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Divide and Conquer: Isolating Normal-Abnormal Attributes in
Knowledge Graph-Enhanced Radiology Report Generation

Anonymous Authors

ABSTRACT
Radiology report generation aims to automatically generate clinical
descriptions for radiology images, reducing the workload of radi-
ologists. Compared to general image captioning tasks, the subtle
differences in medical images and the specialized, complex nature of
medical terminology limit the performance of data-driven radiology
report generation. Previous research has attempted to leverage prior
knowledge, such as organ-disease graphs, to enhance models’ abili-
ties to identify specific diseases and generate correspondingmedical
terminology. However, these methods cover only a limited number
of disease types, focusing solely on disease terms mentioned in
reports but ignoring their normal or abnormal attributes, which
are critical to generating accurate reports. To address this issue,
we propose a Divide-and-Conquer approach, named DCG, which
separately constructs disease-free and disease-specific nodes within
the knowledge graphs. Specifically, we extracted more comprehen-
sive organ-disease entities from reports than previous methods and
constructed disease-free and disease-specific nodes by rigorously
distinguishing between normal conditions and specific diseases.
This enables our model to consciously focus on abnormal informa-
tion and mitigate the impact of excessively common diseases on
report generation. Subsequently, the constructed graph is utilized to
enhance the correlation between visual representations and disease
terminology, thereby guiding the decoder in report generation. Ex-
tensive experiments conducted on benchmark datasets IU-Xray and
MIMIC-CXR demonstrate the superiority of our proposed method.
Code is available at the anonymous repository1.

CCS CONCEPTS
• Computing methodologies → Natural language generation;
Image representations.

KEYWORDS
Radiology Report Generation, Image Captioning, Medical Image
Analysis, Vision and Language

1 INTRODUCTION
Radiology images, such as chest X-rays, are crucial in routine diag-
nosis and treatment. When analyzing a radiology image, radiolo-
gists need to assess both normal and abnormal types in each region,
1https://anonymous.4open.science/r/DCG_Enhanced_distilGPT2-37D2

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Existing Knowledge Graph

Only partial entities are shown here.

Lesions Lung

Ground Truth Report
Normal heart size and mediastinal contours. No abnormal
airspace opacities or large cavitary lung lesions. Visualized
osseous structures are unremarkable in appearance.

Entity Type:
yellow: organ/location
green: attribute

blue: disease/symptom/anomaly 
red: missing disease/attribute

Input Image

Opacities Lung

Mediastinal Heart

Our Knowledge Graph

Normal Heart

Normal Mediastinal

No lung lesion Lung

No lung opacity Lung

No cavitary AirspaceOpacities Lesions

Figure 1: Example of a Chest X-ray and report from IU-Xray,
showcasing the organ-disease knowledge graph (KG) used
by existing methods, alongside our newly reconstructed KG.
Yellow, blue, and green in the report denote different entity
types. Red underlines highlight diseases or attributes over-
looked by existingmethods. The KG triplets generated by the
representative method DCL [1] can be downloaded from2.

drawing upon their professional knowledge and clinical experience
to document these findings, a process that is often time-consuming.
The advancement of automatic radiology report generation sys-
tems [2] has the potential to significantly reduce radiologists’ work-
load, garnering keen interest from both the medical and computer
science communities. Thanks to the substantial advancements in
artificial intelligence, particularly in deep learning methodologies,
various data-driven neural networks designed for radiology re-
ports have been proposed [3, 4]. Among them, encoder-decoder
architectures based on attention mechanisms [5] have been widely
adopted, achieving promising performance. However, these data-
driven methods face challenges due to the following data biases:
1) Descriptions of common diseases dominate, while descriptions
of uncommon diseases are rare. 2) Reports annotated by experts
tend to emphasize abnormal descriptions and often omit or briefly
describe normal conditions. 3) The radiology images have similar
appearances, and the key features determining whether they have
abnormalities are often subtle.

These challenges require the model to accurately discern subtle
differences in images, counteract the effects of data bias, and ensure
comprehensive report generation. To this end, recent research has
focused on integrating prior medical knowledge into the report
generation task, enhancing the model’s ability to generate medical
terminology and distinguish specific diseases. For example, MKG

2https://github.com/mlii0117/DCL

https://anonymous.4open.science/r/DCG_Enhanced_distilGPT2-37D2
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://github.com/mlii0117/DCL
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[6] extracted seven organs/tissues and twenty disease findings from
radiology reports to serve as nodes in a graph, constructing a uni-
versal graph by connecting specific organs and diseases to enhance
the relationship between different areas and abnormal findings. The
graph built by MKG [6] has been widely adopted in subsequent
research. PPKED [7] and DCL [1], building upon MKG, expanded
the scope of knowledge further by leveraging prior knowledge
from previously retrieved radiology reports in the training corpus.
Although some success has been achieved in detecting potential
specific diseases, these methods still face the following limitations:

• Limited disease coverage. Figure 1 shows a radiology re-
port and an organ-disease graph predefined by existing meth-
ods. The entity "cavitary", often associated with lung in-
fections like tuberculosis or specific types of pneumonia, is
crucial for diagnosis but overlooked.

