
Coupled Data and Measurement Space Dynamics for
Enhanced Diffusion Posterior Sampling

Shayan Mohajer Hamidi
Stanford University

smohajer@stanford.edu

Ben Liang
University of Toronto
liang@ece.utoronto.ca

En-Hui Yang
University of Waterloo
ehyang@uwaterloo.ca

Abstract

Inverse problems, where the goal is to recover an unknown signal from noisy or
incomplete measurements, are central to applications in medical imaging, remote
sensing, and computational biology. Diffusion models have recently emerged as
powerful priors for solving such problems. However, existing methods either rely
on projection-based techniques that enforce measurement consistency through
heuristic updates, or they approximate the likelihood p(y | x), often resulting
in artifacts and instability under complex or high-noise conditions. To address
these limitations, we propose a novel framework called coupled data and mea-
surement space diffusion posterior sampling (C-DPS), which eliminates the need
for constraint tuning or likelihood approximation. C-DPS introduces a forward
stochastic process in the measurement space {yt}, evolving in parallel with the
data-space diffusion {xt}, which enables the derivation of a closed-form posterior
p(xt−1 | xt,yt−1). This coupling allows for accurate and recursive sampling
based on a well-defined posterior distribution. Empirical results demonstrate that
C-DPS consistently outperforms existing baselines, both qualitatively and quantita-
tively, across multiple inverse problem benchmarks.

1 Introduction

Inverse problems, where the goal is to recover an unknown signal x0 from noisy or incomplete
measurements y, arise in a wide range of applications, including medical imaging [1, 2], remote
sensing [3, 4], and audio signal processing [5, 6]. Mathematically, these problems are often modeled
as y = Ax0 + n, where A is a known forward operator and n represents measurement noise.
Inverse problems are inherently ill-posed, meaning that, without additional constraints, infinitely
many solutions may satisfy the given measurements y. As such, incorporating prior knowledge about
the underlying signal and the noise model is essential for reliable reconstruction.

One principled approach to addressing this uncertainty is to treat inverse problems in a Bayesian
framework, where the goal becomes sampling from the posterior distribution p(x0|y). However,
accurate and efficient posterior sampling remains a central challenge, particularly when the forward
operator A is ill-conditioned or the measurement noise is significant [7]. Traditional sampling-based
methods, such as Markov chain Monte Carlo (MCMC), often struggle with high-dimensional spaces
or require careful tuning of proposal distributions [8]. More recently, diffusion-based techniques
have emerged as powerful generative models for high-dimensional data, and several works have
adapted diffusion processes to inverse problems by combining a learned data prior p(x0) with a
measurement-consistency term [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19].

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Nevertheless, in standard diffusion-based frameworks, the measurement information must often
be retro-fitted into the prior p(x0) via projection-based techniques [8, 9, 10, 11, 12, 13, 14, 15]
or approximation of the likelihood p(y|x) [7, 16, 17, 18, 19] (see Appendix A for details). Since
these methods modify the iterative processes in data and measurement space in an uncoordinated
manner, there is no guarantee that the generated samples lie on a valid data manifold while also
being consistent with the observed measurements. This often leads to suboptimal reconstructions:
the generated samples may either exhibit visual artifacts due to drifting off the data manifold, or fail
to resemble the original measurements due to poor measurement fidelity. Examples of both failure
modes are illustrated in Figure 1.

Measurement Ground truth C-DPS (Ours) DPS Re-Sample

D
eb

lu
r

(M
o

ti
o

n
)

S
R

 (
×
8
)

D
eb

lu
r

(G
au

ss
ia

n
)

D
eb

lu
r

(M
o

ti
o

n
)

V
is

u
al

 A
rt

if
ac

ts
M

ea
su

re
m

en
t

F
id

el
it

y

Figure 1: Visualization of reconstructed samples for some
linear inverse problems using our proposed C-DPS method,
compared with two leading baselines: DPS [7] and Resam-
ple [20]. C-DPS exhibits less visual artifacts and improved
measurement consistency.

To address the limitations of con-
ventional approaches, we propose C-
DPS (coupled data and measurement
space diffusion posterior sampling),
a novel framework that extends the
standard diffusion model by introduc-
ing a second, parallel diffusion pro-
cess in the measurement space, along-
side the conventional diffusion in the
data space. While the data space pro-
cess follows the traditional forward
diffusion from an unknown signal x0,
the measurement space process be-
gins with the known observation y0
and progressively injects noise. This
symmetric treatment mirrors the dy-
namics applied to x0, tightly coupling
the two spaces throughout the diffu-
sion trajectory. This coupling enables
the derivation of a closed-form poste-
rior expression for p(xt−1|xt,yt−1),
thereby removing the need for ad-hoc
measurement terms or learned likelihood approximations commonly used in prior work.

From a Bayesian perspective, the joint diffusion over both x and y defines a coherent generative
model over the pair (x,y). In doing so, C-DPS naturally integrates both the learned prior and the
forward measurement model into a single, unified framework.

• We propose C-DPS, a novel coupled stochastic framework that introduces a parallel diffusion
process in the measurement space {yt}, evolving jointly with the data-space process {xt}. This
formulation enables principled posterior sampling in diffusion models by treating (x,y) as a unified
generative process.

• By explicitly constructing a Markov chain over yt, we derive a closed-form posterior transition
p(xt−1 | xt,yt−1), eliminating the need to approximate or learn the likelihood term p(y | xt).
This allows for direct integration of the measurement model into the sampling procedure, ensuring
consistent Bayesian updates at every diffusion step.

•We develop a scalable and efficient sampling algorithm for C-DPS based on a pre-whitened conju-
gate gradient solver. This matrix-free implementation retains the runtime efficiency of conventional
DPS methods, despite the added complexity of coupled data-measurement diffusion.

•We validate C-DPS through extensive experiments on standard benchmarks, including FFHQ [21]
and ImageNet [22]. Our method achieves state-of-the-art performance across multiple inverse problem
settings—such as inpainting, deblurring, and super-resolution—both qualitatively and quantitatively.
Code is available at https://github.com/Shayanmohajer/C-DPS.

Notation: Scalars are represented by non-bold letters, (e.g., a or A), vectors by bold lowercase letters
(e.g., a), and matrices by bold uppercase letters (e.g., A). The real axis is denoted by R. The symbols
0 and I represent the zero vector and the identity matrix, respectively.

2

https://github.com/Shayanmohajer/C-DPS

2 Background and Preliminaries

2.1 Diffusion Models

Diffusion models are built upon two key components: a forward noising process and a backward
denoising process. These processes operate as Markov chains that progressively perturb and then
recover data distributions. In the discrete formulation [23], the forward process gradually adds
Gaussian noise to the data according to a predefined variance schedule {βt}Tt=1, and is described as

p(x1:T |x0) =

T∏
k=1

p(xt|xt−1), (1a)

p(xt|xt−1) = N (
√
1− βtxt−1, βtI), (1b)

where xt ∈ Rd and βt ∈ (0, 1) is a monotonically increasing sequence controlling the rate of noise
addition over time. Since each transition p(xt|xt−1) follows a linear Gaussian model, the marginal
distribution p(xt|x0) remains Gaussian, given by

p(xt|x0) ∼ N (
√
ᾱtx0, (1− ᾱt)I), (2)

where αt = 1− βt and ᾱt =
∏t

j=1 αj are derived from the variance schedule [23].

To generate data samples, a neural network sθ(xt, t) is trained to approximate the score function
∇xt log p(xt). The reverse denoising process is also formulated as a Markov chain, where the model
iteratively reconstructs the data distribution. The backward process is expressed as

pθ(xt−1|xt) = N
(
µθ(xt),Σθ

)
, (3a)

µθ(xt) =

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt

1− ᾱt
x̂0(xt), (3b)

Σθ = βt
1− ᾱt−1

1− ᾱt
I, (3c)

where x̂0(xt) is the predicted initial state of the data computed using Tweedie’s formula [24]:

x̂0(xt) =
xt + (1− ᾱt)sθ(xt, t)√

ᾱt
. (4)

2.2 Diffusion-Based Inverse Problem Solving

We focus on linear inverse problems, where the goal is to reconstruct an unknown signal x0 ∈ Rd

from noisy, incomplete measurements y ∈ Rm, governed by the linear model y = Ax0 + n, where
A ∈ Rm×d is a known measurement operator, and n ∼ N (0,Σn) denotes additive Gaussian noise
with known covariance Σn. This leads to a Gaussian likelihood p(y|x0) = N (Ax0,Σn).

Recent advances in applying diffusion models to inverse problems can be broadly categorized into
two methodological paradigms: projection-based and likelihood-based approaches. These methods
are summarized in Algorithm 1, and a comprehensive discussion is provided in Appendix A. We
briefly describe each paradigm below to set the stage for our proposed method.

