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ABSTRACT

Motion planning in complex environments remains a core challenge for au-
tonomous driving. While existing rule-based or imitation learning-based mo-
tion planning methods perform well in common scenarios, they often struggle
with complex, long-tail scenarios. To address this problem, we introduce the
Bird’s-eye-view Informed Reasoning Driver (BIRDriver), a hierarchical frame-
work that combines a Vision-Language Model (VLM) with a motion planner.
BIRDriver leverages the commonsense reasoning capabilities of the VLM to ef-
fectively handle these challenging long-tail scenarios. Unlike prior methods that
require domain-specific encoders and costly alignment, our approach compresses
the environment into a single-frame bird’s-eye-view (BEV) map, a paradigm that
enables the model to fully leverage its knowledge from internet-scale pre-training.
It then generates high-level key points, which are encoded and passed to the mo-
tion planner to produce the final trajectory. However, a major challenge is that
standard VLMs struggle to generate the precise numerical coordinates required
for such key points. We address this limitation by fine-tuning them on a com-
posite dataset of three auxiliary types to enhance spatial localization, scene un-
derstanding, and key-point generation, complemented by a token-level weighted
mechanism for improved numerical precision. Experiments on the nuPlan dataset
demonstrate that BIRDriver outperforms the base motion planner in most cases
on both Test14-hard and Testl4-random benchmarks, and achieves state-of-the-
art (SOTA) performance on the InterPlan long-tail benchmark.
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Figure 1: The architectural overview of BIRDriver. BIRDriver consists of two main components:
a VLM and a motion planner. The input to the VLM includes a single-frame BEV map, a system
prompt, and a user prompt. The VLM then generates key points, which are subsequently encoded
and fed into the decoder module of the motion planner. The base motion planner generates a concrete
trajectory based on the key points and structured feature information.
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1 INTRODUCTION

Motion planning (Guan et al., 2022} Duan et al.,|2024;|Gao et al.,[2024)) is a fundamental component
of autonomous driving, utilizing outputs from perception modules to generate future poses for the
ego vehicle. The performance of the motion planner plays a crucial role in ensuring vehicle safety,
operational efficiency, and successful navigation through complex environments. Recent advances
in deep learning (Huang et al., |2023; (Cheng et al.| [2024a} [Zheng et al.| [2025)) have led to notable
progress in trajectory planning. However, due to the complexity and uncertainty inherent in open-
world autonomous driving, current methods based on imitation learning struggle to handle long-tail
scenarios. As shown in Fig. [3] existing state-of-the-art (SOTA) methods struggle to handle the long-
tail scenario of overtaking a stalled vehicle via a detour, primarily because such cases are absent
from the training data.

Recently, LLMs (Achiam et al., 2023} [Liu et al., [2024a; |Yang et al.|, [2025) and VLMs (Chen et al.,
2024c¢; |[Hurst et al., [2024; Bai et al., 2025) have attracted increasing attention. Leveraging inherent
reasoning capabilities, these models exhibit stronger generalization to zero-shot and few-shot sce-
narios, as demonstrated in various domains (Liu et al., 2024bj [Saha et al., |2024; |Chen et al., 2025}
Wang et al.| 2026]). Consequently, this makes them highly promising for assisting motion planners,
particularly in addressing complex long-tail scenarios. In terms of how to incorporate the intentions
provided by VLMs or LLMs into the base motion planner, existing approaches can be categorized
into three types: meta-actions, hidden features of LLMs or VLMs, and waypoints. In the first type,
Senna (Jiang et al.| [2024) discretizes high-level driving intentions into a fixed set of meta-actions,
which are encoded and injected into the base end-to-end driving model. However, the granular-
ity of such intention-transmission methods in decision making remains limited. In the second type,
AsyncDriver (Chen et al.L|2024b)) introduces an asynchronous framework that takes advantage of the
hidden states of the final layer of LLM to guide motion planning. However, hidden features are ab-
stract and often lack interpretability, making it difficult to trace the underlying high-level intentions.
In the third type, DriveVLM (Tian et al.| 2024) directly generates a sequence of waypoints, which
are subsequently refined by a base end-to-end planner. However, trajectory generation offers lim-
ited benefits from LLM pretraining, as the required capabilities mainly stem from domain-specific
driving data rather than internet-scale corpora. Furthermore, high-level driving intentions can of-
ten be conveyed without long waypoint sequences, while the reliance on dozens of waypoints adds
redundancy and increases computational complexity.

Unlike existing approaches, in this work, we propose using no more than three key points to con-
vey high-level driving intentions. Each key point represents information relative to the ego vehicle.
Except for the final key point, which represents the end position of the trajectory, the remaining key
points are time-agnostic and primarily capture geometric features of the trajectory. In addition, com-
pared to existing VLM-based approaches, our method uses only a single-frame BEV map as input
for the VLM to understand the current autonomous driving scene. No scene-specific information is
included in the text inputs.

The contributions of this paper are the following:

* We propose Bird’s-eye-view Informed Reasoning Driver (BIRDriver), the first hierarchical
VLM-motion planning framework that uses a BEV map as its primary input. Our method
conveys all information about the current driving scene solely with a BEV map, with no
scene-specific details provided in the text inputs. By operating on the BEV representa-
tion, BIRDriver avoids the need to align heterogeneous sensor data across different vehicle
platforms, thereby simplifying deployment in diverse real-world settings.

