S(u) - h_T(v)|.$$

339 In other words, the shift in homophily ratios between domains after structure adjustment is no larger
 340 than that without adjustment.

342 Theorem 4.2, whose proof is given in Appendix C.2, shows that, with proper node-wise choices of
 343 α_u , adjusting the source and target graph structure as in the scheme of Eq. (2), can reduce the node
 344 homophily shift between domains. This result informs the selection of α_u values in our experiments.
 345 In summary, our adjustment strategy modifies existing edges and adds new intra-class edges based
 346 on reliable pseudo-labels. Unlike prior methods such as Liu et al. (2023; 2024c), which reweight all
 347 existing edges for all source nodes, our approach specifically targets low-homophily nodes in both
 348 domains and additionally introduces new homophilous edges, making the process more focused,
 349 adaptive, and effective for cross-domain alignment.

350 4.3 REPRESENTATION ALIGNMENT ACROSS DOMAINS

352 To address the discrepancy in aggregated features across domains and reduce the error term (III) in
 353 Theorem 3.1, we adopt a domain-adversarial training framework to learn a domain-invariant GNN
 354 encoder ϕ . Specifically, we solve the following minimax problem:

$$\min_{\phi} \max_{\xi} \left[\frac{1}{|\mathcal{V}_S|} \sum_{u \in \mathcal{V}_S} \log (\xi(\phi_u(X^S, \tilde{A}^S))) + \frac{1}{|\mathcal{V}_T|} \sum_{u \in \mathcal{V}_T} \log (1 - \xi(\phi_u(X^T, \tilde{A}^T))) \right],$$

358 where ξ is a domain discriminator. We denote the corresponding alignment loss as $\mathcal{R}_{\text{RA}}(\phi)$.

359 For supervised learning on the source domain, we use the cross-entropy loss:

$$\mathcal{R}_{\text{CE}}(\phi, g) = -\frac{1}{|\mathcal{V}_S|} \sum_{u \in \mathcal{V}_S} \mathcal{L}_{\text{CE}}(g_u(\phi(X^S, \tilde{A}^S)), Y_u),$$

363 where $g_u(\cdot)$ denotes the predicted class probability for node u .

364 The overall training objective integrates representation alignment and source supervision:

$$\min_{\phi, g} \underbrace{\mathcal{R}_{\text{CE}}(\phi, g)}_{\text{Supervised Loss}} + \underbrace{\gamma_{\text{RA}} \cdot \mathcal{R}_{\text{RA}}(\phi)}_{\text{Repres. Alignment}}, \quad (6)$$

368 where $\gamma_{\text{RA}} > 0$ is a balancing hyperparameter. This adversarial framework encourages ϕ to generate
 369 domain-invariant representations while maintaining predictive power on the source.

371 4.4 PROGRESSIVE HOMOPHILY AND REPRESENTATION ALIGNMENT ACROSS DOMAINS

373 Our algorithm begins by fixing the adjusted source graph structure and training an initial GNN clas-
 374 sifier using the labeled source data in Section 4.1. Then, it iteratively performs two interdependent
 375 steps: (i) adjusting edges in the target graph (Section 4.2) and (ii) updating the GNN parameters
 376 (Section 4.3). This progressive training scheme enables the target graph refinement and repres-
 377 entation alignment to mutually reinforce each other, gradually enhancing target-domain performance and
 378 ultimately yielding a GNN classifier that minimizes the target error bound. The complete procedure
 379 is summarized in Algorithm 1.

378 Algorithm 1 Progressive Structure Adjustment for Homophily Shift (PSAHS)

379 Input: Source graph \mathcal{G}_S with labels \mathcal{Y}_S ; unlabeled target graph \mathcal{G}_T ; GNN encoder ϕ and classifier
380 g ; auxiliary MLP classifier; homophily threshold $h \in (0, 1)$.
381 Adjust source graph adjacency to obtain \tilde{A}^S using Eq. (2).
382 Train initial GNN classifier $g \circ \phi$ and auxiliary MLP on source data.
383 **384** **while** not converged and $\min_{u \in \mathcal{V}_T} \hat{h}_T(u) < h$ **do**
385 Predict labels of target nodes using $g \circ \phi$.
386 Update reliable set \mathcal{V}_T^r by comparing predictions of GNN and MLP.
387 Adjust target graph adjacency to obtain \tilde{A}^T .
388 Update ϕ and g by minimizing the joint objective in Eq. (6).
389 **end while**
390 **Output:** Adjusted adjacency matrices \tilde{A}^S, \tilde{A}^T ; trained encoder ϕ and classifier g .

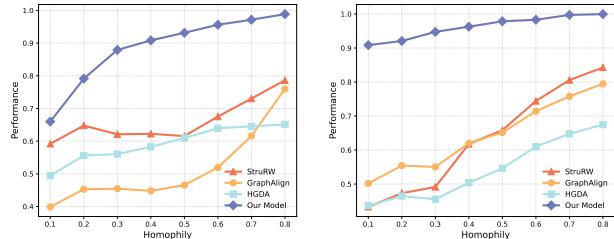
391 5 EXPERIMENTS

392 Baselines. We compare our approach PSAHS against the following representative baselines: feature
393 alignment methods UDA-GCN (Wu et al., 2020), ASN (Zhang et al., 2021a), GraphAlign
394 (Huang et al., 2024), and JHGDA (Shi et al., 2023); structure-shift methods StruRW (Liu et al.,
395 2023) and PairAlign (Liu et al., 2024c); and the homophily-based method HGDA (Fang et al.,
396 2025b).

397 Synthetic Experiments. We evaluate the performance of our method PSAHS under different levels
398 of node homophily shift on the simulated data generated by the stochastic block model (SBM). For
399 each class, we generate an equal number of nodes from three classes. In the source domain, the
400 node attributes are drawn from class-specific 10-dimension Gaussian distributions: the means of
401 the three Gaussians are $[-1, 0, 0_8], [1, 0, 0_8]$ and $[0, 1, 0_8]$ for the source domain, and $[-1.5, 0.5, 0_8],$
402 $[1.5, -0.5, 0_8]$ and $[0.5, 1.5, 0_8]$ for the target domain, where 0_8 denotes the 8-dimension all-zero
403 vector. The covariance matrices for the three Gaussians are random rotations of three diagonal
404 matrices: $\text{diag}([4_5, (1/4)_5]), \text{diag}([\text{arange}(10) - 9/2]/(9/2)),$ and $\text{diag}([4, 1/4, 4, \dots, 1/4]),$
405 where $\text{diag}(\cdot)$ means the diagonal matrix with some vectors. To generate the homophily shift, we
406 fix one domain's node homophily by setting the intra-class probability $p = 0.02$ and the inter-class
407 probability $q = 0.002$, which yields a graph homophily of 0.832. For the other domain, we
408 iteratively decrease graph homophily by randomly selecting two homophilous edges (u, u') and (v, v') ,
409 where $Y_u = Y_{u'} \neq Y_v = Y_{v'}$, removing them, and then reconnecting the heterogeneous edges (u, v)
410 and (u', v') to decrease the graph homophily. This procedure is repeated until the graph homophily
411 reaches desired values ranging from 0.8 to 0.1. Additional visualizations of attribute distributions
412 are presented in Appendix D.3.2.

413 Figure 3 presents the GDA accuracy on the synthetic datasets. It reveals that our model PSAHS
414 consistently outperforms baseline methods across varying degrees of node homophily
415 shift, regardless of whether the source or target domain has higher graph homophily. This
416 demonstrates the effectiveness of PSAHS in mitigating node homophily shift.

417 Benchmark Datasets. We conduct
418 comprehensive experiments on four
419 real-world datasets, including Citation
420 dataset (Tang et al., 2008; Wu et al., 2022), Airport
421 dataset (Ribeiro et al., 2017), Blog dataset (Shen et al., 2020a), and Twitch dataset (Rozemberczki
422 et al., 2021). The Citation dataset consists of two networks, DBLPv8 (D) and ACMv9 (A), where
423 nodes correspond to articles and edges represent citation relations. The Airport dataset includes
424 three air-traffic networks from the USA (U), Brazil (B), and Europe (E), where each node is an
425 airport, and each edge represents a flight route. The Twitch dataset contains six regional gamer
426 networks from Germany (DE), England (EN), Spain (ES), France (FR), Portugal (PT), and
427 Spain (ES).



