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ABSTRACT

A long-standing challenge in AI is to develop agents capable of solving a wide
range of physical tasks and generalizing to new, unseen tasks and environments.
A popular recent approach involves training a world model from state-action tra-
jectories and subsequently use it with a planning algorithm to solve new tasks.
Planning is commonly performed in the input space, but a recent family of meth-
ods has introduced planning algorithms that optimize in the learned representa-
tion space of the world model, with the promise that abstracting irrelevant details
yields more efficient planning. In this work, we characterize models from this
family as JEPA-WMs and investigate the technical choices that make algorithms
from this class work. We propose a comprehensive study of several key compo-
nents with the objective of finding the optimal approach within the family. We
conducted experiments using both simulated environments and real-world robotic
data, and studied how the model architecture, the training objective, and the plan-
ning algorithm affect planning success. We combine our findings to propose a
model that outperforms two established baselines, DINO-WM and V-JEPA-2-AC,
in both navigation and manipulation tasks.

1 INTRODUCTION

In order to build capable physical agents, Ha & Schmidhuber (2018) proposed the idea of a world
model, that is, a model predicting the future state of the world, given a context of past observations
and actions. Such a world model should perform predictions at a level of abstraction that allows to
train policies on top of it (Hafner et al., 2024; Mendonca et al., 2021; Guo et al., 2022) or perform
planning in a sample efficient manner (Sobal et al., 2025; Hansen et al., 2024).

There already exists extensive literature on world modeling, mostly from the Reinforcement Learn-
ing (RL) community. Model-free reinforcement learning (RL) (Mnih et al., 2015; Fujimoto et al.,
2018; Mnih et al., 2016; Haarnoja et al., 2018; Schulman et al., 2017; Yarats et al., 2022) requires
a considerable number of samples, which is problematic in environments where rewards are sparse.
To account for this, model-based RL uses a given or learned model of the environment in the train-
ing of its policy or Q-function (Silver et al., 2018). In combination with self-supervised pretraining
objectives, model-based RL has led to new algorithms for world modeling in simulated environ-
ments (Ha & Schmidhuber, 2018; Seo et al., 2022; Schrittwieser et al., 2020; Hafner et al., 2024;
Hansen et al., 2024).

More recently, large-scale world models have flourished (Hu et al., 2023; Yang et al., 2023; Brooks
et al., 2024; Bruce et al., 2024; Parker-Holder et al., 2024; Bartoccioni et al., 2025; Agarwal et al.,
2025; Bar et al., 2025). For specific domains where data is abundant, for example to simulate
driving (Hu et al., 2023; Bartoccioni et al., 2025) or egocentric video games (Bruce et al., 2024;
Parker-Holder et al., 2024; Ball et al., 2025), some methods have achieved impressive simulation
accuracy on relatively long durations.

In this presentation, we model a world in which some (robotic) agent equipped with a (visual)
sensor operates as a dynamical system where the states, observations and actions are all embedded
in feature spaces by parametric encoders, and the dynamics itself is also learned, in the form of a
parametric predictor depending on these features. The encoder/predictor pair is what we will call
a world model. We will focus on action-conditioned Joint-Embedding Predictive World Models
(or JEPA-WMs) learned from videos (Sobal et al., 2025; Zhou et al., 2024; Assran et al., 2025).
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Figure 1: Left: Training of JEPA-WM: the encoder Eϕ,θ embeds video and optionally propriocep-
tive observation, which is fed to the predictor Pθ, along with actions, to predict (in parallel across
timesteps) the next state embedding. Right: Planning with JEPA-WM: sample action sequences,
unroll the predictor on them, compute a planning cost Lp for each trajectory, and use this cost to
iteratively refine the action sampling. The action encoder Aθ and proprioceptive encoder Eprop

θ are
not explicitly displayed in this figure for readability.

These models adapt to the planning problem the Joint-Embedding Predictive Architectures (JEPAs)
proposed by LeCun (2022), where a representation of some data is constructed by learning an
encoder/predictor pair such that the embedding of one view of some data sample predicts well the
embedding of a second view. We use the term JEPA-WM to refer to this family of existing methods,
that we formalize in Equations (1) to (4) as a unified implementation recipe rather than a novel
algorithm. In practice, we optimize to find an action sequence without theoretical guarantees on the
feasibility of the plan, which is closer to trajectory optimization, but we stick to the widely-used
term planning.

Among these JEPA-WMs, PLDM (Sobal et al., 2025) shows that world models learned in a latent
space, trained as JEPAs, offer stronger generalization than other Goal-Conditioned Reinforcement
Learning (GCRL) methods, especially on suboptimal training trajectories. DINO-WM (Zhou et al.,
2024) shows that, in absence of reward, when comparing latent world models on goal-conditioned
planning tasks, a JEPA model trained on a frozen DINOv2 encoder outperforms DreamerV3 (Hafner
et al., 2024) and TD-MPC2 (Hansen et al., 2024), when we deprive these methods of reward annota-
tion. DINO-World (Baldassarre et al., 2025) shows the capabilities in dense prediction and intuitive
physics of a JEPA-WM trained on top of DINOv2 are superior to COSMOS. The V-JEPA-2-AC (As-
sran et al., 2025) model is able to beat Vision Language Action (VLA) baselines like Octo (Octo
Model Team et al., 2024) in greedy planning for object manipulation when provided with image
subgoals.

In this paper, we focus on the learning of the dynamics (predictor) rather than of the representation
(encoder), as in DINO-WM and V-JEPA-2-AC (Zhou et al., 2024; Assran et al., 2025). Given the
increasing importance of such models, we aim at filling what we see as a gap in the literature, i.e.,
a thorough study answering: how to efficiently learn a dynamics model in the embedding space of a
pretrained visual encoder for manipulation and navigation planning tasks ?

Our contributions can be summarized as follows: (i) We study several key components of training
and planning with JEPA-WMs: multistep rollout, predictor architecture, training context length,
using or not proprioception, encoder type, model size, data augmentation; and the planning opti-
mizer. (ii) We use these insights to propose an optimum in the class of JEPA-WMs, outperforming
DINO-WM and V-JEPA-2-AC.

2 RELATED WORK

World modeling and planning. ‘A path towards machine intelligence’ (LeCun, 2022) presents
planning with Model Predictive Control (MPC) as the core component of Autonomous Machine
Intelligence (AMI). World Models learned via Self-Supervised Learning (SSL) (Fung et al., 2025)
have been used in many reinforcement learning works to control exploration using information gain
estimation (Sekar et al., 2020) or curiosity (Pathak et al., 2017), to transfer to robotic tasks with rare
data by first learning a world model (Mendonca et al., 2023) or to improve sample efficiency (Łukasz
Kaiser et al., 2020). In addition, world models have been used in planning, to find sub-goals (Nair
& Finn, 2020) by using the inverse problem of reconstructing previous frames to reach the objective
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Figure 2: Comparison of different methods on the counterfactual Franka arm lift cup task, where
we hardcode 2 actions, either “open and move up” or “close and move up”. Each shows 5 model
actions in open-loop rollout. Left: “open and move up” action. Right: “close and move up”. First
row: V-JEPA-2-AC. Second row: DINO-WM. Third row: our best model, described in Section 5.3.
represented as the last frame, or by imagining goals in unseen environments (Mendonca et al., 2021).
World models can be generative (Brooks et al., 2024; Hu et al., 2023; Ball et al., 2025; Agarwal et al.,
2025), or trained in a latent space, using a JEPA loss (Garrido et al., 2024; Sobal et al., 2025; Assran
et al., 2025; Zhou et al., 2024; Bar et al., 2025). They can be used to plan in the latent space (Zhou
et al., 2024; Sobal et al., 2025; Bar et al., 2025), to maximize a sum of discounted rewards (Hansen
et al., 2024), or to learn a policy (Hafner et al., 2024).

Goal-conditioned RL. Goal-conditioned RL (GCRL) offers a self-supervised approach to
leverage large-scale pretraining on unlabeled (reward-free) data. Foundational methods like
LEAP (Nasiriany et al., 2019) and HOCGRL (Li et al., 2022) show that goal-conditioned poli-
cies learned with RL can be incorporated into planning. PTP (Fang et al., 2022a) decomposes the
goal-reaching problem hierarchically, using conditional sub-goal generators in the latent space for
a low-level model-free policy. FLAP (Fang et al., 2022b) acquires goal-conditioned policies via
offline reinforcement learning and online fine-tuning guided by sub-goals in a learned lossy repre-
sentation space. RE-CON (Shah et al., 2021) learns a latent variable model of distances and actions,
along with a non-parametric topological memory of images. IQL-TD-MPC (Xu et al., 2023) ex-
tends TD-MPC with Implicit Q-Learning (IQL) (Kostrikov et al., 2022). HIQL (Park et al., 2023)
proposes a hierarchical model-free approach for goal-conditioned RL from offline data.

Robotics. Classical approaches to robotics problems rely on an MPC loop (Garcia et al., 1989;
Borrelli et al., 2017), leveraging the analytical physical model of the robot and its sensors to fre-
quently replan, as in the MIT humanoid robot (Chignoli et al.) or BiconMP (Meduri et al., 2022).
For exteroception, we use a camera to sense the environment’s state, akin to the long-standing visual
servoing problem (Hutchinson et al., 1996). The current state-of-the-art in manipulation has been
reached by Vision-Language-Action (VLA) models, such as RT-X (Vuong et al., 2023), RT-1 (et al.,
2023), and RT-2 (Zitkovich et al., 2023). LAPA (Ye et al., 2024) goes further and leverages robot
trajectories without actions, learning discrete latent actions using the VQ-VAE objective on robot
videos. Physical Intelligence’s first model π0 (Black et al., 2024) uses the Open-X embodiment
dataset and flow matching to generate action trajectories.

3 BACKGROUND

This section formalizes the common setup of JEPA-WMs learned from pretrained visual encoders,
but does not introduce novel methods. We summarize JEPA-WM training and planning in Figure 1.

Training method. In a JEPA-WM, we embed the observations with a frozen visual encoder Evis
ϕ ,

and an (optional) shallow proprioceptive encoder Eprop
θ . Applying each encoder to the correspond-

ing modality constitutes the global state encoder, which we denote Eϕ,θ = (Evis
ϕ , Eprop

θ ). An action
encoder Aθ embeds the robotic actions. On top of these, a predictor Pθ takes both the state and ac-
tion embeddings as input. Eprop

θ , Aθ and Pθ are jointly trained, while Evis
ϕ remains frozen. For a

past window of w observations ot−w:t := (ot−w, . . . , ot) including visual and (optional) proprio-
ceptive input and past actions at−w:t, their common training prediction objective on B elements of
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Figure 3: Left: Comparison of planning optimizers: NG is the Nevergrad-based interface for tra-
jectory optimization that we introduce, compared to the Cross-Entropy Method (CEM), with L1 or
L2 distance. Right: Effect of adding multistep rollout loss terms: models are trained with total loss
L1 + · · ·+ Lk. Rc-Pl and RC-R denote the Place and Reach tasks of Robocasa.

the batch is

L =
1

B

B∑
b=1

L[Pθ

(
Eϕ,θ(o

b
t−w:t), Aθ(a

b
t−w:t)

)
, Eϕ,θ

(
obt+1

)
], (1)

where L is a loss, computed pairwise between visual prediction and target, and proprioceptive pre-
diction and target. In our experiments, we chose L as the MSE. The architecture chosen for the
encoder and predictor in this study is ViT (Dosovitskiy et al., 2021), as in our baselines (Zhou
et al., 2024; Assran et al., 2025). In DINO-WM (Zhou et al., 2024), the action and proprioceptive
encoder are just linear layers, and their output is concatenated to the visual encoder output along the
embedding dimension, which is known as feature conditioning (Garrido et al., 2024), as opposed to
sequence conditioning, where the action and proprioception are encoded as tokens, concatenated to
the visual tokens sequence, which is adopted in V-JEPA 2 (Assran et al., 2025). We stress that Pθ

is trained with a frame-causal attention mask, thus, it is simultaneously trained to predict from all
context lengths from w = 0 to w = W − 1, where W is a training hyperparameter, set to W = 3.
The causal predictor is trained to predict the outcome of several actions instead of one action only.
To do so, one can skip f observations and concatenate the f corresponding actions to form an ac-
tion of higher dimension f × A, as in DINO-WM (Zhou et al., 2024). More details on the training
procedure in Section A.