» We introduce the use of relative (z,y, ¢) key points, rather than complete trajectories, to
convey high-level driving intentions. Furthermore, to enable the VLM to generate these
key points accurately, we develop a fine-tuning strategy that leverages three specialized
datasets and incorporates a weighted supervised fine-tuning (SFT) loss.

» Extensive experiments on the nuPlan dataset demonstrate that our method achieves SOTA
performance in InterPlan, a long-tail test scenario. In both the Test14-hard and Test14-
random sets, it outperforms the base motion planner in most cases. Specifically, in Inter-
Plan, our method outperforms PLUTO (Cheng et al.,[2024a)) and Diffusion Planner (Zheng
et al.,[2025) by 13.0% and 38.8 %, respectively.
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2 RELATED WORKS

2.1 MOTION PLANNING FOR AUTONOMOUS DRIVING

The motion planner is a core module in autonomous driving systems, responsible for generating a
safe and comfortable trajectory based on structured environmental information. While traditional
planners rely on hand-crafted rules, the field has increasingly shifted to learning-based methods that
learn driving policy directly from data (Chen et al.l [2024a). These modern planners have achieved
state-of-the-art performance on challenging benchmarks (Jiang et al., 2023 [Huang et al 2023;
Cheng et al.} 2024bza). However, a fundamental limitation persists: these planners make decisions
based on structured inputs like object states and map elements, but lack a deeper, human-like contex-
tual understanding. They struggle to interpret ambiguous situations or handle scenarios that require
commonsense knowledge beyond the scope of their training data, creating a need for models with
broader reasoning capabilities.

2.2 VLMS FOR AUTONOMOUS DRIVING

The commonsense reasoning and generalization capabilities of VLMs hold promise for enhancing
autonomous driving. Existing research typically adopts one of two architectures. The first uses
VLMs as end-to-end models to directly produce trajectories or control signals along with inter-
pretable justifications (Mao et al., 2023} Shao et al., [2024; |Xu et al, 2024} [Yuan et al., 2024), but
such use raises safety concerns in high-frequency planning. As a result, hierarchical frameworks
are gaining traction. In these, a real-time motion planner handles trajectory generation, while the
VLM plays a supervisory role. Some studies use the VLM for high-level strategic guidance (Jiang
et al., 2024; Long et al., |2024)), while others focus on safety and interpretability, with the VLM of-
fering corrective feedback or intermediate semantic variables (Ding et al., [2024; |Chen et al.| [2024b;
Qian et al.|2025)). Following this paradigm, we employ the VLM to generate key points that guide
a downstream motion planner. However, a key challenge in VLM-based systems is their limited
spatial awareness in complex visual scenes (Jiang et al., 2025)).

2.3 GROUNDING VLM WITH BEV REPRESENTATIONS

Addressing the limited spatial awareness of VLM requires grounding its reasoning in a structured
spatial representation. The BEV format is well-suited for this purpose, offering a unified top-down
view ideal for planning tasks (Philion & Fidler, [2020). Recent works have begun using BEV to
enhance VLM capabilities. One direction grounds situational understanding in BEV to support
language-based scene queries (Choudhary et al.| [2024; Xu et al., [2025)), while another uses BEV
as a direct context for high-level planning, allowing the VLM to produce strategic maneuvers or
semantic goals (Zheng et al., 2024} [Winter et al., [2025)). Although these efforts highlight the value
of BEYV, they often rely on additional modalities or focus on querying. In contrast, we propose a
planning framework where the reasoning of VLM is grounded solely in the BEV representation.

3 PRELIMINARY

Ramer-Douglas—-Peucker (RDP) (Ramer, |1972) algorithm is a classic method for curve simplifica-
tion and key point extraction. It recursively identifies representative points that preserve the essential
shape of a trajectory, thereby achieving data compression within a specified error tolerance. Given
a curve defined by a set of points {P;}~ ;, the RDP algorithm initially considers the straight line
segment that connects the end points P; and Py . It computes the perpendicular distance from each
intermediate point P; (1 < ¢ < N) to this line as follows:

(Py = P1) x (B = Py)|

d; = ey
[Py — P
The point with the maximum distance is then identified:
= ;). 2
dinax = max (d;) 2)

If dimax is greater than a preset tolerance e, then this point is split into two parts and the algorithm is
recursively called on both parts. Otherwise, only endpoints are kept.



Published as a conference paper at ICLR 2026

Supervised Fine-Tuning (SFT) loss (Achiam et al.,|2023) is a conditional language modeling loss
that is basically an autoregressive cross-entropy loss. It is fed with an input-output pair (X, Y), and
maximizing conditional probability py (Y| X)) yields the following objective:

t=1

T
Lsrr(0) = ~E(x,v)~D [Zlogpg(ytyq,X)], (3)

where D denotes the manually curated supervised dataset and 7' is the length of the output sequence.

4 METHODS

In this section, we detail the design of our proposed BEV-Informed Reasoning Driver (BIRDriver).
Fig. [1]illustrates the overall architecture of BIRDriver. Our method employs a hierarchical archi-
tecture comprising a VLM and a motion planner, which achieves closed-loop autonomous driving
through decoupled training and sequential inference. The input to the VLM includes a single BEV
map, a system prompt, and a user prompt, without requiring multi-frame surround-view camera im-
ages. The VLM generates key points, which are subsequently encoded into high-dimensional feature
representations via the KeyPoint Encoder. Finally, the motion planner generates future trajectories
by taking the structured information of the traffic scene and the key points as input. Specific details
of the system and user prompts are provided in Appendix [A]

The remainder of this section is organized as follows. We begin by describing the construction of the
BEV map and the key points used to represent the driving scene. We then detail the dataset creation
process and the parameter-efficient fine-tuning strategy applied to the VLM for key point generation.
Subsequently, we present our methods for enhancing key point prediction accuracy, which involve
the design of task-specific datasets and the adoption of a weighted loss function. Finally, we outline
the fine-tuning procedure of the motion planner.