• Overlook distinguishing between normal and abnor-
mal attributes. The existing graph in Figure 1 mainly fo-
cuses on the presence of disease entities such as "Lesions" in
a report while neglecting critical medical attributes indicated
by terms like "No" or "Normal". Despite some n-gram overlap
of the generated reports with the ground truth, these ap-
proaches still falls short in identifying key medical attributes
(normal or abnormal), limiting their clinical applicability.

To address the aforementioned issues, we have innovated in
organ-disease graph construction and proposed a novelDivide-and-
Conquer approach called DCG, which not only focuses on specific
organ-disease relationships but also emphasizes the normal and
abnormal attributes of diseases, ensuring a high consistency with
actual report descriptions. Specifically, we first utilize the powerful
biomedically pre-trained foundation model, BioMedCLIP [8], as a
retriever to retrieve the top-𝐾 similar radiology images from the
training set for each input image, and obtain their corresponding
reports. Then, we extract fine-grained disease entities from these
reports, further subdividing common diseases such as "Lesion"
into "Lobe lesion" or "Bone lesion". Following a divide-and-
conquer strategy, we categorize them strictly as disease-free or
disease-specific, based on their normal or abnormal attributes as
well as specific locations, such as "Lobe lesion" or "No bone
lesion". Subsequently, these text entities are used to construct
nodes in the graph, with a graph convolutional network being
employed to model the unique relationships between nodes within
each retrieved report. The resulting node embeddings are then
utilized to enhance the fine-grained patch embeddings extracted by
the image encoder, thereby improving the association with specific
disease texts and ultimately guiding the generation of radiology
reports. Our contributions can be summarized as follows:

• We proposed a Divide-and-Conquer strategy, named DCG,
that constructs a more comprehensive organ-disease graph
encompassing a broader range of diseases than previous
methods, serving as prior knowledge to enhance radiology
report generation.

• The proposed Divide-and-Conquer approach categorizes
entities as disease-free or disease-specific based on their at-
tributes, effectively reducing the impact of common diseases
and distinguishing between normal and abnormal condi-
tions.

• Extensive experiments conducted on benchmark datasets IU-
Xray [9] and MIMIC-CXR [10] demonstrate the superiority
of our proposed method.

2 RELATEDWORK
2.1 Image Captioning
Image captioning aims to generate coherent and accurate natural
language description for an image. It relies on identifying enti-
ties in the image and appropriately describing the relationships
between them. Bridging the semantic gap between different modal-
ities remains a challenging task, but the impressive achievements
of the transformer in natural language processing and multimodal
domains have notably propelled the progress of image caption
methods [11–15]. Representative methods such as OSCAR [16] uti-
lize object tags detected in images as anchor points for aligning
images and language, thereby simplifying the learning process of
semantic alignment between image and text. UpDown [17] em-
ploys a bottom-up mechanism to extract interested image regions
and image features, and a top-down mechanism is used to learn to
adjust feature weights. CAAG [18] first generates global context
using the primary captioning model and then selectively generates
target words at each time step based on the global context and
hidden states. Particularly, considering the complex spatial and
semantic interactions between objects in images and entities in
sentences, recent efforts have utilized scene graphs [19] to model
the objects in images for better semantic alignment from vision
to language, ultimately achieving accurate image captioning. For
instance, TFSGC [20] projects scene graphs as token sequences and
introduces binary masks to index connected nodes in the graph,
with learnable type embeddings aiding the model in distinguishing
types of edges, thereby generating more precise captions. K-Replay
[21] selects a small number of images containing knowledge as
enhancement examples and employs a sentence-level knowledge
coverage loss to prevent model collapse during fine-tuning, success-
fully integrating the generalization capabilities of vision-language
pre-trained models into image captioning. Despite challenges in
data collection and the need for professional annotations in radi-
ology report generation and the broader biomedical multi-modal
domain, there currently exists no large-scale scene graph dataset
akin to Visual Genome [19] for detailed modeling of object entities
in images. However, we are diligently working to bridge this data
gap using structured knowledge like organ-disease graphs, coupled
with innovative and adaptive methods, to enhance the accuracy
and clinical applicability of radiology report generation.

2.2 Radiology Report Generation
Radiology report generation (RRG) task aims to generate clinical
descriptions for radiological images and is often considered an ex-
tension of image captioning in the medical domain. Inspired by
image captioning, most RRG models rely on an encoder-decoder
architecture for report generation [1, 2, 6, 7, 22–27]. However, com-
pared to general domain image captioning, RRG faces two primary
challenges: medical reports are much longer than generic image
captions, and the high similarity in the appearance of radiology
images makes detecting subtle abnormal information more difficult
than identifying objects in general images. Many approaches have
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BioMedCLIP 
Image  

Retrieval

MedSAM 
Image Encoder

Multi-Head Cross Attention

Graph Construction Linear Projection

Report: [BOS] Heart size and pulmonary
vascularity appear within normal limits. ……

Masked Multi-Head Attention

Multi-Head Cross Attention

LM-Head

Tokenizer

DistilGPT2

(b) Graph-Enhanced Visual Representation (c) Graph-Guided Text Generation(a) Graph Construction 
Node Embeddings

Disease-free pairs

……

Report: The lungs are well-inflated and
clear. There is no focal consolidation .....

Organ Entity 
Extraction

Disease Entity 
Extraction

Matching

Disease-specific pairs

Adj.
Matrix

Graph Attention

……

nodule-lung normal-airspace 

no effusion-pleural calcification-mediast. 

no consolidation-lung calcification lymph-other 

Match

Match

Input Image

 ...... No pneumothorax or pleural effusion is
seen. Calcified granuloma is present in the right
base. In the lateral right base is identified ......

