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ABSTRACT

Foundation models excel at language, where sentences become tokens, and vision,
where images become pixels, because both reduce to discrete symbols on a shared,
fixed grid. Knowledge Graphs share the discreteness, but not the geometry. Their
entities and relations are discrete symbols, yet their arrangement is relational and
lacks a common, fixed grid. Knowledge Graphs (KGs) share the discreteness, but
not the geometry. They form irregular, non-Euclidean topologies whose local neigh-
borhoods differ from graph to graph. Therefore, Knowledge Graph Foundation
Models (KGFMs) rely on identifying structural invariances to produce transferable
representations. Without a universal token set, KGFMs are limited in their ability to
transfer representations across unseen KGs. We close this gap by treating graphlets,
small connected graphs, as structural tokens that recur in heterogeneous KGs. In
this paper, We introduce a model-agnostic framework based on a vocabulary of
graphlets that mines a KG between relations via pattern matching. In particular, we
considered closed and open 2- and 3-path, and star graphlets, to obtain robust invari-
ances. The framework is evaluated on 51 KGs from a wide range of domains, for
zero-shot inductive and transductive link prediction. Experiments show that adding
simple graphlets to the vocabulary yields models that outperform prior KGFMs.
Our code is available at: https://anonymous.4open.science/r/ultra-augmentations/

1 INTRODUCTION

Recently, Large language Models (LLMs), have garnered significant attention for their remarkable
natural language understanding capabilities (Bommasani, 2021; Zhao et al.; [Wei et al., [2022). These
models are pretrained on massive corpora of diverse text data (Chang et al.,[2024), allowing them to
learn not only the syntax and grammar of language but also the semantics and contextual usage of
words and phrases. Despite differences in architecture (e.g., transformer-based, decoder-only, encoder-
decoder), all LLMs operate on tokens; basic units of text that may be whole words or subwords.
During training, the models construct a universal vocabulary of tokens. This token-based processing
enables LLMs to generalize effectively to new words by breaking them down into familiar token
components. In turn, complete sentences can be reconstructed from these tokens. As a result, LLMs
achieve strong generalization across languages (Lin et al.,[2021)), domains (Pan et al.| [2024), and
(Brown et al.,|2020; Wang et al., [2022). The (unstructured) textual data can be saved as tripled-based
data, known as Knowledge Graphs (Hogan et al.,[2021}Noy et al.,2019; |[Ehrlinger & W60, [2016).
Knowledge Graph embeddings (KGEs) are a class of representation learning models specialized for
Knowledge Graphs (KGs). They learn entity and relation embeddings based on their labeled identities
and the structure of the triples they participate in (Wang et al.|[2017). While effective at modeling
relational patterns, they are limited in their ability to generalize to unseen entities or relations.

In contrast to LLMs, KGEs do not capture any natural understanding of the labels themselves. As
a result, adapting KGEs to new entities or relation types typically requires retraining from scratch
on augmented data (Hamaguchi et al., 2017; Teru et al., |2020). To overcome this limitation, recent
approaches explore structure-driven generalization in (Liu et al.|[2021). One idea is to treat structural
patterns in a graph analogously to how LLMs treat tokens in text data. These patterns capture local
and global structural invariants independent of specific entity labels or relation types.

Motivating Example. Let us consider the three illustrative KGs: Family, Corporate and Scholarly,
shown in Figure [I] Despite the fact that the type of relations and entity labels are not the same,
their underlying structural topology is the same. This allows for a mapping between their rela-
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Figure 1: The KGFM model Ultra™, pretrained on a large collection of KGs, including the Family
KG, recognizes the Corporate, and Academic KGs as instances of the same graphlet patterns.

tions (grand_father_of <> grandvisor, son_of <> mentor_of, wife_of <> cofounder_with) enabling
structure-level transfer. This core insight forms the basis of KGFMs. Rather than embedding labels,
KGFMS (Galkin et al.l [Huang et al.) learn to reason over vocabulary of relations forming relational
subgraphs. Group of ordered relations that co-occur within a specific type of subgraph is referred
to as an occurrence of a graphlet. These graphlets form the core of the structural vocabulary used
to construct a relation graph, where relations become nodes, and the graphlets define typed edges
between them. As shown in Figure[T} a KGFM would detect and save the pattern formed by the cycle
(v, , B, B) as part of its vocabulary. This learned pattern can then be used to infer missing facts
such as the triple mentor_of (A. Einstein, 7). However, existing KGFMs have limitations. First, they
fail to distinguish between closed and open paths, treating all subgraphs of similar size as equally
informative. Second, a single occurrence of a graphlet is often enough to connect involved relations
in the relation graph, which may lead to decreased robustness.

Our Contributions. The key contributions of our model Ultra™ are as follows

(i) Query-based relation graph extraction: We propose a flexible SPARQL-based extraction method
that efficiently identifies informative structures without relying on sparse matrix multiplication
(SPMM);

(ii) Closed and open relations: We incorporate both closed and open graphlets to capture a wider
range of relational patterns;

(iii) Binary relation: We represent graphlets as positional binary relations than traditional n-ary
relations; and

(iv) Model-agnostic design: Ultra+ is modular and can be integrated into any KGFM that uses
relation graphs or structural vocabulary, making it adaptable across KGFM architectures.

Ultra™ substantially strengthens how KGFMs capture and represent complex structural patterns. Its
main objective is not to propose a new model architecture, but to boost performance and create more
robust KGFMs by enriching their structural vocabulary.

2 RELATED WORK

A KGE model learns the vector representations of relations (r) and entities (E) of KGs via
parametrized relation-specific transformation functions, ®, : h — ®,.(h), over the entity em-
bedding space. KGEs can be categorized based on their underlying principles such as geometric
transformations, tensor decomposition, deep neural architectures, or foundational graph approaches.

Geometric and Tensor Decomposition Models. These models can be grouped into three main types.
The first are translational-based models such as TransE (Bordes et al.,[2013)) , TransH (Wang et al.|
2014), and TransR (Lin et al [2015)), which embed entities and relations in real vector space and
use identity mappings (®, = r). TransH and TransR add extra relation embeddings, to improve
modeling capacity. While effective for link prediction, these models struggle with relational patterns
like closed paths. To address these limitations, rotation-based models such as RotatE (Sun et al.,
2019) were introduced. RotatE represents relations as rotations: ®,(h) = ¢~ h with §,. € (-, 7]%.
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This shift from real to complex algebra enables better modeling of relational patterns. However, these
models are not generalizable to new entities and relations.

Deep Neural Network Models. These models leverage deep learning to extract graph representa-
tions. A primary category includes Graph Neural Networks (GNNs), especially graph convolutional
models that iteratively aggregate information from neighboring nodes. A pioneer work is Relational
GNC (Schlichtkrull et al., 2018)), an encoder-decoder model. The encoder of R-GCN learned latent
embedding of entities, which are passed to the decoder based on DistMult, a tensor decomposition
model. However, R-GCNs does not learn relation embeddings. To address this limitation, TransGCN,
RotatEGCN (Cai et al.| 2019), and ComplexGCN (Zeb et al.,|2022) integrate GCNs with geometric
KGE models like TransE, RotatE, and ComplEx to jointly learn entity and relation embeddings
and capture richer structural semantics. End-to-end trainable GNNs are restricted to a single KG
downstream task and cannot generalize to new KGs without retraining.

Knowledge Graph Foundation Models. KGFMs overcome these limitations by enabling pretrained
GNNs or LLMs to inductively generalize to new KGs in zero or few-shot paradigms (Wang et al.,[2025;
Liu et al.;[2023). ULTRA (Galkin et al.| [2023)), a KGFM for KG reasoning, constructs a relation graph
whose nodes are the relations from the original KG, and edges represent the connections between
relations in paths of length two. Leveraging on the invariance of relational structure across datasets,
a labeling trick, and conditional representations on both relations and entities, Ultra enhances the
generalization of KG reasoning. ULTRAQuery (Galkin et al.,[2024) exploits the ability of Ultra in
KG reasoning to find potential missing links, and uses non-parametric fuzzy logic operators to answer
complex questions. AnyGraph (Xia & Huang||[2024) overcomes the limit of Ultra, by generalizing
to in- and cross- domain link prediction, and node and graph classification tasks. The key factor
behind the success of existing KGFMs lies in the construction of suitable graph vocabularies (Mao
et al.,[2024), i.e. basic transferable units that underlie graphs. While models such as Mole-BERT
relies on context-aware atom vocabulary (Xia et al.,[2023) for molecule graph classification, Ultra
and Motif (Huang et al., [2025)) rely on paths of length two and motifs to define graph vocabulary,
respectively. However, these approaches overlook closed paths, which are prevalent and essential.

In this paper, we extend the Ultra framework by introducing a novel graphlet-based vocabulary for KG
reasoning. Unlike Ultra, our framework explicitly encodes cyclic structures, this allows us to capture
richer structural patterns beyond simple paths of length two. Moreover, in contrast to Motif, our
vocabulary supports higher-order interaction patterns via binary relations within a standard relation
graph, rather than relying on n-ary relations in a relation hypergraph. This ensures our relation graph
remains a simple KG, preserving compatibility with most established KG processing techniques.

3 PRELIMINARIES

3.1 INDUCTIVE KNOWLEDGE GRAPH EMBEDDINGS

We consider a Knowledge Graph as a multi-relational directed graph K = (£¥ R Tf ) where
EK RK and ’Tf are the set of nodes (entities), edge labels (relations), and ordered pairs (edges or
triples) formed as relation(head entity, tail entity) respectively. We refer to the head and tail entity
as h and ¢ or e in general, and to the relation as r or g. Tf is a subset of 7% which contains all
plausible triples; and 75 = 75\ ’Tf is the set of corrupted triples. Since all entities in £X are used
in constructing Tf , corrupted triples (used as negative samples) result from replacing the head or the
tail entity of true triples. The set N'(r,t) = {h|r(h,t) € T} is called the neighborhood of ¢.

A relation graph is constructed from the KG by examining how relations within a target KG appear
collectively in subgraphs. The labels on its edges and nodes originate from subgraph configurations
and relations within the target KG. The relations in a relation graph can also be referred to as
meta-relations (see Section 1] for more details).

KGE models pretrained on K are evaluated on a test KG Kyeor = (EX,,, RE,,, TX, ) to predict

missing links. Entities in £X,, \ £X and relations in RE_, \ RX are called unseen entities and
relations, respectively. A KGE model is a transductive model if X, C €K and RE,, C RE an
inductive model otherwise. Zero-Shot Link Prediction (ZSLP) involves evaluating models pretrained
on K, directly on Ky.,;. Inductive ZSLP can be categorized into three main tasks: Relation learning

involving predicting unseen relations (Ind.(r)), entity learning focusing on predicting facts involving
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unseen entities (Ind.(e)), and graph transfer requiring generalization to both unseen entities and
relations (Ind.(e,r)).