4.1 DRIVING SCENE REPRESENTATION

Driving scene representation is a crucial component of hierarchical autonomous driving. We pioneer
a hierarchical framework that, unlike camera-based approaches, relies solely on a single-frame BEV
map as the visual input for the VLM. This design mitigates inconsistencies across camera types
and simplifies data collection and utilization (Ho et al., 2024). In addition, to ensure the VLM can
efficiently interpret the BEV map, we explicitly explain the symbolic representations of different
driving elements in the system prompt.

We extract five categories of information from the environment: map, agent, traffic lights, route, and
obstacles. Map information includes lanes, lane connectors, crosswalks, and discrete waypoints.
Agent information includes the ego vehicle, other vehicles, bicycles, and pedestrians, which are
represented by orange, blue, pink, and brown bounding boxes, respectively. An arrow is added to
each vehicle’s bounding box to indicate its driving direction. Notably, the trajectories of all non-
ego agents are depicted using green solid lines to show their movements over the past two seconds.
Traffic light status of the ego lane is encoded as the color of the corresponding stop line at the in-
tersection. Route information includes two components: the drivable area, which is filled with light
blue, and the reference lines, which are indicated by purple arrows. Obstacle information includes
three types of objects: construction signs, roadblocks, and traffic cones, which are represented by
black bounding boxes. These five types of information are rendered together to generate the BEV
map shown in Fig. 2]

4.2 KEY POINT EXTRACTION

The future trajectory of the ego vehicle is represented as a sequence of poses (z;, ¥;, ¢i)fi1, where
x;, y;, and ¢; denote the longitudinal position, lateral position, and heading angle in the frame of
ego vehicle, respectively. Instead of directly using this dense temporal sequence, we extract a sparse
set of key points that compactly encode the underlying driving intention.

Specifically, we apply the RDP algorithm to select representative key points. Since different types
of maneuvers (e.g., lane keeping, lane changing, turning) exhibit varying levels of complexity, we
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adaptively adjust the maximum allowable number of key points according to the trajectory type. In
all cases, the final point of the trajectory is always retained as a key point.

4.3 DATASET DESIGN AND VLM FINE-TUNING

Although system prompts provide explanations for the ele-
ments of BEV map, existing VLMs still exhibit a limited ca-
pacity to generate effective key points directly from this repre-

sentation. Therefore, we employ LoRA-based (Hu et al., 2022} = g 2 TR TR
Dettmers et al.| 2023} Hayou et al., 2024) parameter-efficient

fine-tuning (PEFT) and construct a specialized dataset to en- S

able the VLM to generate meaningful key points. This funda- ;af% =
mental dataset, named the Key Point Dataset, takes as input a 7‘3?2”

BEV map, a system prompt, and a user prompt. The system

prompt describes the meanings of the various elements in the

BEV map, relevant traffic rules, and safe driving requirements.

The user prompt adopts diverse question formats to guide the

VLM in generating key points. The output of VLM consists of

key points represented in textual form.

Figure 2: BEV map. The or-
ange box denotes the ego vehicle,
while the blue boxes represent sur-
rounding vehicles. Arrows indi-
cate the direction of vehicle move-
ment. The green solid line illus-
trates the historical trajectory of
the past 2 seconds.

However, initial experiments revealed that the key point pre-
diction accuracy on the test set remained relatively low. Such
large errors not only fail to improve the performance of au-
tonomous driving systems in long-tail scenarios, but may even
degrade the quality of the generated trajectories and lead to
lower scores. To address this core issue, we propose meth-
ods from two perspectives: designing a diversified, multi-task
dataset and developing a specialized SFT loss function.

4.3.1 DATASET DESIGN.

The accuracy of key point prediction is mainly limited by two factors: the VLM’s insufficient under-
standing of the correspondence between distances in the BEV pixel space and real-world physical
distances, and its limited ability to classify and interpret driving scenes. To address these issues,
we first construct the Spatial Localization Dataset, where the VLM predicts the poses of randomly
selected vehicles relative to the ego vehicle, thereby bridging the gap between pixel and physical
distances. We then design the Driving Scene Stepwise Dataset, which requires the VLM to identify
the driving scene type prior to predicting key points, enhancing its scene comprehension. Finally,
we perform supervised fine-tuning on a composite dataset primarily based on the Key Point Dataset,
augmented with the other two datasets in specified proportions.