Report: The lungs are well-inflated
and clear. There is no focal
consolidation, pneumothorax, or
effusion. There are calcified
mediastinal lymph with a calcified
right lower lobe pulmonary nodule.

DistilGPT2

Figure 2: Overview of our Divide-and-Conquer approach, which consists of three modules: (a) Divide-and-Conquer Graph
Construction, (b) Graph-Enhanced Visual Representation, and (c) Graph-Guided Text Generation. Each input image is paired
with a corresponding report acquired through an offline image retrieval process. The retrieved report is then input into
module (a) to construct a unique graph. This graph is utilized in module (b) to enhance visual representations. Module (c), in an
autoregressive manner, generates each subword of the radiology report based on the previously produced subwords and the
enhanced visual representations. [BOS] symbolizes the beginning-of-sentence special token.

been proposed to address these challenges. For example, Liu et
al. [22] built upon the standard transformer framework and pro-
posed a progressive generation architecture, which first predicts
the preliminary topics of reports and then generates sentences cor-
responding to these topics. R2Gen [2] added a relationship memory
network to automatically record the generation process and used
the recorded information to guide report generation. CMN [23]
employed a memory matrix to achieve cross-modal alignment and
interaction.

Due to the inherent characteristics of radiology images, where
a strong intrinsic connection between diseases and organs exists,
recent approaches using graphs indicate the intrinsic correlations
between diseases and organs to assist in report generation. For
example, KERP [24] extracted anomalies from radiology images
to construct an anomaly graph and transformed high-level seman-
tics across various domains of graph-structured data through a
graph transformer. MKG [6] constructed a graph consisting of 7
organs/tissues and 20 findings from numerous findings in reports,
with edges describing the relationships between findings and or-
gans/tissues. Following [6], PPKED [7] combined prior knowledge
with the pre-constructed graph to refine knowledge. DCL [1], build-
ing on a pre-constructed organ-disease graph, retrieves entities
during the generation process as supplements to the graph, thereby
dynamically expanding the graph’s knowledge scope. Compared
to existing methods with only 7 organs/tissues and 20 findings
[1, 6, 7], we further subdivide diseases according to the fine-grained
tissues where they occur, such as subdividing "Lesion" into "Lobe

lesion" or "Bone lesion". Following our proposed Divide-and-
Conquer strategy, we strictly categorize the normal and abnor-
mal attributes of disease descriptions, such as "Lobe lesion" or
"No lobe lesion", to construct the organ-disease graph. Our con-
structed graph expands the breadth of knowledge coverage and
provides the decoder with information more consistent with the
semantics of expert-written reports.

3 METHODOLOGY
In this section, we will introduce the detailed implementation of our
proposed Divide-and-Conquer Graph-enhanced radiology report
generation. An overview of the structure of DCG is illustrated in Fig-
ure 2, which includes three modules: (a) Divide-and-Conquer Graph
Construction, (b) Graph-Enhanced Visual Representation, and (c)
Graph-Guided Text Generation. We first present the optimization
objective for radiology report generation and then sequentially
introduce the three proposed modules.

3.1 Overview
The radiology report generation task aims to produce a textual
sequence Y = {𝑦1, . . . , 𝑦𝑇 }, which describes the input radiology
image I. Here, 𝑦𝑡 represents a word token in the report, and 𝑇
is the length of the report. The entire process of generating the
textual sequence can be expressed as:

𝑃 (Y|I) =
𝑇∏
𝑡=1

𝑃 (𝑦𝑡 |𝑦<𝑡 ,I) . (1)

Here 𝑡 indexes each token in the sequence, while 𝑦<𝑡 repre-
sents all the tokens that precede the 𝑡-th token in the generated
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report. Typically, cross-entropy loss is used to optimize the model
parameters 𝜃 :

L𝐶𝐸 (𝜃 ) = −
𝑇∑︁
𝑡=1

log 𝑃𝜃 (𝑦∗𝑡 |𝑦∗<𝑡 ,I), (2)

where Y∗ = {𝑦∗1, . . . , 𝑦
∗
𝑇
} represents the ground truth report. In

this paper, we follow the standard image captioning structure of
an image encoder and an auto-regressive text decoder, while also
utilizing the graph to enhance visual representation, further guiding
the accurate generation of radiology reports.

3.2 Divide-and-Conquer Graph Construction
To utilize prior knowledge to enhance image representation and
guide the generation of radiology reports, we first need to construct
a organ-disease graph. It is worth emphasizing that the organ-
disease graph [6, 7] used in radiology report generation differs
from common knowledge graphs, exclusively describing the rela-
tionships between organ and disease entities. Unlike the approach
in [28], which utilizes an image classifier pre-trained on the [29]
or [30] dataset to predict symptom labels for graph construction,
we employ a retrieval-augmented approach that directly retrieves
the image I′, which is similar to the input image I, and use its
corresponding report to construct the graph. Specifically, we first
utilize the image encoder (ViT) of BioMedCLIP [8] to initialize the
set of image indices D = {𝑓I𝑖 }𝐿𝑖=1, where each 𝑓I𝑖 is the [CLS]
embedding extracted for the 𝑖-th image by the image encoder and 𝐿
denote the total number of images. Subsequently, the Top-𝐾 items
retrieved from D based on the highest cosine similarity to a given
image query 𝑓I are represented as:

D̃ = Top-K(D | 𝑓I ), (3)

where D̃ ⊆ D, and the corresponding reports Y′ are obtained by
concatenation [; ], resulting in:

Y′ = [Y1; . . . ;Y| D̃ | ] . (4)

Afterward, Y′ is used to extract organ-disease entities. The
predefined organ and disease entities, along with their detailed
relationships, are illustrated in Figure 3. Our predefined organs
are consistent with those in R2Gen [2], but in addition to symp-
toms specific to each organ (such as "Pneumonia" in "Lung" and
"Fracture" in "Bone"), our predefined symptoms are strictly dis-
tinguished by the organ in which they occur, for example ("Rib
lesion" in "Bone", "Lobe lesion" in "Lung"), to avoid the confusion
and potential inaccuracies that may arise from report generation.
To further differentiate between normal and abnormal conditions
in radiology images and achieve precise matching with ground
truth reports, we employ a divide-and-conquer strategy to con-
struct two types of disease-organ pairs using report text, organs,
and detailed symptoms: disease-free and disease-specific pairs, as
illustrated in the lower part of Figure 3. Throughout the entire
dataset, disease-specific and disease-free entities are designated as
𝑁 nodes V = {𝑣1, 𝑣2, . . . , 𝑣𝑁 } in the Divide-and-Conquer Graph
G = (E,V). Node relationships include "exists" and "does not
exist", and entities such as "Effusion" for disease-specific and
"No Effusion" for disease-free cases are encoded into node embed-
dings F𝑣 using pre-trained DistilGPT2 [31]. We take the average

Normal

Heart

Spine

Pleural

Mediastinum

Airspace

Other

Heart opacity

Basilar opacity
......

Consolidation

Cavitary lesion
......

Bone
Fracture

Bone lesion
......

Lung Lobe lesion

Lung lesion

Edema
......

Mediastinum opacity

Hernia
......

Effusion

Pneumothorax
......

Scoliosis

Levoscoliosis
......

PICC

Lymphadenopathy
......

Thoracotomy

Disease-free pairs

Organ & Disease Detailed Relationship

Disease-specific pairs

Bone Bone lesion

Airspace Normal

Pleural No Effusion

Basilar opacityHeart

Figure 3: Upper part: Predefined organs, detailed dis-
eases/symptoms, and their relationships; Lower part: Exam-
ples of disease-specific pairs and disease-free pairs.

of the last hidden states from the final layer of the transformer to
obtain the set of all node embeddings F𝑣 = {𝑓𝑣𝑖 ∈ R𝑑 }𝑁

𝑖=1. If an
organ-disease-specific or an organ-disease-free condition is present
in the retrieved report Y′, their relationship is represented by an
edge 𝑒 𝑗 , where E = {𝑒 𝑗 }𝑀𝑗=1, and 𝑀 denotes the number of edges.
A𝑈 -layer Graph Convolutional Network (GCN) [32] with residual
connections is employed to model the graph:

F(𝑢 )𝑣 = GeLU
(
(R + I)F(𝑢−1)𝑣 W(𝑢 )

)
, (5)

where GeLU is the activation function, R ∈ R𝑁×𝑁 is the adjacency
matrix constructed from E, I is the identity matrix for residual
connections, and W(𝑢 ) ∈ R𝑑×𝑑 are the parameters of the 𝑢-th
layer. A final residual connection is used to obtain the final node
embeddings F′𝑣 :

F′𝑣 = F𝑣 + F(𝑈 )
𝑣 , (6)

where 𝑈 denotes the number of layers in the GCN. These node
embeddings, extracted from retrieved reports, are consistent with
expert expressions and clearly distinguish normal from abnormal
cases. Initialized by pre-trained DistilGPT2, they enhance the de-
coder’s ability to capture nuanced details, leading to the generation
of accurate, detailed radiology reports.

3.3 Graph-Enhanced Visual Representation
Recently, Segment AnythingModel (SAM) has demonstrated power-
ful fine-grained Region of Interest capturing capabilities in general
domains. Similarly, a series of works have emerged in the medi-
cal field, trained on medical data for medical image segmentation
[33]. Considering that abnormal features in radiology images often
manifest with fine granularity, we believe that the powerful fine-
grained visual representation capability of the image encoder in
MedSAM can be very beneficial for capturing subtle and detailed
pathological changes in radiology images. Thus, we employ the
image encoder (ViT) from MedSAM to encode radiology image
I, obtaining fine-grained patch embeddings F𝐼 ∈ R𝑃×𝑑 , where
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𝑃 represents the number of patch embeddings after linear projec-
tion. Notably, while IU-Xray generates radiology reports using
two chest images (frontal and lateral), MIMIC-CXR uses a single
image following R2Gen[2]’s annotation. For this, we use different
linear projections for each dataset to project the extracted patch em-
beddings onto 𝑃 dimensions. Subsequently, the node embeddings
F′𝑣 ∈ R𝑁×𝑑 obtained in Subsection 3.2 are used to enhance the
fine-grained patch embeddings F𝐼 . We employ Multi-Head Cross
Attention (MHCA) to achieve this:

F̂𝐼 = MHCA(F𝐼 , F′𝑣),
F̂𝑣 = MHCA(F′𝑣, F𝐼 ) .