(a) Fixed source with varied target homophily (b) Fixed target with varied source homophily

Figure 3: Accuracy under different homophily settings.

Russia (RU), with nodes indicating users and edges reflecting friendships. The Blog dataset comprises two disjoint social networks, Blog1 and Blog2. Both are derived from BlogCatalog, where nodes denote bloggers and edges indicate friendship ties. More details, including the statistics of the datasets, can be checked in Appendix D.3.1.

Result Analysis. Tables 2 and 3 show that our method PSAHS consistently outperforms all baselines across 15 GDA tasks, achieving up to a 21.94% improvement on B2-B1. These gains highlight the effectiveness of jointly enhancing source homophily and mitigating node homophily shift across domains for GDA on diverse real-world datasets, especially on low-homophily graph datasets such as Blog (0.38 average node homophily). In contrast, prior algorithms that rely on the feature aggregation over the *original* graphs perform poorly, as low-homophily structures hinder homophilous feature aggregation during message passing, and mismatched node homophily distributions across domains obstruct knowledge transfer. Details for hyperparameters can be found in Appendix D.4.

Table 2: Performance on DBLP/ACM and Airport datasets.

Models	Citation		Airport					
	A-D	D-A	U-E	E-U	B-E	E-B	B-U	U-B
UDAGCN	0.6886	0.6391	0.4887	0.4341	0.5077	0.4762	0.4978	0.6122
ASN	0.7270	0.7162	0.4645	0.4625	0.4962	0.5903	0.4986	0.5191
JHGDA	0.7558	0.7322	0.5075	0.5227	0.5664	0.7313	0.5020	0.6927
StruRW	0.7019	0.6657	0.5377	0.4967	0.5606	0.6565	0.5219	0.6284
PairAlign	0.7524	0.7477	0.5539	0.5428	0.5572	0.5290	0.5278	0.6786
GraphAlign	0.7865	0.7506	0.5432	0.5734	0.5880	0.7312	0.5438	0.6290
HGDA	0.7910	<u>0.7560</u>	<u>0.5720</u>	<u>0.5700</u>	0.5840	0.7210	<u>0.5690</u>	0.7210
PSAHS	0.8261	0.7583	0.5920	0.5776	0.5948	0.7434	0.5738	0.7245

The best and second-best performances are marked as **bold** and underline, respectively.

Table 3: Performance on Blog and Twitch datasets.

Models	Blog				Twitch			
	B1-B2	B2-B1	DE-EN	DE-ES	DE-FR	DE-PT	DE-RU	
UDAGCN	0.4710	0.4680	0.5397	0.5749	0.5453	0.5532	0.6359	
ASN	0.6320	0.5240	0.5258	0.5468	0.5279	0.5603	0.6618	
JHGDA	0.6190	0.6430	0.5580	0.6235	0.5921	0.6285	0.7205	
StruRW	0.6359	0.6264	0.5481	0.6603	0.6048	0.6396	0.7227	
PairAlign	0.6620	0.6540	<u>0.5669</u>	0.6529	0.5752	0.6250	<u>0.7328</u>	
HGDA	<u>0.6830</u>	<u>0.6770</u>	0.4993	0.5443	0.5494	0.4825	0.5460	
GraphAlign	0.4714	0.4583	0.5602	<u>0.6904</u>	<u>0.6246</u>	<u>0.6574</u>	0.7179	
PSAHS	0.8805	0.8964	0.5797	0.7129	0.6463	0.6684	0.7413	

The best and second-best performances are marked as **bold** and underline, respectively.

Ablation Studies. We evaluate three variants of our model PSAHS to examine how the choice of domain for structure adjustment affects GDA performance. The variants include DANN (Ganin et al., 2016), a classic adversarial alignment method adapted to GNN encoded representations for GDA; w/o source, which iteratively adjusts the graph structure on the target domain without initial edge adjustment on the source graph; and w/o target, which only refines the source graph structure to reach high homophily while leaving the target graph unchanged.

The ablation results in Table 4 show that both the “w/o source” and “w/o target” variants outperform the baseline DANN, indicating that adjusting either the source or target graph alone can improve GDA performance. More importantly, our full model PSAHS significantly outperforms these single-graph variants, demonstrating the benefits of simultaneously enhancing homophily and mitigating node homophily shift between domains.

Table 4: Ablation study on Blog and Airport datasets.

Models	Blog				Airport			
	B1-B2	B2-B1	U-E	E-U	B-E	E-B	B-U	U-B
DANN	0.5430	0.5625	0.4933	0.4776	0.5099	0.6754	0.5062	0.6547
w/o source	0.8210	0.8288	0.5587	0.5466	0.5558	0.6986	0.5256	0.7075
w/o target	0.6166	0.6017	0.5242	0.5607	0.5434	0.7275	0.5408	0.6918
PSAHS	0.8805	0.8964	0.5920	0.5776	0.5948	0.7434	0.5738	0.7245

Model Analysis Due to the lack of true target labels, pseudo-labels are important for target graph refinement. In this part, we analyze the impact of different pseudo-labeling strategies on GDA

486 performance. Our model PSAHS adopts consistent label predictions from the GNN and MLP as
 487 node pseudo-labels (PLs) and refines edges only for nodes with PLs. For comparison, we consider
 488 four variants of PL strategy. GNN_PL directly uses all pseudo labels predicted by the GNN classifier.
 489 MLP_PL adopts all pseudo labels predicted by an auxiliary MLP classifier. Curriculum_PL adopts a
 490 progressive scheme. Specifically, it begins with adjusting the edges for the top 20% most confident
 491 target nodes for graph refinement and gradually increases the ratio to 80% as training proceeds.
 492 Prototype_PL employs prototypical denoising, where pseudo-labels are reweighted based on their
 493 distances to class prototypes that are updated online via moving averages.

494 Figure 4 reports the GDA performance on
 495 Blog dataset. Our model PSAHS outperforms all variants, demonstrating the benefits of integrating both structural and attribute-
 496 based views. Since structure adjustment is applied only to the low-homophily nodes that are vulnerable to the disruptive effect of heterophilic edges, leveraging the auxiliary MLP view, which relies solely on attribute information, yields more accurate label predictions for these nodes and drives a clear performance gain.
 500
 501
 502
 503
 504
 505

506 6 CONCLUSION AND FUTURE WORK

507 In this paper, we investigated the challenge of *node homophily shift* in GDA, a structural mismatch
 508 that hinders cross-domain transfer even when feature distributions are aligned. We proposed a
 509 progressive structure adjustment framework that alternates between source-side homophily enhance-
 510 ment, target-side homophily alignment guided by pseudo-labels, and cross-domain representation
 511 alignment via adversarial training. Our theoretical analysis established an explicit connection
 512 between homophily distributions and the target error bound, thereby motivating structural refinement
 513 as a principled approach. Extensive experiments on both synthetic and real-world benchmarks
 514 demonstrated that the proposed method consistently outperforms strong baselines, with particularly
 515 large improvements under severe homophily mismatch. These results highlight the critical role of
 516 structural alignment in enabling effective cross-graph transfer.
 517

518 While our framework effectively reduces node homophily shift across domains, addressing fairness
 519 and subgroup generalization under node homophily shift across domains remains a promising direc-
 520 tion for future work. Such investigations could offer deeper insights into the equitable deployment
 521 of GDA methods in real-world applications.
 522

523 ETHICS STATEMENT

525 This work makes use of publicly available datasets and models. No private or sensitive data is
 526 involved, and no harmful content is included. Therefore, we believe this paper does not raise any
 527 ethical concerns.
 528

529 REPRODUCIBILITY STATEMENT

531 Implementation details for our proposed algorithm are provided in Appendix D.1, and the corre-
 532 sponding code is available via the anonymous link [https://anonymous.4open.science/](https://anonymous.4open.science/r/PSAHS)
 533 r/PSAHS. Descriptions and statistics of all datasets are presented in Section 5 and Appendix D.3,
 534 with the data processing scripts also provided via the anonymous link. Full proofs of the theoretical
 535 claims are included in Appendix C.
 536

537 REFERENCES

539 Sudhanshu Chanpuriya and Cameron Musco. Simplified graph convolution with heterophily. *Ad-*
540 vances in Neural Information Processing Systems, 35:27184–27197, 2022.