Planning. Planning at horizon H is an optimization problem over the product action space
RH×A, where each action is of dimension A, which can be taken to be f × A when using
frameskip at training time. Given an initial and goal observation pair ot, og , each action trajectory
at:t+H−1 := (at, . . . , at+H−1) should be evaluated with a planning objective Lp. Like at training
time, consider a dissimilarity metric L, (e.g. the L1, L2 distance or minus the cosine similarity),
applied pairwise on each modality, denoted Lvis between two visual embeddings and Lprop for pro-
prioceptive embeddings. When planning with a model trained with both proprioception and visual
input, given α ≥ 0, the planning objective Lp

α we aim to minimize is

Lp
α(ot, at:t+H−1, og) = (Lvis + αLprop)(Gϕ,θ(ot, at:t+H−1), Eϕ,θ(og)), (2)

with a function Gϕ,θ depending on our world model. We define recursively Fϕ,θ as the unrolling
of the predictor from zt = Eϕ,θ(ot) on the actions, with a maximum context length of w, (fixed to
W p, see Table S3.1)

Fϕ,θ : (ot, at−w:t+k−1) 7→ ẑt+k, (3)
ẑi+1 = Pθ(ẑi−w:i, Aθ(ai−w:i)), i = t, . . . , t+ k − 1, zt = Eϕ,θ(ot) (4)

In our case, we take Gϕ,θ to be the unrolling function Fϕ,θ, but could choose Gϕ,θ to be a function
of all the intermediate unrolling steps, instead of just the last one. We provide details about the
planning optimizers in Section C.

4 STUDIED DESIGN CHOICES

Our base configuration is DINO-WM without proprioception, with a ViT-S encoder and depth-6 pre-
dictor of same embedding dimension. We prioritize design choices based on their scope of impact:
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planning-time choices affect all evaluations, so we optimize these first and fix the best planner for
each environment for the subsequent experiments; training and architecture choices follow; scaling
experiments validate our findings. Each component is independently varied from the base configu-
ration to isolate its effect.

Planner. Various optimization algorithms can be relevant to solve the problem of minimizing
equation 2, which is differentiable. Zhou et al. (2024); Hansen et al. (2024); Sobal et al. (2025);
Assran et al. (2025); Bar et al. (2025) use the Cross-Entropy-Method (CEM) (or a variant called
MPPI (Williams et al., 2015)), depicted in Section C. Since this is a population-based optimization
method which does not rely on the gradient of the cost function, we introduce a planner that can
make use of any of the optimization methods from NeverGrad (Bennet et al., 2021). For our ex-
periments, we choose the default NGOpt optimizer (Anonymous, 2024), which is designated as a
“meta”-optimizer. We do not tune any of the parameters of this optimizer. We denote this planner
NG in the remainder of this paper, see details in Section C. The planning hyperparameters common
to CEM and NG are those which define the predictor-dependent cost function Gθ, the planning hori-
zon H , the number of actions of the plan that are stepped in the environment m ≤ H , the maximum
sliding context window size of past predictions fed to the predictor, denoted W p, the number of
candidate action trajectories of which we evaluate the cost in parallel, denoted N , and the number
of iterations J of parallel cost evaluations. After some exploration of the impact of planning hyper-
parameters common to both CEM and NG on success, we fix them to identical values for both, as
summarized in Table S3.1 in appendix. We plan using either the L1 or L2 embedding space distance
as dissimilarity metric L in the cost Lp

α. The results in Figure 3 (left) are an average across the
models considered in this study.

Multistep rollout training. At each training iteration, in addition to the frame-wise teacher forc-
ing loss of equation 1, we compute additional loss terms as the k-step rollout losses Lk, for k ≥ 1,
defined as

Lk =
1

B

B∑
b=1

L[Pθ(ẑ
b
t−w:t+k−1, Aθ(a

b
t−w:t+k−1)), Eϕ,θ

(
obt+k

)
], (5)

where ẑbt+k−1 = Fϕ,θ(ot, at−w:t+k−2), see equation 3. We note that L1 = L. In practice, we
perform truncated backpropagation over time (TBPTT) (Elman, 1990; Jaeger, 2002), which means
that we discard the accumulated gradient to compute ẑt+H and only backpropagate the error in the
last prediction. We study variants of this loss, as detailed in Section A, including the one used in
V-JEPA-2-AC. We denote the model trained with a sum of loss terms up to the Lk loss as k-step.
We train models with up to a 6-step loss, which requires more than the default W = 3 maximum
context size, hence we set W = 7 to train them, similarly to the models with increased W introduced
afterwards.

Proprioception. We compare the standard setup of DINO-WM (Zhou et al., 2024), where we train
a proprioceptive encoder jointly with the predictor and the action encoder to a setup with visual input
only. We stress that, contrary to V-JEPA-2-AC, we use both the visual and proprioceptive loss terms
to train the predictor, proprioceptive encoder and action encoder.

Training context size. We aim to test whether allowing the predictor to see a longer context at
train time allows to better unroll longer sequences of actions. We test values from W = 1 to
W = 7.

Encoder type. As posited by Zhou et al. (2024), local features preserve spatial details that are
crucial to solve the tasks at hand. Hence we use the local features of DINOv2 and the recently
proposed DINOv3 (Siméoni et al., 2025), even stronger on dense tasks. We train a predictor on top
of video encoders, namely V-JEPA (Bardes et al., 2024) and V-JEPA 2 (Assran et al., 2025). We
consider their ViT-L version. After exploration of the frame encoding strategy to adopt Section A,
we settle on the highest performing one, which consists in duplicating each of the ot−W+1, . . . , ot+1

frames and encoding each pair independently as a 2-frame video. Details comparing the encoding
methods for all encoders considered are in Section A. The frame preprocessing and encoding is
equalized to have the same number of visual embedding tokens per timestep, so the main difference
lies in the weights of these encoders that we use out-of-the-box.
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Figure 4: Left: Models trained with proprioceptive input are denoted “prop”, while pure visual
world models are named “no-prop”. Right: Comparison of JEPA-WMs trained on top of various
pretrained visual encoders, all of size ViT-L for fair comparison. Rc-Pl and RC-R denote the Place
and Reach tasks of Robocasa.

Predictor architecture. The main difference between the predictor architecture of Zhou et al.
(2024), and the one of Assran et al. (2025), is that the first uses feature conditioning, with sin-
cos positional embedding, whereas the latter performs sequence conditioning with RoPE (Su et al.,
2024). In the first, action embeddings Aθ(a) are concatenated with visual features Eθ(o) along the
embedding dimension, and the hidden dimension of the predictor is increased from D to D + fA.
The features are then processed with 3D sincos positional embeddings. In the second, actions are
encoded as separate tokens and concatenated with visual tokens along the sequence dimension, keep-
ing the predictor’s hidden dimension to D (as in the encoder). Rotary Position Embeddings (RoPE)
is used at each block of the predictor. We also test an architecture mixing feature conditioning
with RoPE. Another efficient conditioning technique is AdaLN (Xu et al., 2019), as adopted by Bar
et al. (2025), which we also put to the test, using RoPE in this case. This approach allows action
information to influence all layers of the predictor rather than only at input, potentially preventing
vanishing of action information through the network. Details are provided in Section A.

Model size. We increase the encoder size to ViT-B and ViT-L, using DINOv2 ViT-B and ViT-L
with registers (Darcet et al., 2024). When increasing encoder size, we expect the prediction task to
be harder and thus require larger predictor. Hence, we increase accordingly the predictor embedding
dimension to the one of the encoder, not modifying predictor depth, fixed to 6 for all models.

5 EXPERIMENTS

5.1 EVALUATION SETUP.

Datasets. For Metaworld, we gather a dataset by training TD-MPC2 (Hansen et al., 2024) online
agents and evaluate two tasks, “Reach” and “Reach-Wall”, denoted MW-R and MW-RW, respec-
tively. We use the offline trajectory datasets released by Zhou et al. (2024), namely Push-T (Chi
et al., 2023), Wall and PointMaze. The train split represents 90% of each dataset. We train on
DROID (et al., 2024) and evaluate zero-shot on Robocasa (Nasiriany et al., 2024) by defining cus-
tom pick-and-place tasks from teleoperated trajectories, namely “Place” and “Reach”, denoted Rc-Pl
and Rc-R. We do not finetune the DROID models on Robocasa trajectories. We also evaluate on a
set of 16 videos of a real Franka arm filmed in our lab, closer to the DROID distribution, and denote
this task DROID. On DROID, we track the L1 error between the actions outputted by the planner
and the groundtruth actions of the trajectory from the dataset that defines initial and goal state. We
then rescale the opposite of this Action Error, to constitute the Action Score, a metric to maximize.
We provide details about our datasets and environments in Section B.

Goal definition. We sample the goal frame from an expert policy provided with Metaworld, from
the dataset for Push-T, DROID and Robocasa, and from a random 2D state sampler for Wall and
Maze, more details in Section B. For the models with proprioception, we plan using proprioceptive
embedding distance, by setting α = 0.1 in equation 2, except for DROID and Robocasa, where we
set α = 0, to be comparable to V-JEPA-2-AC.
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Figure 5: Left: Maximum number of timesteps of state embedding seen by the predictor at train
time in equation 1, the predictor takes up to (Eϕ,θ(ot−W+1:t), Aθ(at−W+1:t)) as context. Right:
Comparison of model size: we vary from ViT-S to ViT-L the visual encoder size, as well as the
predictor embedding dimension, keeping predictor depth constant at 6. Rc-Pl and RC-R denote the
Place and Reach tasks of Robocasa.

Metrics. The main metric we seek to maximize is success rate, but track several other metrics, that
track the world model quality, independently of the planning procedure, and are less noisy than suc-
cess rate. These metrics are embedding space error throughout predictor unrolling, proprioceptive
decoding error throughout unrolling, visual decoding of open-loop rollouts (and the LPIPS between
these decodings and the groundtruth future frames). More details in Section D.2.

Statistical significance. To account for training variability, we train with 3 seeds per model for
our final models in Table 1. To account for the evaluation variability, at each epoch, we launch
e = 96 episodes, each with a different initial and goal state, either sampled from the dataset (Push-
T, Robocasa, DROID) or by the simulator (Metaworld, PointMaze, Wall). We take e = 64 for
evaluation on DROID, which proves essential to get a reliable evaluation, even though we compare
a continuous action score metric. We use e = 32 for Robocasa given the higher cost of a planning
episode, which requires replanning 12 times, as explained in Table S3.1. We average over these
episodes to get a success rate. Although we average success at each epoch over three seeds and their
evaluation episodes, we still find high variability throughout training. Hence, to get an aggregate
score per model, we average success over the last n training epochs, with n = 10 for all datasets,
except for models trained on DROID, for which n = 100. The error bars displayed in the plots
comparing design choices are the standard deviation across the last epochs’ success rate, to reflect
this variability only.

5.2 RESULTS

One important fact to note is that, even with models which are able to faithfully unroll a large number
of actions, success at the planning task is not an immediate consequence. We develop this claim in
Section D.1, and provide visualizations of rollouts of studied models and planning episodes.