(7)

Here, the patch embeddings F𝐼 and node embeddings F′𝑣 serve as
queries, keys, and values for each other. The resulting enhanced
patch and node embeddings are denoted as F̂𝐼 and F̂𝑣 , respectively.
Following this, the outputs of the MHCA are concatenated to lever-
age the strengths of both image and graph representations:

F̂𝑋 = [F̂𝑣 ; F̂𝐼 ], (8)

where F̂𝑋 ∈ R(𝑁+𝑃 )×𝑑 is used to guide the text decoder in generat-
ing reports.

3.4 Graph-Guided Text Generation
In the image captioning task, the generative approach, often re-
ferred to as a captioner, excels in producing combined image-text
representations that are crucial for vision-language understanding.
This approach particularly shines in tasks requiring natural lan-
guage generation. The captioner leverages a conventional encoder-
decoder architecture: the image encoder, which could be a Vision
Transformer (ViT) or ResNet, generates latent patch embeddings,
while the text decoder autoregressively predicts tokenized texts
based on the contextual information provided by the patch embed-
dings. The prediction process, introduced in Subsection 3.1, maxi-
mizes the conditional likelihood of the paired text using forward
autoregressive factorization. Training this encoder-decoder with
teacher-forcing allows for parallel computation, enhancing learning
efficiency. In our work, the Graph-Enhanced Visual Representations
F̂𝑋 obtained from Subsection 3.3 replace the patch embeddings in
conventional encoder-decoder models. These enhanced visual rep-
resentations are introduced to the decoder through a Multi-Head
Cross-attention Module, which is randomly initialized and placed
between the Masked Multi-Head Self-Attention and feed-forward
neural network modules in each decoder layer, initialized by Distil-
GPT2 [31]. The decoder then autoregressively generates the report
from the Graph-Enhanced Visual Representations F̂𝑋 . All details
regarding the model architecture, graph construction, training, and
parameters for text generation will be extensively discussed in
Section 4.

4 EXPERIMENT
4.1 Dataset
We evaluate our proposed DCG on two widely-used radiology re-
porting benchmarks, IU-Xray [9] and MIMIC-CXR [10]. Following
setting in [2], we divided and pre-processed both datasets for a
balanced comparison.

IU-Xray [9] contains 7,470 chest X-ray images and 3,955 reports.
Each report is associated with either one or both frontal and lateral
view images. In linewith [2], cases with a single imagewere omitted,
leaving 2,069 training, 296 validation, and 590 testing cases.

MIMIC-CXR [10], currently themost extensive radiology dataset,
includes 368,960 chest X-ray images and 222,758 reports and comes
with an official split. Using the official data splits, which allocate
70%, 10%, and 20% for the training, validation, and test sets re-
spectively, we have 258,272 cases in the training set, 36,896 in the
validation set, and 73,792 in the test set.

During the construction of the organ-disease graph, our prede-
fined organs align with those in [2]. However, in contrast to their
approach of providing a rough estimate of about 20 disease find-
ings related to organs/tissues, we rigorously differentiate between
disease-specific and disease-free entities, resulting in a higher num-
ber of nodes. Across the entire dataset, IU-Xray features 191 nodes,
while MIMIC-CXR comprises 276 nodes.

4.2 Implementation Details
Image Encoder Unlike previous works that use a ResNet-101 or
DenseNet-121 pre-trained on ImageNet as the image encoder [2, 23,
28], we choose MedSAM’s ViT [33] as our image encoder, excluding
theMLP neck to extract patch embeddings.With an input image size
of 512x512, MedSAM’s ViT produces a feature map of 32x32x768,
which is then flattened to a 1024x768 patch embedding. In alignment
with established methods [1, 2], we process paired images for IU-
Xray and a single image for MIMIC-CXR. To maintain consistency,
we project the number of extracted patch embeddings from 1024
down to 256.

Graph Construction For graph generation, we utilize only
the reports corresponding to the most similar images (based on
cosine similarity) retrieved by BioMedCLIP [8] for constructing the
graph. Following the predefined knowledge as detailed in [36], we
preprocess and segment the reports, then extract predefined lists
of organs and diseases using string matching through the Natural
Language Toolkit (NLTK) [37]. Notably, we detect the presence of
"no" and "normal" in sentences to differentiate between disease-free
and disease-specific cases. Subsequently, pre-trained DistilGPT2
[31] initializes the Text decoder. After removing the LM Head, it is
used to extract all disease-free and disease-specific entities as Node
Embeddings, maintaining a dimension of 768. For different datasets,
IU-Xray and MIMIC-CXR, the number of node embeddings is 191
and 276, respectively.

Text Decoder and Generation The pre-trained DistilGPT2
is also employed as the Text Decoder in our system. Our vocabu-
lary encompasses DistilGPT2’s tokens, supplemented with [BOS]
and [EOS] tokens. In line with previous CXR report generators
like Chen et al. [2], we standardized the format of ground-truth
reports. This standardization includes limiting reports to 60 words,
converting all text to lowercase, removing special characters, and
substituting infrequent words with an unknown token. During test-
ing, the decoder is capable of generating up to 128 subwords. For
report generation, we apply beam search with a beam size of four,
and during validation, a beam size of one is used for greedy search.