• Projection-based approaches. These approaches iteratively project the generated samples onto
the feasible set defined by the measurement y. At each reverse diffusion step, the generated sample
xt is updated using a projection operator Py , such as

xt ← Py(xt) := argmin
z
∥z − xt∥2 subject to ∥Az − y∥2 ≤ ϵ,

or in simpler forms (e.g., for noiseless measurements),

xt ← xt −A⊤(AA⊤)−1(Axt − y).

This family includes methods such as ILVR [10], DDRM [14], and DSG [11], which leverage such
projections to maintain measurement consistency throughout sampling.

3

Algorithm 1 Baseline methods
Input: # time steps T , y, noise schedule
{βt}, measurement A, {σ̃t}.

1: xN ∼ N (0, I)
2: for t = T − 1, T − 2, . . . , 0 do
3: ŝ← sθ(xt, t)
4: x̂0(xt)← 1√

ᾱt
(xt + (1− ᾱt)ŝ)

5: µθ(xt)←
√
αt(1−ᾱt−1)

1−ᾱt
xt +

√
ᾱt−1βt

1−ᾱt
x̂0(xt).

6: z ∼ N (0, I).
7: x′

t−1 ← µθ(xt) + σ̃tz
8: xt−1 is obtained from x′

t−1 by ei-
ther a projection step [8, 9, 10, 11, 12,
13, 14, 15] or likelihood approximation
[7, 16, 17, 18, 19].

9: end for
Output: x0.

Algorithm 2 C-DPS (one reverse step, clean form)
Input: # steps T , measurements y, schedule {βt},

operator A, noise covariance Σn

1: Generate {yt}Tt=0 as in Equation (5); draw xN ∼
N (0, I)

2: for t = T − 1, T − 2, . . . , 0 do
3: ŝ← sθ(xt, t)

4: Σy|x ← ᾱt−1Σn+(1−ᾱt−1)I , ct ← 1−βt

βt

5: bt−1 ← (1− ᾱt−1)Aŝ
6: Define the matrix–free precision operator

Λtu ← ct u + A⊤Σ−1
y|xAu.

7: Solve for µpost with CG
8: v ← PW-CG(Λt,A,Σ−1

y|x, ct) (Algorithm 3)
9: Update: xt−1 ← µpost + v

10: end for
Output: x0

• Likelihood-based approaches. These methods aim to recover the unknown signal x0 by approxi-
mately sampling from the posterior distribution p(x0 | y), where y denotes the measurement. Using
Bayes’ rule, the posterior can be expressed as

p(x0 | y) ∝ p(y | x0)p(x0).

Here, p(x0) is modeled using a diffusion model trained on clean data, and p(y | x0) represents the
likelihood induced by the forward measurement process (e.g., a linear operator with additive noise).

Since the likelihood is typically intractable to evaluate directly in diffusion models, several methods
approximate it or its gradient. For example, DPS [7] and related methods [16, 17, 18, 19] use
Tweedie’s formula or Bayesian denoising estimators to approximate∇xt

log p(y | xt) at intermediate
timesteps t. This approximation is then used to adjust the reverse dynamics by modifying the
model’s predicted mean. Specifically, the mean used in the reverse step is replaced by µ̃θ(xt,y) =
µθ(xt) + λ∇xt

log p(y | xt), where µθ(xt) is the original predicted mean, and λ is a scaling factor.

3 Methodology

3.1 Motivation

As discussed in Section 2.2, most existing approaches to solving inverse problems with diffusion
models rely on retro-fitting measurement information into the learned data prior p(x0). This is
typically done either through heuristic projection-based techniques or by approximating the likelihood
p(y | x). However, both approaches introduce fundamental limitations: projection-based constraints
often require manual tuning and lack theoretical justification, while likelihood approximations can
distort the posterior geometry, especially under high noise levels (see Figure 1).

To address these challenges, we propose C-DPS, a principled framework that integrates the mea-
surement process directly into the diffusion dynamics. Central to our idea is an auxiliary forward
stochastic process in the measurement space, denoted by {yt}Tt=0. By coupling the data-space
process {xt}Tt=0 and {yt}Tt=0, C-DPS enables the derivation of a closed-form posterior distribution
p(xt−1|xt,yt−1). This eliminates the need for manually tuning constraint terms or approximating
the likelihood. Crucially, unlike the data-space diffusion process which requires training a neural
network to approximate reverse dynamics, the measurement-space process {yt} is purely forward
and analytically defined. It evolves from the observed measurement y, not to generate y0, but
to propagate measurement information coherently across diffusion steps. This coupling allows
C-DPS to incorporate observation structure directly into posterior updates, resulting in more stable,
interpretable, and accurate reconstructions across a wide range of inverse problems.

It is worth noting that similar measurement-space diffusions have been discussed conceptually in
Appendix I.4 of [25] and further explored in [26] for medical imaging, but neither derives an analytic
posterior or provides a tractable sampling rule. In contrast, C-DPS formulates a closed-form posterior
p(xt−1|xt,yt−1), removing heuristic updates and manual tuning.

4

In the following subsections, we elaborate how the sequences {yt}Tt=0 and {xt}Tt=0 are generated.

3.2 Constructing a Markov Chain in the Measurement Space

Similarly to the diffusion process in the data space which is defined with Markov chain in Equa-
tion (1b), we define a Markov chain {yt}Tt=0 that starts from the real-world measurement y0 and
progressively adds Gaussian noise at each forward step. Specifically, we let

y0 = Ax0 + n, (5a)

yt =
√

1− βt yt−1 +
√
βt zt, (5b)

where zt ∼ N (0, I) and βt ∈ (0, 1) determines the noise schedule. The linear operator A maps the
unknown data x0 to the measurement space, and n is the measurement noise.

Remark 1 (Choice of noise schedule). We use the same noise schedule {βt} for both the data-
space diffusion {xt} and the measurement-space diffusion {yt}. This design choice keeps the two
processes synchronized, which simplifies the derivation of the backward update p(xt−1 | xt,yt−1)
and avoids introducing additional hyperparameters. Conceptually, using a shared schedule ensures
that the same fraction of noise is injected at each time step in both domains, preserving a one-to-one
correspondence between xt and yt. Although it is possible in principle to define separate schedules
for the data and measurement spaces, we find that a shared schedule leads to strong empirical
performance and a cleaner theoretical formulation.

From the standard forward-diffusion identity, yt could be written in terms of y0 as

yt =
√
ᾱt y0 +

√
1− ᾱt ζ, (6)

where ζ ∼ N (0, I), and ᾱt is defined in Equation (2). Further noting y0 = Ax0 + n with
n ∼ N (0,Σn), we have

yt =
√
ᾱt

(
Ax0 + n

)
+
√
1− ᾱt ζ. (7)

From Equation (7), it is easy to obtain the following conclusion:

Proposition 1 (Distribution of {yt}). For the sequence {yt}Tt=0 defined in Equation (5), the distri-
bution of yt is a Gaussian whose mean and covariance at step t are given by

µy,t =
√
ᾱt Ax0, (8a)

Σy,t = ᾱt Σn +
(
1− ᾱt

)
I. (8b)

3.3 Generating {xt} Consistent with {yt}

Given the measurement sequence {yt}, we construct a consistent sequence of latent states {xt} that
evolves under diffusion while remaining aligned with the observations.

• Initialization. We start by sampling

xT ∼ N (0, I).

• Backward Recursion. For each t from T down to 1, we generate xt−1 by drawing a sample from
p
(
xt−1

∣∣xt,yt−1

)
. Based on the Bayesian update rule for the posterior, we can write1

p
(
xt−1

∣∣ xt,yt−1

)
∝ p

(
xt

∣∣ xt−1

)
p
(
yt−1

∣∣ xt−1

)
. (9)

To find p(yt−1|xt−1), at an intermediate diffusion step, we use the formula in Equation (7), and
replace x0 in this formula with its estimate in terms of xt−1 using Equation (4). Thus, we get

yt−1 =
√
ᾱt−1

(
A

[
xt−1 + (1− ᾱt−1)sθ(xt−1, t− 1)

√
ᾱt−1

]
+ n

)
+

√
1− ᾱt−1 ζ (10)

= Axt−1 +A
(
(1− ᾱt−1)sθ(xt−1, t− 1)

)
+
√
ᾱt−1n+

√
1− ᾱt−1ζ. (11)

1Please refer to Remark 2 to see why the prior p(xt−1) is dropped from Equation (9).

5

Since n ∼ N (0,Σn) and ζ ∼ N (0, I), p(yt−1|xt−1) is Gaussian with the following parameters:

p(yt−1|xt−1) ∼ N
(
µy|x,Σy|x

)
, (12a)

where µy|x = Axt−1 + (1− ᾱt−1)Asθ(xt−1, t− 1), (12b)

and Σy|x = ᾱt−1Σn + (1− ᾱt−1)I. (12c)

Substituting Equation (1b) and Equation (12a) into Equation (9), the posterior p
(
xt−1|xt,yt−1

)
could be obtained using Bayes’ rule and dropping the normalizing constant:

p(xt−1|xt,yt−1) ∝ exp
[
− 1

2βt

∥∥xt −
√
1− βt xt−1

∥∥2 − 1
2

(
yt−1 − µy|x

)⊤
Σ−1

y|x
(
yt−1 − µy|x

)]
.