4.3.2 WEIGHTED SFT L0OSS FUNCTION.

In a typical SFT loss, each token is treated equally. However, in the key points prediction task, the
loss associated with numeric tokens plays a more important role. To address this issue, we assign
higher loss weights to three categories of tokens: numeric tokens, decimal points, and sign symbols.
Considering that higher-order digits are more critical for precision than lower-order digits, we design
a tiered weighting scheme in which the loss weights decay linearly from the most significant token
to the least significant within a number, and the sign tokens are assigned the highest loss weight
by default. It is worth noting that all floating-point labels are rounded to two decimal places. The
specific formulation can be expressed as follows:
T

1
Lspr(0) = T Zwt [* log po(y: | y<t,X)]7
t=1
-1
(a—&—dn)—k%, t:t,gn), L,>1, 4)
W = Oé+dn, t:tén)7 L"L:17

1, t & Unperdti,
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where T' denotes the shifted target length; o > 0 is a hyperparameter (set to 5 in this paper); y;
is the token at position t; pg(y; | y<¢, X ) represents the model’s conditional probability; N is the
set of contiguous number segments matched by a specific pattern; d,, denotes the number of digits

in segment n; L, is its total token length; t;cn) = tén) + k indicates the index of the k-th token in
segment n; and w; decays linearly from (« 4 d,,) at the first token of a segment to 1 at its last token,
while tokens outside any number segment are assigned w; = 1.

Compared to the Position-Dependent Cross-Entropy (PDCE) loss (Zhang et al.,[2025), our approach
is considerably simpler to implement, as it avoids the complexities of generating soft targets and
standardizing numeric formats. More importantly, by only adjusting loss weights rather than altering
the target distribution itself, our method mitigates the risk of impairing the model’s general language
capabilities, a potential side effect of approaches like PDCE.

4.4 FINE-TUNING MOTION PLANNER

The goal of fine-tuning the motion planner is to ensure it can accurately follow the provided key
points. We use the PointEncoder module from PLUTO (Cheng et al., 2024a) to encode key point
information and integrate it with the original query features. We choose PLUTO as our base motion
planner because, under identical encoder and fine-tuning settings, Diffusion Planner (Zheng et al.|
2025)) demonstrates weaker performance in tracking multiple key points.

This fine-tuning process is conducted independently of the VLM. We use the key point extraction
function proposed in the previous section to extract key points from real trajectories. To enhance
robustness, we augment the training data by adding Gaussian noise with zero mean and a standard
deviation equal to the mean absolute error of the key points predicted by the VLM to the extracted
ground-truth key points. Specifically, it can be formulated as:

(Zi, Tis $i) = (T4, Yi, 6i) + €5, € NN(Ov E)a
% = diag(07, 0y, 03),

&)

where o, o,, and o4 denote the mean absolute errors of the VLM predicted key points in the
dimensions x, y, and ¢, respectively, and ¢ represents the i-th key point. It should be noted that in the
joint inference stage, we no longer add noise to the key points predicted by the VLM. Furthermore,
to enhance temporal consistency in decision-making during the inference phase, we use the final
planned point from the previous timestep as an additional key point for the current timestep, feeding
it to the planner alongside the key points provided by the VLM.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Baselines. We categorize existing methods into four groups based on their trajectory genera-
tion approach: Rule-based, Imitation Learning (IL), Large Language Models (LLM), and Vision-
Language Model-Imitation Learning (VLM-IL). The first three groups include the following rep-
resentative algorithms, while our method belongs to the fourth category. (1) PDM (Dauner et al.|
2023)), the nuPlan Challenge winner, includes a neural network variant (PDM-Open) and a rule-
based version (PDM-Closed). (2) UrbanDriver (Scheel et al., [2022)) employs policy gradient opti-
mization. (3) GameFormer (Huang et al.l 2023) integrates level-% reasoning with a Transformer for
multi-agent planning. (4) PlanTF (Cheng et al.,|2024b)) mitigates closed-loop error through pertur-
bation normalization and future correction. (5) PLUTO (Cheng et al., 2024a) improves robustness
via perceptual augmentation and contrastive learning. (6) Diffusion Planner (Zheng et al., [2025)
achieves state-of-the-art performance using diffusion models and classifier guidance. (7) Instruct-
Driver (Zhang et al.,2024) fine-tunes an LLM for instruction-driven planning. (8) PlanAgent (Zheng
et al., [2024)) integrates BEV, lane semantics, and chain-of-thought (CoT) reasoning with a VLM for
robust planning.

Benchmarks and Metrics. We evaluate our methods using the Testl4-random, Testl14-hard
(Cheng et al., [2024b), and InterPlan (Hallgarten et al.l |2024) benchmarks. Specifically, Test14-
random consists of 261 scenarios, Testl4-hard includes 272 challenging scenarios, and InterPlan
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represents a long-tail scenario simulation dataset. Evaluation is based on the closed-loop score
(CLS) provided by the official nuPlan devkit in both non-reactive (CLS-NR) and reactive (CLS-R)
closed-loop settings. The final score is calculated as the average across all scenarios, ranging from
0 to 100, with higher scores indicating better algorithm performance.