Optimizing parameters The model is trained on 4 NVIDIA
4090 GPUs, with a batch size of 16, for 20 epochs on both datasets.
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Table 1: The performances of our proposed DCG compared with other state-of-the-art systems on IU-Xray and MIMIC-CXR
dataset. The baseline represents the simplest Encoder-Decoder structure we have implemented, with specific settings detailed
in Section 4.

Dataset Method Avenue NLG Metric CE Metric

BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR CIDEr Precision Recall F1

IU-Xray R2Gen [2] EMNLP’20 0.470 0.304 0.219 0.165 0.371 0.187 - - - -
CMN [23] ACL’21 0.475 0.309 0.222 0.170 0.375 0.191 - - - -
PPKED [7] CVPR’21 0.483 0.315 0.224 0.168 0.376 0.190 0.351 - - -
METrans [34] CVPR’23 0.483 0.322 0.228 0.172 0.380 0.192 0.435 - - -
MMTN [35] AAAI’23 0.486 0.321 0.232 0.175 0.375 - 0.361 - - -
DCL [1] CVPR’23 - - - 0.163 0.383 0.193 0.586 - - -

Baseline 0.485 0.326 0.230 0.170 0.392 0.196 0.537 - - -
Ours DCG 0.514 0.330 0.241 0.186 0.401 0.211 0.578 - - -

MIMIC-CXR R2Gen [2] EMNLP’20 0.353 0.218 0.145 0.103 0.277 0.142 - 0.333 0.273 0.276
CMN [23] ACL’21 0.353 0.218 0.148 0.106 0.278 0.142 - 0.334 0.275 0.278
PPKED [7] CVPR’21 0.360 0.224 0.149 0.106 0.284 0.149 0.237 - - -
METrans [34] CVPR’23 0.386 0.250 0.169 0.124 0.291 0.152 0.362 0.364 0.309 0.311
MMTN [35] AAAI’23 0.379 0.238 0.159 0.116 0.283 - 0.161 - - -
DCL [1] CVPR’23 - - - 0.109 0.284 0.150 0.281 0.471 0.352 0.373

Baseline 0.368 0.235 0.156 0.106 0.289 0.145 0.391 0.371 0.316 0.319
Ours DCG 0.397 0.258 0.166 0.126 0.295 0.162 0.445 0.441 0.414 0.404

We select the checkpoint with the highest CIEDr metric for testing.
The initial learning rates are set to 1𝑒−5 for the encoder and 1𝑒−4 for
the other parameters, with all remaining AdamWhyper-parameters
kept at their default values.

4.3 Evaluation Metrics
Weevaluate performance usingNatural LanguageGeneration (NLG)
metrics like CIDEr [38], BLEU [39], ROUGE-L [40], and METEOR
[41], as well as Clinical Efficacy (CE) metrics. While BLEUmeasures
n-gram overlap and is prone to textual bias, CIDEr more effectively
assesses MRG systems by focusing on topic terms. For CE, we use
the CheXPert tool [30] to label reports in 14 medical terminologies
and assess clinical correctness with F1-Score, Precision, and Recall.
However, CE metrics are applied only to the MIMIC-CXR dataset
[10], as IU-Xray does not utilize CheXPert for labeling.

5 EXPERIMENT RESULTS
5.1 Comparison with State-of-the-art
To demonstrate the effectiveness of our proposed method, we com-
pared its performance with various state-of-the-art models on two
widely-used Radiology Report Generation (RRG) benchmarks: IU-
Xray and MIMIC-CXR, as shown in Table 1. The models we com-
pared include the classic R2Gen [2], a widely-used baseline for RRG;
CMN [23] and PPKED [7], which integrate organ-disease graphs;
and recent models such as METrans [34], MMTN [35], and DCL
[1]. Our DCG outperforms other existing methods in both Natural
Language Generation (NLG) and Clinical Effectiveness (CE) metrics.
BLEU [39] measures the n-gram overlap between the predicted and
actual reports. ROUGE-L [40] and METEOR [41], on the other hand,
respectively represent the longest common subsequence between
the generated and ground truth reports, and the harmonic mean
of precision and recall, considering synonymy and paraphrasing.

Notably, a high CIDEr score indicates that the reports generated by
our method have enhanced semantic richness and relevance to the
clinical context.

5.2 Ablation Study
In this section, we first analyze the distribution and occurrences of
normal and abnormal disease instances in the IU-Xray and MIMIC-
CXR datasets, demonstrating the necessity of distinguishing be-
tween disease-specific and disease-free entities, as shown in Figure
4. Then, we assess the performance of off-line image retrieval using
BioMedCLIP [8], as illustrated in Figure 5. Subsequently, we con-
duct ablation studies on IU-Xray to investigate the contribution of
each component in our proposed DCG. Table 2 displays the impact
of different visual encoders on accuracy, while Table 3 shows how
various node encoders, node modeling methods, and information
fusion approaches affect accuracy.

Dataset Distributions: We start by analyzing the distribution
of the dataset from the disease entities pre-extracted from reports
in the IU-Xray and MIMIC-CXR datasets, as shown in Figure 4.
From the left part, it can be observed that the number of disease-
free entities in IU-Xray is significantly higher than disease-specific
entities, while the numbers of disease-free and disease-specific
entities inMIMIC-CXR are unexpectedly balanced.We attribute this
to our deliberate splitting of sentences such as "No pneumothorax,
pleural effusion, or focal air space consolidation". From
the right part, it can be observed that the most frequently occurring
entities are "normal" and common diseases such as "pneumothorax"
and "effusion", while disease-specific entities exhibit a long-tailed
distribution, consistent with observations in the field.