3.2 KNOWLEDGE GRAPH HOMOMORPHISM

A key feature of our framework is its ability to detect occurrences of specific subgraph patterns within
a KG by leveraging graph homomorphisms for structural matching.

A KG homomorphism is a structure preserving mapping between two KGs. It consists of entity and
relation mappings to relate entities and relations from one KG to the other. Thus, ¢ : K — K’ is
a KG homomorphism if there exists two mappings 7 : £ — X" and p : RX — RX' so that
the product function 7 - p - ) maps any triple (h, t) € T to ¢(r(h,t)) = p(r)(n(h),n(t)) € TX'.
d(K) = (n(EX), p(RE), ¢(TH)), the image KG of K by ¢, is a subgraph of K’. A homomorphism
¢ is said to be injective if 1 and p are both injective. An injective KG homomorphism ¢ is called KG
monomorphism and its mapping is represented by ¢ : K —— K.

3.3 GRAPHLETS AND MOTIFS

The objective of our proposed method is to represent relational invariances and develop a structural
vocabulary. To this end, the method identifies different graphlet occurrences within a KG. Usually
graphlets are defined as induced subgraphs with respect to a Knowledge Graph while motifs are
graphlets that occur frequently in a given KG (Przulj,2007; Milo et al., [2002; Ribeiro et al.,|2021)).
To represent relational patterns in a more nuanced way, the following definitions are employed.
Definition 3.1 (Graphlet). A graphlet G = (G, g) is a (small) connected Knowledge Graph G =
(§,R,T) with an order g on R. g(R) = g (r1,72,...,7m) a tuple defining the order on R > 7;.
The cardinality of a graphlet G is the number of its edges, card(G) = |T.

The order specifies the manner in which directed relations within ‘R connect their endpoints to create
the graph structure. The order can relate two or many relations in R; it is called binary and n-ary
respectively. The arity (n) can be reduced from n to m with m < n by only considering m relations
as arguments and the n — m remaining relations become dummy arguments. This order is referred to
as a positional m-ary order; it is denoted by g;, i <, when the attention is to stress on the position
of the arguments and the initial arity. Thus g; 2 3<3 is an ordinary 3-ary order whereas g; 3<3 is a
positional binary order.

Theorem 3.2. Any positional m-ary order, m < n, spans a group of n-ary orders.
In particular, the tuple g1 3<3(R) could be induced by any of g1 1,3(R),g1,3,3(R) and g1 2.3(R). In
other words, if g1 3<3(R) does not exist, then neither g; 1 3(R), g1,3,3(R) nor g1 2 3(R) exist.

Definition 3.3 (Graphlet occurrence). Let K = (€K, RE TK) be a KG, and g a positional
m-aray order. A graphlet G = (G,g) occurs in K if and only if G is monomorphic to K,

and the monomorphism ¢, : G %%, K is an order-preserving mapping; that is, p maps

g(R) to g o p(R) = g(p(r1),p(ra),...,p(rm)). The tuple g(R) induces the set of tuples
g(RE) = {g op(R)|p: R 2 RK}. The image graph ¢4(G), is called an occurrence of G in K.

The set of occurrences of G in K is denoted and defined by G(K) = {gbg(G) lpg : G ™5 K } Two
occurring subgraphs ¢(G) and ¢'(G) are said equivalent, $(G) =4 ¢'(G), if p(r;,) = p'(r4;) for
Jj <m,i; <n,andr;, € R.The equivalence class denoted by ¢(G) = {¢ ( )\qb (G) =4 9(G)}is
the set of subgraph occurrences equivalent to ¢(G) and G(K { e gG(K )} is the set

of all equivalence classes.

The fact that two classes ¢(G) and ¢/(G) are different if and only if p(R) # p'(R) implies that
there is a one-to-one correspondence between G(K) and g(RX). We can therefore represent an
equivalence class by the class ¢(G) or the tuple g o p(R).

The set of all graphlets of cardinality less than four is displayed in Figure[2] Graphlets play the role
of the smallest structural entity in a Graph and are therefore well suited to investigate the local and
global structure of a KG.
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Figure 2: Graphlets of size less than 5. f and r denote forward and reverse edges, and subscripts ¢
and o indicate closed and open paths. The green head arrows (shown with a light gray halo for clarity)
form alternative graphlets, which are also indicated by the green labels to the right of the black text
labels. The golden arrows, together with the black arrows, form distinct topological graphlets. Each
vertex is marked with a small filled node for readability. The last four graphlets shown in the third
column are not included in our approach.

4 METHOD

Our model Ultra™ is a generalized extension of the Ultra framework introduced by |Galkin et al.,
advancing its capabilities in relational pattern learning for KG reasoning. While the original Ultra
relies solely on length-2 paths to define relational dependencies, Ultra™ extends this approach by
incorporating a richer set of graphlet-based patterns, capturing more complex and higher-order
interactions between relations. In contrast to Motif, Ultra™ constructs a binary relation graph using
graphlets induced by positional binary orders, thereby preserving pairwise semantics. This shift
allows Ultra™ to encode cycles and subgraph patterns without resorting to hypergraph complexity.

4.1 A STRUCTURAL VOCABULARY FOR KNOWLEDGE GRAPH FOUNDATION MODELS

The structural vocabulary used to construct the relation graph constitutes the fundamental basis of
Ultra™.

Definition 4.1. A structural vocabulary over a KG, K, is a finite set V = {(G;,8;),% < ny} of
graphlets, and a weighting function

w:UQZ-(K) =N, 9g(G) = [05(G)] M

mapping equivalence classes of occurrences to their cardinalities. The Knowledge Graph K can be a
union of KGs, that is K = Uy, (¥, R, T*), and the domain of w becomes J; ;, Gi(Ky).

Definition 4.2. Let K = (€% R% TX) be aKG, and V a structural vocabulary over K. We denote
the relation graph over K upon the structural vocabulary V by & = (&, R, T) where the set of nodes
¢ = RX and meta-relations R = V.

A structural vocabulary of binary orders yields relation graphs; conversely, relation hypergraphs are
generated. The (hyper)edges in ¥ are the tuples g; o p(R) . The tuple g o p(R) does not exist unless
its weight is nonzero. We say g is an e-edge between the relations p(r1), -+, p(r,,) € RE, if and
only if w(g o p(R)) = e. To define the structural vocabulary, we did not specify any graphlet. This
ensures that our framework can accommodate any type of graphlet. Ultra™’s structural vocabulary is
restricted to (short) path and topology based vocabularies.

Path-Based Vocabulary. In a graph, K, a path of length p, P, = {r;(e;, e}),i =1,--- ,p} is asubset
of 7K such that two consecutive triples share one entity. These paths are occurrences of the nine
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graphlets shown in Figures bl—c2). We shall note that rro (r1, 72) = {r1(e2, €1),72(es,€2) € TH}
= ff,(r9,71). That is, 11, can be substituted by ff,. In summary, the Py-based vocabulary Vo =
{ffo ¢, fro.c, rf, } is sufficient to characterize all closed or open 2-paths in K. In general, we define two
distinct families of P,-based vocabularies V, = {u_v,|u,v € {f,r}, _ € {f,;r}",i=0,...,p—2,
z € {o,ct}and U, = {u_vlu,v € {f,;r}, _ € {f,;r}",i =0,...,p — 2, }. _ is any sequence
of length 7 over the alphabets f,r. u_v, are positional binary orders relating the first and last
relations appearing in a path of length p > 1. For p = 2,u_v, = uv, and for p = 3, u_w, :=
uvw, € {fffz, ffr,, frf,, rff, |z € {o, c}} It follows that V,,, C V,, if m < n. This remains valid for
the U,y It is imperative to note that the u_v positional binary orders are incapable of discerning
between closed and open paths. We designed variants of Ultra™ using these two families of structural
vocabularies.

Topology-based Vocabulary. The degree of an entity in a KG is the sum of incoming and outgoing
relations. The average number of degree per entity informs on the sparsity or density of the KGs.
The type of relations surrounding an entity allow us to extract a subgraph centered on that entity,
called an m-star, where m is the degree of that entity. These m-stars are occurrences of graphlets that
form the topology based vocabulary, denoted by M,,,. In m-stars, we count how many times each
relation appears around the centered entity. For two relations, we have ¢ + j = m > 2 and any of
the relation can be an ingoing or outgoing relation. We write M;, to emphasize on the degree of
the relations. Figure 2]depicts M1 = {uvi.a | u,v {f,r}} = Moy = Mg, My = M3 U My, and
My = M3 U M. We combined the Vs, and the V5 with the M/, vocabularies to design two variants
of Ultra™.

4.2 REPRESENTATION LEARNING

KG representation learning consists of learning the entity and relation embeddings while preserv-
ing the KG structure. In our context, relations in R are entities in R. This duality leads to two
representations, as described below.

Relation Embedding. Ultra™ embeds relations (nodes of the relation graph £) into d;, dimensional
(L) by an L-layer message passing GNN, GN Ng . Following (Galkin et al.,|2023)),

rlg?
Ultra™ conditioned (r|q) the embedding of relations r on the query triple g(k, 7). The input layer
is initialized to hg?; = 6T:q1d0, where 6,—, = 1if r = ¢, and 0 otherwise. The following iterative

process defines how the upcoming layers compute the embeddings

real vectors, h

W =UP (b)) AGG[{MSG({ (h!)]

rlq T/|q,llsz)|7'/ € N(uovy,1),u_v; € V})}])

so that Rj; = GNNg (04,04,0.,,¢,R) € RIRI%dL s the conditional relation embedding matrix
of all relations in €. UP, AGG and MSG are update, aggregation, and message passing functions
and O, x = u, a, m are their respective parameters.