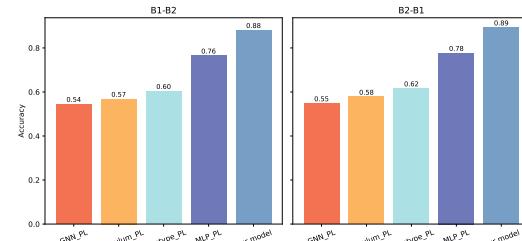


Figure 4: GDA performance of different PL strategies.

540 Liqun Chen, Zhe Gan, Yu Cheng, Linjie Li, Lawrence Carin, and Jingjing Liu. Graph optimal
 541 transport for cross-domain alignment. In *International Conference on Machine Learning*, pp.
 542 1542–1553. PMLR, 2020.

543

544 Wei Chen, Guo Ye, Yakun Wang, Zhao Zhang, Libang Zhang, Daixin Wang, Zhiqiang Zhang, and
 545 Fuzhen Zhuang. Smoothness really matters: A simple yet effective approach for unsupervised
 546 graph domain adaptation. In *Proceedings of the AAAI Conference on Artificial Intelligence*, vol-
 547 ume 39, pp. 15875–15883, 2025.

548 Jun Dan, Weiming Liu, Mushui Liu, Chunfeng Xie, Shunjie Dong, Guofang Ma, Yanchao Tan,
 549 and Jiazheng Xing. Hogda: Boosting semi-supervised graph domain adaptation via high-order
 550 structure-guided adaptive feature alignment. In *Proceedings of the 32nd ACM International Con-
 551 ference on Multimedia*, pp. 11109–11118, 2024.

552

553 Rui Duan, Mingjian Guang, Junli Wang, Chungang Yan, Hongda Qi, Wenkang Su, Can Tian, and
 554 Haoran Yang. Unifying homophily and heterophily for spectral graph neural networks via triple
 555 filter ensembles. *Advances in Neural Information Processing Systems*, 37:93540–93567, 2024.

556

557 Ruiyi Fang, Bingheng Li, Zhao Kang, Qiuhan Zeng, Nima Hosseini Dashtbayaz, Ruizhi Pu, Boyu
 558 Wang, and Charles Ling. On the benefits of attribute-driven graph domain adaptation. In *Inter-
 559 national Conference on Learning Representations*, 2025a.

560

561 Ruiyi Fang, Bingheng Li, Jingyu Zhao, Ruizhi Pu, Qiuhan Zeng, Gezheng Xu, Charles Ling, and
 562 Boyu Wang. Homophily enhanced graph domain adaptation. In *International Conference on
 563 Machine Learning*, 2025b.

564

565 Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
 566 Laviolette, Mario March, and Victor Lempitsky. Domain-adversarial training of neural networks.
 567 *The Journal of Machine Learning Research*, 17(59):1–35, 2016.

568

569 Guoxiu He, Zhikai Xue, Zhuoren Jiang, Yangyang Kang, Star Zhao, and Wei Lu. H2cgl: Modeling
 570 dynamics of citation network for impact prediction. *Information Processing & Management*, 60
 571 (6):103512, 2023.

572

573 Renhong Huang, Jiarong Xu, Xin Jiang, Ruichuan An, and Yang Yang. Can modifying data address
 574 graph domain adaptation? In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge
 575 Discovery and Data Mining*, pp. 1131–1142, 2024.

576

577 Di Jin, Rui Wang, Meng Ge, Dongxiao He, Xiang Li, Wei Lin, and Weixiong Zhang. Raw-gnn:
 578 Random walk aggregation based graph neural network. In *International Joint Conference on
 579 Artificial Intelligence*, pp. 2108–2114. International Joint Conferences on Artificial Intelligence,
 580 2022.

581

582 Bingheng Li, Erlin Pan, and Zhao Kang. Pc-conv: Unifying homophily and heterophily with two-
 583 fold filtering. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp.
 584 13437–13445, 2024.

585

586 Shouheng Li, Dongwoo Kim, and Qing Wang. Restructuring graph for higher homophily via ad-
 587 adaptive spectral clustering. In *Proceedings of the AAAI Conference on Artificial Intelligence*, vol-
 588 ume 37, pp. 8622–8630, 2023.

589

590 Sijie Li, Heyang Hua, and Shengquan Chen. Graph neural networks for single-cell omics data: a
 591 review of approaches and applications. *Briefings in Bioinformatics*, 26(2), 2025.

592

593 Xiang Li, Renyu Zhu, Yao Cheng, Caihua Shan, Siqiang Luo, Dongsheng Li, and Weining Qian.
 594 Finding global homophily in graph neural networks when meeting heterophily. In *International
 595 Conference on Machine Learning*, pp. 13242–13256, 2022.

596

597 Meihan Liu, Zeyu Fang, Zhen Zhang, Ming Gu, Sheng Zhou, Xin Wang, and Jiajun Bu. Rethinking
 598 propagation for unsupervised graph domain adaptation. In *Proceedings of the AAAI Conference
 599 on Artificial Intelligence*, volume 38, pp. 13963–13971, 2024a.

594 Meihan Liu, Zhen Zhang, Jiachen Tang, Jiajun Bu, Bingsheng He, and Sheng Zhou. Revisiting,
 595 benchmarking and understanding unsupervised graph domain adaptation. *Advances in Neural*
 596 *Information Processing Systems*, 37:89408–89436, 2024b.

597

598 Shikun Liu, Tianchun Li, Yongbin Feng, Nhan Tran, Han Zhao, Qiang Qiu, and Pan Li. Structural re-
 599 weighting improves graph domain adaptation. In *International Conference on Machine Learning*,
 600 pp. 21778–21793, 2023.

601 Shikun Liu, Deyu Zou, Han Zhao, and Pan Li. Pairwise alignment improves graph domain adapta-
 602 tion. In *International Conference on Machine Learning*, pp. 32552–32575, 2024c.

603

604 Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
 605 Chang, and Doina Precup. Revisiting heterophily for graph neural networks. *Advances in Neural*
 606 *Information Processing Systems*, 35:1362–1375, 2022.

607 Junyu Luo, Zhiping Xiao, Yifan Wang, Xiao Luo, Jingyang Yuan, Wei Ju, Langechuan Liu, and
 608 Ming Zhang. Rank and align: towards effective source-free graph domain adaptation. In *Proceed-
 609 ings of the Thirty-Third International Joint Conference on Artificial Intelligence*, pp. 4706–4714,
 610 2024.

611

612 Jiaqi Ma, Junwei Deng, and Qiaozhu Mei. Subgroup generalization and fairness of graph neural
 613 networks. *Advances in Neural Information Processing Systems*, 34:1048–1061, 2021.

614

615 Haitao Mao, Zhikai Chen, Wei Jin, Haoyu Han, Yao Ma, Tong Zhao, Neil Shah, and Jiliang Tang.
 616 Demystifying structural disparity in graph neural networks: Can one size fit all? *Advances in*
 617 *neural information processing systems*, 36:37013–37067, 2023.

618

619 Leonardo F.R. Ribeiro, Pedro H.P. Saverese, and Daniel R. Figueiredo. struc2vec: Learning node
 620 representations from structural identity. In *Proceedings of the 23rd ACM SIGKDD International*
 621 *Conference on Knowledge Discovery and Data Mining*, pp. 385–394, 2017.