Retrieval Performance: To verify that our proposed DCG-
enhanced method indeed benefits from the constructed graph, we
evaluated the degree of matching between the retrieved reports and
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Figure 4: Left part: Distribution of disease-specific and
disease-free findings in IU-Xray and MIMIC-CXR reports;
Right part: Frequency of occurrence of different types of
diseases in IU-Xray and MIMIC-CXR reports.

Figure 5: Image Retrieval Performance using BioMedCLIP on
the training sets of IU-Xray and MIMIC-CXR, respectively.
Specific evaluation methods are detailed in Subsection 5.2.

Table 2: Ablation study of the visual encoder. (a) is the Vi-
sion Transformer (ViT) pretrained on BioMedCLIP [8]; (b)
is the Convolutional Vision Transformer (CvT) pretrained
on ImageNet-21K; (c) is the ViT fine-tuned on medical image
segmentation using MedSAM [33].

Settings Image Encoder Size NLG Metric

Model Pretrained BLEU-4 ROUGE-L CIDEr

(a) ViT-B/16 BioMedCLIP[8] 224 0.163 0.378 0.422
(b) CvT ImageNet21k[42] 384 0.165 0.379 0.426
(c) ViT-B/16 MedSAM[33] 512 0.170 0.392 0.537

the actual reports by performing image retrieval using BioMedCLIP
[8] on input images. Since we pre-built disease-free and disease-
specific pairs for each report, we could directly calculate the recall,
precision, and F1 values for each retrieved report and actual report.
The average results are shown in Figure 5. The results align with
intuition: increasing the number of retrieved reports significantly
improves disease recall while slightly decreasing precision. When
the number of retrieved chest X-rays reaches 3, over 50% of entities
are recalled on both datasets.

Table 3: Ablation study of the node encoder and information
fusion method, detailed in Subsection 5.2.

Settings Node Information Fusion NLG Metric

Encoder GCN MHCA BLEU-4 ROUGE-L CIDEr

Baseline 0.170 0.392 0.537
(a) PubMedBERT[43] ✓ ✓ 0.165 0.376 0.426
(b) DistilGPT2 ✓ 0.170 0.379 0.490
(c) DistilGPT2 ✓ 0.172 0.395 0.509
(d) Default DistilGPT2 ✓ ✓ 0.186 0.401 0.578

Visual Encoder: Good visual representations are crucial for the
quality of radiology report generation. To this end, we investigated
several state-of-the-art image encoders trained on both medical and
general datasets, as shown in Table 2. It can be observed that there
is not much difference in performance between (a) ViT-B/16@224
initialized with BioMedCLIP [8] and (b) CvT@384 pretrained on
ImageNet21k (0.422 vs 0.426). (c) MedSAM [33] achieved signif-
icantly better results on the IU-Xray dataset compared to other
image encoders, with a CIDEr score of 0.537. It is worth noting that
BioMedCLIPwas trained using a contrastive learning approachwith
15 million medical image-text pairs, while MedSAM was trained on
100k images segmented. This suggests that fine-grained ROI priors
may be more helpful in distinguishing different chest X-rays.

NodeEncoding and Information Fusion: Since the constructed
disease graph consists entirely of text, it is natural to use text en-
coders to encode these text nodes. In contrast to previous work [1]
that used SciBERT to encode entities into node embeddings, we
attempted (a) PubMedBERT, which aligns with BioMedCLIP [8] for
multi-modal alignment; (b), (c), and (d) utilized DistilGPT2, with the
decoder’s initialization weights and vocabulary being consistent.
Comparing the results, although (a) also introduced graph priors, it
did not benefit report generation; in fact, the CIDEr score decreased
from 0.537 to 0.426. We speculate that the IU-Xray dataset is too
small to allow the model to establish associations between the node
embeddings encoded by PubMedBERT and the token embeddings
of DistilGPT2. (b) does not use graph convolutional networks to
model organ-disease relationships. (c) does not utilize multi-head
cross-attention to interact between all node embeddings and patch
embeddings. (d) represents our final configuration. From the com-
parison results, it can be seen that each of our designs is crucial for
radiology report generation.

5.3 Case Study
To further investigate the effectiveness of our proposed method, we
conducted experiments on the IU-Xray [9] and MIMIC-CXR [10]
datasets regarding the retrieved disease-free and disease-specific
pairs, our baseline, and our proposed DCG. Descriptions contain-
ing disease-free and disease-specific pairs are highlighted in green
and blue, respectively. The gray text indicates descriptions that
did not match in the retrieval report. It can be observed that the
IU-Xray dataset contains some omitted information such as "XXXX",
which may affect the generation performance. However, to main-
tain consistency with previous methods, we did not clean these
sentences. The orange text indicates that despite augmenting the
predefined disease types, the MIMIC-CXR dataset still contains
some disease descriptions that are low in frequency and not defined
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Ground Truth Report Retrieved Pairs Baseline OursImage

The heart is normal in size.  
There is a round density in the AP
XXXX. XXXX study performed in
XXXX is not available for review at
this time. Lungs are hyperinflated
with flattened diaphragms. 
Calcified right lower lobe
granuloma. No focal airspace
consolidation, pneumothorax, or
pleural effusion. No pulmonary
edema. No acute bony abnormality.