Comparing planning optimizers. The NGOpt wizard chooses an optimizer based on the
parametrization of the space in which we optimize (its dimension H × A and whether it is con-
tinuous, which is the case), our budget (number of calls to the cost function Fθ, equals N × J),
and number of workers (parallel calls to the cost function, equals N = 300). For all our evaluation
setups, it chooses the same underlying Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) (Hansen & Ostermeier, 1996; Hansen, 2023) variant (Hansen et al., 2019), namely the default
parametrization of the diagonal CMA-ES non-elitist algorithm. The CEM is a variant of the stan-
dard (non-elitist) CMA-ES family of algorithms, where the covariance matrix is diagonal, and the
mutation is done with a simpler update rule.

We observe in Figure 3 that the success rate is higher with the NG planner on Metaworld and
Robocasa but is lower on the other tasks, with the highest relative performance gap on Metaworld-
Reach-Wall and Robocasa. Interestingly, the latter are the harder tasks considered, since it requires
to plan non-greedily to circumvent the obstacle wall or place the object at the right place. When
using the NG planner, we have fewer planning hyperparameters than with CEM. CEM requires
to specify the top-K trajectories parameter, the initialization of the proposal Gaussian distribution
µ0, σ0, with these parameters heavily impacting performance. Using our NG optimizer can avoid
costly planning hyperparameter tuning, when transitioning to a new task or dataset. To compare both
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methods, we plot the convergence of the optimization procedure at each planning step in Figure S3.1,
and observe that NG seems to converge more slowly, indicating more exploration in the space of
action trajectories. One other observation we make is that, on all planning setups and models,
planning with a L2 cost always performs better than L1 cost. To minimize the number of moving
parts in the subsequent study, we fix the planning setup for each dataset to the best one displayed in
Section 3, namely NG L2 for Metaworld, NG L1 for Robocasa, and CEM L2 for the other datasets.
CEM with well-tuned hyperparameters performs better on precise navigation tasks, than the NG
planner, which is more explorative, and better for manipulation.

Multistep rollout predictor training. At planning time, the predictor is required to rollout faith-
fully an action sequence by predicting future embeddings from is previous predictions. We observe
in Figure 3 that the performance increases when going from pure teacher-forcing models to 2-step
rollout loss models, but then decreases for models trained in simulated environments. We plan with
maximum context of length W p = 2, thus adding rollout loss terms Lk with k > 3 might make
the model less specialized in the prediction task it performs at test time, explaining the performance
decrease. Interestingly, for models trained on DROID, the optimal number of rollout steps is rather
six.

Impact of proprioception. We observe in Figure 4 that models trained with proprioceptive input
are consistently better than without. On Metaworld, most of the failed episodes are due to the arm
reaching the goal position quickly, then oscillating around the goal position. Thus, having more
precise information on its exact distance to the goal increases performance. On 2D navigation tasks,
the proprioceptive input also allows the agent to propose a more precise plan. We do not display
the results on Robocasa as the proprioceptive space is not aligned between DROID and Robocasa,
making models using proprioception irrelevant for zero-shot transfer.

MW-
Reach

MW-
Reach-

Wall

Maze Push-T Wall DROID Rc-Pl Rc-R Avg
0

20

40

60

80

100
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rfo

rm
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RoPE+seqcond
RoPE+ftcond
AdaLN
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Figure 6: Comparing predictor architectures: we
denote positional embedding in the predictor as
sincos or RoPE; the feature conditioning tech-
nique as “ftcond” and the sequence conditioning
as “seqcond”. The Adaptive LayerNorm condi-
tioning technique is denoted “AdaLN”. Rc-Pl and
RC-R denote the Place and Reach tasks of Robo-
casa.

Maximum context size. Training on longer
context takes more iterations to converge in
terms of success rate. We recall that we chose
to plan with W p = 2 in all our experiments,
since it yields the maximal success rate while
being more computationally efficient. The pre-
dictor needs two frames of context to infer ve-
locity and use it for the prediction task. It re-
quires 3 frames to infer acceleration. We in-
deed see in Figure 5 a big performance gap be-
tween models trained with W = 1 and W = 2,
which indicates that the predictor benefits from
using this context to perform its prediction. On
the other hand, with a fixed training computa-
tional budget, increasing W means we slice the
dataset into a fewer but longer unique trajectory
slices of length W +1, thus less gradient steps.
On DROID, having too low W leads to discard-
ing some videos of the dataset that are of length
lower than W +1. Yet, we observe that models
trained on DROID have their optimal W at 5, higher than on simulated datasets, for which it is
3. It is likely due to the more complex dynamics of DROID, requiring longer context to notably
infer real-world arm and object dynamics. One simple experiment shows a very well-known but
fundamental property: the training maximum context W and planning maximum context W p must
be chosen so that W p ≤ W . Otherwise, we ask the model to perform a prediction task it has not
seen at train time, and we see the predictions degrading rapidly throughout unrolling if W p > W .
To account for this, the W = 1 model performance displayed in Section 5.1 is from planning with
W p = 1.

Encoder type. In Figure 4, we see a clear advantage of DINO encoders compared to V-JEPA
encoders. We posit this is due to the well-known fact that DINO has better fine-grained object seg-
mentation capabilities, which is crucial in tasks requiring a precise perception of the location of the
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Table 1: Comparison of our best model to DINO-WM and V-JEPA-2-AC. MW-R and MW-RW
denote the Reach and Reach-Wall tasks of Metaworld. Rc-Pl and RC-R denote the Place and Reach
tasks of Robocasa. Best model is in bold.

Model Maze Wall Push-T MW-R MW-RW Rc-R Rc-Pl DROID

DWM 81.7 (3.5) 64.3 (4.6) 66.0 (4.6) 35.4 (9.1) 25.9 (9.2) 19.0 (13.4) 21.7 (7.2) 39.3 (2.1)
VJ2AC — — — — — 20.6 (6.5) 21.7 (4.2) 37.9 (1.4)
Ours 83.3 (2.8) 75.4 (3.0) 70.6 (3.0) 40.3 (9.1) 29.0 (9.2) 21.6 (11.8) 33.5 (10.6) 44.3 (2.1)

agent and objects. Interestingly, DINOv3 clearly outperforms DINOv2 only the more photorealistic
environments, Robocasa and DROID, likely due to the pretraining dataset of DINOv3 being more
adapted to such images. On Maze and Wall, models trained on DINOv3 take longer to converge to
a lower success rate.

Predictor architecture. One can estimate the strength of the action conditioning of the predictor
by looking at the ratio of dimensions (processed by the predictor) corresponding to action, on the
total number of dimensions. When performing sequence conditioning, this ratio is 1

hw+1 = 1
257 .

With feature conditioning it is fA
D+fA , which with the considered model sizes is in [ 7

1031 ,
20
404 ] (re-

spectively DROID-L, Metaworld-S), thus higher than in the sequence conditioning case. This likely
explains the better performance of this predictor architecture type in Figure 6. One important rule
when scaling predictor embedding dimension is to maintain the ratio of action to visual dimensions,
which requires increasing A in the feature conditioning case. On the other hand, we do not see a
substantial improvement when using RoPE instead of sincos positional embedding. Across most en-
vironments, AdaLN with RoPE performed consistently better than other architectures. This is likely
due to the fact that this conditioning intervenes at each block of the transformer predictor, avoiding
the vanishing of the action information throughout the layers. It is also more compute-efficient than
the other conditioning methods, as explained and studied in more depth by Peebles & Xie (2023).

Model size. We show in Figure 5 that increasing the model size does not allow for increased
performance, except on DROID, where we observe a clear positive correlation between model size
and planning performance. This indicates that real-world dynamics can be better modelled with
higher-capacity models. Training larger models on such simple datasets can be prone to overfitting,
yet, we do not observe any such trend in the train and validation loss. Moreover, at planning time,
although we optimize over the same action space, the planning procedure we use explores the visual
embedding space to minimize the cost, which is harder if the latter space is of higher dimension.
Indeed, in Figure S4.9, we observe that the relative difference in embedding space distance to the
target is approximately ten times smaller in the larger ViT-L embedding space compared to the
smaller ViT-S embedding space, which illustrates that a larger embedding space considers as closer
two states from Metaworld, which can make it harder for optimization to distinguish states that
are close from each other. We can decouple the effect of predictor depth and encoder size using a
projector at the entry and exit of the predictor. However, even on the most complex task, DROID,
we found that increasing the predictor depth from 6 to 12 did not bring significant improvement.

5.3 OUR PROPOSED OPTIMUM IN THE CLASS OF JEPA-WMS

We combine the findings of our study and propose optimal models for each of our robotic envi-
ronments, that we compare to concurrent JEPA-WM approaches: DINO-WM (Zhou et al., 2024)
and V-JEPA-2-AC (Assran et al., 2025). We use a ViT-S encoder and a ViT-S predictor with depth
6, AdaLN conditioning, and RoPE positional embeddings. We train our models with propriocep-
tion, except for DROID, with a 2-steps rollout loss, and a maximum context of W = 3. We plan
with the NG planner with L2 cost for Metaworld, NG L1 for Robocasa, and CEM L2 for the other
environments. We use DINOv2 on the 2D navigation environments, and DINOv3 on the more pho-
torealistic DROID, Robocasa and Metaworld. As presented in Table 1, we outperform DINO-WM
and V-JEPA-2-AC in most environments. We propose in Figure 2 a qualitative comparison of the
object interaction abilities of our model against DINO-WM and V-JEPA-2-AC, in a simple counter-
factual experiment, where we unroll two different action sequences from the same initial state, one
where the robot lifts a cup, and one where it does not. Our model demonstrates a better prediction
of the effect of its actions on the environment.
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6 CONCLUSION

In this paper, we studied the effect of several training and planning design choices of JEPA-WMs on
planning in robotic environments. We found that several components play an important role, such as
the use of proprioceptive input, the multistep rollout loss, or the choice of visual encoder. We found
that image encoders with fine object segmentation capabilities are better suited for the manipulation
and navigation tasks that we considered compared to video encoders. We found that having enough
context to infer velocity is important, but that too long context harms performance, obviously due
to seeing less unique trajectories during training and likely also having less useful gradient from
predicting from long context. On the architecture side, we found that the action conditioning tech-
nique matters. AdaLN with RoPE is a strong choice, and feature conditioning outperforms sequence
conditioning, probably because of the higher ratio of action to visual dimensions processed by the
predictor. We found that increasing model size does not necessarily improve performance, prob-
ably due to overfitting and the higher dimension of the visual embedding space making planning
harder. We introduced an interface for planning with Nevergrad optimizers, leaving room for explo-
ration of optimizers and hyperparameters. We find that the optimizer proposed by the NeverGrad
meta-optimizer NGOpt is more explorative than the commonly used CEM, and requires less hyper-
parameter tuning, but the widely used CEM with well-tuned hyperparameters still performs better
on precise navigation tasks, than our NG planner, better for manipulation. Finally, we applied our
learnings and proposed models outperforming concurrent JEPA-WM approaches, DINO-WM and
V-JEPA 2-AC.
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ETHICS STATEMENT

This work focuses on learning world models for physical agents, with the aim of enabling more
autonomous and intelligent robots. We do not anticipate particular risk of this work, but acknowl-
edge that further work building on it could have impact on the field of robotics, which is not exempt
of risks of misuse. We also acknowledge the environmental impact of training large models, and
we advocate for efficient training procedures and sharing of pretrained models to reduce redundant
computation.