Entity Embedding. Entities are first initialized conditionally to the query g(h, ?) and the relation
embedding q, a vector column of R,. We iteratively embed entities as follows

0)  _
he\h,q —6e:hq

n'H —up(n!Y

elh,q elh,q’

AGG[{MSG({ (], ,.f'(@)le € N(r,e).7 € R})}])
7 (h,q,e) =w " (WL/h(L/) + bL,) +b.

elh,q
Motivated by the ability of geometric KGEs to capture complex relational patterns through algebraic
transformations, the message-passing function is enriched with non-linear layer-specific relational
transformations f*. The transformations, f*(q) = WiReLU (W'q + b!) + b}, are 2-layer percep-
trons with the ReLU activation function; W are matrices, b and w are vectors, and b is a scalar.
The update functions consist of a linear transformation followed by a normalization layer, while
aggregation is performed through summation. 7 (h, ¢, ) is the score of the triple ¢(h, €). The initial-
ization of relations to vectors of ones, 1%~, or zeros, 0%Z, and entities to q or zero vectors, makes the
architecture of Ultra™ generalizable to unseen relations and entities during inference. Ultra™ uses
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the binary cross entropy (BCE) loss,

1 1 n(r) .
LpcE = Al T;Jr (1og (1) + e} ; log (1 —(77)) )

to measure the difference between predicted probabilities and triple plausibilities. The BCE loss
penalizes high score for true triples, 7, low score for corrupted triples, 7.

4.3 COMPARING Ultra®™ AND MOTIF

The KGFM Motif uses a variety of motifs (n-ary orders) to construct a relation hypergraph. The
experiments in (Huang et al.} |2025) are conducted on 2-path, 3-path, and k-star motifs, denoted

by F¥ @ and F, star respectively. It can be observed that Motif is unable to discriminate between
closed and open paths, unlike Ultra™. The second significant distinction derived from the orders. To
explain this, let us consider the motifs arising from their respective 3-path based structural vocabulary.
The 3-aries in Motif are named and are equivalent to ours as follows: tfth ~ fff, tft ~ ffr, hth ~ frf
and hft ~ rff. As the IKG in Figure[3ais a directed acyclic graph, the u_v are equivalent to u_v,.
Figure [3b]is therefore built using the latter. From Figure 3a] 71,72 and 73 are linked by the motif
tth and (a,r1,b,72,¢,73,d) is the only element in the equivalence class tfh(rq, ro, r3). Similarly
tth(rq, r4,r3) and tth(rq, r5,73) are singletons. However, the equivalence class fIf,(r1, r3) is the
union of tfh(ry,r;,73),7 = 2,4,5, this is to say w (fff, (11,72,73)) = >, w (tth (r1,7r;,73)) . In
general, the weights of the equivalence classes induced by Ultra™’s 3-path motifs are higher than the
Motif’s ones.

Theorem 4.3. Let p be a monomorphism from Ps to a graph K. If uvw, o p is an e-edge and its
corresponding motif in Motif s vocabulary is an € -edge, then ¢’ < e.

Theorem states that if no edge exists between two relations in the Ultra™ relation graph, then
they are not connected by a hyper-edge in the Motif relation hypergraph. This proves the robustness
of Ultra™. Furthermore, the theorem demonstrates that Ultra™ is computationally less demanding
than Motif. This difference in computation appears in the GNNg’s message function. In order to
clarify this statement, let us consider the neighborhoods of 73 in both relation graphs. Ultra™ returns
N (ftf,,r3) = {r1} while Motif returns N} (tfh,73) = 0, N2(tfh,r3) = 0 and N3(tfh,r3) =
{r1,r2,r4,75} ; where the upper script * means r3 appears at the i’th position in the hyperedge tfh.
In comparison to N (fff,, 73), operations over A/3(tfh, r3) result in an increase in compute time. The
choice of relation embedding GNN also contributes to the increases of computing time. The HCNets
used by Motif genuinely involves more computation, as it employs a learnable query vector and a
sinusoidal positional encoding for each query relation q.

5 EXPERIMENTS AND RESULTS

In our experiments, we aim to answer the 1 T T3

. . . a—>p—>c¢ —> d ffo ffo
following research questions: r rs € pp Xy

. . 1

(RQ1) Can the scaling behavior of recent ‘L \XI rs Ty’ ff(/ //\ iffo
GNN based graph foundation models be I = f T4 — s
improved with the proposed extension? T4 fto
(RQ2) D,OGS‘ the Zem shot performance in- (a) Mlustrative Toy KG (b) Relation graph of the
crease with increasing vocabulary? (IKG) IKG

(RQ3) Can the addition of specific topo-  Figure 3: (a) A toy Knowledge Graph (IKG) with five re-
logical graphlets (e.g., N-M graphlets) help  jations and seven entities, illustrating the underlying re-
link prediction for containing N-M rela- |ational structure. (b) The corresponding relation graph

tions? constructed from the structural vocabulary of open paths

(RQ4) Does enriching vocabulary with (ff {ff }, where relations are nodes and edges capture
closed paths improve model performance? their co-occurrence within paths.

(RQS5) Does constructing a relation graph
with binary meta-relations offer advantages over using ternary meta-relations?

Benchmarks and Pattern-Matched Relation Graphs. In our experiments, we assess the essence
of Ultra™ using 57 KGs with various characteristics. We grouped these KGs according to entity
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learning (18 KGS), graph transfer (23 KGs), and transductive learning (16 KGs) tasks. Additional
information about the KGs in each group is included in Appendix [Bl Ultra™ is pretrained on the
CoDEx Medium, FB15k237, and WN18RR KGs, and subsequently assessed in the ZSLP tasks.

Galkin et al.| (2023) and Huang et al.| (2025) employ sparse matrix multiplication of the (multi-
relational) adjacency matrix A € R™*™*" and matrices representing head-relation pair E;, € R"*™
and tail-relation pair E, € R"*™. Multiplying EI' by E, results into the adjacency matrix of
the x2y meta-relations used in Ultra. This method provides additional information on the number
of occurrences of the respective graphlet in the whole dataset. However, this information is left
unused, as only the connection information is represented in the relation KG in Ultra and the relation
hypergraph in Motif, respectively. As we also distinguish between closed and open path, computation
via the adjacency matrix becomes computationally expensive. Pattern matching, on the other hand,
can be used in a highly parallel fashion to compute the relation graph of any KG. To obtain the
relation graph we construct a SPARQL ask query for each element in the vocabulary (see Appendix
for the exact Queries), which can be run on any rdf KG. This method enables the computation of
relation graphs based on vocabularies containing arbitrary graphlets.

Evaluation Protocol. We follow the best practices for evaluating KGE models by considering
the Mean Reciprocal Rank (MRR), and the Hits at n (Hn, n = 1,3,10) metrics. Link prediction
consists of finding the missing entity ? in the queries Q = r(h,?) or Q" = r(?,t). First, we created
a symbolic inverse relation /, which turns queries with a missing head into @Q = 7/(¢,?). This
means that we only look at queries that are in the form of (). Next, Ultra™ scores and ranks the
corrupted triples in a decreasing order. The predicted missing entity is the top ranked corrupted
entity. We compare our models against the state-of-the-art KGFMs Ultra and Motif using the
aforementioned evaluation metrics. We consider six different vocabularies to design our models;
namely, Uz, V" = V; \ {u_vc}, Vj, V;‘ =V, UM}, j =2,3. Wedenote the Ultra™ variant built
on the vocabulary X by Ultra® [XF].

Results. The experimental results of evaluating the pretrained Ultra™ on the benchmark KGs are
reported in Table[I] In the following, the operator > relating two models means that the first model
outperforms the second model.

Table 1: Average zero-shot link prediction MRR and H10 over 51 KGs. Baseline results are taken
from (Huang et al.,|2025). P,,, O and C stand for n-, open, and closed paths; and N-M stands for
many-to-many subgraphs

Ind.(e Ind.(e, r Transd. Total Avg.
Model Structural Vocabulary (18 K(G)s) 23 %(Gs% (10KGS) (31 KGs)
V  Definition #V |MRR HI0O MRR HIO MRR HIO H MRR HI10
Vy, O.Ps 4 388 .55l .323 498 .338 498 || .349 .516
Uy P 4 425 .567 .350 515 .343 499 || .375 .530
Ultrat |V, 0. & C. P 8 441 579 354 533 .349 509 || .384 .544
V;_ 0.&C. P, &N-M 16 |.415 .582 .349 .525 .347 504 || .372 .541
Vs O.P3 16 | .423 .561 .337 .510 .346 .496 || .369 .525
Vs 0.&C.P3 24 |.445 581 .355 .542 .355 511 | .387 .549
V; 0.&C.P3 &N-M 32 |.435 .581 .356 .532 .345 .499 || .382 .543
Ultra |Us Po 4 431 566 .345 513 .339 494 || .374 .529
Motif |Us Ps 12 | .436 .577 .349 .525 .343 .496 || .378 .537

General Overview: Figure reports the average performance of Ultra and Ultra™ as the number of
pretraining KGs increases. (RQ1) Ultra™’s variants consistently outperform Ultra, demonstrating
both scalability and performance gains. While Ultra™[V,] improves monotonically before saturat-
ing, Ultra™[V3] fluctuates with the addition of WN18RR and ConceptNet100k at position 2 and 6
respectively (see Table [I6]for more details), highlighting the need for careful selection and ordering
of pretraining KGs given their structural heterogeneity. Observing the path- and topology- based
vocabulary variants, we notice that Ultra™ [V3] > Ultra™ [Vs] > Ultra™ [Us] > Ultra™[V5 ] on aver-
age for relation learning, graph transfer, and transductive inference tasks. This trend in performance
can be related to the inclusion of the vocabularies V, C Uy C Vo C V3. However, we have found
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Figure 4: Average Performance over 51 Graphs of Ultra and Ultra™ models pretrained on an
increasing number of Graphs.

that combining the path-based and topology-based vocabularies does not result in an increase in
performance as Ultra*[V3] and Ultra™ [V] often surpass Ultra® [V ] and Ultra® V] respectively.
(RQ2) On one hand, we can conclude that the zero-shot performance increases with increasing the
path-based vocabulary. (RQ3) On the other hand, mixing the topology-based with the path-based
vocabulary does not necessarily preserve the performance increase.

The Motif model maintains its superiority over Ultra for all tasks. This difference in performance
is a consequence of adding 3-path graphlets to Ultra’s vocabulary. Although Ultra™[V,] utilized
only the 2-path based vocabulary Vs, it notably outperforms Motif and Ultra on both inductive and
transductive link prediction. (RQ4) This clearly demonstrates the importance of having a vocabulary
rich enough to convey information about closed and open paths. Ultra™[Vs] is the best performing
variant of the Ultra™ models across all the settings. It uses the same vocabulary as Motif, except
that its graphlets are positional binary orders. (RQS) Thus, its superiority over Motif lies in the arity
of the graphlets.