(13)

The expression in Equation (13) defines the exact un-normalized posterior density. The first term is
quadratic in xt−1 and arises from the diffusion prior. However, the second term involves the score
network sθ(xt−1, t− 1), making the conditional mean µy|x a nonlinear function of xt−1.

To make the posterior distribution in Equation (13) Gaussian, we apply a common approximation in
diffusion-based inference and freeze the score network at the current iterate:

sθ(xt−1, t− 1) −→ sθ(xt, t). (14)

This substitution avoids evaluating the score at xt−1, which is not yet known during sampling,
and instead uses the available point xt. Intuitively, since xt−1 and xt are close for small βt, this
approximation preserves consistency. While this approximation has been used in prior works [10, 12],
we further empirically justify it in the context of our work in Appendix B.

Using Equation (14), µy|x becomes affine in xt−1,

µy|x = Axt−1 +
(
1− ᾱt−1

)
A sθ(xt, t)︸ ︷︷ ︸

≜ bt−1

, (15)

so the product of the two Gaussians in Equation (9) remains Gaussian N
(
µpost,Σpost

)
. Collecting

quadratic and linear terms gives

Σ−1
post =

1− βt

βt
I+A⊤Σ−1

y|xA, (16a)

µpost = Σpost

[√1− βt

βt
xt +A⊤Σ−1

y|x
(
yt−1 − bt−1

)]
. (16b)

Hence, C-DPS samples from N (µpost,Σpost) at each reverse step. The full procedure is shown
in Algorithm 2, with the latent variant, termed LC-DPS, detailed in Appendix C. In addition, in
Appendix D, we extend the above approach for the case of non-linear measurement.

Remark 2. Note that the exact form of Equation (9) includes the prior term p(xt−1). In diffusion
models, after sufficient noising steps under linear or cosine schedules, the marginal p(xt−1) is close to
N (0, I) since the noise dominates. Including this term multiplies Equation (13) by exp(− 1

2∥xt−1∥22),
which adds I to the posterior precision, that is Λt ← 1−βt

βt
I +A⊤Σ−1

y|xA+ I . Since βt ≪ 1, the
extra I changes each diagonal by at most a small fraction O(βt), which is numerically negligible.
We therefore omit p(xt−1) in Equation (9) for clarity.

3.4 Efficient sampling

Our goal is to draw xt−1 ∼ p(xt−1 | xt,yt−1) as in Equation (16) without forming dense factoriza-
tions. Define the posterior precision operator

Λt = Σ−1
post = ct I + A⊤Σ−1

y|xA, ct = 1−βt

βt
. (17)

Direct Cholesky on dense Σy|x isO(d3) and impractical. We therefore use two matrix-free conjugate-
gradient (CG) solves per reverse step, implemented by Algorithms 2 and 3.

6

Step 1: mean solve. Compute µpost by solving

Λt µpost = ct xt + A⊤Σ−1
y|x

(
yt−1 − bt−1

)
, bt−1 = (1− ᾱt−1)Aŝ, (18)

with ŝ = sθ(xt, t).

Step 2: noise draw (PW-CG). Draw v ∼ N (0,Σpost) by solving Λtv = z for a synthetic right-
hand side z satisfying cov(z) = Λt. Algorithm 3 shows how to build such a z from two standard
Gaussians using a whitening operator.

Step 3: update. Set

xt−1 = µpost + v. (19)

Pre-whitened conjugate gradient (PW-CG). Let W satisfy W⊤W = Σ−1
y|x. For many structured

noise models a closed form exists. For example, if Σn = σ2I , then

Σy|x =
(
ᾱt−1σ

2 + 1− ᾱt−1

)
I ≜ γtI, W = γ

−1/2
t I. (20)

Define Ã = WA so that Λt = ctI + Ã
⊤
Ã. PW-CG samples

ε1 ∼ N (0, Id), ε2 ∼ N (0, Im), z =
√
ct ε1 + Ã

⊤
ε2, (21)

which gives cov(z) = Λt. Solving Λtv = z by CG then yields v ∼ N (0,Λ−1
t) = N (0,Σpost).

Practicalities and cost. Each CG iteration applies A and A⊤ once. A diagonal preconditioner
P t = diag(Λt) works well. CG requires O(

√
κ) iterations with κ the condition number of P−1

t Λt.
Empirically κ < 50 across our tasks, so the PW-CG cost per step is O

(√
κ · nnz(A)

)
. In our setup,

score evaluation dominates the runtime, while the linear solves add a small overhead.

To contextualize this cost, we note that evaluating the score network sθ(xt, t)—typically implemented
as a U-Net or Transformer—takes approximately 100–200 milliseconds per step on a modern GPU
(e.g., NVIDIA V100 or P100) for a 256× 256 input. In contrast, our linear solver runs significantly
faster, often requiring under 10 milliseconds. Its contribution to the total runtime is therefore
negligible compared with the dominant cost of score evaluation.

Algorithm 3 PW-CG (draw v∼N (0,Σpost) without Cholesky)

Input: precision operator Λt, matrix A, action of Σ−1
y|x (or its square root), scalar ct

1: Draw ε1 ∼ N (0, Id), ε2 ∼ N (0, Im), independent
2: (Prewhiten) define a whitening operator W with W⊤W = Σ−1

y|x, and set Ã = WA

3: Form z ← √ct ε1 + Ã
⊤
ε2

4: Solve v ← CG-solve(Λt, z) (that is, solve Λtv = z)
Output: v (then cov(v) = Λ−1

t = Σpost)

4 Experiments

4.1 Quantitative Results

• Experimental setup. Following prior work [7, 27], we evaluate our method on the FFHQ 256×256
[21] and ImageNet 256×256 [22] datasets, using 1,000 validation images from each. All images are
normalized to the [0, 1] range. To ensure a fair comparison, we adopt the same experimental settings
used in [7] across all evaluated methods. The measurement data is corrupted with additive Gaussian
noise of zero mean and standard deviation σ = 0.05. During inference, we use a fixed number of
reverse diffusion steps T = 1000, following standard practice in the literature. For score estimation,
we utilize the pre-trained model from [7] for FFHQ and the model from [28] for ImageNet.

7

Table 1: Quantitative results on the 1k validation sets of FFHQ 256× 256 and ImageNet 256× 256.
Bold and underline indicate the best and second-best results, respectively. Green and red denote
performance improvements and degradations relative to the best baseline.

Pixel-Domain Methods

Dataset Method Inpaint (Random) Inpaint (Box) Deblur (Gaussian) Deblur (Motion) SR (4×)
FID ↓ LPIPS ↓ SSIM ↑ FID ↓ LPIPS ↓ SSIM ↑ FID ↓ LPIPS ↓ SSIM ↑ FID ↓ LPIPS ↓ SSIM ↑ FID ↓ LPIPS ↓ SSIM ↑

FF
H

Q

DPS 21.19 0.212 0.851 33.12 0.168 0.873 44.05 0.257 0.811 39.92 0.242 0.859 39.35 0.214 0.852
ΠGDM 21.27 0.221 0.840 34.79 0.179 0.860 40.21 0.242 0.825 33.24 0.221 0.887 34.98 0.202 0.854
DDRM 69.71 0.587 0.319 42.93 0.204 0.869 74.92 0.332 0.767 − − − 62.15 0.294 0.835
MCG 29.26 0.286 0.751 40.11 0.309 0.703 101.2 0.340 0.051 − − − 87.64 0.520 0.559
ILVR 25.74 0.231 0.672 37.24 0.175 0.854 52.93 0.297 0.784 − − − 47.59 0.253 0.844

ReSample 21.25 0.202 0.847 33.51 0.160 0.866 37.05 0.251 0.822 31.19 0.220 0.892 30.48 0.204 0.851
PnP-ADMM 123.6 0.692 0.325 151.9 0.406 0.642 90.42 0.441 0.812 − − − 66.52 0.353 0.855
Score-SDE 76.54 0.612 0.437 60.06 0.331 0.678 109.0 0.403 0.109 − − − 96.72 0.563 0.617
ADMM-TV 181.5 0.463 0.784 68.94 0.322 0.814 186.7 0.507 0.801 − − − 110.6 0.428 0.803

PnP-DM 21.15 0.208 0.858 32.21 0.155 0.877 41.92 0.251 0.816 37.21 0.233 0.871 36.21 0.210 0.859
DAPS 20.77 0.201 0.869 29.44 0.144 0.882 35.84 0.242 0.830 30.26 0.215 0.911 30.15 0.202 0.854