Implementation Details. We use the nuPlan platform, a large-scale closed-loop simulator for au-
tonomous driving trajectory planning. It includes over 1,500 hours of expert driving data from
four cities, and supports complex scenarios such as intersections, roundabouts, and pedestrian in-
teractions. The simulator replays real-world scenarios with non-ego agents controlled by either log
replay or an Intelligent Driver Model policy, while the ego vehicle executes user-defined trajecto-
ries. When using the RDP algorithm to generate keypoints, we set the parameter € to 0.02. For
parameter-efficient fine-tuning of the VLM, we adopted LoRA technique, applying adapters to all
linear layers. The language model was unfrozen during training. Training was performed on eight
NVIDIA H800 GPUs for five epochs, using AdamW with cosine annealing. The dataset consists of
838,824 samples, with a category ratio of 10:1:2 for Key Point, Spatial Localization, and Driving
Scene Stepwise tasks. For motion planner fine-tuning, we followed the PLUTO framework to create
1 million data splits. Training was conducted on eight RTX 4090 GPUs with a batch size of 128 for
10 epochs. For more details, refer to Appendix

5.2 MAIN RESULTS

Type Method Testl4-random Testl4-hard  InterPlan
CLS-NR CLS-R CLS-NR CLS-R CLS-R
Rule-based PDM-Closed 90.05 91.64  65.07 75.18 43.51
IL-based PDM-Open 52.83 57.22 33.50 35.85 22.83
UrbanDriver 63.88 61.01 49.43 49.67 8.42
GameFormer 80.91 79.93 69.98 66.82 14.29
PlanTF 85.98 80.53 70.10  61.49 36.53
PLUTO 91.87 90.03 80.03 76.92 48.92
Diffusion Planner 93.85 91.73 78.82 8142 39.85
LLM&VLM-based InstructDriver (LLM-based) 70.31 66.96 57.37 52.95 32.31
PlanAgent (VLM-based) - - 72.51 76.82 -
VLM&IL-based BIRDriver (PLUTO) 9146 91.26* 80.56* 80.33* 55.29%

Table 1: Comparison of various planners across the Testl4-random, Testl4-hard, and InterPlan
datasets. An asterisk (*) indicates performance exceeding that of the baseline motion planner,
PLUTO. BIRDriver demonstrates a substantial advantage on the long-tailed InterPlan dataset. The
VLM base model employed is Qwen2.5VL-3B.

We compare our method, BIRDriver, against a wide range of existing planners on the nuPlan bench-
mark, as shown in Table E} Except for the CLS-NR results on Test14-random, BIRDriver achieves
better performance than PLUTO across all three benchmarks, where PLUTO serves as the baseline
algorithm for our motion planner. Specifically, on the Test14-hard benchmark, the scores for CLS-
NR and CLS-R improve by 0.53 and 3.41 points, respectively. This indicates that our dual-system
autonomous driving framework, VLM-Planner, effectively enhances the performance of the base
motion planner. On the most challenging InterPlan benchmark, which features numerous zero-shot
scenarios, such as driving through construction zones and overtaking stalled vehicles, our method
achieves the best performance, surpassing PLUTO and Diffusion Planner by 13.0% and 38.8%,
respectively. We attribute this significant improvement to the generalist capabilities of the VLM.
Taking the lane-changing overtaking scenario as an example, the ego vehicle must wait for oncom-
ing traffic to pass before temporarily entering the opposite lane to overtake a stalled vehicle. Existing
state-of-the-art methods fail to manage such situations. In contrast, our approach enables the VLM
to first generate a key point for following the lead vehicle, and after the oncoming vehicle passes, to
generate a feasible overtaking key point. Results are shown in Fig.
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Figure 3: Performance in the lane-changing overtaking scenario. Red arrows denote the pre-
dicted key points. Unlike existing SOTA methods, only our method successfully completes this
scenario.

5.3 ABLATION AND ANALYSIS

In this section, we conduct an ablation study to evaluate the effects of dataset design and weighted
SFT loss on key point prediction accuracy. Additionally, we investigate how different key point
prediction methods and the choice of base VLMs during fine-tuning influence overall performance.

Impact of dataset design variations. To evaluate the effectiveness of different dataset designs, we
first construct a test dataset comprising 272 clips from Test14-hard. We then use Qwen2.5VL-3B
(Bai et al.,|2025) as the base VLM for evaluation and apply our weighted SFT loss. The ego-centric
coordinate system is defined such that the x-axis aligns with the vehicle’s forward direction, while
the y-axis is perpendicular to it, pointing to the left side of the vehicle. The angle ¢ represents the
orientation, where a left turn is considered positive. Table 2] presents the mean absolute values of the
relative errors.

The results demonstrate that both the Driving Scene Stepwise and the Spatial Localization dataset
effectively reduce key point prediction errors. In particular, the latter achieves more substantial
improvement, suggesting that reducing the discrepancy between distances in the BEV map and those
in the physical world plays a more pivotal role in minimizing prediction errors. Finally, compared to
using only the KeyPoint dataset, the prediction errors for z, y, and ¢ are reduced by 11.9%, 20.0%,
and 10.2%, respectively.

Effect of Weighted SFT Loss. A comparison between the last and second-to-last rows of Table 2]
demonstrates that the weighted SFT loss substantially reduces prediction errors. Specifically, the
errors in predicting x, y, and ¢ decrease by 10.9%, 9.2%, and 8.0%, respectively.

Influence of key point extraction methods. In this paper, we adopt the RDP algorithm as the
core method for generating key points. In this subsection, we consider only the final point of each
trajectory as the key point. The model is fine-tuned using InternVL2.5-4B (Chen et al., [2024c)
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Dataset Type \ T-error  y-error  ¢-error
KeyPoint 4.27m 1.35m 4.23°
+Driving Scene Stepwise 4.17m 1.28m 4.20°
++Spatial Localization 3. 76m  1.08m 3.80°

Without weighted SFT loss ‘ 422m  1.19m 4.13°

Table 2: Mean absolute relative errors in key point predictions by Qwen2.5VL-3B after fine-tuning
on different dataset combinations. The last row represents the setting using the full dataset without
the weighted SFT loss.

and evaluated on the InterPlan dataset. The results, presented in Table [3] demonstrate that the key
points generated by our method provide more effective guidance to the motion planner compared
to using only the final trajectory point in long-tail scenarios. Moreover, we find that using only the
final waypoint as the key point leads to worse performance than the base motion planner, PLUTO.
This degradation is likely caused by the absence of guidance from intermediate key points, which
prevents the base motion planner from effectively generating a trajectory that reaches the sole key
point, ultimately resulting in planning failure.