622

623 Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. *Journal*
 624 *of Complex Networks*, 9(2):cnab014, 2021.

625

626 Xiao Shen, Quanyu Dai, Fu-lai Chung, Wei Lu, and Kup-Sze Choi. Adversarial deep network
 627 embedding for cross-network node classification. In *Proceedings of the AAAI Conference on*
 628 *Artificial Intelligence*, volume 34, pp. 2991–2999, 2020a.

629

630 Xiao Shen, Quanyu Dai, Sitong Mao, Fu-lai Chung, and Kup-Sze Choi. Network together: Node
 631 classification via cross-network deep network embedding. *IEEE Transactions on Neural Networks*
 632 *and Learning Systems*, 32(5):1935–1948, 2020b.

633

634 Boshen Shi, Yongqing Wang, Fangda Guo, Jiangli Shao, Huawei Shen, and Xueqi Cheng. Improving
 635 graph domain adaptation with network hierarchy. In *Proceedings of the 32nd ACM International*
 636 *Conference on Information and Knowledge Management*, pp. 2249–2258, 2023.

637

638 Susheel Suresh, Vinith Budde, Jennifer Neville, Pan Li, and Jianzhu Ma. Breaking the limit of
 639 graph neural networks by improving the assortativity of graphs with local mixing patterns. In
 640 *Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*,
 641 pp. 1541–1551, 2021.

642

643 Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. Arnetminer: extraction and
 644 mining of academic social networks. In *Proceedings of the 14th ACM SIGKDD International*
 645 *Conference on Knowledge Discovery and Data Mining*, pp. 990–998, New York, NY, USA, 2008.

646

647 Tao Wang, Di Jin, Rui Wang, Dongxiao He, and Yuxiao Huang. Powerful graph convolutional
 648 networks with adaptive propagation mechanism for homophily and heterophily. In *Proceedings*
 649 *of the AAAI Conference on Artificial Intelligence*, volume 36, pp. 4210–4218, 2022.

650

651 Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Q Weinberger. Simpli-
 652 fying graph convolutional networks. In *International Conference on Machine Learning (ICML)*,
 653 pp. 6861–6871. PMLR, 2019.

648 Jun Wu, Jingrui He, and Elizabeth Ainsworth. Non-iid transfer learning on graphs. In *Proceedings*
 649 *of the AAAI Conference on Artificial Intelligence*, volume 37, pp. 10342–10350, 2023.
 650

651 Man Wu, Shirui Pan, Chuan Zhou, Xiaojun Chang, and Xingquan Zhu. Unsupervised domain
 652 adaptive graph convolutional networks. In *Proceedings of the Web Conference*, pp. 1457–1467,
 653 2020.

654 Qitian Wu, Hengrui Zhang, Junchi Yan, and David Wipf. Handling distribution shifts on graphs:
 655 An invariance perspective. In *The Tenth International Conference on Learning Representations*,
 656 2022.

657 Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A
 658 comprehensive survey on graph neural networks. *IEEE Transactions on Neural Networks and*
 659 *Learning Systems*, 32(1):4–24, 2021.

660

661 Zhiqing Xiao, Haobo Wang, Ying Jin, Lei Feng, Gang Chen, Fei Huang, and Junbo Zhao. Spa:
 662 a graph spectral alignment perspective for domain adaptation. *Advances in Neural Information*
 663 *Processing Systems*, 36:37252–37272, 2024.

664

665 Yuchen Yan, Yuzhong Chen, Huiyuan Chen, Minghua Xu, Mahashweta Das, Hao Yang, and Hang-
 666 hang Tong. From trainable negative depth to edge heterophily in graphs. *Advances in Neural*
 667 *Information Processing Systems*, 36:70162–70178, 2023.

668

669 Liang Yang, Mengzhe Li, Liyang Liu, Chuan Wang, Xiaochun Cao, Yuanfang Guo, et al. Diverse
 670 message passing for attribute with heterophily. *Advances in Neural Information Processing Sys-*
 671 *tems*, 34:4751–4763, 2021.

672

673 Nan Yin, Li Shen, Mengzhu Wang, Xinwang Liu, Chong Chen, and Xian-Sheng Hua. Dream: a dual
 674 variational framework for unsupervised graph domain adaptation. *IEEE Transactions on Pattern*
 675 *Analysis and Machine Intelligence*, 2025.

676

677 Yuning You, Tianlong Chen, Zhangyang Wang, and Yang Shen. Graph domain adaptation via
 678 theory-grounded spectral regularization. In *International Conference on Learning Representa-*
 679 *tions*, 2023.

680

681 Xiaowen Zhang, Yuntao Du, Rongbiao Xie, and Chongjun Wang. Adversarial separation network
 682 for cross-network node classification. In *Proceedings of the 30th ACM International Conference*
 683 *on Information & Knowledge Management*, pp. 2618–2626, New York, NY, USA, 2021a.

684

685 Xiaowen Zhang, Yuntao Du, Rongbiao Xie, and Chongjun Wang. Adversarial separation network
 686 for cross-network node classification. In *Proceedings of the 30th ACM International Conference*
 687 *on Information & Knowledge Management*, pp. 2618–2626, 2021b.

688

689 Yizhou Zhang, Guojie Song, Lun Du, Shuwen Yang, and Yilun Jin. Dane: domain adaptive network
 690 embedding. In *Proceedings of the 28th International Joint Conference on Artificial Intelligence*,
 691 pp. 4362–4368, 2019.

692

693 Yi Zhao, Jingxin Ju, Jibing Gong, Jinye Zhao, Mengpan Chen, Le Chen, Xinchao Feng, and Jiquan
 694 Peng. Cross-domain recommendation via adaptive bi-directional transfer graph neural networks.
Knowledge and Information Systems, 67(1):579–602, 2025.

695

696 Yilun Zheng, Sitao Luan, and Lihui Chen. What is missing for graph homophily? disentangling
 697 graph homophily for graph neural networks. *Advances in Neural Information Processing Systems*,
 698 37:68406–68452, 2024.

699

700 Yizhen Zheng, He Zhang, Vincent Lee, Yu Zheng, Xiao Wang, and Shirui Pan. Finding the missing-
 701 half: Graph complementary learning for homophily-prone and heterophily-prone graphs. In *In-*
ternational Conference on Machine Learning, pp. 42492–42505, 2023.

702

703 Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
 704 homophily in graph neural networks: Current limitations and effective designs. *Advances in*
705 Neural Information Processing Systems, 33:7793–7804, 2020.

This appendix complements the main text by providing additional theoretical analysis, detailed proofs, and extended experimental results. Specifically, Appendix A introduces the related works about graph domain adaptation and graph learning with homophily. Appendix B analyzes how node homophily ratios influence class separability under the CSBM-structure model. Appendix C contains the formal proofs of the theorems presented in Sections 3 and 4. Finally, Appendix D reports supplementary experimental results, including dataset descriptions, implementation details, model analyses, and parameter sensitivity studies.

A RELATED WORKS

A.1 GRAPH DOMAIN ADAPTATION

Early research on graph domain adaptation (GDA), often referred to as cross-network classification, mainly focused on learning shared features across networks based solely on graph structures (Shen et al., 2020b). With the development of graph neural networks (GNNs), GDA research has expanded to attributed graphs, where both structural and attribute shifts are taken into consideration (Liu et al., 2024b). These methods typically integrate GNNs with traditional domain adaptation strategies to learn transferable node representations. For instance, adversarial learning has been employed to extract domain-invariant features (Zhang et al., 2019; Wu et al., 2020; Zhang et al., 2021b). Other approaches adopt direct feature alignment techniques that use various distance metrics to encourage feature consistency, such as maximum mean discrepancy (MMD) (Shi et al., 2023), total variation distance (Chen et al., 2025), graph subtree discrepancy (Wu et al., 2023), and optimal transport distance (Chen et al., 2020). However, the standard GNN architectures are often inadequate for capturing the complex structures inherent in graph data. To address this limitation, some methods enhance node features by incorporating richer structural information, including high-order structures (Dan et al., 2024; Yin et al., 2025), substructures (Luo et al., 2024), and spectral properties (You et al., 2023; Xiao et al., 2024). Meanwhile, the message-passing mechanism of GNNs can also be improved to better support GDA (Liu et al., 2024a).