DMPlug 20.12 0.197 0.877 27.12 0.140 0.888 32.44 0.230 0.830 27.55 0.210 0.925 28.55 0.199 0.862
C-DPS 20.14 0.195 0.881 26.33 0.132 0.871 32.24 0.238 0.832 27.29 0.217 0.921 28.41 0.196 0.855

Im
ag

eN
et

DPS 35.87 0.303 0.739 38.82 0.262 0.794 62.72 0.444 0.706 56.08 0.389 0.634 50.66 0.337 0.781
ΠGDM 41.82 0.356 0.705 42.26 0.284 0.752 59.79 0.425 0.717 54.18 0.373 0.675 54.26 0.352 0.765
DDRM 114.9 0.665 0.403 45.95 0.245 0.814 63.02 0.427 0.705 − − − 59.57 0.339 0.790
MCG 39.19 0.414 0.546 39.74 0.330 0.633 95.04 0.550 0.441 − − − 144.5 0.637 0.227
ILVR 38.27 0.372 0.656 39.51 0.278 0.726 71.24 0.421 0.662 − − − 95.3 0.532 0.498

ReSample 33.47 0.289 0.730 39.54 0.259 0.799 61.24 0.439 0.708 55.76 0.370 0.637 49.19 0.339 0.777
PnP-ADMM 114.7 0.677 0.300 78.24 0.367 0.657 100.6 0.519 0.669 − − − 97.27 0.433 0.761
Score-SDE 127.1 0.659 0.517 54.07 0.354 0.612 120.3 0.667 0.436 − − − 170.7 0.701 0.256
ADMM-TV 189.3 0.510 0.676 87.69 0.319 0.785 155.7 0.588 0.634 − − − 130.9 0.523 0.679

PnP-DM 34.92 0.296 0.736 37.67 0.258 0.797 61.06 0.433 0.707 55.33 0.372 0.636 50.10 0.336 0.786
DAPS 33.94 0.282 0.741 35.46 0.248 0.801 60.12 0.419 0.709 54.82 0.365 0.639 49.62 0.333 0.789

DMPlug 32.85 0.226 0.748 34.28 0.247 0.804 57.42 0.407 0.714 53.13 0.366 0.642 48.96 0.324 0.793
C-DPS 32.37 0.214 0.755 33.24 0.236 0.807 56.36 0.391 0.712 52.06 0.352 0.644 47.30 0.316 0.795

Latent-Domain Methods

Dataset Method Inpaint (Random) Inpaint (Box) Deblur (Gaussian) Deblur (Motion) SR (4×)
FID ↓ LPIPS ↓ SSIM ↑ FID ↓ LPIPS ↓ SSIM ↑ FID ↓ LPIPS ↓ SSIM ↑ FID ↓ LPIPS ↓ SSIM ↑ FID ↓ LPIPS ↓ SSIM ↑

FF
H

Q

PSLD 47.21 0.221 0.809 43.02 0.158 0.813 89.51 0.316 0.631 96.15 0.336 0.678 74.36 0.287 0.649
ReSample 39.85 0.140 0.746 53.21 0.184 0.749 71.69 0.255 0.714 44.72 0.198 0.823 93.18 0.392 0.594

RLSD 38.25 0.142 0.808 44.08 0.153 0.812 68.92 0.244 0.750 49.10 0.284 0.810 61.37 0.203 0.774
LC-DPS 36.67 0.137 0.815 42.11 0.144 0.821 65.71 0.232 0.759 46.57 0.272 0.819 58.41 0.197 0.787

Im
ag

eN
et PSLD 83.21 0.337 0.783 146.53 0.465 0.694 91.39 0.390 0.688 124.67 0.511 0.594 97.45 0.360 0.694

ReSample 59.87 0.143 0.756 127.84 0.262 0.631 65.35 0.254 0.703 66.89 0.227 0.738 113.42 0.370 0.576
RLSD 60.44 0.141 0.787 130.16 0.259 0.705 67.34 0.249 0.712 68.43 0.236 0.735 92.73 0.317 0.680

LC-DPS 60.02 0.140 0.790 113.67 0.252 0.714 67.21 0.244 0.718 63.94 0.216 0.748 88.15 0.288 0.683

The measurement models used in our experiments follow those described in [7]: (i) Inpainting: For
box-type inpainting, a central 128× 128 region is masked out; for random-type inpainting, 92% of
pixels (across all RGB channels) are randomly masked. (ii) Super-resolution (SR): Low-resolution
measurements are obtained by applying bicubic downsampling. (iii) Gaussian blur: A Gaussian
kernel of size 61× 61 with a standard deviation of 5.0 is convolved with the image. (iv) Motion blur:
Motion blur kernels of size 61×61 are generated using the code from [29], with an intensity parameter
of 0.5. These kernels are convolved with the ground-truth images to produce the measurements.

• Benchmark methods. For pixel-based diffusion model experiments, we use DPS [7], ΠGDM
[8], DDRM [14], MCG [30], ILVR [10], ReSample [20], PnP-ADMM [31] , Score-SDE [25], total-
variation sparsity regularized optimization method (ADMM-TV), PnP-DM [32], DAPS [33], and
DMPlug [34]. Furthermore, for latent diffusion experiments, we compare LC-DPS with PSLD [35],
the latent version of the ReSample, and RLSD [36]. To ensure a fair comparison, all methods use the
same pre-trained score function.

• Evaluation metrics. To evaluate the performance of different methods, we adopt the metrics used
in [7]: (i) learned perceptual image patch similarity (LPIPS) [37], (ii) Frechet inception distance
(FID) [38], and (iii) structure similarity index measure (SSIM) [39]. In addition, we provide results
for peak signal-to-noise ratio (PSNR) in Appendix F. All experiments are conducted using a single
NVIDIA P100 GPU with 12 GB of memory.

• Results. The quantitative results for both datasets are presented in Table 1. Across nearly all tasks,
C-DPS (or LC-DPS) outperforms the baseline methods. In a few settings, DMPlug attains scores
that are competitive with ours. We emphasize that although DMPlug can be close in accuracy, its
runtime is approximately 4× slower than C-DPS, which limits its practical utility; see Appendix F.1
for run-time details. We also conduct a similar set of experiments under varying Gaussian noise
levels, presented in Appendix H.1.

8

4.2 Visual Comparison
Measurement Ground truth C-DPS (ours) DPS Re-Sample

D
eb

lu
r

(G
au

ss
ia

n
)

D
eb

lu
r

(M
o
ti

o
n
)

S
R

 (
×
8
)

In
p
ai

n
t

(R
an

d
o
m

)
In

p
ai

n
t

(b
o
x

)

Figure 2: Qualitative results on FFHQ dataset.

In this subsection, we provide a vi-
sual comparison of reconstructions
produced by C-DPS, DPS, and Re-
Sample. We choose to include DPS
and ReSample in these visual compar-
isons because, as shown in Table 1,
they achieve the strongest quantita-
tive performance among the evaluated
baselines. We randomly select five
images from the FFHQ test set and
corrupt them using the measurement
models described in Section 4.1, with
minor adjustments to enhance visual
clarity: for super-resolution, we apply
an 8× downsampling factor, and for
random inpainting, 95% of the pixels
are masked. The reconstructed images
are presented in Figure 2, where each
row corresponds to a different mea-
surement setting. More qualitative re-
sults are presented in Appendix H.2.

As observed, C-DPS consistently produces reconstructions that more closely resemble the ground
truth, exhibiting fewer artifacts and better perceptual quality compared with DPS and ReSample.

4.3 Measurement Fidelity

In this subsection, we demonstrate that C-DPS achieves higher measurement fidelity compared with
DPS and ReSample. Specifically, we show that C-DPS recovers solutions x that better satisfy the
measurement model.

To this end, we conduct a motion deblurring experiment under a noiseless setting, where the Gaussian
noise is removed (i.e., y = Ax0). We then track the reconstruction error ∥y −Axt∥22 as a function
of sampling progress. The progress is expressed as a percentage relative to the total number of reverse
diffusion steps taken by each method.

We run each method over 100 instances and report the average error along with the shaded region
representing the range of observed values. The results are shown in Figure 4. As illustrated, C-DPS
consistently maintains lower measurement error throughout the sampling trajectory, indicating better
alignment with the forward measurement model.

4.4 Why C-DPS Works: Posterior Recovery on a Ground-Truth Benchmark

In this subsection, we aim to demonstrate that the superior performance of C-DPS stems from its
improved approximation of the true posterior distribution. To support this claim, we compare its
ability to recover the posterior against the best benchmarks DPS and ReSample.

To this end, we construct a toy dataset where the data distribution p(x0) is defined as a mixture
of 25 Gaussian components.2 The means and variances of the mixture components are detailed in
Appendix G, where we also explain how the ground-truth posterior can be computed in closed form
for any given observation y, measurement matrix A, and noise level σ.