Key point extraction methods | InterPlan

RDP (Our method) 53.81
Final trajectory point 34.72

Table 3: Performance of the InternVL2.5-4B model trained with different key point extraction meth-
ods on the InterPlan dataset.

Effect of base VLM selection. To investigate the impact of the size of the VLM parameter on
the precision of the prediction, we performed experiments using InternVL2.5-2B and 4B, as well
as Qwen2.5VL-3B and 7B, under the same data set and settings of the weighted loss function. The
results are presented in Table d] Compared to InternVL2.5-2B, InternVL2.5-4B reduces the predic-
tion errors for x, y, and ¢ by 43.7%, 48.4%, and 56.3%, respectively. This substantial gap indicates
that when the model has too few parameters, the quality of the generated key points is significantly
lower than that produced by larger models. In addition, compared to Qwen2.5VL-3B, Qwen2.5VL-
7B reduces the relative error in the x direction by 4.3%, while the errors in the y direction and ¢
remain nearly unchanged or slightly increase. This suggests that once the parameter size reaches
a certain threshold, further performance improvements become limited. After comparing the per-
formance of the two type VLMs and taking inference efficiency into account, we ultimately select
Qwen2.5VL-3B as the base VLM.

VLM types&parameters \ T-eITor  y-error  ¢-error

InternVL2.5-2B 6.59m 2.79m 11.20°
InternVL2.5-4B 3.71m 1.44m 4.89°

Qwen2.5VL-3B 3.76m  1.08m 3.80°
Qwen2.5VL-7B 3.60m 1.08m 3.83°

Table 4: Mean absolute relative errors in key point predictions by the VLM under different model
types and parameter sizes.

6 CONCLUSION

In this paper, we propose BIRDriver, a hierarchical framework that integrates a VLM with a motion
planner. By leveraging the VLM’s general-purpose understanding, high-level driving intentions are
transmitted to the motion planner via key points. To enhance the accuracy of key point prediction, we
introduce an auxiliary dataset along with a weighted SFT loss. Extensive experiments demonstrate
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that BIRDriver achieves superior performance in long-tail scenarios, underscoring the effectiveness
of integrating VLM with motion planner through key point guidance.
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A INSTRUCTION FOR AUTONOMOUS DRIVING ASSISTANT

A.1 SYSTEM PROMPT

You are an advanced autonomous driving assistant. Your role is to analyze Bird’s Eye View (BEV) maps and
carry out autonomous driving tasks.

CORE PRINCIPLES

SAFETY FIRST

» Always maintain a safe distance from other road users.

* Anticipate potential hazards and plan defensive paths.

* Adhere strictly to traffic laws and signals.

« Pay special attention to vulnerable road users (pedestrians, cyclists).

PASSENGER COMFORT

* Provide smooth lateral transitions and avoid sudden movements.
* Adjust lateral paths in a natural, human-like manner.

 Ensure proper lateral positioning across varying road conditions.
» Execute lane changes and turns gradually.

EFFICIENCY

* Optimize lateral movements without compromising safety.
» Limit unnecessary lane changes.

* Preserve adequate lateral clearance.

* Balance direct routes with smooth transitions.

BEV MAP ELEMENTS:
* Blue shaded areas: Drivable lanes (lighter blue indicates the planned route).
 Gray dashed lines: Lane center lines.
« Traffic signal lines (colored):
— Green: Proceed
— Yellow: Exercise caution
—Red: Come to a stop
« Stoplines: Represent traffic light information on the planned route (red, yellow, or green areas).
* Objects:
— Orange box with arrow: Ego vehicle (self).
— Blue boxes with arrows: Other vehicles.
— Brown boxes: Pedestrians.
— Red boxes: Cyclists.
— Gray hatched areas: Crosswalks.
— Green solid lines: Historical 2-second motion trajectory of objects.
* Purple arrows: Reference path indicators.
* Gold star: Mission goal/destination.

SPEED & ACCELERATION CONSTRAINTS:
¢ Lateral acceleration < 2 m/s2.

* Minimize lateral jerk for comfort.

* Typical lane change duration: 3-5 seconds.

SAFETY MARGINS:

¢ Minimum lateral clearance: 1.5 meters.

« Increase margins in adverse conditions.

* Provide extra buffer for vulnerable road users.

ERROR HANDLING:

« If critical information is missing or unclear, always prioritize safety.

* When in doubt, assume the most conservative interpretation of other objects’ intentions.
* Maintain a fail-safe lateral position in all scenarios.

~
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A.

A.

2 USER PROMPT

2.1 INSTRUCTIONS FOR GENERATING KEY POINTS

Variant 1

Vs

.