REPRODUCIBILITY STATEMENT

All code, model checkpoints, and benchmarks used for this project will be released in the project’s
repository. We generalize and improve over DINO-WM and V-JEPA-2-AC in a common training
and evaluation framework. We hope this code infrastructure will help accelerate research and bench-
marking in the field of learning world models for physical agents. We include in Section A details
about the training and architecture hyperparameters, as well as the datasets and environments used
in Section B. We also provide details about our planning algorithms in Section C. Additional exper-
iments in Section D.1 and study on the correlation of the various evaluation metrics in Section D.2
should bring more clarity on our claims.
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Singh, and Tim Rocktäschel. Genie 3: A new frontier for world models. 2025.

Amir Bar, Gaoyue Zhou, Danny Tran, Trevor Darrell, and Yann LeCun. Navigation world models. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 15791–15801, June 2025.

Adrien Bardes, Quentin Garrido, Jean Ponce, Xinlei Chen, Michael Rabbat, Yann LeCun, Mido
Assran, and Nicolas Ballas. Revisiting feature prediction for learning visual representations from
video, 2024. ISSN 2835-8856.

Florent Bartoccioni, Elias Ramzi, Victor Besnier, Shashanka Venkataramanan, Tuan-Hung Vu,
Yihong Xu, Loick Chambon, Spyros Gidaris, Serkan Odabas, David Hurych, Renaud Marlet,
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A TRAINING DETAILS

Predictor. We train using the AdamW optimizer, with a constant learning rate on the predic-
tor, action encoder and optional proprioceptive encoder. We use a cosine scheduler on the weight
decay coefficient. For the learning rate, we use a constant learning rate without any warmup itera-
tions. We summarize training hyperparameters common to environments in Table S1.1. We display
the environment-specific ones in Table S1.2. Both the action and proprioception are first embed-
ded with a linear kernel applied to each timestep, of input dimension action dim or proprio dim
(equal to the unit action or proprioceptive dimension times the frameskip) and output dimension
action embed dim or proprio embed dim. We stress that, for memory requirements, for our models
with 6-step and W = 7, the batch size is half the default batch size displayed in Table S1.2, which
leads to longer epochs, as in Table S1.3. For our models trained on DROID, to compare to V-JEPA-
2-AC and because of the dataset complexity compared to simulated ones, we increase the number
of epochs to 315, and limit the iterations per epoch to 300, as displayed in Table S1.2.

Action conditioning of the predictor. We study four predictor conditioning variants to inject
action information in Figure 6. The conditioning method determines where and how action embed-
dings are incorporated into the predictor architecture:

• Feature conditioning with sincos positional embeddings: Action embeddings Aθ(a)
are concatenated with visual token features Eθ(o) along the embedding dimension. Each
timestep’s concatenated features are then processed with 3D sinusoidal positional embed-
dings. This increases the feature dimension and the hidden dimension of the predictor from
D to D + fA, giving a high action-to-visual dimension ratio of fA

D+fA .

• Sequence conditioning with RoPE: Actions are encoded as separate tokens and concate-
nated with visual tokens along the sequence dimension, keeping the predictor’s hidden
dimension to D (as in the encoder). Rotary Position Embeddings (RoPE) is used at each
block of the predictor. This yields a lower action ratio of 1

hw+1 = 1
257 for standard patch

sizes, with h and w being the height and width of the token grid, namely 16 (as explained
in Table S1.4).

• Feature conditioning with RoPE: This conditioning scheme combines feature concatena-
tion (as in the first variant) with RoPE positional embeddings instead of sincos, maintaining
the higher action-to-visual ratio while using relative position encoding.

• AdaLN conditioning with RoPE: Action embeddings modulate the predictor through
Adaptive Layer Normalization at each transformer block. Specifically, action embeddings
are projected to produce scale and shift parameters that modulate the layer normalization
statistics. This approach allows action information to influence all layers of the predictor
rather than only at input, potentially preventing vanishing of action information through the
network. Combined with RoPE for positional encoding, this design is also more compute-
efficient as it avoids increasing feature or sequence dimensions.

The inductive bias we expect from these designs relates to how strongly actions can influence pre-
dictions. AdaLN’s per-layer modulation should provide the most consistent action conditioning
throughout the predictor depth, which may explain its superior empirical performance, see Figure 6.

Train time. We compute the average train time per epoch for each combination of world model
and dataset in Table S1.3.

Visual decoder. We train one decoder per encoder on VideoxMix2M (Bardes et al., 2024) with a
sum of L2 pixel space and perceptual loss (Zhang et al., 2018). With a ViT-S encoder, we choose a
ViT-S decoder with depth 12. When the encoder is a ViT-L we choose a ViT-L decoder with depth
12. We train this decoder for 50 epochs with batch size 128 on trajectory slices of 8 frames.

State decoder. We train a depth 6 ViT-S decoder to regress the state from one CLS token (Darcet
et al., 2024). A linear projection at the entry projects each patch token from the frozen encoder to
the right embedding dimension, 384. At the exit, a linear layer projects the CLS token to a vector
with the same number of dimensions as the state to decode.
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Table S1.1: Training hyperparameters of some of the studied models common to all environments.
If left empty, the hyperparameter value is the same as the leftmost column. WM-V refers to models
trained with V-JEPA and V-JEPA2 encoders.

Hyperparameter WM WM-L WM-V

data
W 3 3 3
f 5 - -
resolution 224 224 256

optimization
lr 5e-4 - -
start weight decay 1e-7 - -
final weight decay 1e-6 - -
AdamW β1 0.9 - -
AdamW β2 0.999 - -
clip grad 10 - -

architecture
patch size 14 - 16
pred depth 6 - -
pred embed dim 384 1024 1024
enc embed dim 384 1024 1024

hardware
dtype bfloat16 - -
accelerator H100 80G - -

Table S1.2: Environment-specific training hyperparameters. proprio embed dim is used only for
models using proprioception. For WMW -6-step, the batch size is half the default batch size dis-
played here. We do not train but only evaluate DROID models on Robocasa.

Hyperparameter Metaworld Push-T Maze Wall DROID

optimization
batch size 256 256 128 128 128
epochs 50 50 50 50 315

architecture
action dim 20 10 10 10 7
action embed dim 20 10 10 10 10
proprio dim 4 4 4 4 7
proprio embed dim 20 20 20 10 10

V-JEPA-2-AC reproduction. To reproduce the V-JEPA-2-AC results, we find a bug in the code
that yields the official results of the paper. The 2-step rollout loss is miscomputed, what is actually
computed for this loss term is ∥Pϕ(a1:T , s1, z1)−zT ∥1 in the paper’s notations. This means that the
model, when receiving as input a groundtruth embedding z1, concatenated with a prediction ẑ2, is
trained to output ẑ2. We fix this bug and retrain the models. When evaluating the public checkpoint
of the V-JEPA-2-AC on our DROID evaluation protocol, the action score is much lower than our
retrained V-JEPA-2-AC models after bug fixing. Interestingly, the public checkpoint of the V-JEPA-
2-AC predictor, although having much worse performance at planning, yields image decodings after
unrolling very comparable to the fixed models, and seems to pass the simple counterfactual test, as
shown in Figure 2.

Regarding planning, VJEPA2-AC does not normalize the action space to mean 0 and variance 1,
contrary to DINO-WM, so we also do not normalize with our models, for comparability to V-JEPA-
2-AC. The VJEPA2-AC CEM planner does clip the norm of the sampled actions to 0.1, which
is below the typical std of the DROID actions. We find this clipping useful to increase planning
performance and adopt it. Moreover, the authors use momentum in the update of the mean and std,
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Table S1.3: Model-specific training times in minutes per epoch on 16 H100 80 GB GPUs for Maze
and Wall, on 32 H100 GPUs for Push-T and Metaworld. We denote WM-B, WM-L the variants of
the base model with size ViT-B and ViT-L, WM-prop the variant with proprioception and WM-V
the variant with V-JEPA encoders. For DROID, we display the train time for 10 epochs since we
train for 315 epochs.

Model Metaworld Push-T Maze Wall DROID

1-step 23 48 5 1 7
2-step 23 49 5 1 8
3-step 23 50 5 1 9
6-step 30 64 16 2 17
W = 7 20 42 5 1 13
WM-B 23 50 5 1 8
WM-L 25 50 5 1 8
WM-prop 24 50 5 1 7
WM-V 25 60 7 2 9

which should be useful when the number of CEM iterations is high, but we do not find it to make
a difference although we use 15 CEM iterations, hence do not adopt it in the planning setup on
DROID. The planning procedure in V-JEPA-2-AC optimizes over four dimensions, the first three
ones corresponding to the delta of the end-effector position in cartesian space, and the last one to the
gripper closure. The 3 orientation dimensions of the proprioceptive state are 2π-periodic, so they
often rapidly vary from a negative value above π to one positive below π. The actions do not have
this issue and have values continuous in time.

Data augmentation ablations. In V-JEPA-2-AC, the adopted random-resize-crop effectively
takes a central crop with aspect ratio 1.35, instead of the original DROID (et al., 2024) aspect ratio
of 1280/720 ≃ 1.78, and resizes it to 256x256. On simulated datasets where videos are natively
of aspect ratio 1, this augmentation does not have effect. DINO-WM does not use any data aug-
mentation. We try applying the pretraining augmentation of V-JEPA2, namely a random-resize-crop
with aspect ratio in [0.75, 1.33] and scale in [0.3, 1.0], but without its random horizontal flip with
probability 0.5 (which would change the action-state correspondence), and resizing to 256x256. We
find this detrimental to performance, as the agent sometimes is not fully visible in the crop.

Ablations on models trained with video encoders. When using V-JEPA and V-JEPA-2 encoders,
before settling on training loss and encoding procedure, we perform some ablations. First, we
find that the best performing loss across MSE, L1 and smooth L1 is the MSE prediction error,
even though V-JEPA and V-JEPA-2 were trained with an L1 prediction error. Then, to encode the
frame sequence, one could also leverage the ability of video encoders to model dependency between
frames. To avoid leakage from information of future frames to past frames, we must in this case
us a frame-causal attention mask in the encoder, just as in the predictor. We have a frameskip f
between the consecutive frames sampled from the trajectory dataset, considering them consecutive
without duplicating them will result in (W + 1)/2 visual embedding timesteps. In practice, we
find that duplicating each frame before encoding them as a video gives better performance than
without duplication. Still, these two alternative encoding techniques yield much lower performance
than using video encoders as frame encoders by duplicating each frame and encoding each pair
independently. V-JEPA 2-AC (Assran et al., 2025) does use the latter encoding technique. They
encode the context video by batchifying the video and duplicating each frame, accordingly to the
method which we find to work best by far on all environments. In this case, for each video of T
frames, the encoder processes a batch of T frames, so having a full or causal attention mask is
equivalent.

Encoder comparison details. Given the above chosen encoding method for video encoders, we
summarize the encoder configurations in Table S1.4. The key differences are: (1) encoder weights
themselves—DINOv2/v3 trained with their several loss terms on images vs V-JEPA/2 trained with
masked prediction on videos; (2) frame preprocessing—video encoders require frame duplication
(each frame duplicated to form a 2-frame input); (3) patch sizes—14 for DINOv2 (256 tokens/frame,
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Table S1.4: Detailed comparison of encoder configurations used in our experiments. All encoders
use frozen weights during predictor training.