Disease-free:  
normal-airspace 
no pneumothorax-pleural 
no airspace consolidation-airspace 
no edema-lung 
no airspace effusion-airspace 
no abnormality-bone 
Disease-specific: 
inflate-lung 
diaphragm flatten-mediastinum 
granuloma calcification-lung

The heart size and
pulmonary vascularity  
appear within normal limits.
The lungs are free of focal
airspace disease.  
No pleural effusion or
pneumothorax is seen.  
Degenerative changes are
present in the spine.

The heart size is normal. 
The lungs are normally
inflated without evidence of
focal airspace disease. 
No pleural effusion or
pneumothorax is seen.  
There is a calcified granuloma
in the right upper lobe. 
No acute bony abnormality.

Ap upright and lateral views of the
chest were obtained. Elevated right
hemidiaphragm is again noted. Mild
cardiomegaly is also stable. There
is no focal consolidation effusion or
overt signs of CHF. Mediastinal
contour is stable. Bony structures
are intact. A mild scoliosis is again
noted with a superior end plate
compression deformity.

Disease-free:  
obtain-views lateral 
no effusion-pleural 
no consolidation-lung 
no pneumothorax-pleural 
stable-mediastinum 
Disease-specific: 
hemidiaphragm elevate-mediastinum  
cardiomegaly-heart 
intact-bone 
scoliosis-spine 
deformity-spine

The lungs are clear without
focal consolidation.   
No pleural effusion or
pneumothorax is seen.   
The cardiac and
mediastinal silhouettes are
stable.

Ap upright and lateral views
of the chest provided.   
There is no focal
consolidation effusion or
pneumothorax.   
The cardiomediastinal
silhouette is normal.   
Imaged osseous structures
are intact.   
No free air below the right
hemidiaphragm is seen.

MIMIC-CXR

IU-Xray

Green: Disease-Free Description. 
Blue: Disease-Specific Description.

Green with underline: Correctly generated Disease-Free Description. 
Blue with underline: Correctly generated Disease-Specific Description. 
Red with strikethrough: Erroneously Retrieved/Generated Description. 

Color
meanings:  

Gray: Non-Related Description. 
Orange: Undefined Disease Description.

Figure 6: Illustrations of reports from ground truth, ours, and baseline (the simplest encoder-decoder) and retrieved disease-free
and disease-specific pairs for two samples from IU-Xray [9] andMIMIC-CXR [10], respectively. For better visualization, different
colors highlight different description types.

by us, such as "CHF", which stands for Congestive Heart Failure.
The quantities of different types of pairs from IU-Xray and MIMIC-
CXR confirm that the distribution statistics are generally consis-
tent, with slightly more normal descriptions than abnormal ones
in IU-Xray, while the numbers of normal/abnormal descriptions
are balanced in MIMIC-CXR. The baseline is the simplest encoder-
decoder structure, and it tends to predict higher-frequency occur-
rences influenced by data bias, such as "No pleural effusion"
or "Degenerative changes", regardless of whether these diseases
appear in the images. In contrast, our proposed DCG generates
corresponding descriptions for accurately retrieved organ-disease
pairs, even including some relatively low-frequency cases such
as "Calcified granuloma" or "Lung inflated". However, it is
worth mentioning that in the examples from MIMIC-CXR, our
proposed DCG retrieved "No pneumothorax-pleural", which led
to the generation of "No pneumothorax" in the report, not men-
tioned in the ground truth report. According to our observations,
"No pneumothorax", "No effusion", and "No consolidation" of-
ten appear together, indicating that our generated report is likely
correct, but due to the omission of the normal description "No
pneumothorax" by the physician, our generated report was not
properly evaluated, consistent with the situation described in Sec-
tion 1. These circumstances point us toward the development di-
rection of radiology report generation tasks: 1) Dataset cleaning
and establishing uniform baseline standards are crucial for evaluat-
ing all RRG methods. 2) Further expanding the knowledge graph is

essential for improving the performance of RRGmethods. 3) Explor-
ing evaluation methods beyond n-grams is necessary for advancing
RRG research.

6 CONCLUSION AND DISCUSSION
In this paper, we present a novel approach for constructing organ-
disease graphs in radiology report generation tasks. Addressing
the issue where existing methods cover only a limited range of
disease types and do not fully align with actual physician-written
reports, especially in identifying normal and abnormal attributes of
diseases, we introduced a Divide-and-Conquer method, called DCG.
This method relies on similarity-based report retrieval to build fine-
grained organ-disease graphs for each report, strictly categorizing
nodes as disease-free or disease-specific, based on their normal or
abnormal attributes and specific locations. Such a strategy helps to
differentiate between normal and abnormal conditions, reducing
the impact of bias due to the prevalence of common diseases. Ex-
periments on two popular benchmarks verify the effectiveness of
our method in generating accurate and meaningful reports.

Despite these promising results, we acknowledge that ourmethod
has room for improvement: (1) report retrieval is conducted offline
within each dataset, and (2) the retriever has not been fine-tuned
specifically for chest X-rays.We aim to address these issues in future
work, and we hope that our constructed graph will further enhance
the performance of subsequent radiology report generation tasks.
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