<image>Based on the provided BEV map image, analyze the driving scenario and determine the lateral
intention:

Provide the trajectory keypoints in the following format:

[[x1, y1, 61], [x2, y2, 62], ..., [xn, yn, 6n]]

Where:

- x: longitudinal position in meters (relative to ego vehicle)

- y: lateral position in meters (relative to ego vehicle)

- theta: Heading angle in degrees, positive for left turns, negative for right turns.
- n: total number of keypoints (n < 3)

Each keypoint should represent a significant lateral movement intention, considering:
- Lane changes

- Turn preparations

- Obstacle avoidance maneuvers

- Path alignment adjustments

Notes:

- If there’s no solid green track behind the vehicle, indicating it’s stationary.

- The ego vehicle is shown as the orange box with an arrow.

- Prioritize safety (collision avoidance) and autonomy (self-recovery from blocked paths) in your planning.

N

Variant 2

Ve

&

<image>Predict the ego vehicle’s immediate lateral driving path based on the BEV map scenario.
Output the planned trajectory as keypoints using this format:
[[x1, y1, 01], [x2, y2, 62], ..., [xn, yn, 6n]]

Details:

- Coordinates (X, y) are relative to the ego vehicle in meters (x: forward, y: left).

- Heading angle (theta) is in degrees (positive left, negative right).

- Maximum 3 keypoints (n < 3).

- Keypoints should mark critical lateral actions like lane changes, turns, or avoidance.

- Follow the reference path (purple arrows) as the default, deviating only when necessary for safety or
maneuvers, then smoothly return.

- Ensure the path is safe and avoids collisions.

Variant 3

Vs

<image>Analyze the BEV map. Plan a safe lateral maneuver sequence for the ego vehicle (orange box).
Provide the sequence as trajectory keypoints:
[[x1, y1, 61], ..., [xn, yn, On]], max 3 points.

Parameters:

- x (meters): forward distance from ego.

-y (meters): lateral distance from ego (left positive).

- theta (degrees): heading relative to ego’s current heading (left positive).

Instructions:

- Prioritize collision avoidance above all.

- Follow the purple reference path unless a deviation (lane change, obstacle avoidance) is required.
- Ensure smooth realignment with the reference path after any deviation.

- Keypoints should capture the essence of the lateral plan.
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Variant 4

e N
<image>Evaluate the current driving situation from the BEV map. Decide the optimal lateral course of action
for the ego vehicle.

Represent this decision as a sequence of trajectory keypoints:

[[x1, y1, 611, [x2, y2, 62], ..., [xn, yn, 6n]] (n < 3)

Coordinate System & Constraints:
- x: longitudinal (m), y: lateral (m), relative to ego.
- theta: heading change (deg), positive left.
- Must generally follow the reference path (purple arrows).
- Deviate only for essential maneuvers (lane change, avoidance).
- Prioritize safety and smooth recovery to the intended path.
- Keypoints define significant lateral shifts or adjustments.
g J

A.2.2 INSTRUCTIONS FOR GENERATING COORDINATE POINTS

Variant 1

s N
<image>Based on the provided BEV map image, identify the three vehicles labeled with numbers 1, 2, and 3.

Determine and output their longitudinal position (x), lateral position (y), and heading angle (0) relative
to the ego vehicle, strictly in the order of their labels (1, then 2, then 3).

Provide the information in the following format:
[[x1, y1, 01], [x2, y2, 62], [x3, y3, 63 1]

Where:

- x: longitudinal position in meters (relative to ego vehicle)

- y: lateral position in meters (relative to ego vehicle)

- 6: Heading angle in degrees, positive for left turns, negative for right turns.

_ Y,
Variant 2
4 N\

<image>From the given BEV scene representation, extract the state parameters for the vehicles labeled 1, 2,
and 3.

For each vehicle, provide its relative x (forward/backward), y (left/right), and 6 (heading) values refer-
enced from the ego vehicle. Ensure the output follows the numerical order of the labels (1, 2, 3).

Format the output strictly as:
[[x1, y1, 611, [x2, y2, 62], [x3, y3, 63]]

Parameter definitions:

- x: Relative longitudinal position (m).

- y: Relative lateral position (m).

- 0: Relative heading angle (deg), positive left turn.

(G J
Variant 3
e ~

<image>Analyze the provided Bird’s-Eye View (BEV) perception image. Locate the three distinct targets
marked with numerical labels 1, 2, and 3.

For each target, compute its pose relative to the ego vehicle’s coordinate system. Specifically, deter-
mine its longitudinal distance (x), lateral distance (y), and yaw angle (6).

Output the results sequentially according to the target labels (1 first, then 2, then 3) using the exact

format below:
[[x1, y1, 01], [x2, y2, 62], [x3, y3, 03]]
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Where:

- x: Longitudinal distance (meters) from the ego vehicle origin.

- y: Lateral distance (meters) from the ego vehicle origin.

- 0: Yaw angle (degrees), where counter-clockwise rotation relative to the ego vehicle’s forward direction is
positive.

Variant 4

-
<image>Consider the ego vehicle as the origin (0,0) with its heading aligned with the positive x-axis in this
BEV map. Identify the traffic participants labeled 1, 2, and 3.

Determine the ego-centric coordinates (x, y) and relative orientation (@) for each labeled participant.

Structure the output as a nested list containing the [X, y, €] for participant 1, followed by participant 2,
and finally participant 3:

[[x_participantl, y_participantl, 0_participant1],

[x_participant2, y_participant2, 0_participant2],

[x_participant3, y_participant3, 6_participant3]]

Specifications:

- X, Y units: meters.