Configuration DINOv2 ViT-L DINOv3 ViT-L V-JEPA ViT-L V-JEPA2 ViT-L
Encoder Architecture

Encoder type Image Image Video Video
Model size ViT-L/14 ViT-L/16 ViT-L/16 ViT-L/16
Patch embedding Conv2d(14, 14) Conv2d(16, 16) Conv3d(2, 16, 16) Conv3d(2, 16, 16)
Embedding dimension 1024 1024 1024 1024
Patches per timestep 16× 16 = 256 16× 16 = 256 16× 16 = 256 16× 16 = 256
Input normalization ImageNet stats ImageNet stats ImageNet stats ImageNet stats
Positional encoding Sincos RoPE Sincos RoPE
Attention mask Full Full Full Full

Input Preprocessing
Input resolution 224× 224 256× 256 256× 256 256× 256
Input frame count 1 per timestep 1 per timestep 2 per timestep 2 per timestep
Frame duplication No No Yes (duplicate each) Yes (duplicate each)

224 resolution) vs 16 for others (256 tokens/frame, 256 resolution for V-JEPA/2, DINOv3). We
use raw patch tokens without aggregation or entry/exit projections and use all encoders frozen,
without any finetuning. DINOv2/v3’s superior performance on our tasks likely stems from better
fine-grained object segmentation capabilities crucial for manipulation and navigation, as discussed
in the main text.

Multistep rollout variants ablations. We ablate several rollout strategies as illustrated in Fig-
ure S1.1, following the scheduled sampling (Bengio et al., 2015) and TBPTT (Jaeger, 2002) litera-
ture for sequence prediction in embedding space. When using transformers, one advantage we have
compared to the classical RNN architecture, is the possibility to perform next-timestep prediction
in parallel for all timesteps in a more computationally efficient way, thanks to a carefully designed
attention mask. In our case, each timestep is a frame, made of H × W patch tokens. We seek to
train a predictor to minimize rollout error, similarly to training RNNs to generate text (Bengio et al.,
2015). One important point is that, in our planning task, we feed a context of one state (frame and
optionally proprioception) ot, then recursively call the predictor as described in equation 3, equa-
tion 4 to produce a sequence of predictions ẑt+1, . . . , ẑt+k. Since our predictor is a ViT, the input
and output sequence of embeddings have same length. At each unrolling step, we only take the last
timestep of the output sequence and concatenate it to the context for the next call to the predictor.
We use a maximum sliding window W p of two timesteps in the context at test time, see Section 4
and Table S3.1. At training time, we add multistep rollout loss terms, defined in equation 5 to better
align training task and unrolling task at planning time. Let us define the order of a prediction as the
number of calls to the predictor function required to obtain it from a groundtruth embedding. For a
predicted embedding z

(k)
t , we denote the timestep it corresponds to as t and its prediction order as

k. There are various ways to implement such losses with a ViT predictor.

1. Increasing order rollout illustrated in Figure S1.1. In this setup, the prediction order is
increasing with the timestep. This strategy has two variants.

(a) The “Last-gradient only” variant is the most similar to the unrolling at planning time.
We concatenate the latest timestep outputted by the predictor to the context for the
next unrolling step.

(b) The “All-gradients” variant generalizes the previous variant, by computing strictly
more (non-redundant) additional loss terms although using the same number of pre-
dictor unrolling steps. These additional loss terms correspond to other combinations
of context embeddings.

2. “Equal-order”: In this variant, at each unrolling step k, the predictor input is the full out-
put of the previous unrolling step, denoted z

(k−1)
t , . . . , z

(k−1)
t+τ , deprived of the rightmost

timestep z
(k−1)
t+τ since it has no matching target groundtruth embedding zt+τ .
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Figure S1.1: Two rollout strategies with any predictor network predicting the next timestep (frame)
simultaneously for all timesteps. Predictor is used as an RNN by recursively feeding it a mix of its
previous predictions and groundtruth embeddings. We vertically represent the “predictor unrolling
step” dimension. For a predicted embedding z

(k)
t , we denote the timestep it corresponds to as t and

its prediction order as k. The embeddings that enter in the loss computation are in grey whereas
those which do not are in light grey. Left: “Last-gradient-only” strategy. We sample a random
groundtruth embedding prefix, (z1, . . . , zt) (in this figure t = 2), and concatenate only the latest
prediction to the predictor context at the next unrolling step. Strategy used in V-JEPA-2-AC with a
groundtruth embedding prefix always equal to z1. Right: “All-gradients” strategy, we compute all
available prediction tasks without redundancies, e.g. we exclude from loss computation prediction
tasks that have already been included in loss computation at previous timesteps, i.e. L(z(t−1)

t , zt).

In all the above methods, we can add sampling schedule (Bengio et al., 2015), i.e. have a probability
p to flip one of the context embeddings z(k)t to the corresponding groundtruth embedding zt.

The takeaways from our ablations are the following:

• The “Equal-order” strategy gives worse results. This is due to the fact that, with this im-
plementation, the predictor does not take as input a concatenation (over time dimension) of
ground truth embeddings and its predictions. Yet, at planning time, the unrolling function
keeps a sliding context of ground truth embeddings as well as predictions. Hence, although
this strategy uses more gradient (more timesteps have their loss computed in parallel) than
the “Last-gradient only” variant, it is less aligned with the task expected from the predictor
at planning time.

• The strategy that yields best success rate is the 2-step “Last-gradient only” variant with
random initial context.

• Even though the “All-gradients” variant has an ensemble of loss terms that strictly includes
the ones of the “Last-gradient only” strategy, it does not outperform it.

• Across all strategies, we find simultaneously beneficial in terms of success rate and training
time to perform TBTT (Jaeger, 2002), detaching the gradient on all inputs before each pass
in the predictor.

In a nutshell, what matters is to train the predictor to receive as input a mix of encoder outputs and
predictor outputs. This makes the predictor more aligned with the planning task, where it unrolls
from some encoder outputs, then concatenates to it its own predictions.
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B PLANNING ENVIRONMENTS AND DATASETS

At train time, we normalize the action and optional proprioceptive input by substracting the empiri-
cal mean and dividing by the empirical standard deviation, which are computed on each dataset. At
planning time, we sample candidate actions in the normalized action space directly. When stepping
the plan in the simulator, we thus denormalize the plan resulting from the optimization before step-
ping it in the environment. For comparability with V-JEPA-2-AC, we do not normalize actions for
DROID. We stress that, in all environments considered, we are scarce in data, except for Push-T,
where we have a bigger dataset, compared to the task complexity.

We summarize dataset statistics in Table S2.1. Each trajectory dataset is transformed into a dataset
of trajectory slices, of length W + 1 for training.

Table S2.1: Datasets statistics. We denote the number of trajectories in the dataset under Dataset
Size, the length of trajectories under Traj. Len.

Dataset Size Traj. Len.

PointMaze 2000 100
Push-T 18500 100-300
Wall 1920 50
Metaworld 12600 100
DROID 8000 20-50

DROID. We use the same dataloader as in V-JEPA-2-AC, which defines actions as delta in mea-
sured robot positions. One could either feed all three available cameras of DROID (left, right, wrist)
simultaneously (e.g. by concatenating them) or alternatively to the model. We choose to use only
one view point as simultaneous input. For training, we find that allowing the batch sampler to sam-
ple from either the left or right camera allows for slightly lower validation loss than using only one
of them.

For evaluation, we collected a set of 16 videos with our own DROID setup, positioning the cam-
era to closely match the left camera setup from the original DROID dataset. These evaluation
videos specifically focus on object interaction and arm navigation scenarios, allowing us to assess
the model’s performance on targeted manipulation tasks.

As discussed in Section 5.1, we define the Action Score as a rescaling of the opposite of the Action
Error, namely 800(0.1− E) if E < 0.1 else 0, where E is the Action Error. We display the Action
Score in all figures discussed in Section 5.2.

Robocasa. Robocasa (Nasiriany et al., 2024) is a simulation framework, based on Robosuite (Zhu
et al., 2020), with several robotic embodiments, including the Franka Panda Arm, which is the robot
used in the DROID dataset. Robocasa features over 2,500 3D assets across 150+ object categories
and numerous interactable furniture pieces. The framework includes 100 everyday tasks and pro-
vides both human demonstrations and automated trajectory generation to efficiently expand training
data. It is licensed under the MIT License.

We evaluate DROID models on Robocasa. The already existing pick-and-place tasks require too
long horizons to be solved by our current planning procedure. Hence, we need define custom easier
pick-and-place task where the arm and target object start closer to the target position. To get a
goal frame, we need to teleoperate a trajectory to obtain successful pick-and-place trajectories. We
can then use the last frame of these trajectories as goal frame for planning. We needed to tune the
camera view point to roughly correspond to the DROID left or right camera viewpoint, otherwise
our models were not able to unroll well a sequence of actions. We also customize the gripper to
use the same RobotiQ gripper as in DROID. We collect 16 such trajectories to form our evaluation
set in the kitchen scene with various object classes. We define the “Reach” condition as having the
end-effector at less than 0.2 (in simulator units, corresponding to roughly 5 cms in DROID) from
the target object, the “Pick” condition as having lifted the object at more than 0.05 from its initial
altitude, and the “Place” condition as having the object at less than 0.15 from the target position
of the object. Our teleoperated trajectories all involve three segments, namely reaching the object
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(segment 1), picking it up (segment 2), and placing it at the target position (segment 3), delimited
by these conditions. These three segments allow to define 6 subtasks, namely “Reach-Pick-Place”,
“Reach-Pick”, “Pick-Place”, “Reach”, “Pick”, and “Place”. The success definition of each of these
tasks is as follows:

• “Reach-Pick-Place”: starting from the beginning of segment 1, succes is 1 if the “Pick” and
“Place” conditions are met.

• “Reach-Pick”: starting from the beginning of segment 1, success is 1 if the “Pick” condition
is met.

• “Pick-Place”: starting from the beginning of segment 2, success is 1 if the “Place” condition
is met.

• “Reach”: starting from the beginning of segment 1, success is 1 if the “Reach” condition is
met.

• “Pick”: starting from the beginning of segment 2, success is 1 if the “Pick” condition is
met.

• “Place”: starting from the beginning of segment 3, success is 1 if the “Place” condition is
met.

We focus on the “Place” and “Reach” tasks. Our models have low success rate on the “Pick” task, as
they slightly misestimate the position of the end-effector, which proves crucial, especially for small
objects.

To allow for zero-shot transfer from DROID to Robocasa, we perform 5 times action repeat of the
actions outputted by our DROID model, since we trained on DROID sampled at 4 fps and the control
frequency of Robocasa is 20 Hz. We also rescale the actions outputted by our planner to match the
action magnitude of Robocasa, namely [-1, 1] for the delta position of the end-effector in cartesian
space, and [0, 1] for the gripper closure.

Metaworld. The Metaworld (Yu et al., 2019) environment is licensed under the MIT License. The
42 Metaworld tasks we consider are listed in Table S2.2. We gather a Metaworld dataset via TD-
MPC2 online agents trained on the visual and full state (39-dimensional) input from the Metaworld
environment, on 42 Metaworld tasks, listed in Table S2.2. We launch the training of each TD-MPC2
agent for three seeds per task. The re-initialization of the environment at each new training episode is
therefore different, even within a given seed and task. This randomness governs the initial position
of the arm and of the objects present in the scene, as well as the goal positions of the arm and
potential objects. Each episode has length 100. We keep the first 100 episodes of each combination
of seed and task, to limit the proportion of “expert” trajectories in the dataset, thus promoting data
diversity. This results in 126 buffers, each of 100 episodes, hence 12600 episodes of length 100.

We introduce a planning evaluation procedure for each of the Metaworld tasks considered. These
are long-horizon tasks that require to perform at least 60 actions to be solved, meaning it should be
solvable if planning at horizon H = 60/f , if using frameskip f . This allows us to explore the use
of JEPA-WMs in a context where MPC is a necessity. At planning time, we reset the environment
with a different for each episode, randomizing the initial position of the arm, of the objects present
in the scene, as well as the goal positions of the arm and potential objects. We then play the expert
policy provided in the open-source Metaworld package for 100 steps. The last frame (and optionally
proprioception) of this episode is set as the goal og for the planning objective of equation 2. We then
reset the environment again with the same random seed, and let the agent plan for 100 steps to reach
the goal.