On the robustness of Ultra™t: In all three models: Ultra™, Ultra, and Motif, two relations are
connected in the relation graph as soon as they co-occur at least once in the KG. For Ultra™, this
corresponds to observing a single match of the associated SPARQL query pattern in the KG; for
Ultra and Motif, it corresponds to the relevant entry of the adjacency matrix (obtained via sparse
matrix multiplication) becoming non-zero. In either case, the frequency of co-occurrence does not
influence whether an edge is created. However, because Ultra™ employs positional binary orders, this
insensitivity to frequency is implicitly mitigated in its relation graph, as formalized in Theorem[4.3]
Empirically, sparse KGs provide a natural setting for assessing the robustness of KGFMs that construct
relation graphs. In our experiments, WDsinger, NELL23k, and FB15k237(10/20/50) constitute such
sparse knowledge graphs.

Table 2: Comparing Ultra, Motif and Ultra™ on 5 transductive sparse datasets. Baseline results are
taken from (Huang et al., 2025).

Model | Ultra Motif Ultra™[Va]  Ultra™ [Vs]
Dataset ‘ MRR H10 MRR H10 MRR H10 MRR H10
WDsinger 382 498 397 514 402 505 402 511
NELL23k 239 408 220 .384 .249 .413 .250 419

FB15k237(10) | .248 .398 .236 .384 .249 .404 245 .400
FB15k237(20) | .272 .436 .259 .422 274 439 .268 .431
FB15k237(50) | .324 .526 .312 .508 .329 .527 .326 .524

6 CONCLUSION

We proposed a KGFM framework called Ultra™ capable of constructing a relation graph from any
structural vocabulary composed of a set of graphlets. This framework enables the conversion of n-ary
graphlets’ orders into positional binary orders, thereby maintaining pairwise relational semantics
and mitigating the complexity associated with hypergraphs. Using SPARQL to run ASK queries
simpliﬁes the distinction between open and closed paths when mining graphlets, and overcomes the
major limitation of computing relation graphs when higher-order graphlets involve the full adjacency
matrix. Our theoretical findings, described in Theorems [3.2] n and -, 4.3] demonstrate that Ultra™
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exhibits greater robustness compared to the current baseline KGFMs. Evaluation of ZSLP tasks, with
Ultra™ pretrained on three KGs, indicated that an increase in structural vocabulary is advantageous
when only path-based vocabulary is utilized, yet it becomes detrimental when combining path- and
topology-based vocabularies. We showed that enhancing the model’s awareness of relational patterns
and topological patterns significantly improves the model’s MRR and H10, respectively.

Our Model Ultra*[Vs] achieves state-of-the-art performance in ZSLP averaged across 51 datasets
with only 3 Graphs used for pretraining. Our investigation also shows that scaling pretraining has
the chance to further improve performance. The case for scaling the vocabulary, on the other hand,
remains ambiguous. We observed an increase in performance for increasing path based vocabulary,
while adding structurally inspired graphlets seems to be detrimental. A large scale investigation of
larger structural vocabularies remains challenging, due to the computational complexity of Relation
Graph computation for vocabularies containing complex graphlets. We will address efficient compu-
tation of Relation Graphs that go beyond instance based computation (where existence of a single
instance of a grpahlet results in a connection in the Relation Graph) in future research.

REPRODUCIBILITY STATEMENT

We publish our full implementation in an open repository: ultra-augmentation It contains model
architectures, training scripts, hyperparameter configurations, dataset preprocessing code, and random
seeds as well as trained checkpoints. Detailed instructions for reproducing all experiments are
included to guarantee full reproducibility of our results.

REFERENCES

Rishi Bommasani. On the opportunities and risks of foundation models. arXiv preprint
arXiv:2108.07258, 2021.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. Advances in neural information
processing systems, 26, 2013.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Ling Cai, Bo Yan, Gengchen Mai, Krzysztof Janowicz, and Rui Zhu. Transgcn: Coupling transfor-
mation assumptions with graph convolutional networks for link prediction. In Proceedings of the
10th international conference on knowledge capture, pp. 131-138, 2019.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM
transactions on intelligent systems and technology, 15(3):1-45, 2024.

Lisa Ehrlinger and Wolfram Wol. Towards a definition of knowledge graphs. SEMANTiICS (Posters,
Demos, SuCCESS), 48(1-4):2, 2016.

Mikhail Galkin, Xinyu Yuan, Hesham Mostafa, Jian Tang, and Zhaocheng Zhu. Towards foundation
models for knowledge graph reasoning. arXiv preprint arXiv:2310.04562, 2023.

Mikhail Galkin, Jincheng Zhou, Bruno F Ribeiro, Jian Tang, and Zhaocheng Zhu. Zero-shot logical
query reasoning on any knowledge graph. CoRR, 2024. URL https://github.com/.

Takuo Hamaguchi, Hidekazu Oiwa, Masashi Shimbo, and Yuji Matsumoto. Knowledge trans-
fer for out-of-knowledge-base entities: A graph neural network approach. arXiv preprint
arXiv:1706.05674, 2017.

Aidan Hogan, Eva Blomgqvist, Michael Cochez, Claudia d’ Amato, Gerard De Melo, Claudio Gutierrez,
Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli, Sebastian Neumaier, et al. Knowledge
graphs. ACM Computing Surveys (Csur), 54(4):1-37, 2021.

'https://anonymous.4open.science/r/ultra-augmentations

10


https://github.com/
https://anonymous.4open.science/r/ultra-augmentations

Under review as a conference paper at ICLR 2026

Xingyue Huang, Pablo Barcel6, Michael M Bronstein, Ismail Tlkan Ceylan, Mikhail Galkin, Juan L
Reutter, and Miguel Romero Orth. How expressive are knowledge graph foundation models?
arXiv preprint arXiv:2502.13339, 2025.

Daniel Krech, Gunnar Aastrand Grimnes, Graham Higgins, Nicholas Car, Jorn Hees, Iwan Aucamp,
Niklas Lindstrom, Natanael Arndt, Ashley Sommer, Edmond Chuc, Ivan Herman, Alex Nelson,
Jamie McCusker, Tom Gillespie, Thomas Kluyver, Florian Ludwig, Pierre-Antoine Champin, Mark
Watts, Urs Holzer, Ed Summers, Whit Morriss, Donny Winston, Drew Perttula, Filip Kovacevic,
Remi Chateauneu, Harold Solbrig, Benjamin Cogrel, and Veyndan Stuart. RDFLib, October 2025.
URL https://github.com/RDFLib/rdflib.

Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle
Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, et al. Few-shot learning with multilingual language
models. arXiv preprint arXiv:2112.10668, 2021.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning entity and relation
embeddings for knowledge graph completion. In Twenty-ninth AAAI conference on artificial
intelligence, 2015.

Jiawei Liu, Cheng Yang, Yuan Fang, Philip S Yu, Zhiyuan Lu, Junze Chen, Yibo Li, Mengmei Zhang,
Ting Bai, Lichao Sun, and Chuan Shi. Towards Graph Foundation Models: A Survey and Beyond.
35.nnnnnnn, 1(1), 2023. doi: 10.1145/nnnnnnn.nnnnnnn.

Shuwen Liu, Bernardo Grau, Ian Horrocks, and Egor Kostylev. Indigo: Gnn-based inductive
knowledge graph completion using pair-wise encoding. Advances in Neural Information Processing
Systems, 34:2034-2045, 2021.

Haitao Mao, Zhikai Chen, Wenzhuo Tang, Jianan Zhao, Yao Ma, Tong Zhao, Neil Shah, Mikhail
Galkin, and Jiliang Tang. Position: Graph Foundation Models are Already Here. 2 2024. URL
https://arxiv.org/abs/2402.02216v3l

Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii, and Uri Alon.
Network motifs: simple building blocks of complex networks. Science, 298(5594):824-827, 2002.

Natasha Noy, Yuqing Gao, Anshu Jain, Anant Narayanan, Alan Patterson, and Jamie Taylor. Industry-
scale knowledge graphs: Lessons and challenges: Five diverse technology companies show how
it’s done. Queue, 17(2):48-75, 2019.

Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu Wang, and Xindong Wu. Unifying large
language models and knowledge graphs: A roadmap. IEEE Transactions on Knowledge and Data
Engineering, 36(7):3580-3599, 2024.

Thomas Pellissier Tanon. Oxigraph. URL https://github.com/oxigraph/oxigraph.

Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and complexity of sparql. In
International semantic web conference, pp. 30-43. Springer, 2006.

NataSa Przulj. Biological network comparison using graphlet degree distribution. Bioinformatics, 23
(2):e177-e183, 2007.

Pedro Ribeiro, Pedro Paredes, Miguel EP Silva, David Aparicio, and Fernando Silva. A survey on
subgraph counting: concepts, algorithms, and applications to network motifs and graphlets. ACM
computing surveys (csur), 54(2):1-36, 2021.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In The semantic web: 15th
international conference, ESWC 2018, Heraklion, Crete, Greece, June 3-7, 2018, proceedings 15,
pp- 593-607. Springer, 2018.

Zhiqging Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph embedding by
relational rotation in complex space. arXiv preprint arXiv:1902.10197, 2019.

Komal Teru, Etienne Denis, and Will Hamilton. Inductive relation prediction by subgraph reasoning.
In International conference on machine learning, pp. 9448-9457. PMLR, 2020.

11


https://github.com/RDFLib/rdflib
https://arxiv.org/abs/2402.02216v3
https://github.com/oxigraph/oxigraph

Under review as a conference paper at ICLR 2026

Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge graph embedding: A survey of
approaches and applications. IEEE transactions on knowledge and data engineering, 29(12):
2724-2743, 2017.

Thomas Wang, Adam Roberts, Daniel Hesslow, Teven Le Scao, Hyung Won Chung, 1z Beltagy,
Julien Launay, and Colin Raffel. What language model architecture and pretraining objective
works best for zero-shot generalization? In International Conference on Machine Learning, pp.
22964-22984. PMLR, 2022.

Zehong Wang, Zheyuan Liu, Tianyi Ma, Jiazheng Li, Zheyuan Zhang, Xingbo Fu, Yiyang Li,
Zhengqing Yuan, Wei Song, Yijun Ma, et al. Graph foundation models: A comprehensive survey.
arXiv preprint arXiv:2505.15116, 2025.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph embedding by
translating on hyperplanes. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 28, 2014.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682, 2022.

Jun Xia, Chengshuai Zhao, Bozhen Hu, Zhangyang Gao, Cheng Tan, Yue Liu, Siyuan Li, and Stan Z.
Li. Mole-BERT: Rethinking pre-training graph neural networks for molecules. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview,
net/forum?id=jevY-DtiZTR.

Lianghao Xia and Chao Huang. Anygraph: Graph foundation model in the wild, 2024. URL
https://arxiv.org/abs/2408.10700.