To systematically evaluate each method, we generate measurement models (y,A) ∈ Rm × Rm×d

across combinations of signal dimension, number of measurements, and noise levels. Specifically,
we consider (d,m, σ) ∈ {8, 80, 800} × {1, 2, 4} × {10−2, 10−1, 100}, yielding 27 distinct settings.
All Gaussian mixture components are equally weighted to ensure a balanced posterior.

2We follow the dataset construction procedure in [40, 16].

9

0 20 40 60 80 100
Progress (%)

10 4

10 3

10 2

10 1

100

|y
A(

x)
|2 2

DPS
ReSample
C-DPS (Ours)

0 20 40 60 80 100
Progress (%)

10 3

10 2

10 1

100

DPS
ReSample
C-DPS (Ours)

Figure 4: Evolution of the measurement error ∥y −Axt∥22 over the sampling trajectory for DPS,
ReSample, and C-DPS on the FFHQ (left) and ImageNet (right) datasets.

Table 2: Sliced Wasserstein (SW) distance between the true and estimated posterior distributions
across different dimensions d, numbers of measurements m, and noise levels σ. Lower is better.

d = 8 d = 80 d = 800

Method m = 1 m = 2 m = 4 m = 1 m = 2 m = 4 m = 1 m = 2 m = 4

σ = 10−2
C-DPS 2.2 1.5 0.5 2.9 1.7 0.4 3.3 2.5 0.3
DPS 4.7 1.8 0.7 5.6 3.2 1.2 5.8 3.5 1.4
ReSample 2.6 2.1 3.8 3.2 2.8 0.6 3.5 3.1 0.4

σ = 10−1
C-DPS 1.8 0.9 0.6 2.5 1.7 0.4 2.8 2.3 0.4
DPS 4.7 1.5 0.8 5.1 3.1 1.0 5.7 3.1 1.3
ReSample 2.2 1.6 3.8 2.9 2.7 0.6 3.3 2.7 0.4

σ = 100
C-DPS 1.2 1.9 0.9 1.7 1.2 0.8 1.6 1.5 0.7
DPS 5.2 3.5 2.5 6.9 3.9 1.7 6.8 4.7 0.9
ReSample 1.5 2.3 1.8 1.6 1.4 0.9 2.0 2.0 0.6

GT posterior C-DPS

DPSReSample

Figure 3: Visualizing the first two di-
mensions of the estimated posterior dis-
tributions for the configuration (d = 80,
m = 1, σ = 10−1) for a random A.

For each configuration, we generate 1000 samples from
the true posterior and apply C-DPS, DPS and ReSample
to approximate the posterior using 1000 steps. We then
assess the quality of each approximation using the sliced
Wasserstein (SW) distance [41], a metric that captures
high-dimensional differences. The SW distance is com-
puted using 104 random projections per method.

Table 2 reports the mean SW distances along with 95%
confidence intervals, calculated over 20 randomly sampled
measurement matrices A per configuration. Additionally,
Figure 3 visualizes the estimated posterior in the first two
dimensions for the setting (d = 80,m = 1, σ = 0.1),
using a single randomly drawn measurement matrix. As
illustrated, C-DPS more accurately recovers the true poste-
rior, successfully capturing all mixture modes. In contrast,
DPS and ReSample either miss certain modes or fail to
represent the full posterior geometry, highlighting the ad-
vantage of our coupled diffusion formulation.

5 Conclusion

We have introduced coupled data and measurement space diffusion posterior sampling (C-DPS), a
novel framework that addresses the limitations of likelihood approximation in diffusion-based inverse
problem solvers. By introducing a forward stochastic process in the measurement space {yt}, which
evolves in parallel with the data-space diffusion {xt}, C-DPS enables the derivation of a closed-form
posterior distribution. This coupling allows for accurate, recursive sampling without relying on
approximations of the likelihood or heuristic constraints. Empirical results demonstrate that C-DPS
consistently outperforms state-of-the-art baselines, delivering robust and high-fidelity reconstructions
across a wide range of inverse problems. We also discuss limitations and failure cases in Appendix I,
highlighting opportunities for future improvement.

10

Acknowledgments

This work was supported in part by the Natural Sciences and Engineering Research Council of
Canada (NSERC).

References
[1] Hyungjin Chung, Dohoon Ryu, Michael T McCann, Marc L Klasky, and Jong Chul Ye. Solving

3D inverse problems using pre-trained 2D diffusion models. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2023.

[2] Hyungjin Chung and Jong Chul Ye. Score-based diffusion models for accelerated MRI. Medical
Image Analysis, 76:102479, 2022.

[3] Sean Twomey. Introduction to the Mathematics of Inversion in Remote Sensing and Indirect
Measurements. Courier Dover Publications, 2019.

[4] Fanen Meng, Yijun Chen, Haoyu Jing, Laifu Zhang, Yiming Yan, Yingchao Ren, Sensen Wu,
Tian Feng, Renyi Liu, and Zhenhong Du. A conditional diffusion model with fast sampling
strategy for remote sensing image super-resolution. IEEE Transactions on Geoscience and
Remote Sensing, 62:1–16, 2024.

[5] Eloi Moliner, Jaakko Lehtinen, and Vesa Välimäki. Solving audio inverse problems with a
diffusion model. In IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2023.

[6] Koichi Saito, Naoki Murata, Toshimitsu Uesaka, Chieh-Hsin Lai, Yuhta Takida, Takao Fukui,
and Yuki Mitsufuji. Unsupervised vocal dereverberation with diffusion-based generative models.
In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023.

[7] Hyungjin Chung, Jeongsol Kim, Michael Thompson McCann, Marc Louis Klasky, and
Jong Chul Ye. Diffusion posterior sampling for general noisy inverse problems. In Inter-
national Conference on Learning Representations (ICLR), 2023.

[8] Jiaming Song, Arash Vahdat, Morteza Mardani, and Jan Kautz. Pseudoinverse-guided diffusion
models for inverse problems. In International Conference on Learning Representations (ICLR),
2023.

[9] Jiawei Zhang, Jiaxin Zhuang, Cheng Jin, Gen Li, and Yuantao Gu. Unleashing the denoising
capability of diffusion prior for solving inverse problems. In Advances in Neural Information
Processing Systems (NeurIPS), 2024.

[10] Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjune Gwon, and Sungroh Yoon. ILVR:
Conditioning method for denoising diffusion probabilistic models. In IEEE/CVF International
Conference on Computer Vision (ICCV), 2021.

[11] Jong Chul Ye, Hyungjin Chung, and Suhyeon Lee. Decomposed diffusion sampler for acceler-
ating large-scale inverse problems. In International Conference on Learning Representations
(ICLR), 2024.

[12] Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, and Jong Chul Ye. Improving diffusion models
for inverse problems using manifold constraints. In Advances in Neural Information Processing
Systems (NeurIPS), 2022.

[13] Lingxiao Yang, Shutong Ding, Yifan Cai, Jingyi Yu, Jingya Wang, and Ye Shi. Guidance with
spherical gaussian constraint for conditional diffusion. In International Conference on Machine
Learning (ICML), 2024.

[14] Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration
models. In Advances in Neural Information Processing Systems (NeurIPS), 2022.

[15] Shayan Mohajer Hamidi and En-Hui Yang. Conditional mutual information based diffusion
posterior sampling for solving inverse problems. arXiv preprint arXiv:2501.02880, 2025.

11

[16] Benjamin Boys, Mark Girolami, Jakiw Pidstrigach, Sebastian Reich, Alan Mosca, and
O Deniz Akyildiz. Tweedie moment projected diffusions for inverse problems. arXiv preprint
arXiv:2310.06721, 2023.

[17] Kushagra Pandey, Ruihan Yang, and Stephan Mandt. Fast samplers for inverse problems in
iterative refinement models. In Advances in Neural Information Processing Systems (NeurIPS),
2024.

[18] Jason Hu, Bowen Song, Xiaojian Xu, Liyue Shen, and Jeffrey A. Fessler. Learning image priors
through patch-based diffusion models for solving inverse problems. In Advances in Neural
Information Processing Systems (NeurIPS), 2024.

[19] Shayan Mohajer Hamidi and En-Hui Yang. Enhancing diffusion models for inverse problems
with covariance-aware posterior sampling. arXiv preprint arXiv:2412.20045, 2024.

[20] Bowen Song, Soo Min Kwon, Zecheng Zhang, Xinyu Hu, Qing Qu, and Liyue Shen. Solving
inverse problems with latent diffusion models via hard data consistency. In International
Conference on Learning Representations (ICLR), 2024.

[21] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

[22] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2009.

[23] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
Advances in Neural Information Processing Systems (NeurIPS), 2020.

[24] Bradley Efron. Tweedie’s formula and selection bias. Journal of the American Statistical
Association, 106(496):1602–1614, 2011.

[25] Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon,
and Ben Poole. Score-based generative modeling through stochastic differential equations. In
International Conference on Learning Representations (ICLR), 2021.

[26] Yang Song, Liyue Shen, Lei Xing, and Stefano Ermon. Solving inverse problems in medi-
cal imaging with score-based generative models. In International Conference on Learning
Representations, 2022.