Push-T. In this environment introduced by (Chi et al., 2023) (MIT License), a pusher ball agent
interacts with a T-shaped block. Success is achieved when both the agent and the T-block, which
start from a randomly initialized state, reach a target position. For Push-T, the dataset provided in
DINO-WM is made of 18500 samples, that are replays of the original released expert trajectories
with various level of noise. At evaluation time, we sample an initial and goal state from the valida-
tion split, such that the initial attained the goal in H steps, with H the planning horizon. Indeed,
otherwise, the task can require very long-horizon planning, and is not well solved with our planners.
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Task Description

turn on faucet Rotate the faucet counter-clockwise. Randomize faucet positions
sweep Sweep a puck off the table. Randomize puck positions
assemble nut Pick up a nut and place it onto a peg. Randomize nut and peg positions
turn off faucet Rotate the faucet clockwise. Randomize faucet positions
push Push the puck to a goal. Randomize puck and goal positions
pull lever Pull a lever down 90 degrees. Randomize lever positions
push with stick Grasp a stick and push a box using the stick. Randomize stick positions.
get coffee Push a button on the coffee machine. Randomize the position of the coffee machine
pull handle side Pull a handle up sideways. Randomize the handle positions
pull with stick Grasp a stick and pull a box with the stick. Randomize stick positions
disassemble nut pick a nut out of the a peg. Randomize the nut positions
place onto shelf pick and place a puck onto a shelf. Randomize puck and shelf positions
press handle side Press a handle down sideways. Randomize the handle positions
hammer Hammer a screw on the wall. Randomize the hammer and the screw positions
slide plate Slide a plate into a cabinet. Randomize the plate and cabinet positions
slide plate side Slide a plate into a cabinet sideways. Randomize the plate and cabinet positions
press button wall Bypass a wall and press a button. Randomize the button positions
press handle Press a handle down. Randomize the handle positions
pull handle Pull a handle up. Randomize the handle positions
soccer Kick a soccer into the goal. Randomize the soccer and goal positions
retrieve plate side Get a plate from the cabinet sideways. Randomize plate and cabinet positions
retrieve plate Get a plate from the cabinet. Randomize plate and cabinet positions
close drawer Push and close a drawer. Randomize the drawer positions
press button top Press a button from the top. Randomize button positions
reach reach a goal position. Randomize the goal positions
press button top wall Bypass a wall and press a button from the top. Randomize button positions
reach with wall Bypass a wall and reach a goal. Randomize goal positions
insert peg side Insert a peg sideways. Randomize peg and goal positions
pull Pull a puck to a goal. Randomize puck and goal positions
push with wall Bypass a wall and push a puck to a goal. Randomize puck and goal positions
pick out of hole Pick up a puck from a hole. Randomize puck and goal positions
pick&place w/ wall Pick a puck, bypass a wall and place the puck. Randomize puck and goal positions
press button Press a button. Randomize button positions
pick&place Pick and place a puck to a goal. Randomize puck and goal positions
unplug peg Unplug a peg sideways. Randomize peg positions
close window Push and close a window. Randomize window positions
open door Open a door with a revolving joint. Randomize door positions
close door Close a door with a revolving joint. Randomize door positions
open drawer Open a drawer. Randomize drawer positions
close box Grasp the cover and close the box with it. Randomize the cover and box positions
lock door Lock the door by rotating the lock clockwise. Randomize door positions
pick bin Grasp the puck from one bin and place it into another bin. Randomize puck positions

Table S2.2: A list of all of the Meta-World tasks and a description of each task.

PointMaze. In this environment introduced by (Fu et al., 2020) (Apache 2.0 license), a force-
actuated 2-DoF ball in the Cartesian directions x and y must reach a target position. The agent’s
dynamics incorporate its velocity, acceleration, and inertia, making the movement realistic. The
PointMaze train set is made of 2000 fully random trajectories. At evaluation time, we sample a
random initial and goal state from the simulator’s sampler.

Wall. This 2D navigation environment introduced in (Zhou et al., 2024) (MIT License) features
two rooms separated by a wall with a door. The agent’s task is to navigate from a randomized
starting location in one room to a goal in one of the two rooms, potentially passing through the door.
The Wall dataset is made of 1920 random trajectories each with 50 time steps. At planning time, we
also sample a random initial and goal state from the simulator’s sampler.
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C PLANNING OPTIMIZATION

In this section, we detail the optimization procedures for planning in our experiments. Given
a modeling function Fϕ,θ, a dissimilarity criterion (Lvis + αLprop), an initial and goal obser-
vation pair ot, og , we remind we have the objective function Lp

α(ot, at:t+H−1, og) = (Lvis +
αLprop)(Fϕ,θ(ot, at:t+H−1), Eϕ,θ(og)).

Model Predictive Control. In Metaworld only we perform MPC, a procedure where replanning
is allowed after executing a plan in the environment. We set the maximum number of actions that
can be stepped in the environment to 100, which constitutes an episode. At each step of the episode
where we plan, we use either the CEM or NG planner.

Cross-Entropy Method. The CEM optimisation algorithm proceeds as in Algorithm 1. In
essence, we fit parameters of a time-dependent multivariate Gaussian with diagonal covariance.

Algorithm 1 Cross-Entropy Method

1: µ0 ∈ RH×A is zero and covariance matrix σ0I ∈ R(H×A)2 is the identity. Number of optimisa-
tion steps J .

2: for j = 1 to J do
3: Sample N independent trajectories ({at, . . . , at+H−1}) ∼ N (µj , (σj)2I)
4: For each of the N trajectories, unroll predictor to predict the resulting trajectory, ẑi =

Pθ(ẑi−1, ai−1), i = t+ 1, . . . , t+H . Compute cost Lp
α(ot, at:t+H−1, og) for each candi-

date trajectory.
5: Select top K action sequences with the lowest cost, denote them ({at, . . . , at+H−1})1,...,K .

Update

µj+1 =
1

K

K∑
k=1

({at, . . . , at+H−1})k

σj+1 =

√√√√ 1

K − 1

K∑
k=1

[({at, . . . , at+H−1})k − µj+1]
2

6: Step the first m actions of µJ . where m ≤ H is a planning hyperparameter in the environment.
If we are in MPC mode, the process then repeats at the next time step with the new context
observation.
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Figure S3.1: Planning a 100-steps Metaworld episode with the base DINO-WM at the end of training
of WM, for the same Metaworld environment episode seed, with our two planners. We display the
average objective of the top K imagined trajectories and its standard deviation (orange), and the
best imagined trajectory’s planning loss Lp

α (blue). Bottom: Planning with CEM. Top: Planning
with NG. Failure episode for both: with NG the arms stays stuck against the wall, hence the higher
planning objective, whereas with CEM this episode fails because of imprecision around the goal
position.

NG Planner. We design a procedure to use any NeverGrad optimizer with our planning objective
Lp
α(ot, at:t+H−1, og), with the same number of action trajectories evaluated in parallel and total

budget as CEM, as detailed in Algorithm 2. As discussed in Section 5.2, in all the evaluation setups
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we consider in this study, the NGOpt meta-optimizer always chooses the diagonal variant of the
CMA-ES algorithm with a particular parameterization. The diagonal version of CMA is advised
when the search space is big. We stress that after trying other parameterizations of the Diagonal
CMA algorithm, like its elitist version (with a scale factor of 0.895 instead of 1, which is the default
value), success rate can drop by 20% on Wall, Maze and Push-T.

Algorithm 2 NeverGrad planner

1: optimizer chosen by nevergrad.optimizers.NGOpt from budget N × J , on space
RH×A, with N workers.

2: for j = 1 to J do
3: optimizer.ask() N trajectories sequentially.
4: For each of the N trajectories, unroll predictor to predict the resulting trajectory, ẑi =

Pθ(ẑi−1, ai−1), i = t+ 1, . . . , t+H . Compute cost Lp
α(ot, at:t+H−1, og) for each candi-

date trajectory.
5: optimizer.tell() the cost Lp

α(ot, at:t+H−1, og) of the N trajectories sequentially.
6: Step the first m actions of optimizer.provide recommendation(), where m ≤ H is

a planning hyperparameter in the environment. If we are in MPC mode, the process then repeats
at the next time step with the new context observation.

Planning hyperparameters. We display in Table S3.1 the hyperparameters used to plan on each
environment. We keep the planning hyperparameters of DINO-WM (Zhou et al., 2024) for Push-T,
Wall and Maze, but reduce the number of “top” actions, denoted K, to 10 instead of 30. We obtain
these parameters after careful grid search on DINO-WM. The success rate is very sensitive to these
parameters, keeping the world model fixed.

Table S3.1: Environment-specific hyperparameters for planning, corresponding to the notations of
Section C. The number of steps per planning episode is denoted M and the frameskip is denoted f .
H is the planning horizon, m the number of actions to step in the environment, K the number of top
actions in CEM, N the number of trajectories evaluated in parallel, J the number of iterations of the
optimizer. The total number of replanning steps for en evaluation episode is M

fm .

N H m K J W p f M

PointMaze 300 6 6 10 30 2 5 30
Push-T 300 6 6 10 30 2 5 30
Wall 300 6 6 10 30 2 5 30
Metaworld 300 6 3 10 15 2 5 100
Robocasa 300 3 1 10 15 2 5 60
DROID 300 3 3 10 15 2 1 m
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D ADDITIONAL EXPERIMENTS

D.1 ADDITIONAL RESULTS

Additional planner ablations. In Table S4.1, we compare the performance of our model to the
DINO-WM and VJEPA-2-AC baselines across all planner configurations tested in Figure 3. Our
optimal JEPA-WM consistently outperforms the baselines on all tasks and planners, as in Table 1.

Table S4.1: Comparison of different models across all planner configurations. MW-R and MW-RW
denote the Reach and Reach-Wall tasks of Metaworld. Rc-Pl and RC-R denote the Place and Reach
tasks of Robocasa.

Model Planner Maze Wall Push-T MW-R MW-RW Rc-R Rc-Pl DROID

CEM L1 DWM 78.6 (3.1) 48.2 (4.3) 61.8 (4.3) 40.7 (9.8) 26.9 (8.8) 14.4 (11.3) 19.6 (7.4) 41.7 (2.7)
VJ2AC — — — — — 11.9 (6.2) 24.2 (5.5) 36.3 (1.6)
Ours 79.7 (3.0) 45.9 (4.0) 63.3 (2.1) 54.5 (13.5) 28.0 (9.9) 23.0 (13.6) 23.3 (9.7) 44.5 (2.0)

CEM L2 DWM 81.7 (3.5) 64.3 (4.6) 66.0 (4.6) 41.1 (10.2) 27.8 (9.4) 19.0 (13.4) 21.7 (7.2) 39.3 (2.1)
VJ2AC — — — — — 20.6 (6.5) 21.7 (4.2) 37.9 (1.4)
Ours 83.3 (2.8) 75.4 (3.0) 70.6 (3.0) 54.9 (12.1) 28.7 (9.6) 21.6 (11.8) 33.5 (10.6) 44.3 (2.1)

NG L1 DWM 52.3 (3.9) 24.7 (5.1) 46.1 (4.9) 33.8 (8.4) 27.1 (9.8) 21.6 (15.5) 25.8 (8.1) 35.4 (3.3)
VJ2AC — — — — — 9.8 (5.2) 27.1 (6.0) 32.1 (2.7)
Ours 70.1 (2.7) 29.4 (4.9) 48.1 (4.8) 41.3 (9.6) 27.3 (7.5) 21.8 (13.4) 31.3 (8.9) 38.7 (2.4)

NG L2 DWM 54.2 (3.9) 25.4 (4.4) 48.0 (5.4) 35.4 (9.1) 25.9 (9.2) 25.8 (16.7) 27.0 (8.6) 36.0 (3.6)
VJ2AC — — — — — 11.5 (5.7) 26.5 (7.0) 32.4 (2.0)
Ours 72.6 (4.3) 32.3 (6.1) 48.8 (3.7) 40.3 (9.1) 29.0 (9.2) 18.8 (11.3) 31.7 (8.5) 39.0 (2.3)

In Figure S4.2 (Left), we compare the performance of CEM, NG and Gradient-Descent (GD) plan-
ners on all environments with the default configuration described in the beginning of Section 4,
namely DINO-WM ViT-S without proprioception. We see that the GD planner performs poorly on
all tasks, except for the Metaworld tasks, especially the Metaworld reach task. The latter task is the
“greediest” in the sense that the planning cost landscape is monotonously decreasing between the
initial and the goal states for all expert trajectories, as defined in Section 5.1. Let us detail the failure
cases of the GD planner. On the Wall task, the GD planner gets zero performance, although the task
is visually simplistic. We identify two main failure cases. Either the agent goes into the wall without
being able to pass the door, which is the a classical failure case for better CEM or NG planners. Or
the agent finds a local planning cost minimum by going to the borders of the image, when starting
close to them. We illustrate both of these in Figure S4.1.