Adnan Zeb, Summaya Saif, Junde Chen, Anwar Ul Haq, Zhiguo Gong, and Defu Zhang. Com-
plex graph convolutional network for link prediction in knowledge graphs. Expert Systems
with Applications, 200:116796, 2022. ISSN 0957-4174. doi: https://doi.org/10.1016/j.eswa.
2022.116796. URL https://www.sciencedirect.com/science/article/pii/
S0957417422002548.

Yucheng Zhang, Beatrice Bevilacqua, Mikhail Galkin, and Bruno Ribeiro. TRIX: A More Expressive
Model for Zero-shot Domain Transfer in Knowledge Graphs. 2 2025. URL https://arxiv,
org/pdf/2502.19512,

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yinggian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models.

A PROOF OF THE THEOREMS

In this section, we provide the proofs for the theorems stated in the paper. Before we begin, let us
summarize the key mathematical symbols and their meanings used throughout the paper in Table

A.1 PROOF OF THEOREM [3.2]

Any positional m-ary order, m < n, spans a group of n-ary orders.

Proof. Consider two positive integers, m and n, where m < n. Letg = g;, . ; <, represents a
positional m-ary. According to Definition [3.1] g is a function with n arguments, out of which n —m
are dummy arguments. Define 7 (i) as the position of 45 within the ordered list of all n arguments.

We now consider the family of n-ary g(/) = 8j1,....;» such that if 7(j;) = m(ix), then j; = i), for
k=1,...,mandl =1,...,n. Consequently, g is induced by any of the n-ary g{/). In other words,
the m-ary spans the aforementioned family of n-aries. [
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Table 3: Notation Table.

Symbol Meaning
E,R Entity and relation sets
T4.— Set of all plausible, true (), and corrupted (_) triples
K = (EX,RETE) Knowledge Graph
0,0, M KG, relation, and entity homomorphism

mon KG monomorphism with
g =(pn): G K p: R — RE n: & — EX two injective maps
card(G) = |T| Cardinality of the graphlet G
g,G,g Graphlet, small KG, and order on R
g(R) A tuple defined by the order g on R
i1, imen (if m < n) positional m-, (else) n-ary order
g(RE) = {g op(R)|p: R 2% RK} Ordered n-aries (of relations in RX) induced by g
9:(G), G(K) Occurrence, set of occurrences of G in K
X ={¢'(G)|¢(X) =x ¢(X)} Equivalence class

Structural vocabulary, V = (G;, g;) a set of graphlets,

V,w) w(¢(G;)) a weighting function

f,r, o,_cC Forward, backward/reversed, open, and closed path

— e{f,r} A sequence of length i over the alphabets f, 1.

UV = Z1.n A Positional 2-ary defined by the first and last position
Pp Set of paths of length p

0,C,0.&C. P, Open, closed, and open or closed paths of length p.

Vo ={u_v,|u,ve{f,r},z € {o,c}} (O.,C.)P,-based vocabulary

U, ={u_vlu,vefr},} P,-based vocabulary

N-M Many to many

M;; = {uvy; | u,v e {f,r}} N-M subgraphs with ¢, j number of u and v edges resp.
My, ={M,; ;| i+j=m} m-star

V, O. P,-based vocabulary

V. 0. & C. Pp- and M -based vocabulary

Ni(g,r) Neighborhood of r (the ith node) relative to the n-ary g
Ultra® [XF] Ultra™ variant built on the vocabulary X

A.2 PROOF OF THEOREM [4.3]

Let p be a monomorphism from P to a graph K. If uvw, o p is an e-edge and its corresponding
motif in Motif’s vocabulary is an ¢'-edge, then ¢’ < e.

Proof. Let p be a monomorphism from Ps to a graph K. uvw, is a positional binary order whose
second argument is the dummy argument; i.e. uvw, = gi,3. It follows from Theorem @] that
uvw, spans a group of 3-ary, g¢/), including it corresponding motif . All triples in the equivalence
classes gl o p(R) are also in uvw, o p(R), so that € = w (uvw, o p(R)) = oW (g9 0 p(R)) >

po p(R)=¢ O

A.3 EXPRESSIVENESS LIMITATION OF MOTIF AUGMENTED WITH A CLOSED PATH COMPARE
TO Ultra™t

One of Ultra™’s contributions is distinguishing between closed and open paths. Although the GNN
architectures of Ultra™ and Motif are different, we are interested in finding out whether Motif
augmented with closed paths is more expressive than Ultra™. Let us assume that Motif is more
expressive than Ultra™. We will now consider the cyclic KG in Figure [5|and its relation graph in the
Ultra™ and Motif framework. As this graph is symmetric, the results are independent of the choice
of query relation. Let r; be the query relation.
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(a) Cyclic KG (b) Relation (Binary)graph (c) Relation Hypergraph

Figure 5: Cyclic Knowledge Graph and Relation Graphs: (a) A cyclic knowledge graph with three
relations. (b) Ultra™ constructs a relation graph consisting of three 2-ary edges, while (c) Motif
constructs a relation hypergraph with a single 3-ary edge.

Relation Encoding with Motif. The relation graph, G/, constructed in Motif framework has
three edges, mainly: tth(ry,re,73), tth(rs,r1,r2), and tth(ry, r3,71). We have h( ) —1and

ri|ry
h®  =0,i# 1. Thus,

7"11|7’1

b}, = UP(hY)  AGG[{MSG({(h{}) ,tfh)r € {rs,rs}})}])
b}, = UP(hY),  AGG[{MSG({(h{)} ,tfh) € {ri,rs}})}])
=1 x tth = tfh;
hh  =UP(MY) AGG[{MSG({(bY)  tf)} € {ri.m}})}])
=1 x tfh = tfh;
‘We observe that h(l)m h&?r and assume that this holds for all ¢ < 7" where 1" > 1. It follows that

h" Y = up (!’

ro|r1 [r1?

AGG[{MSG({ (') ,tfh) " € {r1,m3}})}])

,l"‘ )

=h{T) + 0 +hl) ) x tih;

ra|r1 ri|T1

R+ — UP(h(T) AGG[{MSG({(h(/TV Jtfh) |’ € {r,72}}) )

3lr1 3|

=hT + ) +h{) ) xth
r3|r1 |r1 2|71
—n" 4 (h(T) +h™ ) x tfh
ro|ry ri|ry r3|ry
h(T+1)
— Tralr

Thus, Motif can’t differentiate r5 from rs.

= 1and h(o)

ilre

Relation Encoding with Ultra™. On the other hand, from h(o)

1|r

= 0,7 # 1,
Ultra™’s relation embedding yields

b}, = UP(h), . AGG[{MSG({(hf}), )" € {r:}})}])
=1;

b)), = UP(h)),  AGG[{MSG({ (), .&)|r" € {rs}})}])

() =UPMY),  ACC[{MSC({(") .6l € {r1}})}])
=1 x fff, = fif,.
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(ry _

Since hgn # h'" | let us assume that h'") | are distinct vectors for ¢ < T except for hrz‘r1 =

T‘3|’I‘1’ 7‘2,3|T

hgl)rl = c7. We would then have
b))y = UP(hy}), AGG[{MSG({ (b)), ) [ € {r2}})}])
=hT) 4 opxfife;
by = UP(hy), AGG[{MSG({ (b)), . ffe) [ € {rs}})}])
=cr+cr Xﬁfc;
by, = UP (b)) AGG{MSG({ (b, fife)|r" € {ri}})}])
=cr +h{l)  x fif,
(T+1)
7 hrzln
since h'”) and c; are multivalued polynomials of indeterminate fff. and constant terms 1 and O

T1 ‘Tl
respectively. In other words, Ultra™ is able to distinguish between 75 and 3. This contradicts our
assumption about the expressive power of Motif.

We can then conclude that Ultra™ is at least as expressive as Motif.

B DATASETS

Our Experiments have been performed on a multitude of datasets, following (Galkin et al.| [2023]).
These datasets can be grouped into the following three subsets:

* Inductive (e, r): Inductive link prediction datasets with prediction on new nodes and new
relations.

* Inductive (e): Datasets for inductive Link prediction on new nodes.

* Transductive: Transductive Link prediction on seen nodes and relations.

Datasets and corresponding statistics are displayed in tables 46|

C ADDITIONAL RESULTS

In tables|7|- E] we display the zero shot results of Ultra and our models Ultra™ on all datasets. Here
we show the models that have been pre-trained on a mixture of 3 graphs (see Table [T6).

Additionally we performed finetuning of our best model on all datasets considered here. The
detailed results are displayed in Tables[IT] [T0]and [I2] For finetuning we employed dataset specific
hyperparameters as displayed in table[14] Hyperparameters common to all datasets are in table[I3]
Due to hardware constraints we used we used a lower batch size compared to (Galkin et al., |2023)),
(Zhang et al.| |2025) and (Huang et al.| |2025) which might reduce the finetuned performance for
Datasets trained with partial datasets.

D PRETRAINING SCALING

We investigated the scaling behavior of our approach with different sizes of the relational vocabulary.
For each vocabulary set detailed above we conducted pretraining on each of the pretraining mixtures
employed in (Galkin et al., [2023) (see Table @ Compared to (Galkin et al., [2023) we had to
decrease the batch sizes to be able to train all models with the same parameters.
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Figure 6: Average performance on 18 inductive (e) datasets of our Ultra™ models compared with
Ultra, pretrained on 1 - 6 pretraining Graphs (see Table @
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Figure 8: Average performance on 10 transductive datasets of our Ultra™ models compared with
Ultra, pretrained on 1 - 6 pretraining Graphs (see Table @)
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Table 4: Statistics of inductive (e, ) link prediction datasets. Triples are the number of edges given at
training, validation, or test graphs, respectively, whereas Valid and Test denote triples to be predicted

in the validation and test graphs.