Most GDA methods in the feature space typically borrow conventional alignment strategies from other domains and often overlook the unique properties of graph data. Recently, increasing efforts have been made to directly tackle structural shifts and develop adaptation methods on the input graph structures. For example, Huang et al. (2024) adopts a data-centric approach that constructs a smaller yet more transferable source graph to better align with the target graph. Several studies address conditional structure shifts induced by labels and propose reweighting strategies to adjust graph edges accordingly (Liu et al., 2023; 2024c). Fang et al. (2025a) further considers attribute shifts and combines topology and attribute graphs for GDA, while Fang et al. (2025b) emphasizes the influence of graph homophily and develops mixed graph filters to improve adaptation.

A.2 GRAPH LEARNING WITH HOMOPHILY AND HETEROPHILY

Developing GNNs in heterophilic graphs has received increasing attention. The primary goal is to investigate the consistency of raw graph structure and node label similarities, where homophily originally refers to the matching of edges with label similarities and vice versa (Zhu et al., 2020). The definition of homophily varies in different settings, such as local-global homophily (Li et al., 2022), and structural-feature-label homophily (Zheng et al., 2024).

In general, current research for homophily GNNs can be categorized as data-based and model-based methods. Data-based methods focus on improving the homophily ratios by refining existing or discovering new neighbors for a given node. The intuitive strategy is to incorporate higher-order neighbors with the same labels (Li et al., 2022). Particularly, Zhu et al. (2020) has theoretically demonstrated that the 2-hop neighbors of nodes are homophily-dominant and can therefore facilitate the feature aggregation in GNNs. Zheng et al. (2023) constructs a complementary graph to discover potential neighbors and uses the complemented graph convolution to leverage both homophily and heterophily connections. The graphs can also be rewired or reconstructed to high-homophily counterparts by further calculating feature distances (Li et al., 2023) or structural similarities (Suresh et al., 2021).

The model-based methods aim to develop new aggregation and updating processes in GNNs to strengthen homophilic information and debilitate heterophilic information. A line of methods ex-

tends the uniform message passing schemes into diverse ones (Yang et al., 2021; Chanpuriya & Musco, 2022), such as combining low-pass filter in GNNs with high-pass filters (Luan et al., 2022; Duan et al., 2024) and heat kernels (Li et al., 2024), incorporating homophily-enhanced neighbor aggregation (Wang et al., 2022; Jin et al., 2022). The architecture of GNN can also be adjusted to fit the homophilic and heterophilic patterns in graphs. For example, Yan et al. (2023) redefines the number of aggregation layers in GNNs as a tunable real number and shows that adaptive layer depth can better filter low/high signals in homophilic/heterophilic graphs.

B EFFECT OF NODE HOMOPHILY ON CLASS SEPARABILITY

In this section, we examine how node homophily ratios influence the separability of aggregated features under the contextual stochastic block model with structure (CSBM-S) proposed by Mao et al. (2023).

Specifically, we generate two disjoint node sets, \mathcal{C}_1 and \mathcal{C}_2 . Each node attribute X_u is sampled from $\mathcal{N}(\mu_i, I)$ with $i \in \{1, 2\}$, and the class prior is balanced, i.e., $P(Y = 1) = P(Y = 2) = 1/2$. To induce different distributions of node homophily ratios, each set \mathcal{C}_i is divided into two groups:

- \mathcal{C}_i^1 : high-homophily nodes with intra-class and inter-class edge probabilities $p_1 > q_1$;
- \mathcal{C}_i^2 : low-homophily nodes with probabilities $p_2 < q_2$.

We further assume that all nodes follow the same degree distribution, ensuring $p_1 + q_1 = p_2 + q_2$.

Aggregated Feature Distributions. Let $F = D^{-1}AX$ denote the aggregated node features. The means of these features for the two homophily groups can be expressed as

$$f_i^j \sim \mathcal{N}\left(\frac{p_j\mu_1 + q_j\mu_2}{p_j + q_j}, \frac{I}{d_i}\right), \quad i \in \mathcal{C}_1^j; \quad f_i^j \sim \mathcal{N}\left(\frac{q_j\mu_1 + p_j\mu_2}{p_j + q_j}, \frac{I}{d_i}\right), \quad i \in \mathcal{C}_2^j, \quad (7)$$

where f_i^j denotes the aggregated features of group j in class i .

From Eq. (7), when $q_1 = p_2$ and $p_1 = q_2$, we obtain $\mathbb{E}f_i^1 = \mathbb{E}f_{i'}^2$ and $\mathbb{E}f_i^2 = \mathbb{E}f_{i'}^1$, where $i \in \mathcal{C}_1$, $i' \in \mathcal{C}_2$. This implies that the aggregated features of high-homophily nodes in one class overlap with those of low-homophily nodes in the other class, making the two classes indistinguishable after aggregation.

Separability Analysis. To investigate which graph structures in the CSBM-S model lead to good class separability, we analyze the feature margin. As shown in Theorem B.1, the margin between two classes, defined as

$$\mathcal{M} := \min_{j, j' \in \{1, 2\}} \|\mathbb{E}f_i^j - \mathbb{E}f_{i'}^{j'}\|_2, \quad i \in \mathcal{C}_1^j, i' \in \mathcal{C}_2^{j'}, \quad (8)$$

is maximized when all nodes are highly homophilous.

Theorem B.1 (Largest Margin when All Nodes are High-homophilous). *Consider the CSBM-S model described above and let the class margin be defined as in Eq. (8). Then*

$$\max_{\mathcal{G}} \mathcal{M} = \|\mu_1 - \mu_2\|_2,$$

and the maximum is attained if and only if

$$q_1 = 0, \quad \mathcal{C}_1^2 = \mathcal{C}_2^2 = \emptyset. \quad (9)$$

That is, the graph exhibits high-homophily across all nodes, with no low-homophily groups present.

Proof of Theorem B.1. From Eq. (7), the mean of the aggregated features for a node in group j of class 1 is

$$\mathbb{E}f_{(1)}^j = \frac{p_j}{p_j + q_j}\mu_1 + \frac{q_j}{p_j + q_j}\mu_2,$$

810 and for a node in group j of class 2,
 811

$$812 \quad \mathbb{E}f_{(2)}^j = \frac{q_j}{p_j + q_j}\mu_1 + \frac{p_j}{p_j + q_j}\mu_2.$$

$$813$$

814 Thus both expectations lie on the line segment between μ_1 and μ_2 , i.e.,
 815

$$816 \quad \mathbb{E}f \in \text{conv}\{\mu_1, \mu_2\}.$$

$$817$$

818 Define $\alpha_j := \frac{p_j}{p_j + q_j}$. Then the expectations can be written as
 819

$$820 \quad \mathbb{E}f_{(1)}^j = \alpha_j\mu_1 + (1 - \alpha_j)\mu_2, \quad \mathbb{E}f_{(2)}^j = (1 - \alpha_j)\mu_1 + \alpha_j\mu_2.$$

$$821$$

822 The distance between the aggregated means of group j in class 1 and group j' in class 2 is
 823

$$824 \quad \|\mathbb{E}f_{(1)}^j - \mathbb{E}f_{(2)}^{j'}\| = |\alpha_j + \alpha_{j'} - 1| \|\mu_1 - \mu_2\|.$$

$$825$$

826 By definition,

$$827 \quad \mathcal{M} = \min_{j, j'} \|\mathbb{E}f_{(1)}^j - \mathbb{E}f_{(2)}^{j'}\| \leq \|\mu_1 - \mu_2\|,$$

$$828$$

829 with equality if and only if $\alpha_j = 1$ for every nonempty group j . Equivalently, this requires $q_j = 0$
 830 for all such groups. Under the degree constraint $q_2 > p_2$, the condition $q_j = 0$ forces the low-
 831 homophily groups $\mathcal{C}_1^2, \mathcal{C}_2^2$ to be empty.