In Figure S4.2 (Right), we compare the performance of all planners on all environments but with
proprioception. We adopt the default configuration described in the beginning of Section 4, namely
DINO-WM ViT-S but with proprioception. We can draw the same conclusions as for without pro-
prioception, in Figure 3, noting that, here, CEM even outperforms the NG planner on Metaworld.

Object manipulation on Robocasa and DROID. We show in Figure S4.4 a successful planning
episode with our proposed JEPA-WM on Robocasa on the “Place” task. Our model is able to perform
the “Place” task but has a much lower success rate at the “Pick” task, as it misestimates the position
of the arm. We illustrate the shift in camera calibration / action calibration in Figure S4.3 on the
“Reach” task. On all episodes, the model always predicts a state shifted to the left compared to the
ground-truth. This phenomenon is less clear on DROID, as we illustrate in Figure S4.5.

Object manipulation on Metaworld. Our agent solves the pose control tasks like reach and
reach-wall. In addition, long-term action unrolling with object interaction seems to be well-captured
by our models, as shown in Figure S4.6 for the bin-picking task. Yet, for tasks involving object ma-
nipulation, it hallucinates grasping the object. In Figure S4.7, the visual decoding of the unrolling
of the action plan shows a gap between the imagined consequences of the actions and their conse-
quences in the simulator. This calls for a separate optimization procedure for the action dimension
that corresponds to the end-effector’s gripper.
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Figure S4.1: Two typical failure cases with the Gradient-Descent (GD) planner on the Wall task. For
each failure case, we show: (top) the planned trajectory visualization, (bottom left) initial and goal
states, (bottom right) planning cost evolution throughout gradient descent iterations. First failure
case (top 3 subfigures): the agent finds a local planning cost minimum by going to the borders of the
image when starting close to them. Second failure case (bottom 3 subfigures): the agent goes into
the wall without being able to pass the door.

Action precision Push-T. The results in Figure S4.12 clearly show that CEM performs better than
NG for the Push-T task. The Push-T task requires very precise actions, since if the ball is slightly off
the position where it should be to push the T-shape, it misses the shape and fails at the task. Hence it
proves essential to only step actions after convergence of the planner. Yet, we see in Figure S4.8 that
the NG planner is more explorative and should therefore be parametrized differently for this type of
task. Interestingly, the larger model converges faster and brings higher maximal success rate on this
task.

Embedding space and model size. We see in Figure S4.9 that the relative difference in embedding
space distance to the goal is approximately ten times smaller in the ViT-L model than in the ViT-S
model. This is consistent with the fact that the ViT-L model has a higher capacity and can therefore
embed more information in its latent space, in which two states of Metaworld are closer to each
other than in the ViT-S model embedding space.
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Figure S4.2: Comparison of planning optimizers. NG is the Nevergrad-based interface for trajectory
optimization that we introduce, CEM is the Cross-Entropy Method, and GD is the Gradient Descent
Planner with L1 or L2 distance. Left: comparison of the GD, CEM and NG planners on DINO-
WM without proprioception. Right: comparison of CEM and NG planners on DINO-WM with
proprioception.

Figure S4.3: Planning at horizon 3 with our proposed JEPA-WM on Robocasa, with our best model
presented in Section 5.3. The model is trained on DROID and evaluated zero-shot on Robocasa
on the “Reach” task, where the goal is to reach the object. Top: the model’s visual decoding of
the action plan. Bottom: the ground-truth action stepping in simulator. The model predicts a state
shifted to the left compared to the ground-truth.

D.2 EVALUATION METRICS

The metric we seek to optimize for planning tasks is the success rate, which can be noisy, highly
dependent on the initial seed, and sparse at the beginning of training. We therefore derive several
other useful metrics and study their correlation with the success rate.

Embedding space error throughout unrolling. Throughout training, every 300 training itera-
tions, we unroll the predictor on a batch of the validation split for n steps. For each of these steps,
we compute the L1 and L2 loss between the predicted embedding and the embedding of the ground
truth corresponding future frame. The L2 loss at step 1 is the teacher-forcing loss term L.

Proprioceptive decoding error throughout unrolling. Prior to training of the predictors, we train
a small ViT probe, called “state decoder” on top of the frozen encoder to regress the state, i.e. pro-
prioception and optionally other simulator state information. Then, when training the predictors we
study in this paper, every 300 training iterations, we unroll the predictor for n steps on a batch of the
validation split and use our state decoder on the predicted features. This yields n state predictions,
of which we compute the distance to the ground truth future n states.

Visual decoder. Just like the state decoder, we train a visual decoder to reconstruct, from the
embeddings outputted by the frozen encoder, the associated frames. We decode each frame inde-
pendently to avoid artificial consistency across frames, as the decoder is a probing tool. Indeed, in

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Init state Goal state

Figure S4.4: Planning episode with our proposed JEPA-WM on Robocasa, with DINOv2 ViT-S
encoder, 2-step rollout, AdaLN predictor. The model is trained on DROID and evaluated zero-shot
on Robocasa on the ’place’ task. The planning cost is the embedding space distance to the goal
frame embedding.

models like COSMOS (Agarwal et al., 2025), the powerful diffusion decoder accounts for beauti-
ful visualisations, although the underlying latent world model might not be as accurate. Every 300
training iterations, we unroll the predictor on a given sequence of actions, and compare the decoding
of the predicted embeddings to the ground truth future frames, both qualitatively and with the LPIPS
metric (Zhang et al., 2018).

Action error. To evaluate models without having to step actions in a real robot or a simulator, we
compare the actions outputted by the planner and the groundtruth actions of the trajectory sampled
from the dataset to define initial and goal state. On DROID, throughout training, the total action
error increases, and even more if we do not clip the actions magnitude in the planner, as done in V-
JEPA-2-AC, since we do not normalize the actions. This is because most of the action error comes
from the gripper closure and gripper orientation action dims, as detailed in Figure S4.10. Hence, on
DROID, we track the action error on the three first dimensions, corresponding to the end-effector
position control, which is more relevant for the tasks we consider.

D.3 IS THERE A PROXY FOR SUCCESS RATE?

Evaluating several independent planning recipes is compute-intensive, even more so as the model
size increases, as well as the planning budget N ×H × J ×W p, see Table S3.1. Hence, we look
for validation metrics to track throughout the training that correlate well with the success rate. Each
epoch of each model and evaluation setup (among four) is a data point with a value for a validation
metric and an associated success rate. Considering each epoch as an independent sample allows us to
compute the Spearman correlation between each quantitative metric and the success rate. The results
in Table S4.2, Table S4.5, Table S4.3 and Table S4.4 first show that the correlation with training loss
(Vis emb) is higher for the easier Wall task. Since we want to find the metric that correlates most
to the success rate, we average the Spearman correlations instead of computing them on the union
of data points, to avoid Simpson’s paradox. This yields the rightmost column of each table. In
both environments, the metric most correlated with the success rate is the planning objective, that
is, the Vis Emb loss. Interestingly, only in Metaworld, which requires better long-horizon unrolling
capability, do the unroll metrics at step H > 1 correlate better than step-1 metrics.

Since we are essentially in a supervised learning setting, training a regressor of future embeddings,
it is clear that lower validation prediction losses (at all unrolling steps) means a more accurate world
model. This is best observed in the visual decodings of validation rollouts throughout training.

Why the success rate does not correlate well to these losses is due to several factors. The validation
prediction task is not fully aligned with the goal-conditioned planning task. The planning optimiza-
tion task we use to evaluate models is a heuristic, where the objective is to minimize the embedding
space distance of the last imagined state to the goal.

As we see in DROID experiments, letting the planner sample actions that are OOD for the predictor
can severely harm the plan accuracy and occult the improvement of the predictor throughout training.
Another caveat is that a better world model that does not prevent the planning procedure from getting
stuck in local cost minima.
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Table S4.2: Negative Spearman Correlation Coefficients between smoothed success rate and several
validation metrics on Metaworld. In bold is highest value, underlined is 2nd highest. We denote the
visual embedding prediction errors Vis Emb and the proprioceptive decoding error Proprio dec, at
horizons H from one to three. We display the mean success rate over the last 10 epochs averaged
over the four eval setups in the last row.

Model name WM WMW WM-prop WM-2-step WM-L Mean

Proprio dec H = 1 0.40 0.44 0.40 0.26 0.20 0.34
Proprio dec H = 2 0.41 0.34 0.45 0.27 0.21 0.34
Proprio dec H = 3 0.38 0.44 0.40 0.33 0.18 0.35

Vis emb L2 H = 1 0.44 0.51 0.62 0.39 0.23 0.44
Vis emb L2 H = 2 0.42 0.46 0.62 0.39 0.24 0.42
Vis emb L2 H = 3 0.36 0.44 0.59 0.37 0.20 0.39

Vis emb L1 H = 1 0.45 0.55 0.69 0.41 0.24 0.47
Vis emb L1 H = 2 0.45 0.52 0.72 0.43 0.25 0.47
Vis emb L1 H = 3 0.42 0.52 0.72 0.42 0.22 0.46

SR 29.7 ±3.8 24.9 ±7.6 39.2 ±4.1 28.7 ±5.8 19.4 ±5.8

Table S4.3: Negative Spearman Correlation Coefficients across data points of the four eval setups be-
tween smoothed success rate and several validation metrics on the Push-T task. The rightmost mean
column is the average of Spearman correlation of each model.In bold is highest value, underlined is
2nd highest. We display the mean success rate over the last 10 epochs in the last row.

Model name WM WMW WM-prop WM-2-step WM-L Mean

Proprio dec H = 1 0.70 0.73 0.85 0.71 0.81 0.76
Proprio dec H = 2 0.78 0.66 0.87 0.79 0.84 0.79
Proprio dec H = 3 0.76 0.70 0.78 0.83 0.86 0.79

Vis emb L2 H = 1 0.80 0.73 0.88 0.82 0.87 0.82
Vis emb L2 H = 2 0.85 0.76 0.91 0.84 0.87 0.85
Vis emb L2 H = 3 0.86 0.70 0.89 0.80 0.87 0.82

Vis emb L1 H = 1 0.87 0.79 0.92 0.83 0.90 0.86
Vis emb L1 H = 2 0.88 0.78 0.93 0.84 0.88 0.86
Vis emb L1 H = 3 0.87 0.75 0.91 0.83 0.87 0.85

D.4 SUCCESS OVER EPOCHS

We display in Figure S4.11 and Figure S4.12 the evolution of success rate over training epochs for
some of the models that compose the design choice study of this paper.
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Table S4.4: Negative Spearman Correlation Coefficients across data points of the eight eval setups
between smoothed success rate and several validation metrics on the Wall task. In bold is highest
value, underlined is 2nd highest. We denote the visual embedding prediction errors Vis Emb and the
proprioceptive decoding error Proprio dec, at horizons H from one to three.