[27] Zehao Dou and Yang Song. Diffusion posterior sampling for linear inverse problem solving: A
filtering perspective. In International Conference on Learning Representations (ICLR), 2024.

[28] Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat GANs on image
synthesis. In Advances in Neural Information Processing Systems (NeurIPS), 2021.

[29] Levi Borodenko. Motion blur kernel generation, 2023. https://github.com/
LeviBorodenko/motionblur. Accessed: January 2, 2025.

[30] Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, and Jong Chul Ye. Improving diffusion models
for inverse problems using manifold constraints. arXiv preprint arXiv:2206.00941, 2022.

[31] Stanley H Chan, Xiran Wang, and Omar A Elgendy. Plug-and-play admm for image restoration:
Fixed-point convergence and applications. IEEE Transactions on Computational Imaging,
3(1):84–98, 2016.

[32] Zihui Wu, Yu Sun, Yifan Chen, Bingliang Zhang, Yisong Yue, and Katherine Bouman. Princi-
pled probabilistic imaging using diffusion models as plug-and-play priors. Advances in Neural
Information Processing Systems, 37:118389–118427, 2024.

[33] Bingliang Zhang, Wenda Chu, Julius Berner, Chenlin Meng, Anima Anandkumar, and Yang
Song. Improving diffusion inverse problem solving with decoupled noise annealing. In
Proceedings of the Computer Vision and Pattern Recognition Conference, pages 20895–20905,
2025.

12

https://github.com/LeviBorodenko/motionblur
https://github.com/LeviBorodenko/motionblur

[34] Hengkang Wang, Xu Zhang, Taihui Li, Yuxiang Wan, Tiancong Chen, and Ju Sun. Dmplug:
A plug-in method for solving inverse problems with diffusion models. Advances in Neural
Information Processing Systems, 37:117881–117916, 2024.

[35] Litu Rout, Negin Raoof, Giannis Daras, Constantine Caramanis, Alex Dimakis, and Sanjay
Shakkottai. Solving linear inverse problems provably via posterior sampling with latent diffusion
models. In Advances in Neural Information Processing Systems (NeurIPS), 2023.

[36] Nicolas Zilberstein, Morteza Mardani, and Santiago Segarra. Repulsive latent score distilla-
tion for solving inverse problems. In The Thirteenth International Conference on Learning
Representations, 2025.

[37] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreason-
able effectiveness of deep features as a perceptual metric. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2018.

[38] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. In Advances
in Neural Information Processing Systems (NeurIPS), 2017.

[39] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4):600–
612, 2004.

[40] Gabriel Cardoso, Yazid Janati El Idrissi, Sylvain Le Corff, and Eric Moulines. Monte carlo
guided diffusion for bayesian linear inverse problems. arXiv preprint arXiv:2308.07983, 2023.

[41] Soheil Kolouri, Kimia Nadjahi, Umut Simsekli, Roland Badeau, and Gustavo Rohde. Gener-
alized sliced wasserstein distances. In Advances in Neural Information Processing Systems
(NeurIPS), 2019.

[42] Ajil Jalal, Marius Arvinte, Giannis Daras, Eric Price, Alexandros G Dimakis, and Jon Tamir.
Robust compressed sensing mri with deep generative priors. In Advances in Neural Information
Processing Systems (NeurIPS), 2021.

[43] Yutong He, Naoki Murata, Chieh-Hsin Lai, Yuhta Takida, Toshimitsu Uesaka, Dongjun Kim,
Wei-Hsiang Liao, Yuki Mitsufuji, J Zico Kolter, Ruslan Salakhutdinov, and Stefano Ermon.
Manifold preserving guided diffusion. In International Conference on Learning Representations
(ICLR), 2024.

[44] François Rozet, Gérôme Andry, François Lanusse, and Gilles Louppe. Learning diffusion priors
from observations by expectation maximization. In Advances in Neural Information Processing
Systems (NeurIPS), 2024.

[45] Bahjat Kawar, Gregory Vaksman, and Michael Elad. Snips: Solving noisy inverse problems
stochastically. In Advances in Neural Information Processing Systems (NeurIPS), 2021.

[46] Hyungjin Chung, Suhyeon Lee, and Jong Chul Ye. Decomposed diffusion sampler for acceler-
ating large-scale inverse problems. In International Conference on Learning Representations
(ICLR), 2024.

[47] Yuanzhi Zhu, Kai Zhang, Jingyun Liang, Jiezhang Cao, Bihan Wen, Radu Timofte, and Luc
Van Gool. Denoising diffusion models for plug-and-play image restoration. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2023.

[48] Morteza Mardani, Jiaming Song, Jan Kautz, and Arash Vahdat. A variational perspective on
solving inverse problems with diffusion models. In International Conference on Learning
Representations (ICLR), 2024.

[49] Berthy T Feng, Jamie Smith, Michael Rubinstein, Huiwen Chang, Katherine L Bouman, and
William T Freeman. Score-based diffusion models as principled priors for inverse imaging. In
IEEE/CVF International Conference on Computer Vision (ICCV), 2023.

13

[50] Berthy T Feng and Katherine L Bouman. Efficient bayesian computational imaging with a
surrogate score-based prior. arXiv preprint arXiv:2309.01949, 2023.

[51] Jure Zbontar, Florian Knoll, Anuroop Sriram, Tullie Murrell, Zhengnan Huang, Matthew J
Muckley, Aaron Defazio, Ruben Stern, Patricia Johnson, Mary Bruno, et al. fastmri: An open
dataset and benchmarks for accelerated mri. arXiv preprint arXiv:1811.08839, 2018.

[52] Samuel G Armato III, Geoffrey McLennan, Luc Bidaut, Michael F McNitt-Gray, Charles R
Meyer, Anthony P Reeves, Binsheng Zhao, Denise R Aberle, Claudia I Henschke, Eric A
Hoffman, et al. The lung image database consortium (lidc) and image database resource
initiative (idri): a completed reference database of lung nodules on ct scans. Medical physics,
38(2):915–931, 2011.

14

A Related Works

In many practical applications, we often encounter the underdetermined regime where m < d, making
the inverse problem ill-posed. To obtain meaningful reconstructions in such settings, incorporating
prior knowledge is essential. Within the Bayesian framework, this is addressed by modeling a prior
p(x0) and forming the posterior p(x0|y) via Bayes’ rule:

p(x0|y) ∝ p(y|x0)p(x0).

When employing diffusion models as priors, one can extend the reverse-time stochastic differential
euqtion (SDE) used in unconditional models,

dx =
[
−β(t)

2 x− β(t)∇xt log pt(xt)
]
dt+

√
β(t)dw̄,

by incorporating an additional likelihood gradient to perform posterior sampling:

dx =
[
−β(t)

2 x− β(t) (∇xt log pt(xt) +∇xt log pt(y|xt))
]
dt+

√
β(t)dw̄. (22)

This follows directly from the identity:

∇xt
log pt(xt|y) = ∇xt

log pt(xt) +∇xt
log pt(y|xt).

In this formulation, two quantities are needed: the prior score∇xt
log pt(xt), which can be obtained

from a pre-trained diffusion model, and the likelihood score∇xt
log pt(y|xt). The latter is generally

intractable, since the data y is conditionally dependent only on x0, not directly on xt. As a result,
estimating this likelihood gradient becomes a key challenge. In the following sections, we explore
various strategies for approximating this term.

Score-ALD [42] and Score-SDE [25]. Among the earliest approaches for solving linear inverse
problems with diffusion models are Score-ALD and Score-SDE, both of which estimate the gradient
of the log-likelihood to steer the reverse diffusion trajectory. The key difference lies in how they
compute the residual. Score-ALD uses a deterministic correction:

∇xt log p(y|xt) ≈ −
A⊤(y −Axt)

σ2
y + γ2

t

,

where γt is a tunable parameter regulating the guidance strength. On the other hand, Score-SDE adds
Gaussian noise to the measurements before evaluating the discrepancy:

∇xt log p(y|xt) ≈ −A⊤(y + σtϵ−Axt), ϵ ∼ N (0, Im).

While both methods use the measurement error to guide the reverse process, Score-SDE introduces
stochasticity by perturbing the observations, effectively pushing the samples toward a noisy target
yt = y + σtϵ.

ILVR [10]. ILVR, originally introduced for super-resolution tasks, applies a similar principle by
guiding the reverse process with a noised version of the measurements. Its gradient approximation
takes the form

∇xt
log p(y|xt) ≈ −A†(yt −Axt) = −(A⊤A)−1A⊤(yt −Axt),

where A† denotes the Moore-Penrose pseudo-inverse of A, and yt = y + σtϵ. Compared with
Score-SDE, ILVR can be viewed as a preconditioned variant, replacing the simple adjoint A⊤ with a
full pseudo-inverse to achieve a more accurate projection onto the measurement-consistent space.