832 Therefore, under high-homophily we obtain
 833

$$834 \quad \mathcal{M} = \|\mu_1 - \mu_2\|_2,$$

$$835$$

836 which is the largest possible margin. This completes the proof. \square

837 Theorem B.1 shows that maintaining consistently high homophily ratios across all nodes—rather
 838 than mixing high- and low-homophily nodes—maximizes class separability. Moreover, in a highly
 839 homophilous graph, increasing the degree d_i of node i reduces the variance of f_i^j , thereby further
 840 lowering the classification error. This leads to Theorem B.2.

841 **Theorem B.2.** *Consider a linear classifier $h(x) = \text{sign}(w^\top x + b)$ trained on aggregated features
 842 f_i^j . Let $\epsilon(h)$ denote its misclassification error. Then*

$$843 \quad \min_{\mathcal{G}} \epsilon(h) \text{ is attained when } (u, v) \in E \iff Y_u = Y_v.$$

$$844$$

845 *Proof of Theorem B.2.* From Theorem B.1, the largest class margin $\|\mu_1 - \mu_2\|_2$ is obtained under
 846 Eq. (9). The linear classifier for two Gaussian $\mathcal{N}(\mu_k, \sigma_k^2 I)$, $k = 1, 2$ is given by
 847

$$848 \quad h(x) := \text{sign}\left(\frac{\mu_1 - \mu_2}{\|\mu_1 - \mu_2\|} x - t\right),$$

$$849$$

850 where $t \in \mathbb{R}$ is the bias parameter of the optimal classifier. The risk of the classifier is
 851

$$852 \quad \epsilon(h) = \frac{1}{2} \Phi\left(\frac{t - \|\mu_1 - \mu_2\|}{\sigma_1}\right) + \frac{1}{2} \left(1 - \Phi\left(\frac{t}{\sigma_2}\right)\right),$$

$$853$$

854 where Φ is the standard Gaussian cumulative density function. From Eq. (7), for any $i \in C_1$ and
 855 $i' \in C_2$, we have
 856

$$857 \quad \sigma_1^2 = 1/d_1, \quad \sigma_2^2 = 1/d_{i'}.$$

$$858$$

859 Therefore, the minimal risk $\epsilon(h)$ decreases as the degree d_i increases for all nodes. Hence minimizing
 860 $\epsilon(h)$ requires:
 861

- 862 (i) maximizing the margin \mathcal{M} (achieved when all nodes are high-homophily), and
 863
- (ii) maximizing node degrees d_i while preserving homophily.

864 This is achieved when each node is connected to all nodes with the same label, which proves the
 865 assertion. \square
 866

867 Theorem B.2 highlights that, beyond removing inter-class edges, class separability also benefits
 868 from adding more intra-class edges. This directly motivates the source-domain adjustment strategy
 869 in Section 4.1, where inter-class edges are pruned and additional intra-class edges are introduced for
 870 low-homophily nodes. Since source labels are fully observable, such modifications are both natural
 871 and straightforward to implement.
 872

873 C PROOFS

875 C.1 PROOFS RELATED TO SECTION 3

877 The proof of Theorem 3.1 builds on the PAC-Bayesian framework for domain adaptation. We start
 878 from the generalization bound in Mao et al. (2023), which relates the target error to the source
 879 error, a KL-divergence term, and a discrepancy term between source and target. By incorporating
 880 the adjusted homophily ratios and node representations, and applying the inequality in Fang et al.
 881 (2025b), the discrepancy can be bounded by the average difference in homophily and representation
 882 across domains. Choosing $\lambda = n_s^{2\alpha}$ and following the concentration arguments of Mao et al. (2023),
 883 we obtain the final bound where the target risk is controlled by: (i) the empirical source margin
 884 loss, (ii) the cross-domain homophily difference, and (iii) the feature representation discrepancy.
 885 This shows that structural refinement (to adjust homophily) and representation alignment (to reduce
 886 embedding discrepancy) are both crucial for tightening the bound.
 887

Assumption C.1 (Data follows Generalized CSBM-S model assumption). *The graph data is generated from the Generalized CSBM-S model.*

Definition C.2 (Distance To Training Set and Near Set). Define the distance from the target graph
 to the source graph as

$$\epsilon := \max_{j \in V_t} \min_{i \in V_s} \|f_i(X, A) - f_j(X, A)\|_2.$$

892 Further, for each $i \in V_s$, define the near set of i with respect to V_t as

$$V_t^{(i)} := \{j \in V_t \mid \|f_i(X, A) - f_j(X, A)\|_2 \leq \epsilon\}.$$

895 Clearly,

$$V_t = \bigcup_{i \in V_s} V_t^{(i)}.$$

Assumption C.3 (Equal-Sized and Disjoint Near Sets). *Assume the near sets of each $i \in V_s$ with
 respect to V_t are disjoint and have the same size $s \in \mathbb{N}^+$.*

900 Assumption C.3 assumes that the target nodes can be divided into equally sized partitions, where all
 901 nodes in each partition share a same closest source node. It assumes that target nodes are closely
 902 aligned with the respective source node, while distant to the other source nodes.

Assumption C.4 (Concentrated Expected Loss Difference). *Let P be a distribution on \mathcal{H} , defined
 904 by sampling the vectorized MLP parameters from $\mathcal{N}(0, \sigma^2 I)$ for some $\sigma^2 \leq \frac{(\gamma/8\epsilon_m)^{2/L}}{2b(\lambda N_0^{-\alpha} + \ln 2bL)}$.
 905 For any L -layer GNN classifier $h \in \mathcal{H}$ with model parameters W_1^h, \dots, W_L^h , define $T_h :=$
 907 $\max_{l=1, \dots, L} \|W_l^h\|_2$. Assume that there exists some $0 < \alpha < \frac{1}{4}$ satisfying*

$$\Pr_{h \sim P} \left(\mathcal{L}_m^{\gamma/4}(h) - \mathcal{L}_0^{\gamma/2}(h) > N_0^{-\alpha} + cK\epsilon_m \mid T_h^L \epsilon_m > \frac{\gamma}{8} \right) \leq e^{-N_0^{2\alpha}}.$$

911 Assumption C.4 postulates that the expected margin loss on the target graph, is not significantly
 912 larger than on the train node subgroup, as the number of source graph becomes larger.
 913

Theorem (Restate of Theorem 3.1). *Under the SGN model and assumptions C.1-C.4, let $g \circ \phi$ be
 914 a classifier from the hypothesis space of GNN classifiers. Denote by \tilde{f}_u (resp. \tilde{f}_v) the aggregated
 915 feature of a source node $u \in \mathcal{V}_S$ (resp. target node $v \in \mathcal{V}_T$) under the adjusted graph structure
 916 \tilde{A}^S (resp. \tilde{A}^T). Similarly, let $\tilde{h}_S(u)$ and $\tilde{h}_T(v)$ denote the corresponding node homophily ratios.
 917 Then for any $\gamma > 0$, $\delta \in (0, 1)$, $\alpha \in (0, 1/4)$, and sufficiently large n_s , there exists a constant c*

918 independent of n such that with probability at least $1 - \delta$, the target margin loss $\mathcal{R}_T(g \circ \phi)$, can be
 919 upper bounded by
 920

$$921 \widehat{\mathcal{R}}_S^\gamma(g \circ \phi) + c \left(\frac{1}{n_s n_t} \sum_{u \in \mathcal{V}_S} \sum_{v \in \mathcal{V}_T} \left(|\tilde{h}_S(u) - \tilde{h}_T(v)| + \|\tilde{f}_u - \tilde{f}_v\|_2 \right) + \frac{1}{n_s^\alpha} + \frac{\ln(1/\delta)}{n_s^{2\alpha}} \right). \quad (10)$$