Model name WM WMW WM-prop WM-2-step WM-3-step WM-L Mean

Proprio dec H = 1 0.25 0.38 0.19 0.23 0.26 0.16 0.25
Proprio dec H = 2 0.23 0.51 0.22 0.30 0.14 0.28 0.28
Proprio dec H = 3 0.22 0.49 0.39 0.26 0.34 0.23 0.32

Vis emb L2 H = 1 0.72 0.94 0.74 0.73 0.69 0.75 0.76
Vis emb L2 H = 2 0.69 0.94 0.69 0.70 0.61 0.74 0.73
Vis emb L2 H = 3 0.68 0.94 0.65 0.69 0.56 0.70 0.70

Vis emb L1 H = 1 0.78 0.96 0.81 0.77 0.73 0.80 0.81
Vis emb L1 H = 2 0.74 0.96 0.76 0.72 0.69 0.79 0.78
Vis emb L1 H = 3 0.73 0.96 0.73 0.72 0.64 0.75 0.75

Table S4.5: Negative Spearman Correlation Coefficients across data points of the eight eval setups
between smoothed success rate and several validation metrics on the Point Maze environment. The
rightmost mean column is the average of Spearman correlation of each model. In bold is highest
value, underlined is 2nd highest.

Model name WM WMW WM-prop WM-2-step WM-3-step WM-L Mean

Proprio dec H = 1 0.15 0.19 0.15 0.14 0.25 0.09 0.16
Proprio dec H = 2 0.13 0.21 0.10 0.35 0.23 0.21 0.21
Proprio dec H = 3 0.10 0.34 0.25 0.10 0.27 0.10 0.19

Vis emb L2 H = 1 0.43 0.50 0.82 0.53 0.42 0.19 0.48
Vis emb L2 H = 2 0.23 0.24 0.74 0.50 0.53 0.03 0.38
Vis emb L2 H = 3 0.21 0.30 0.67 0.46 0.49 0.17 0.38

Vis emb L1 H = 1 0.58 0.68 0.86 0.54 0.38 0.36 0.57
Vis emb L1 H = 2 0.37 0.49 0.78 0.55 0.50 0.19 0.48
Vis emb L1 H = 3 0.29 0.38 0.74 0.51 0.50 0.29 0.45
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Figure S4.5: Unrolling a trajectory with our proposed JEPA-WM on some of our collected Franka
arm trajectories, with our best model presented in Section 5.3. For each pair of rows, the top one is
the model’s visual decoding of the action unrolling, the bottom one is the ground-truth trajectory of
the dataset. The model sometimes does not grasp well interaction with objects, which is the most
frequent failure case.
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Figure S4.6: Samples of DINO-WM open-loop rollouts on the validation split, each on 18 model
actions corresponding to 90 elementary actions in simulator. For each of the three pairs of rows, the
grountruth action stepping in simulator is below the decoding of the predictor rollout.

Figure S4.7: Upper row: Visual decoding of the unrolling of the action plan outputted by the NG
planner, at step 1 of the Metaworld episode, on the bin-picking task. The world model’s predictions
resulting from the plan indicate that the object is picked. Lower row: Stepping of half of the plan
in the simulator. The object is not picked and the plan leads the robotic arm to the target location
without the object.
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Figure S4.8: Convergence of planning optimization for all 2D environments and DROID. The model
evaluated is the base WM model, at the end of training. Left: episode initial and goal state. Center:
CEM planner. Right: NG planner. We display the planning cost of the best trajectory throughout the
optimization steps.
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Figure S4.9: Same Metaworld reach-wall task setup: trajectory of the Base model (bottom center),
the Large model (bottom right) and the expert policy (all other subfigures). Left: expert’s executed
episode first and last state at top, expert’s distance of arm to goal position in the simulator space at
bottom. Center: WM ViT-S encoder embedding space L2 distance to goal, expert trajectory on top,
WM planned episode at bottom. Right: WM-L encoder embedding space, expert trajectory on top,
WM planned episode at bottom. This episode has the same seed as in Figure S3.1.
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Figure S4.10: Top row: model at the end of the first training epoch. Bottom row: model at the end of
training. Left: visual decoding of the horizon 1 plan. Right: comparison of the actions outputted by
the planner (blue) and the groundtruth actions (orange) for the 7 action dimensions. The first three
dimensions correspond to end-effector position control, the three next to end-effector orientation
control, the last one to the gripper closure. The action error mostly comes from the gripper and
orientation control dimensions. Hence, although only the model at the end of training correctly
plans to approach the gripper from the box, its total action error is higher than at the beginning of
training, if we consider all 7 dimensions.
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Figure S4.11: Success rate evolution for several evaluation setups on all tasks, comparing image and
video encoders. At each epoch, we evaluate the success rate on 96 independent episodes and report
the average. We denote WM the base model for the design choice study, namely DINO-WM (Zhou
et al., 2024) without proprioception, and WM-L its Vit-L version. We display the results for the
models learned on top of V-JEPA and V-JEPA2.

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

0 4 8 12 16 20 24 28 32 36 40 44 48
Epoch

0

10

20

30

40

50

Su
cc

es
s R

at
e

reach L1 CEM Success Rate
WM
WMW

WM-prop
WM-2-step
WM-3-step
WMW-6-step
WM-B
WM-L

0 4 8 12 16 20 24 28 32 36 40 44 48
Epoch

0

10

20

30

40

50

Su
cc

es
s R

at
e

reach L2 CEM Success Rate
WM
WMW

WM-prop
WM-2-step
WM-3-step
WMW-6-step
WM-B
WM-L

0 4 8 12 16 20 24 28 32 36 40 44 48
Epoch

0

10

20

30

40

50

Su
cc

es
s R

at
e

reach L1 NG Success Rate
WM
WMW

WM-prop
WM-2-step
WM-3-step
WMW-6-step
WM-B
WM-L

0 4 8 12 16 20 24 28 32 36 40 44 48
Epoch

0

10

20

30

40

50

Su
cc

es
s R

at
e

reach L2 NG Success Rate
WM
WMW

WM-prop
WM-2-step
WM-3-step
WMW-6-step
WM-B
WM-L

0 4 8 12 16 20 24 28 32 36 40 44 48
Epoch

0

10

20

30

40

50

Su
cc

es
s R

at
e

reach-wall L1 CEM Success Rate
WM
WMW

WM-prop
WM-2-step
WM-3-step
WMW-6-step
WM-B
WM-L

0 4 8 12 16 20 24 28 32 36 40 44 48
Epoch

0

10

20

30

40

50

Su
cc

es
s R

at
e

reach-wall L2 CEM Success Rate
WM
WMW

WM-prop
WM-2-step
WM-3-step
WMW-6-step
WM-B
WM-L

0 4 8 12 16 20 24 28 32 36 40 44 48
Epoch

0

10

20

30

40

50

Su
cc

es
s R

at
e

reach-wall L1 NG Success Rate
WM
WMW

WM-prop
WM-2-step
WM-3-step
WMW-6-step
WM-B
WM-L

0 4 8 12 16 20 24 28 32 36 40 44 48
Epoch

0

10

20

30

40

50

Su
cc

es
s R

at
e

reach-wall L2 NG Success Rate
WM
WMW

WM-prop
WM-2-step
WM-3-step
WMW-6-step
WM-B
WM-L

0 4 8 12 16 20 24 28 32 36 40 44 48
Epoch

0

10

20

30

40

50

60

70

80

90

Su
cc

es
s R

at
e

wall CEM rand L1 Success Rate
WM
WMW

WM-prop
WM-2-step
WM-3-step
WMW-6-step
WM-B
WM-L

0 4 8 12 16 20 24 28 32 36 40 44 48
Epoch

0

10

20

30

40

50

60

70

80

90

Su
cc

es
s R

at
e

wall CEM rand L2 Success Rate

WM
WMW

WM-prop
WM-2-step
WM-3-step
WMW-6-step
WM-B
WM-L

0 4 8 12 16 20 24 28 32 36 40 44 48
Epoch

0

10

20

30

40

50

60

70

80

90

Su
cc

es
s R

at
e

wall NG rand L1 Success Rate
WM
WMW

WM-prop
WM-2-step
WM-3-step
WMW-6-step
WM-B
WM-L

0 4 8 12 16 20 24 28 32 36 40 44 48
Epoch

0

10

20

30

40

50

60

70

80

90

Su
cc

es
s R

at
e

wall NG rand L2 Success Rate
WM
WMW

WM-prop
WM-2-step
WM-3-step
WMW-6-step
WM-B
WM-L

0 4 8 12 16 20 24 28 32 36 40 44 48
Epoch

0

10

20

30

40

50

60

70

80

Su
cc

es
s R

at
e

pt CEM L1 Success Rate

WM
WMW

WM-prop
WM-2-step
WM-3-step
WMW-6-step
WM-B
WM-L

0 4 8 12 16 20 24 28 32 36 40 44 48
Epoch

0

10

20

30

40

50

60

70

80

Su
cc

es
s R

at
e

pt CEM L2 Success Rate

WM
WMW

WM-prop
WM-2-step
WM-3-step
WMW-6-step
WM-B
WM-L

0 4 8 12 16 20 24 28 32 36 40 44 48
Epoch

0

10

20

30

40

50

60

70

80

Su
cc

es
s R

at
e

pt NG L1 Success Rate
WM
WMW

WM-prop
WM-2-step
WM-3-step
WMW-6-step
WM-B
WM-L

0 4 8 12 16 20 24 28 32 36 40 44 48
Epoch

0

10

20

30

40

50

60

70

80
Su

cc
es

s R
at

e
pt NG L2 Success Rate

WM
WMW

WM-prop
WM-2-step
WM-3-step
WMW-6-step
WM-B
WM-L

0 4 8 12 16 20 24 28 32 36 40 44 48
Epoch

0

20

40

60

80

100

Su
cc

es
s R

at
e

mz CEM rand L1 Success Rate

WM
WMW

WM-prop
WM-2-step
WM-3-step
WMW-6-step
WM-L
WM-B

0 4 8 12 16 20 24 28 32 36 40 44 48
Epoch

0

20

40

60

80

100

Su
cc

es
s R

at
e

mz CEM rand L2 Success Rate

WM
WMW

WM-prop
WM-2-step
WM-3-step
WMW-6-step
WM-L
WM-B

0 4 8 12 16 20 24 28 32 36 40 44 48
Epoch

0

20

40

60

80

100

Su
cc

es
s R

at
e

mz NG rand L1 Success Rate
WM
WMW

WM-prop
WM-2-step
WM-3-step
WMW-6-step
WM-L
WM-B

0 4 8 12 16 20 24 28 32 36 40 44 48
Epoch

0

20

40

60

80

100

Su
cc

es
s R

at
e

mz NG rand L2 Success Rate

WM
WMW

WM-prop
WM-2-step
WM-3-step
WMW-6-step
WM-L
WM-B

Figure S4.12: Success rate evolution for several evaluation setups on all tasks, comparing multistep
rollout, proprioception and model size. We denote WM-B, WM-L the variants of the base model
with size ViT-B and ViT-L, WM-prop the variant with proprioception, and the multistep rollout
models as WM-k-step. Row 1: Metaworld reach, row 2: Metaworld reach-wall, row 3: Wall, row 4:
Push-T, row 5: Point Maze. At each epoch, we evaluate the success rate on 96 independent episodes
and report the average.
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