DPS [7]. While the previous methods are tailored for linear inverse problems, DPS extends to
non-linear settings and is among the most widely used reconstruction techniques in this domain. The
core approximation behind DPS is

∇xt
log p(y|xt) ≈ ∇xt

log p (y | x0 = E[x0 | xt]) .

Assuming additive Gaussian noise and a forward operator A, the likelihood becomes

p (y | x0 = E[x0 | xt]) = N
(
y;A(E[x0 | xt]), σ

2
yI

)
,

15

yielding the approximation

∇xt
log p(y|xt) ≈

1

σ2
y

∇⊤
xt
A(E[x0 | xt]) (A(E[x0 | xt])− y) .

For linear inverse problems with A(x) = Ax, this simplifies to

∇xt log p(y|xt) ≈ −
1

σ2
y

∇⊤
xt
E[x0 | xt]A

⊤ (y −AE[x0 | xt]) .

Using Tweedie’s formula, the gradient term can be further written as

∇xt
log p(y|xt) ≈ −

1

σ2
y

(
I +∇2

xt
log pt(xt)

)⊤
A⊤ (y −AE[x0 | xt]) .

In practice, DPS does not rely on the theoretical guidance strength above, and instead employs an
adaptive step size inversely scaled by the norm of the measurement error.

MCG [12], DSG [13], and MPGD [43]. Several recent works build on DPS by incorporating
geometric insights to improve reconstruction quality. MCG [12] provides a geometric interpretation
of DPS, demonstrating that its approximation helps maintain samples on the data manifold. Building
on this, DSG [13] introduces a theoretically grounded step size derived from the MCG perspective,
and combines it with projected gradient descent to enhance sample fidelity. More recently, MPGD
[43] further improves performance by constraining the update steps to lie within a learned low-
dimensional subspace using autoencoding, effectively regularizing the sampling path to remain close
to the underlying manifold.

ΠGDM [8]. The DPS approximation effectively replaces the posterior p(x0|xt) with a Dirac delta
centered at its mean:

p(x0|xt) ≈ δ (x0 − E[x0|xt]) .

In contrast, ΠGDM [8] proposes a more expressive approximation using a Gaussian distribution:

p(x0|xt) ≈ N
(
E[x0|xt], r

2
t In

)
,

where rt is a tunable hyperparameter. For linear inverse problems, this leads to the marginal likelihood

p(y|xt) ≈ N
(
AE[x0|xt], r

2
tAA⊤ + σ2

yI
)
,

and the corresponding gradient becomes

∇xt log p(y|xt) ≈ −
∂E[x0|xt]

∂xt
(r2tAA⊤ + σ2

yI)
−1A⊤ (y −AE[x0|xt]) .

This formulation softens the delta approximation of DPS and introduces a covariance-aware correction,
improving flexibility in modeling uncertainty.

Moment Matching [44]. The ΠGDM method assumes an isotropic Gaussian approximation for
p(x0|xt), ignoring the structure of its true covariance. Moment Matching [44] improves upon this by
leveraging an exact expression for the posterior variance

V [x0|xt] = σ4
tH(log pt(xt)) + σ2

t In = σ2
t∇xt

E[x0|xt],

resulting in an anisotropic Gaussian approximation:

p(x0|xt) ≈ N (E[x0|xt], V [x0|xt]).

For linear inverse problems, this yields a refined estimate for the measurement score:

∇xt log p(y|xt) ≈ −∇xtE[x0|xt]
⊤A⊤ (

σ2
yI +Aσ2

t∇xtE[x0|xt]A
⊤)−1

(y −AE[x0|xt]).

In high-dimensional settings, explicitly computing the full Jacobian ∇xtE[x0|xt] is computationally
prohibitive. To address this, the authors employ automatic differentiation to evaluate Jacobian-vector
products efficiently, avoiding the need to form the full matrix.

16

SNIPS [45] and DDRM [14]. These methods reformulate linear inverse problems as noisy inpaint-
ing in the spectral domain via the singular value decomposition (SVD) of the measurement matrix,
A = UΣV ⊤. With this, the measurement model becomes

ȳ = Σx̄+ σyz̄, where x̄ = V ⊤x, ȳ = U⊤y, z̄ = U⊤z.

SNIPS solves the inverse problem in this transformed space by performing annealed Langevin
dynamics to sample from p(x̄|ȳ), using the approximation

∇x̄t log p(ȳ|x̄t) ≈ −Σ⊤ ∣∣σ2
yI − σ2

tΣΣ
⊤∣∣† (ȳ − Σx̄t).

DDRM improves upon SNIPS by replacing the noisy iterate x̄t with the posterior mean x̄0|t =

V ⊤E[x0|xt] in the above expression. Furthermore, DDRM introduces a sampling rule based on
conditional Gaussian distributions over the spectral components x̄

(i)
t , which adapt based on the

singular value si, the diffusion noise level σt, and a hyperparameter η ∈ (0, 1] to control stochasticity:

x̄
(i)
t ∼


N (x̄

(i)
0|t+1 +

√
1− η2σt

x̄
(i)
t+1−x̄

(i)

0|t+1

σt+1
, η2σ2

t), si = 0

N (x̄
(i)
0|t+1 +

√
1− η2σt

ȳ(i)−x̄
(i)

0|t+1

σy/si
, η2σ2

t), σt <
σy

si

N (ȳ(i), σ2
t −

σ2
y

s2i
), σt ≥ σy

si

.

When η = 1, this sampling reduces to the deterministic posterior formulation used in the original
DDRM algorithm.

DDS [46] and DiffPIR [47]. Both DDS and DiffPIR approximate the posterior mean via a proximal
formulation:

E[x0|xt,y] ≈ argmin
x

1

2
∥y −Ax∥2 + λt

2
∥x− E[x0|xt]∥2.

This balances fidelity to the measurements with proximity to the diffusion-based prior. The methods
differ in solving this objective and selecting λt. DDS solves it approximately via a few conjugate
gradient (CG) steps, motivated by replacing DPS gradient updates with CG under data manifold
assumptions, and uses a fixed λt. In contrast, DiffPIR adopts a closed-form solution and schedules
λt proportional to the signal-to-noise ratio at time t, specifically λt = σtζ with ζ as a constant.

Another line of work tackles inverse problems via variational inference, where the true posterior
p(x0|y) is approximated by a tractable distribution q, optimized by minimizing the KL divergence.

RED-Diff [48]. RED-Diff approximates p(x0|y) using a Gaussian q = N (µ, σ2I), minimizing
their KL divergence as follows

min
q
DKL(q(x0|y) ∥ p(x0|y)).

This leads to the variational bound

min
µ

∥y −A(µ)∥2

2σ2
y

+ Et,ϵ[λt∥ϵθ(xt, t)− ϵ∥2],

which combines a reconstruction loss and a score-matching term.

Score Prior [49]. This approach uses a normalizing flow qϕ as the variational distribution and
minimizes

Ez∼N (0,I)

[
− log p(y|Gϕ(z))− log pθ(Gϕ(z)) + log π(z)− log |det dGϕ

dz |
]
.

The prior term log pθ is computed via the PF-ODE formulation, though it is computationally expensive
and must be optimized per measurement.

17

0 200 400 600 800 1000
Diffusion Step t

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

M
ea

n
Sq

ua
re

d
Di

ffe
re

nc
e

0.935

0.940

0.945

0.950

0.955

0.960

0.965

Co
sin

e
Si

m
ila

rit
y

Figure 5: Cosine similarity and MSE between score vectors. Cosine similarity remains high and
MSE stays low across diffusion steps, supporting the approximation sθ(xt−1, t− 1) ≈ sθ(xt, t).

Efficient Score Prior [50]. To reduce cost, this variant replaces the exact likelihood with a surrogate
lower bound

bθ(x0) = Ep(xT |x0)[log π(xT)]− 1
2

∫ T

0

g(t)2h(t) dt,

where h(t) includes the denoising loss and other tractable terms. This approximation drastically
reduces computation while maintaining training quality.

As seen, variational methods approximate the true posterior with a simpler distribution whose
parameters can be efficiently optimized using standard techniques. While this enables tractable
inference, it may limit expressiveness, as the chosen distribution might fail to capture the full
complexity of the true posterior.

B Empirical Justification for the Score Approximation in Equation (14)

In Section 3, we introduced a practical approximation to enable tractable posterior sampling:

sθ(xt−1, t− 1) −→ sθ(xt, t).

This simplification avoids computing the score at the unknown xt−1 by reusing the available value
at xt. To empirically validate the accuracy of this approximation, we measure how closely the two
score vectors align in both direction and magnitude across the diffusion trajectory.

We quantify this with the C-DPS cosine similarity and C-DPS mean squared error (MSE) between
the score vectors sθ(xt−1, t − 1) and sθ(xt, t) at each diffusion step t, where xt−1 is generated
from xt via a standard reverse diffusion step. Specifically, we compute the cosine similarity as

CosSim(t) =
⟨sθ(xt−1, t− 1), sθ(xt, t)⟩

∥sθ(xt−1, t− 1)∥2 · ∥sθ(xt, t)∥2
,

and the MSE as
MSE(t) =

1

d
∥sθ(xt−1, t− 1)− sθ(xt, t)∥22 ,

where d is the dimensionality of the data.