Dataset Training Graph Validation Graph Test Graph

Entities Rels Triples | Entities Rels Triples Valid | Entities Rels Triples Test
FB-25 5190 163 91571 4097 216 17147 5716 | 4097 216 17147 5716
FB-50 5190 153 85375 4445 205 11636 3879 | 4445 205 11636 3879
FB-75 4659 134 62809 2792 186 9316 3106 | 2792 186 9316 3106
FB-100 4659 134 62809 2624 77 6987 2329 2624 77 6987 2329
WK-25 12659 47 41873 3228 74 3391 1130 | 3228 74 3391 1131
WK-50 12022 72 82481 9328 93 9672 3224 9328 93 9672 3225
WK-75 6853 52 28741 2722 65 3430 1143 | 2722 65 3430 1144
WK-100 9784 67 49875 12136 37 13487 4496 | 12136 37 13487 4496
NL-0 1814 134 7796 2026 112 2287 763 2026 112 2287 763
NL-25 4396 106 17578 2146 120 2230 743 2146 120 2230 744
NL-50 4396 106 17578 2335 119 2576 859 2335 119 2576 859
NL-75 2607 96 11058 1578 116 1818 606 1578 116 1818 607
NL-100 1258 55 7832 1709 53 2378 793 1709 53 2378 793
Metafam 1316 28 13821 1316 28 13821 590 656 28 7257 184
FBNELL 4636 100 10275 4636 100 10275 1055 | 4752 183 10685 597
Wiki MT1 tax 10000 10 17178 | 10000 10 17178 1908 | 10000 9 16526 1834
Wiki MT1 health 10000 7 14371 | 10000 7 14371 1596 | 10000 7 14110 1566
Wiki MT?2 org 10000 10 23233 10000 10 23233 2581 10000 11 21976 2441
Wiki MT2 sci 10000 16 16471 | 10000 16 16471 1830 | 10000 16 14852 1650
Wiki MT3 art 10000 45 27262 | 10000 45 27262 3026 | 10000 45 28023 3113
Wiki MT3 infra 10000 24 21990 | 10000 24 21990 2443 | 10000 27 21646 2405
Wiki MT4 sci 10000 42 12576 10000 42 12576 1397 10000 42 12516 1388
Wiki MT4 health 10000 21 15539 | 10000 21 15539 1725 | 10000 20 15337 1703

Table 5: Statistics of inductive (e) link prediction datasets. Triples are the number of edges given at
training, validation, or test graphs, respectively, whereas Valid and Test denote triples to be predicted

in the validation and test graphs.

Dataset Rels Training Graph Validation Graph Test Graph
Entities Triples | Entities Triples Valid | Entities Triples Test
FB-v1 180 1594 4245 1594 4245 489 1093 1993 411
FB-v2 200 2608 9739 2608 9739 1166 1660 4145 947
FB-v3 215 3668 17986 3668 17986 2194 2501 7406 1731
FB-v4 219 4707 27203 4707 27203 3352 3051 11714 2840
WN-v1 9 2746 5410 2746 5410 630 922 1618 373
WN-v2 10 6954 15262 6954 15262 1838 2757 4011 852
WN-v3 11 12078 25901 12078 25901 3097 5084 6327 1143
WN-v4 9 3861 7940 3861 7940 934 7084 12334 2823
NL-v1 14 3103 4687 3103 4687 414 225 833 201
NL-v2 88 2564 8219 2564 8219 922 2086 4586 935
NL-v3 142 4647 16393 4647 16393 1851 3566 8048 1620
NL-v4 76 2092 7546 2092 7546 876 2795 7073 1447
ILPC Small 48 10230 78616 6653 20960 2908 6653 20960 2902
ILPC Large 65 46626 202446 | 29246 77044 10179 | 29246 77044 10184
HM 1k 11 36237 93364 36311 93364 1771 9899 18638 476
HM 3k 11 32118 71097 32250 71097 1201 19218 38285 1349
HM 5k 11 28601 57601 28744 57601 900 23792 48425 2124
HM Indigo 229 12721 121601 | 12797 121601 14121 | 14775 250195 14904

17



Under review as a conference paper at ICLR 2026

Table 6: Statistics of transductive link prediction datasets. Task denotes the prediction task: h/t is
predicting both heads and tails, and ¢ is predicting only tails.

Dataset Entities Rels Train Valid Test Task
FB15k237 14541 237 272115 17535 20466 h/t
WNI18RR 40943 11 86835 3034 3134 h/t

CoDEx Small 2034 42 32888 1827 1828  h/t
CoDEx Medium 17050 51 185584 10310 10311 A/t
CoDEx Large 77951 69 551193 30622 30622 h/t

NELL995 74536 200 149678 543 2818 A/t
YAGO310 123182 37 1079040 5000 5000 A/t
WDsinger 10282 135 16142 2163 2203 h/t
NELL23k 22925 200 25445 4961 4952 h/t

FB15k237(10) 11512 237 27211 15624 18150 t
FB15k237(20) 13166 237 54423 16963 19776 t
FB15k237(50) 14149 237 136057 17449 20324 t
Hetionet 45158 24 2025177 112510 112510 h/t
ConceptNet100k 78334 34 100000 1200 1200  h/t

Table 7: Full results for Ultra and Ultra™ models on 10 transductive datasets. Baseline results are
taken from (Huang et al.| 2025).

Model | Ultra | Ultra®
Vocab. | u | vy Vo Vi Vy Vs 12
Dataset |MRR H10| MRR H10 MRR H10 MRR H10 MRR H10 MRR H10 MRR H10

CoDExSmall | .479 .668| .469 .675 .486 .675 .480 .675 .475 .667 .484 .674 475 .671
CoDExLarge | .339 .466| .343 .470 .342 471 .336 .466 .343 473 .340 .468 .335 .462

NELL995 444 583 | 461 .598 .446 .600 .507 .644 .472 .601 .451 .613 .484 .637
YAGO310 438 .604| .395 .570 .416 .639 .420 .607 .473 .649 .505 .669 .411 .587
WDsinger 388 .495| .363 .500 .402 .505 .392 .512 .388 .503 .402 .511 .401 .509
NELL23k 228 392 224 392 249 413 .238 405 .224 .388 .250 419 .241 .401

FB15k237(10) | .237 .403| .245 .400 .249 .404 .244 .395 .233 .382 .245 .400 .240 .390
FB15k237(20) | .268 .436| .271 .438 .274 439 .270 .433 .265 .425 .268 .431 .238 .398
FB15k237(50) | .323 .525| .325 .525 .329 .527 .324 .526 .323 .519 .326 .524 .313 .502
Hetionet 287 417 282 410 301 417 259 381 278 405 .280 .390

E DETAILS ON RELATION GRAPH COMPUTATION

E.1 COMPLEXITY ANALYSIS

The time complexity of Ultra and Motif are computed in (Huang et al.l [2025). This involves (i)
estimating the computational complexity of generating the relation graph, by scanning the triples in
the KGs and executing the sparse-matrix multiplication, (ii) in addition to applying a single forward
pass in both the relation and entity encoders. These are

O EPIRI+IENRP)+L(RPd+|[R[d*)+L(IT |d+[£]d)) @
for Ultra and Motif equipped with 2-paths, and
O((ENRP+IEPIRP)+L(RP d+|R|d)+L(IT[d+]E]d)) B

for Motif equipped with 3-paths. Ultra™ replaces step (i) by running SPARQL ASK queries on
the KGs. This implies we only need to scan the KGs without executing the SPMMs. Since the
SPARQL queries in the vocabularies we defined are bounded in size and the filter conditions are
simple equalities, their time complexity is O(1) (refer to Theorem 1 in (Pérez et al.,[2006). Thus, we
reduced the time complexity for 2-paths from O (| £ 2| R |+ | £ || R |*) to O (| £ |?| R |) and for
3-paths from O (| E[| R[>+ | € P R|?) to O (| £ || R [*). As Ultra™ constructs binary relation
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Table 8: Full results for Ultra and Ultra™ models on 23 inductive (e, r) datasets. Baseline results
are taken from (Huang et al., [2025).

Model | Ultra ‘ Ultra™

Vocab. | u | vy Vs Vi Vi Vs Vi
Dataset \ MRR H10 \ MRR H10 MRR H10 MRR H10 MRR H10 MRR H10 MRR H10
FB-25 385 .636]| .386 .639 .396 .639 .394 .647 .384 .638 .393 .643 .391 .645
FB-50 332 535 .329 540 .339 .548 .339 .551 .330 .543 .341 .546 .343 .547
FB-75 397 596 | 404 .609 .404 .605 .403 .607 .399 .604 .404 .605 .398 .603
FB-100 443 626 | .435 .627 443 .625 .439 .633 .438 .628 .443 .641 .431 .638
WK-25 301 .505| .284 .488 .324 .530 .280 .486 .293 .505 .304 .491 .305 .503
WK-50 157 .305| .130 .287 .174 .321 .168 .315 .159 .285 .168 .319 .166 .307
WK-75 375 .538| .373 517 .380 .537 .367 .516 .364 .533 .371 .533 .374 .524
WK-100 180 298| .169 .294 .180 .302 .175 .294 .176 .291 .173 .291 .185 .307
NL-0 334 .510| .318 .502 .367 .551 .336 .525 .303 .505 .370 .566 .364 .546
NL-25 373 544 .313 .495 .370 .552 .349 .507 .358 .542 .349 .585 .391 .573
NL-50 389 .536| .358 .531 406 .579 .349 .538 .364 .554 .382 .563 .393 .568
NL-75 336 .528 | .307 .487 .348 .529 .302 .495 .316 .490 .348 .539 .349 .546
NL-100 442 .636| .401 .627 477 .681 .449 .660 .444 .657 .479 .694 .483 .690
Metafam 428 739 | .156 .503 .262 .723 .484 .962 .173 .560 .279 .851 .310 .872
FBNELL 461 .631| .463 .634 .484 .659 .482 .652 .471 .640 .492 .647 .496 .679
Wiki MT1 tax .240 .306| .150 .300 .260 .436 .251 .311 .234 .347 .286 .433 .238 .305
Wiki MT1 health | .327 .430| .291 .394 .362 .432 .312 .400 .373 .457 .375 .458 .363 .449
Wiki MT?2 org .089 .152| .096 .157 .098 .158 .091 .156 .096 .159 .098 .163 .096 .159
Wiki MT2 sci 263 .415| .262 .387 .283 .450 .283 .424 .266 .427 .300 .458 .270 .380
Wiki MT3 art 262 413 .272 .420 .276 .422 277 429 277 .429 .286 .435 .278 .420
Wiki MT3 infra | .634 .769| .647 .791 .637 .783 .640 .774 .624 .755 .647 .782 .638 .765
Wiki MT4 sci 285 .449| .295 .469 .301 .464 .294 .466 .301 .465 .295 471 .296 .463
Wiki MT4 health | .625 .755| .595 .746 .568 .729 .558 .723 .598 .729 .583 .744 .619 .746

Table 9: Full results for Ultra and Ultra™ models on 18 inductive (e) datasets. Baseline results are
taken from (Huang et al., 2025).