925 Proof of Theorem 3.1. Combining Lemma 6 and Theorem 2 in Mao et al. (2023), we obtain that
 926

$$927 \mathcal{R}_T(g \circ \phi) - \widehat{\mathcal{R}}_S^\gamma(g \circ \phi) \leq \frac{1}{\lambda} \left(2(D_{KL}(Q \| P) + 1) + \ln \left(\frac{1}{\delta} \right) + \frac{\lambda^2}{4n_s} + D_{T,S}^{\gamma/2}(P, \lambda) \right) \quad (11)$$

929 holds with probability at least $1 - \delta$, where
 930

$$931 D_{T,S}^{\gamma/2}(P, \lambda) := \ln \mathbb{E}_{\phi \sim P} \exp \left(\lambda (\mathcal{R}_T^{\gamma/4}(g \circ \phi) - \mathcal{R}_S^{\gamma/2}(g \circ \phi)) \right).$$

933 By applying Inequality (22) in Fang et al. (2025b) to the adjusted node homophily \tilde{h}_u and the
 934 adjusted GNN representation \tilde{f}_u , we have
 935

$$936 D_{T,S}^{\gamma/2}(P, \lambda) \leq \frac{1}{n_s n_t} \sum_{u \in \mathcal{V}_S} \sum_{v \in \mathcal{V}_T} \left(\ln 3 + \frac{2\lambda\rho}{\sqrt{2\pi}\sigma} (\|\tilde{f}_u - \tilde{f}_v\|_2 + \rho \cdot |\tilde{h}_u - \tilde{h}_v|) \right), \quad (12)$$

939 where $\rho := \|\mu_1 - \mu_2\|_2$.
 940

941 Substituting Eq. (12) into Eq. (11), we obtain

$$942 \mathcal{R}_T(\phi) - \widehat{\mathcal{R}}_S^\gamma(\phi) \leq \frac{1}{\lambda} \left(2(D_{KL}(Q \| P) + 1) + \ln \left(\frac{1}{\delta} \right) + \frac{\lambda^2}{4n_s} \right. \\ 943 \left. + \frac{1}{n_s n_t} \sum_{u \in \mathcal{V}_S} \sum_{v \in \mathcal{V}_T} \left(\ln 3 + \frac{2\lambda\rho}{\sqrt{2\pi}\sigma} (\|\tilde{f}_u - \tilde{f}_v\|_2 + \rho \cdot |\tilde{h}_u - \tilde{h}_v|) \right) \right).$$

948 Next, set $\lambda = n_s^{2\alpha}$ and apply the same analysis as in Inequality (47) of Mao et al. (2023). This yields
 949

$$950 \mathcal{R}_T(\phi) - \widehat{\mathcal{R}}_S^\gamma(\phi) \\ 951 \leq c' \left(\frac{\rho}{n_s n_t} \sum_{u \in \mathcal{V}_S} \sum_{v \in \mathcal{V}_T} (\|\tilde{f}_u - \tilde{f}_v\|_2 + \rho \cdot |\tilde{h}_u - \tilde{h}_v|) + \frac{\sum_{\ell=1}^L \|W_\ell\|_F^2}{n_s^\alpha} + \frac{1}{n_s^{1-2\alpha}} + \frac{\ln(1/\delta)}{n_s^{2\alpha}} \right) \\ 952 \leq c \left(\frac{1}{n_s n_t} \sum_{u \in \mathcal{V}_S} \sum_{v \in \mathcal{V}_T} (\|\tilde{f}_u - \tilde{f}_v\|_2 + \rho \cdot |\tilde{h}_u - \tilde{h}_v|) + \frac{1}{n_s^\alpha} + \frac{\ln(1/\delta)}{n_s^{2\alpha}} \right),$$

957 with probability at least $1 - \delta$, where c and c' are constants depending on γ , the maximum norm of
 958 node representations, and the maximum hidden-layer width. This finishes the proof. \square
 959

960 C.2 PROOFS RELATED TO SECTION 4

962 Proof of Theorem 4.1. By the definition of $\tilde{h}_S(u)$, we have
 963

$$964 \tilde{h}_S(u) = \frac{\alpha(1 - h_S(u)) + (1 + \alpha)h_S(u)}{\alpha(1 - h_S(u)) + (1 + \alpha)h_S(u) + (1 - \alpha)(1 - h_S(u))} = \frac{\alpha + h_S(u)}{1 + \alpha h_S(u)}.$$

966 If $\alpha > \frac{h - h_S(u)}{1 - h - h_S(u)}$, then
 967

$$968 \frac{\alpha + h_S(u)}{1 + \alpha h_S(u)} > h,$$

971 which implies $\tilde{h}_S(u) > h$. \square

972 *Proof of Theorem 4.2.* By Theorem 4.1, for any source node u and target node v with $h_S(u) < h$
 973 and $h_T(v) < h$, we have $\tilde{h}_S(u) = h$ and $\tilde{h}_T(v) = h$. Hence,

$$975 \quad |\tilde{h}_S(u) - \tilde{h}_T(v)| = 0 < |h_S(u) - h_T(v)|.$$

977 For $h_S(u) \geq h$ and $h_T(v) < h$, we obtain $\tilde{h}_S(u) = h_S(u)$ and $\tilde{h}_T(v) = h$, which yields

$$978 \quad |\tilde{h}_S(u) - \tilde{h}_T(v)| = h_S(u) - h \leq h_S(u) - h_T(v) = |h_S(u) - h_T(v)|.$$

980 Moreover, $|\tilde{h}_S(u) - \tilde{h}_T(v)|$ is non-decreasing in h .

982 For $h_S(u) < h$ and $h_T(v) \geq h$, we get $\tilde{h}_S(u) = h$ and $\tilde{h}_T(v) = h_T(v)$, so

$$983 \quad |\tilde{h}_S(u) - \tilde{h}_T(v)| = h_T(v) - h \leq h_T(v) - h_S(u) = |h_S(u) - h_T(v)|.$$

985 Finally, when $h_S(u) \geq h$ and $h_T(v) \geq h$, we have $\tilde{h}_S(u) = h_S(u)$ and $\tilde{h}_T(v) = h_T(v)$, giving

$$987 \quad |\tilde{h}_S(u) - \tilde{h}_T(v)| = |h_S(u) - h_T(v)|.$$

988 These cases together establish the claim. \square

D COMPLEMENTARY EXPERIMENTS

D.1 EXPERIMENTAL SETUP

994 The experiments are implemented using the PyTorch platform on a workstation equipped with an
 995 Intel (R) Core (TM) i7-14700K CPU@3.40GHz and a NVIDIA GeForce RTX 4080
 996 16GB GPU. For all datasets, we adopt a k -layer GNN, where k ranges from 2 to 5 and the hidden
 997 dimension is selected from 32, 64, 128, 512. Both the domain discriminator and the classifier are
 998 implemented as two-layer MLPs with hidden dimensions chosen from 16, 32, 64, 128. To improve
 999 the quality of pseudo labels on the target dataset, we pretrain an auxiliary MLP classifier with a
 1000 128-64-64 architecture on the source domain, which provides pseudo labels from a complementary
 1001 perspective. We select the learning rate in $\{0.0001, 0.001, 0.003, 0.01\}$. The setting of hyperparam-
 1002 meters γ_{RA} follows the schedule: $\min\{2/(1 + e^{-10p}) - 1, 0.1\}$, where p changes from 0 to 1 during
 1003 the training process, as described in Ganin et al. (2016). Additionally, the parameter grid for the
 1004 homophily threshold h is $\{0.5, 0.6, \dots, 0.9, 1.0\}$. Guided by Theorem 4.2, for source nodes u with
 1005 $h_S(u) < h$, we take $\alpha_u = (h - h_S(u))/(1 - h \cdot h_S(u))$ and for target nodes v with $\hat{h}_T(v) < h$
 1006 where \hat{h}_T is defined as in Eq. (4), we take $\alpha_v = (h - \hat{h}_T(v))/(1 - h \cdot \hat{h}_T(v))$.