- 6 units: degrees (positive counter-clockwise/left).
N\

N

A.2.3 INSTRUCTIONS FOR SCENE TYPE RECOGNITION

-
Instruction Variants (The following prefixes are used with the shared list below):

Variant 1:
<image>Based on the BEVMap shown in the image, please determine the current driving scenario of the
autonomous vehicle. Choose the most appropriate scenario from the following list of 57 predefined categories:

Variant 2:
<image>From the information in the BEVMap image, infer what type of driving situation the self-driving car
is currently in. Use one of the 57 predefined scenario categories listed below:

Variant 3:
<image>Given the BEVMap in the image, identify which of the 57 labeled driving scenarios best describes
the current situation of the autonomous vehicle. Here are all possible categories:

Variant 4:
<image>Please analyze the BEVMap provided in the image and select the most appropriate driving scenario
type (from a set of 57 categories) that describes the present condition of the autonomous car:

Shared Category List (Applies to all variants above):
accelerating.-at_-crosswalk
accelerating.at_traffic_.light_with_lead
behind-bike
behind.-pedestrian_on_driveable
behind._pedestrian_on_pickup-dropoff
changing_lane_to_left
changing_-lane_to_right
changing_lane_with_lead

crossed_-by-bike

crossed-by-vehicle
following-lane_.with_lead
following_lane.with_slow_lead
following-lane_without_-lead
high_lateral_acceleration
highmagnitude_jerk
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highmagnitude_speed
low.magnitude_speed
medium-magnitude_speed
near_barrier_on_driveable
near_construction_zone_sign
near_-high_speed._vehicle
near_long.-vehicle
nearmultiple_pedestrians
nearmultiple_vehicles
near_pedestrian_-on_.crosswalk
near_pedestrian_on_.crosswalk-with_ego
near_trafficcone_on_driveable
on_carpark
on_intersection
on_pickup-dropoff
on_stopline_crosswalk
on_stopline_stop_sign
on_stopline_traffic_light
on_-traffic_.light_intersection
starting_protected_cross_turn
starting._protected-noncross_turn
starting._right_turn
starting_straight_stop_sign_intersection_traversal
starting_straight_traffic_light_intersection_traversal
starting_unprotected.-cross_turn
starting_unprotected._.noncross_turn
stationary
stationary_at_crosswalk
stationary.-at-traffic_.light.with_lead
stationary-at_traffic_.light_without_lead
stationary-in_traffic
stopping_at_crosswalk
stopping_.at_stop-sign_no_crosswalk
stopping_at_stop_sign_.without_lead
stopping.at_traffic_.light_without_lead
stopping-with_lead
traversing_crosswalk
traversing_intersection
traversing.-narrow_lane
traversing_pickup-dropoff
traversing_traffic_.light_intersection
waiting_-for_pedestrian_to_cross

(& J

B IMPLEMENTATION DETAILS

Dataset and Simulator. The nuPlan platform is a large-scale, closed-loop system for autonomous
driving trajectory planning, comprising over 1,500 hours of expert driving data collected from four
cities. It features a wide range of complex scenarios, including car following, lane changes, turns,
intersections, bus stops, roundabouts, and pedestrian interactions. The platform includes a simulator
that initializes from real-world scenarios. During simulation, non-ego agents are controlled either
by log replay (non-reactive) or an Intelligent Driver Model policy (reactive), while the ego vehicle
executes user-defined planned trajectories. Each 15-second simulation runs at 10 Hz, with a Linear
Quadratic Regulator controller used to track the trajectory and issue control commands.

Training Details. We adopted the LoRA technique for parameter-efficient fine-tuning of the VLM.
Specifically, we set the LoRA rank to 16, the scaling factor to 32, and the dropout rate to 0.05, ap-
plying LoRA adapters to all linear layers. The part of language model was unfrozen during training.
For optimization, we used the AdamW optimizer with an initial learning rate of 1 x 10~* and a
weight decay of 0.1. The learning rate was scheduled using a cosine annealing strategy. Training
was conducted on eight NVIDIA H800 GPUs over five epochs, taking approximately three days to
complete. The proportions of the three dataset categories, namely Key Point, Spatial Localization,
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and Driving Scene Stepwise, are 10:1:2. The entire dataset contains 838,824 samples. During the
process of fine-tuning the motion planner, we followed the PLUTO framework to construct 1 mil-
lion data splits. Training was conducted on eight RTX 4090 GPUs with a batch size of 128 over
10 epochs, taking approximately 6 hours to complete. We employed the AdamW optimizer with an
initial learning rate of 1 x 10~%and a weight decay of 1 x 10~%. Unlike PLUTO, however, we did
not employ the warm-up technique.

C LIMITATIONS

Despite the numerous advantages of the hierarchical framework that combines a VLM with a motion
planner, the inference efficiency of the VLM remains a key concern. In offline or simulation-based
settings, where our method can be used to generate data or serve as a smart agent, this limitation
is generally acceptable. For onboard deployment, the inference burden can be alleviated through
techniques such as model quantization, asynchronous inference, or training a lightweight model to
identify long-tail scenarios. We leave the exploration of real-world deployment strategies to future
work.

D LLM STATEMENT

Large Language Models (LLMs) were employed solely for language refinement in this paper.
Specifically, we used them to polish grammar, improve clarity, and enhance the academic style
of our writing. The role of LLMs was limited to editing and improving the presentation of the text,
without contributing to the technical content.
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