Model | Ultra | Ultra™®

Vocab. | u ‘ Vy V2 1 Vs Vs Vi
Dataset |MRR H10 | MRR H10 MRR H10 MRR H10 MRR H10 MRR H10 MRR H10
FB-v1 498 .653| 468 .656 .498 .661 .477 .670 .492 .687 .503 .663 .503 .678
FB-v2 504 .695| .502 .707 .510 .703 .512 .697 .507 .718 .529 .716 .525 .712
FB-v3 A89 656 | .479 .648 .488 .650 .489 .661 .488 .654 497 .660 .494 .661
FB-v4 AT8 .665| .477 .675 .488 .675 .485 .678 .474 .670 489 .679 .489 .677
WN-v1 658 .764| .203 .555 .705 .792 .697 .796 .655 .763 .703 .811 .690 .794
WN-v2 648 .749| .642 .762 .698 .786 .455 .741 .637 .743 .676 .783 .687 .789
WN-v3 367 .464| .387 .505 .361 .514 .358 .523 .373 479 416 .539 413 .542
WN-v4 603 .704| .598 .711 .651 .730 .568 .718 .605 .711 .657 .738 .644 .723
NL-v1 694 .896| .524 .771 .739 920 .583 .866 .597 .644 .749 .930 .585 .866
NL-v2 516 .715| .507 .699 .551 .728 .550 .750 .528 .735 .565 .754 .572 .763
NL-v3 510 .690| .493 .666 .550 .728 .548 .729 .526 .723 .562 .737 .560 .750
NL-v4 483 .704| .491 .715 .505 .728 .517 .746 .505 .730 .510 .737 .521 .756
ILPC small | .296 .445| .304 450 .299 .450 .295 .454 .303 .447 .301 .450 .304 .456
ILPC large | .292 .417| .305 427 .287 .423 .200 .426 .299 .424 .207 419 .297 .423
HM 1k 058 .122| .064 .126 .065 .122 .079 .147 .079 .132 .042 .068 .036 .076
HM 3k 055 .112| .048 .095 .046 .079 .065 .116 .056 .101 .039 .063 .034 .078
HM 5k 051 .103| .045 .091 .043 .080 .057 .104 .051 .093 .032 .054 .030 .070
HM indigo | .446 .649| 439 .649 .446 .649 .449 .654 .432 .644 .440 .651 .438 .650

graphs, Ultra and Ultra™ have the same forward pass time complexity for both 2- and 3-paths. In

overall,

O(EPIRI+L(IRPd+|R|d*)+L(|T|d+|E|d*))
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Table 10: Finetuned Inductive (e, rr) Performance Comparison

D Ultra Motif Ultrat V5]
ataset

MRR H@10 MRR H@10 MRR H@10
FB-25 0.383 0.635 0.388 0.635 0.391 0.642
FB-50 0.334 0.538 0.340 0.544 0.333 0.541
FB-75 0.400 0.598 0.399 0.607 0.403 0.604

FB-100 0.444 0.643 0.439 0.642 0.445 0.640
WK-25 0.321 0.535 0.317 0.505 0.298 0.487
WK-50 0.140 0.280 0.160 0.304 0.162 0.314
WK-75 0.380 0.530 0.371 0.535 0.387 0.529
WK-100 0.168 0.286 0.173 0.284 0.180 0.294
NL-0 0.329 0.551 0.328 0.556 0.305 0.490
NL-25 0.407 0.596 0.390 0.580 0.353 0.540
NL-50 0.418 0.595 0.414 0.573 0.399 0.579
NL-75 0.374 0.570 0.360 0.548 0.360 0.563
NL-100 0.458 0.684 0.464 0.682 0.477 0.661
Metafam  0.997 1.000 1.000 1.000 1.000 1.000
FBNELL 0481 0.661 0.481 0.664 0.445 0.626
MTIl-tax 0330 0.459 0.416 0.522 0.429 0.533
MT1-health 0.380 0.467 0.385 0.473 0.386 0.462
MT2-org  0.104 0.170 0.106 0.170 0.104 0.175
MT2-sci 0.311 0.451 0.326 0.520 0.320 0.427
MT3-art 0.306 0.473 0.315 0.469 0.315 0.479
MT3-infra 0.657 0.807 0.683 0.827 0.683 0.821
MT4-sci 0.303 0.478 0.309 0.483 0.311 0.489
MT4-health 0.704 0.785 0.703 0.787 0.709 0.788

Table 11: Finetuned Inductive (e) Performance Comparison

D Ultra Motif Ultrat[Vy]
ataset

MRR H@10 MRR H@10 MRR H@10
FB-v1 0.509 0.670 0.530 0.702 0.510 0.669
FB-v2 0.524 0.710 0.557 0.744 0.540 0.730
FB-v3 0.504 0.663 0.519 0.684 0.509 0.665
FB-v4 0.496 0.684 0.508 0.695 0.497 0.683

WN-vl 0.685 0.793 0.703 0.806 0.705 0.789
WN-v2 0.679 0.779 0.680 0.781 0.694 0.779
WN-v3 0411 0.546 0.466 0.590 0.433 0.550
WN-v4 0.614 0.720 0.659 0.733 0.662 0.748
NL-v1 0.757 0.878 0.712 0.873 0.811 0.931
NL-v2 0.575 0.761 0.566 0.765 0.572 0.761
NL-v3 0.563 0.755 0.580 0.764 0.589 0.781
NL-v4 0.469 0.733 0.507 0.740 0.537 0.761
ILPC Small 0.303 0.453 0.302 0.449 0.307 0.450
ILPC Large 0.308 0.431 0.307 0.432 0.313 0.435
HM-1k 0.042 0.100 0.067 0.107 0.043 0.098
HM-3k 0.030 0.090 0.054 0.103 0.025 0.062
HM-5k 0.025 0.068 0.049 0.091 0.025 0.050
HM-Indigo 0.432 0.639 0.426 0.635 0.393 0.520
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Table 12: Finetuned Transductive Performance Comparison

Ultra Motif Ultra™ V5]
MRR H@10 MRR H@10 MRR H@10

CoDEx Small 0.490 0.686 0.490 0.680 0.496 0.684
CoDEx Large 0.343 0.478 0.355 0.489 0.359 0.495
NELL-995 0.509 0.660 0.514 0.655 0.547 0.678
YAGO310 0.557 0.710 0.603 0.735 0.607 0.735
WDsinger 0.417 0.526 0.423 0.532 0.431 0.535
NELL23k 0.268 0.450 0.256 0.441 0.270 0.453
FB15k237(10) 0.254 0.411 0.254 0.411 0.263 0.416
FB15k237(20) 0.274 0.445 0.273 0.444 0.281 0.445
FB15k237(50) 0.325 0.528 0.323 0.523 0.335 0.531
Hetionet 0.399 0.538 0.446 0.575 0.464 0.599

Dataset

Table 13: Average finetuned link prediction MRR and H10 over 51 KGs. Baseline results are taken
from (Huang et al.||2025). P,,, O and C stand for n-, open, and closed paths; and N-M stands for
many-to-many subgraphs

Structural Vocabulary Ind.(e)  Ind.(e,7) Transd.  Total Avg.

Model ‘

(18 KGs) (23KGs) (I0KGs) (51 KGs)
‘V Definition #) ‘MRR H10 MRR H10 MRR HIOHMRR H10
Ultra |Us Po 4 442 582 .397 .556 .384 .543||.410 .563
Motif |Us Ps 12 |.455 .594 401 .558 .394 .549]|.419 .569
Ultra®t | V3 O.&C.P3 24 |.455 .581 .400 .551 .405 .557| .420 .563
for Ultra™ equipped with 2-paths, and
O(ENRPHL(IRPd+|R[d*)+L(|T |d+|E|d?%)) ©)

for Ultra™ equipped with 3-paths.

E.2 EXPERIMENTAL ANALYSIS

In Table|17] we compare the computation of relation graphs based on sparse matrix multiplication
with query-based computation.

Implementation and Experiment Details Batching is used in the implementation of the SPMM-
based computation of the relation graph, since the intermediate matrix products are too large to fit
into memory. Further improvements to our implementation are possible, but not to the extent that the
computation will reach the speed of Query based computations.

The Query based relation graph computation was implemented using rdflib (Krech et al.,[2025) and
the oxrdflib extension based on oxigraph (Pellissier Tanon) which provides efficient SPARQL query
resolution and supports large datasets.

This comparison has been executed on a Machine with 64cpu (2 * 32 core AMD EPYC) cores 256GB
RAM and an Nvidia A100 (80GB) GPU.

E.3 SPMM FORMULATION OF Ultrat VOCABULARY

The adjacency matrices for the relation graphs in (Galkin et al.||2023)) and (Huang et al.,|2025) had
convenient representaitons in terms of Sparse Matrix Multiplications (SPMM) expressed as products
of the adjacency matrix A € R™*" of the KG and two matrices Ej, € R"*™ and E; € R™*"™. The
following formulas are used to construct the binary edges of the relation graph in Motif (see Section
F in (Huang et al., |2025)) and Ultra (see Section B in (Galkin et al., 2023)):
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Table 14: Hyperparameters for fine-tuning Ultra™. Full represents a whole epoch with the entire
dataset being used

Datasets Epoch Batch per Epoch
FB 25-100 3 full
WK 25-100 3 full
NL 0-100 3 full
MTI1-MT4 3 full
Metafam, FBNELL 3 full
FB v1-v4 1 full
WN vi-v4 1 full
NL v1-v4 3 full
ILPC Small 3 full
ILPC Large 1 1000
HM 1k-5k, Indigo 1 100
FB15k237 1 full
WNI18RR 1 full
CoDEx Small 1 4000
CoDEx Medium 1 4000
CoDEx Large 1 2000
NELL-995 1 full
YAGO310 1 2000
WDsinger 3 full
NELL23k 3 full
FB15k237(10) 1 full
FB15k237(20) 1 full
FB15k237(50) 1 1000
Hetionet 1 4000

Table 15: Global hyper-parameters for fine-tuning.