1007 The total number of training epochs is set to 300. Since the pseudo-labels generated for the target
 1008 domain are unreliable at the early stage, we adopt a warm-up strategy to stabilize training. Specifi-
 1009 cally, we introduce a starting epoch e and a reweighting frequency t , so that the model can gradually
 1010 adapt to the evolving graph structure instead of being continuously updated from the beginning. The
 1011 starting epoch determines when to begin imposing edge weights on the target graph. The reweight-
 1012 ing frequency specifies how often the edge weights are updated. The search spaces for e and t are
 1013 $\{100, 150, 200, 250\}$ and $\{1, 5, 10, 15\}$. We repeatedly train and test our model for five times with
 1014 the same partition of dataset and then report the average of accuracy.

D.2 COMPARED METHODS

1017 We compare our method with the following representative methods. UDA-GCN (Wu et al., 2020)
 1018 develops a dual graph convolutional network that jointly exploits local and global consistency
 1019 for better adaptation. ASN (Zhang et al., 2021a) improves node representations by disentangling
 1020 domain-specific and domain-invariant factors through private and shared encoders. JHGDA (Shi
 1021 et al., 2023) explores information from different levels of network hierarchy by hierarchical pooling
 1022 model. StruRW (Liu et al., 2023) and PairAlign (Liu et al., 2024c) reweight edges in the source
 1023 graph to reduce the conditional shift of neighborhoods. GraphAlign (Huang et al., 2024) gener-
 1024 ates a small yet transferable graph that aligns with the target via MMD and preserves transferable
 1025 knowledge through gradient matching. HGDA (Fang et al., 2025b) mitigates the homophily shift by
 aligning multi-view feature representations across domains.

Table 5: Dataset Statistics.

Dataset	# Domains	# Nodes	# Edges	# Node_Homo	# Edge_Homo	# Feat Dims	# Labels
Airport	USA	1,190	27,198	0.3728	0.6978	241	4
	BRAZIL	131	2,148	0.2478	0.4683		
	EUROPE	399	11,990	0.2195	0.4048		
Blog	Blog1	2,300	66,942	0.3887	0.3991	8,189	6
	Blog2	2,896	107,672	0.3728	0.4002		
Citation	DBLPv8	5,578	7,341	0.9750	0.9654	7,537	6
	ACMv9	7,410	11,135	0.8179	0.8335		
Twitch	England	7,126	35,324	0.5536	0.5560	3,170	2
	Germany	9,498	153,138	0.5974	0.6322		
	France	6,566	65,955	0.5716	0.5595		
	Russia	4,385	37,304	0.6300	0.6176		
	Spain	4,648	59,382	0.6137	0.5800		
	Portugal	1,912	31,299	0.5945	0.5708		

D.3 DATASET

D.3.1 DATASET STATISTICS

Table 5 presents the basic statistics of each dataset, such as the numbers of nodes, the numbers of edges, feature dimensions, and labels. In addition, we report the average node and edge homophily, providing a measure of dataset homophily.

D.3.2 VISUALIZATION FOR SYNTHETIC DATASET

We take a two-dimensional example with the same attribute generation procedure as in the main text. For each class, we generate an equal number of nodes from three classes. In the source domain, the node attributes are drawn from class-specific 2-dimension Gaussian distributions: the means of the three Gaussians are $[-1, 0]$, $[1, 0]$ and $[0, 1]$ for the source domain, and $[-1.5, 0.5]$, $[1.5, -0.5]$ and $[0.5, 1.5]$ for the target domain. The covariance matrices for the three Gaussians are random rotations of three diagonal matrices: $\text{diag}([4_5, (1/4)_5])$, $\text{diag}(|\text{arange}(10) - 9/2|/(9/2))$, and $\text{diag}([4, 1/4, 4, \dots, 1/4])$, where $\text{diag}(\cdot)$ means the diagonal matrix with some vectors.

Figure 5(a) presents class-wise attribute contours on source (dashed) and target (solid) domains. For each class, we estimate a Gaussian density from its samples and plot two equal-probability contour levels. Differences in separation, overlap, and orientation across domains reflect both mean and covariance shifts in the conditional distributions $P(X | Y)$. To further visualize marginal distribution shift, Figure 5(b) (right) applies kernel density estimation (KDE) on all node attributes regardless of labels. The resulting contours approximate the overall P_X in the source and target domains, providing a more realistic representation of domain-level attribute distribution than Gaussian formulations.

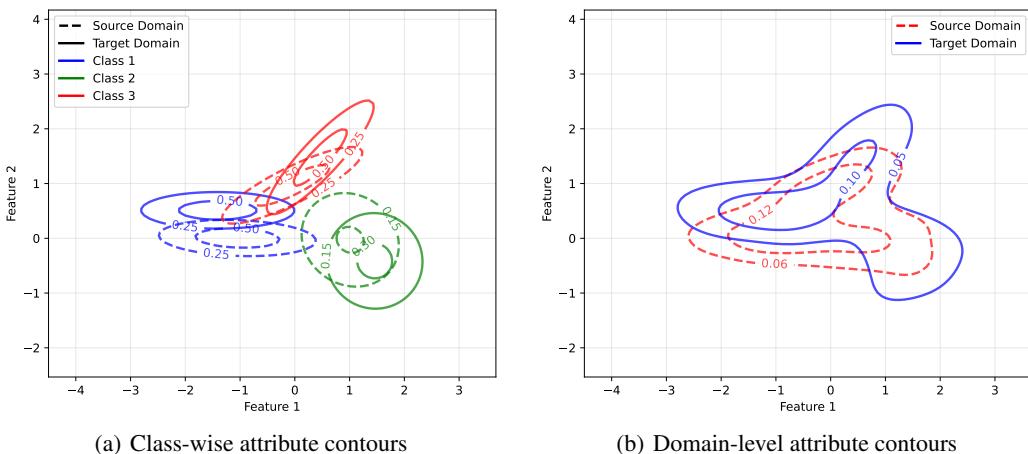


Figure 5: Visualization of synthetic data.

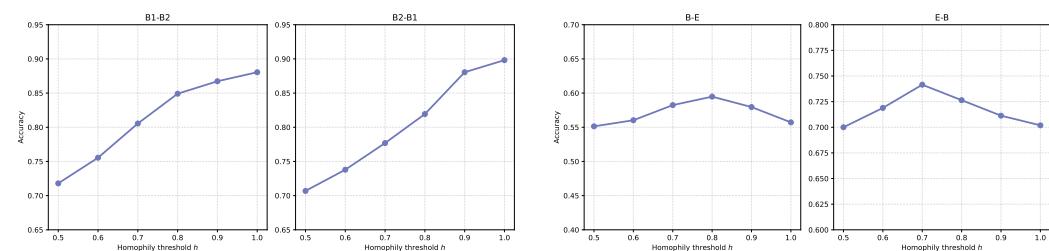
1080

1081
D.4 PARAMETER ANALYSIS

1082

1083 In this part, we analyze the influence of the homophily threshold h on the performance of our model.
1084 As shown in Figure 6, simply increasing the homophily threshold h does not always guarantee better
1085 performance. On datasets such as Blog, adding more homophilous edges steadily improves
1086 performance. In contrast, on datasets like Airport, performance peaks at an intermediate thresh-
1087 old and then declines. We attribute this to the amplification of noise in pseudo-labels. When the
1088 target domain contains higher label uncertainty, enforcing too many additional homophilous edges
1089 propagates and magnifies such errors, which compromises the benefits of structural refinement.

1090

1091 (a) Performance on Blog with varied h .1092 (b) Performance on B and E with varied h .

1093

1094 Figure 6: Parameter Analysis of homophily threshold h .

1095

1096
THE USE OF LARGE LANGUAGE MODELS (LLM)

1097

1098 We commit to using LLMs for text polishing based on prompts. All polished text are double-checked
1099 by authors to ensure accuracy, avoid over-claims, and prevent confusion.

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133