Hyperparameter Value
Optimizer AdamW
Learning rate 0.0005
Adversarial temperature 1
# Negatives 256
Batch size 8
# Repetitions 1

Table 16: Graphs and training parameters in different pre-training mixtures in Figures @, and

1 2 3 4 5 6
FB15k237 v v v v v v
WN18RR v v v v v
CoDEx-M v v v v
NELL995 v v v
YAGO 310 v v
ConceptNet100k v
Batch size 32 16 16 16 8 8
# steps 200,000 400,000 300,000 400,000 200,000 200,000

A, = spmm (Eh , Eh) e Rmxm
Ay = spmm (EtT, Et) € R™*m™
Ay = spmm (E,T;, Et) c Rmxm
Ay, = spmm (E’%F, Eh) € rRmxm
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Table 17: Runtime and memory usage comparison for relation graph computation using Vs with the
formulation in and the Query based computation. Time is displayed in hours:minutes:seconds

D Query based SPMM
ataset

time RAM usage VRAMusage| time RAM VRAM (GPU)
WMI18RR 00:00:08 10GB - 00:10:24 10 GB 50 GB
FB15k237 00:01:03 23GB - 01:52:43 40 GB 50 GB
CODEX Medium 00:00:30 12 GB - 01:07:52 10 GB 50 GB

and the 3-ary edges in Motif:

App = spmm (Eg, A, Ey) € Rmmxm
Ay = spmm (EtT, A, Et)

Ay = spmm (E,?, A, Ey) e Rmxmxm
Ay = spmm (E;‘F, A, E;) € Rmxmxm,

c RmeX’rn

The resulting adjacency matrices fail to distinguish between loops and paths that go through the
same entity multiple times. One way to enable these models to distinguish between closed and open
two-paths is to use the full product with masking. For a graphlet g = uv, in the vocabulary Vs where
u,v € {f,r} and z € {0, c} the adjacency matrix is given by Ay = (agij)1<ij<m € RM*m*x1Vl

Quv,,ij = Z T(u, Ai)lm : T(V7 Aj)mn; (6)
lm,n
l#m,m#n,n#l
Quv, ij = Z 7(u, Ai)lm . T(V,Aj)ml with u,v € {f,r} @)
lm
l#m

where 7 : {r,{} x R**" — R"**™:
7‘(117A) = {A’T

Similar equations hold for longer path.

E.4 SPARQL QUERIES

We display the query patterns for the Vocabularies employed in our Experiments in Tables
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Table 18: 3-Relation Pattern SPARQL Queries correspinding to vocabulary V3

Pattern | SPARQL Query

fffo

ASK WHERE {
?e0 {rell}
?el ?rel_ O
?e2 {rel2}
FILTER (20

?el
?e2

el
?e2
?e3
= 2el && 72e0
= 72e2 && 2el
= 2e3 && 72e0

?e2 &&
?e3d &&
?e3)

fffc

ASK WHERE
?e0 {rell}
?el ?rel_0
?e2 {rel2}
FILTER (?e0

?e0

?el
?e2
?e0
= 72el && 2el
re2)

1=

re2 &&

ffro

ASK WHERE
?e0 {rell}
?el ?rel_0
?e3 {rel2}
FILTER (?2e0

?el
?e2

?el
?e2
re2
= 2el && 2e0
?e2 && el

?e3 && 2e0

1=

1=

?e2 &&
?e3 &&
?e3)

ffrc

ASK WHERE {
?e0 {rell}
?el ?rel_O0
?e0 {rel2}
FILTER (20

?e0

?el
re2
?e2
I= 2el && 72el
= 2e2)

= 2?e2 &&

frfo

ASK WHERE {
?e0 {rell}
?e2 ?rel_0
?e2 {rel2}
FILTER (20

?el
?e2

?el
?el
?e3
= 2el && 2e0
= 2e2 && 2el

?e3 && 2e0

1=

= 2?e2 &&
?e3 &&

= 7e3)

Continued on next page
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Table 18 — continued from previous page

Pattern

SPARQL Query

frfc

ASK WHERE (
?e0 {rell}
?e2 ?rel_0
?e2 {rel2}
FILTER (?e0

?e0

?el
el
?e0
= 72el && 2el
= 2e2)

re2 &&

frro

ASK WHERE
?e0 {rell}
?e2 ?rel O
?e3 {rel2}
FILTER (?2e0

?el
re2

?el
?el
re2
= 72el && 2e0
?e2 && el

?e3 && 2e0

1=

1=

?e2 &&
?e3 &&

= 2e3)

frrc

ASK WHERE {
?e0 {rell}
?e2 ?rel_O0
?2e0 {rel2}
FILTER (?e0

?e0l

?el

?el

?e2

I= 2el && 72el
?e2)

1=

?e2 &&

rffo

ASK WHERE {
?el {rell}
?el ?rel_O0
?e2 {rel2}
FILTER (?e0

?el
re2

?e0
?e2
?e3
= 2el && 72e0
= 2e2 && 2el

?e3 && 2e0

1=

= ?e2 &&
= ?e3 &&
= 2e3)

rffc

ASK WHERE {
?el {rell}
?el ?rel O
?e2 {rel2}
FILTER (?e0

?el

?e0

re2

?e0

= 2el && 2el
re2)

1=

?e2 &&

Continued on next page
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Table 18 — continued from previous page

Pattern | SPARQL Query

rfro

ASK WHERE ({
?el {rell}
?el ?rel_0O
?e3 {rel2}
FILTER (?e0

?el
re2

?2e0
re2
?e2
= 72el && 2e0
= 2e2 && 72el

?e3 && 2e0

I =

= 2e2 &&
?e3 &&

= 2e3)

rfrc

ASK WHERE {
?el {rell}
?el ?rel_ O
?e0 {rel2}
FILTER (?e0

?el

?e0
re2
?e2
I= 2el && 72el
re2)

I =

?e2 &&

rrfo

ASK WHERE {
?el {rell}
?e2 ?rel_O0
?e2 {rel2}
FILTER (?e0

?el
re2

?e0
?el
?e3
= 2el && 72e0
?e2 && 2el
?e3 && 2e0

| =

I =

= ?e2 &&
?e3 &&

?e3)

rrfc

ASK WHERE
?el {rell}
?e2 ?rel_0
?e2 {rel2}
FILTER (?e0

?e0l

?e0

?el

?e0

= 2el && 2el
?e2)

I =

= ?e2 &&

ASK WHERE {
?el {rell}
?e2 ?rel O
?e3 {rel2}
FILTER (?e0

?el
?e2

?e0
?el
?e2
= 2el && 72e0
?e2 && el
= 2e3 && 2e0

I =

= ?e2 &&
= ?e3 &&

= 7e3)

Continued on next page
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Table 18 — continued from previous page

Pattern | SPARQL Query

ITre

ASK WHERE (
?el {rell}
?e2 ?rel_0
?2e0 {rel2}
FILTER (?e0

?e0

?2e0
el
?e2
= 72el && 2el
= 2e2)

re2 &&

Table 19: 2-Relation Pattern SPARQL Queries corresponding to vocabulary Vs

Pattern | SPARQL Query

ffo

ASK WHERE {
?e0 {rell}
?el {rel2}
FILTER (?e0

?e0

?el
re2
1=

?el && el
= 2e2)

?e2 &&

ffc

ASK WHERE ({
?2e0 {rell}
?el {rel2}
FILTER (?e0

?el
?el
= 7el)

}

fro

ASK WHERE ({
?e0 {rell}
?e2 {rel2}
FILTER (?e0

?e0

?el

?el

= 2el && 72el
re2)

I =

= ?e2 &&

frc

ASK WHERE {
?e0 {rell}
?2e0 {rel2}
FILTER (?e0

el
?el

I =

?el)

rfo

ASK WHERE ({
?el {rell}
el {rel2}
FILTER (?2e0

?e0

?e0

re2

= 2el && 2el
?e2)

I =

= ?e2 &&

Continued on next page
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Table 19 — continued from previous page

Pattern

SPARQL Query

rfc

ASK WHERE ({
?el {rell}
?el {rel2}
FILTER (20

}

?2e0
?e0
1= 2el)

1To

ASK WHERE (
?el {rell}
?e?2 {rel2}
FILTER (?e0

?e0

?e0
el
1=

?el && el
?e?2)

= ?e2 &&

1=

Irc

ASK WHERE (
?el {rell}
?e0 {rel2}
FILTER (?e0

}

?e0
?el
1= 2el)

Table 20: N-M Pattern SPARQL Queries corresponding to vocabulary);-

Pattern

SPARQL Query

ffo_1-2

ASK WHERE {
?e0 {rell}
?el {rel2}
?el {rel2}
FILTER (?e0

?e2
?e0

?el
re?2
?e3
= 2el && 2el
= ?e3 && 7e3
= 2e2 && 2el

= ?e2 &&
= 2e0 &&
= ?2e2)

fro_1-2
ASK WHERE ({
?e0 {rell}
?e2 {rel2}
?e3 {rel2}
FILTER (20
?e2
?e0

?el
?el
?el
= 2el && ?el !=
= ?e3 && 7e3

?e2 && el

?e2 &&
= 2e0 &&
?e2)

= 1=

Continued on next page
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Table 20 — continued from previous page

Pattern | SPARQL Query
rfo_1-2
ASK WHERE (
?el {rell} 2e0
?el {rel2} ?e2
el {rel2} 72e3
FILTER (?e0 != ?el && el !'= ?e2 &&
?e2 != 7e3 && ?e3 != 7e0 &&
?e0 !'= 2e2 && el != ?e2)
}
rro_1-2
ASK WHERE {
?el {rell} 2e0
?e2 {rel2} zel
?e3 {rel2} 7el
FILTER (?e0 != ?el && el != ?e2 &&
?e2 != ?e3 && ?e3 != 2e0 &&
el !'= 72e2 && el != 2e2)
}
ffo_2-2
ASK WHERE
?e0 {rell} 72e2
?el {rell} 72e2
?e2 {rel2} 72e3
?e?2 {rel2} 72e4d
FILTER (?e0 != ?el && ?el != ?e2 &&
?e2 != 7e3 && ?e3 != 7e0 &&
?e0 != 7e2 && ?el != 7e2 &&
?ed = 2e0 && ?ed != el &&
Ped = 7e2 && ?ed = 2e3)
}
fro_2-2
ASK WHERE (
?2e0 {rell} 72e2
?el {rell} 2e2
?e3 {rel2} 72e2
?ed {rel2} 2e2
FILTER (?e0 != 2el && el != ?e2 &&
?e2 != 7e3 && ?e3 != 7e0 &&
?e0 != 7e2 && el != 7e2 &&
?ed = 2e0 && ?ed != 2el &&
Ped = 2e2 && ?ed = 2e3)

Continued on next page
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Table 20 — continued from previous page

Pattern | SPARQL Query
rfo_2-2
ASK WHERE (
?e2 {rell} 2e0
?e2 {rell} el
?e2 {rel2} 72e3
?e2 {rel2} ?ed .
FILTER (?e0 != ?el && ?el != ?e2 &&
?e2 != ?e3 && ?e3 != 2e0 &&
?e0 != 7e2 && ?el != 7e2 &&
?ed = 2e0 && ?e4d != el &&
Ped = 2e2 && ?ed = 2e3)
}
rro_2-2
ASK WHERE (
?e2 {rell} 2e0
?e2 {rell} el
?e3 {rel2} 72e2
?ed {rel2} 2e2 .
FILTER (?e0 != ?el && el != ?e2 &&
?e2 != ?e3 && ?e3 != 2e0 &&
?e0 != 7e2 && ?el != 7e2 &&
?ed = 2e0 && ?e4d != el &&
Ped = 2e2 && ?ed = 2e3)
}
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