Figure 5 shows both metrics averaged over 100 randomly sampled instances from the FFHQ dataset,
evaluated across the full reverse diffusion trajectory (i.e., t = 1000→ 0).

As seen, the C-DPS cosine similarity remains high (above 0.94) throughout the diffusion process.
This indicates that the two score vectors are consistently aligned in direction, even if their magnitudes
differ. Since the reverse process relies more on the direction of the gradient, this supports the validity
of the approximation.

18

In addition, The C-DPS MSE remains low across the trajectory, peaking modestly during the middle
diffusion steps (approximately t ∈ [400, 600]). This is expected since

• In early steps (high t), the noise level is large, and score estimates change slowly.

• In later steps (low t), the signal is nearly denoised, and the score stabilizes.

• The middle regime exhibits faster dynamics as the model transitions from noise to structure,
hence slightly higher variation in scores.

These empirical findings demonstrate that our approximation in Equation (14) introduces minimal
directional or magnitude error, particularly in regions where diffusion steps are small. This justifies
its use in our closed-form posterior sampling framework without sacrificing empirical performance.

C Latent C-DPS

In the latent version of C-DPS, both the diffusion process and the measurement model are defined
over the latent space of a pretrained generative model, rather than the pixel space. This modification
allows us to leverage the benefits of a compressed latent representation, improving computational
efficiency and robustness, particularly for high-resolution data.

Algorithm 4 presents the detailed steps for the latent C-DPS framework. Compared with its pixel-
domain counterpart (Algorithm 2), the following changes are made:

• The unknown signal is represented by latent variables {ℓt}Tt=0 instead of pixel variables
{xt}Tt=0.

• The forward operator A and the measurement y are defined in the latent space.

• The score function sθ is evaluated on latent variables rather than pixel variables.

• All sampling, posterior updates, and noise schedules are performed in the latent space
following the same principles as in the pixel domain.

Despite these modifications, the overall structure of the algorithm remains the same: a forward
diffusion process is applied to the measurement, followed by a backward sampling procedure using
closed-form posterior updates that couple the data and measurement spaces at each time step.

Algorithm 4 Latent C-DPS (ours)
Input: # time steps T , latent measurement y, noise schedule {βt}, forward operator A in latent

space, and noise covariance Σn.
1: Generate {yt}Tt=0 as per latent-space version of Equation (5)
2: ℓT ∼ N (0, I)
3: for t = T − 1, T − 2, . . . , 0 do
4: ŝ← sθ(ℓt, t)
5: µy|ℓ ← Aℓt−1 + (1− ᾱt−1)Aŝ

6: Σy|ℓ ← ᾱt−1Σn + (1− ᾱt−1)I
7: Compute µpost and Σpost via (16), replacing xt with ℓt
8: z ∼ N (0, I)
9: ℓt−1 ← µpost +Σpostz

10: end for
Output: ℓ0

D Extension to Nonlinear Forward Models

Locally linear C–DPS. Let the measurement model be y = g(x0) + n with differentiable g :
Rd → Rm and n ∼ N (0,Σn). The coupled construction still applies, while the Gaussian closed
form in Eq. (16) holds after a local linearization of g at the current iterate xt:

g(x) ≈ g(xt) + Jt(x− xt), Jt = ∇g
∣∣
x=xt

. (23)

19

With the same Σy|x = ᾱt−1Σn + (1− ᾱt−1)I as in the linear case, the conditional becomes

p(yt−1 | xt−1) ≈ N
(
Jtxt−1 + ct, Σy|x

)
, ct = g(xt)− Jtxt + (1− ᾱt−1) Jt sθ(xt, t).

(24)

Combining this with the diffusion prior p(xt | xt−1) = N (
√
1− βt xt−1, βtI) yields a Gaussian

posterior, identical in form to Eq. (16) with A← Jt and bt−1 ← ct:

Σ−1
post =

1− βt

βt
I + J⊤

t Σ−1
y|xJt, (25)

µpost = Σpost

[√1− βt

βt
xt + J⊤

t Σ−1
y|x

(
yt−1 − ct

)]
. (26)

This is a Gauss–Newton or extended-Kalman smoothing view inside the C–DPS recursion. It adds
one Jacobian–vector product per step, which modern autodiff provides efficiently. The dominant cost
remains the score call. In our setup, the score pass costs about 100 to 200 ms and the linear solve is
under 10 ms per step, so the added Jacobian–vector product (< 15 ms) is modest.

Phase Retrieval

Method FID ↓ LPIPS ↓ SSIM ↑ PSNR ↑
DAPS 42.71 0.139 0.851 30.63
DPS 104.5 0.410 0.441 17.64
RED–diff 167.4 0.596 0.398 15.60
PnP–DM 99.4 0.335 0.581 19.69
DMPlug 41.21 0.124 0.894 31.25
C–DPS (local linear) 41.32 0.129 0.903 31.91

Nonlinear Deblur

Method FID ↓ LPIPS ↓ SSIM ↑ PSNR ↑
DAPS 49.38 0.155 0.783 28.29
DPS 91.31 0.278 0.623 23.39
RED–diff 43.84 0.160 0.795 30.86
PnP–DM 68.96 0.193 0.742 27.81
DMPlug 47.28 0.135 0.792 29.55
C–DPS (local linear) 47.52 0.130 0.802 30.27

Preliminary nonlinear results (FFHQ 256×256). These early results show that locally linear
C–DPS retains the advantages of the linear model while remaining computationally feasible. We also
observed DMPlug to be close in accuracy but about 5× slower in our setup.

E Implementation Details

E.1 Implementation Details of Baseline Methods

We evaluate all baseline methods using their official implementations and default settings. The
corresponding repositories are listed below:

• DPS [7] & MCG [30] & ΠGDM [8]: https://github.com/DPS2022/
diffusion-posterior-sampling

• DDRM [14]: https://github.com/bahjat-kawar/ddrm

• ADMM-PnP [31]: https://github.com/kanglin755/plug_and_play_admm

• ILVR [10]: https://github.com/jychoi118/ilvr_adm

• ReSample [20]: https://github.com/soominkwon/resample/tree/main

• PSLD [35]: We follow the original code from the repository provided by [35] with the pretrained
LDMs on FFHQ and ImageNet datasets. We use the default hyperparameters as implied in [35]. For
some tasks, the hyperparameters were tuned by grid search, and the results according to the optimal
hyperparameters are reported.

20

https://github.com/DPS2022/diffusion-posterior-sampling
https://github.com/DPS2022/diffusion-posterior-sampling
https://github.com/bahjat-kawar/ddrm
https://github.com/kanglin755/plug_and_play_admm
https://github.com/jychoi118/ilvr_adm
https://github.com/soominkwon/resample/tree/main

E.2 Construction of Whitening Operator W

To solve linear systems involving the posterior precision Λt =
1−βt

βt
I+A⊤Σ−1

y|xA, we employ a
pre-whitened formulation based on the factorization

Σ−1
y|x = W⊤W,

where W is a whitening operator. This appendix describes how to construct W under common
structural assumptions3 on the measurement noise covariance Σn, which is used to define Σy|x =
ᾱt−1Σn + (1− ᾱt−1)I.

Case 1: Diagonal or isotropic noise. If Σn = σ2I, then

Σy|x =
(
ᾱt−1σ

2 + 1− ᾱt−1

)
I ≜ γtI, so W = γ

−1/2
t I.

Case 2: Low-rank plus diagonal noise. Suppose Σn = UU⊤ + σ2I for a tall matrix U ∈ Rm×r

with r ≪ m. Then,
Σy|x = ᾱt−1(UU⊤ + σ2I) + (1− ᾱt−1)I = ᾱt−1UU⊤ + δtI,

where δt = ᾱt−1σ
2 + 1− ᾱt−1. The inverse can be computed using the Woodbury identity:

Σ−1
y|x = δ−1

t

(
I−U

(
I+ ᾱt−1

δt
U⊤U

)−1
ᾱt−1

δt
U⊤

)
.

To match the form Σ−1 = W⊤W, define W as a matrix whose Gram matrix gives the above (e.g.,
via Cholesky of the RHS).

Case 3: Convolutional (circulant) noise. If Σn is circulant (e.g., for colored Gaussian noise in
image processing), then it is diagonalized by the Discrete Fourier Transform (DFT):

Σn = F†DF, (27)

so Σy|x = F†D′F, (28)
where F is the DFT matrix and D′ = ᾱt−1D+ (1− ᾱt−1)I is diagonal. Then

Σ−1
y|x = F†D′−1F and W = D′−1/2F.

This allows Wv and W⊤v to be computed efficiently using FFTs.

Implementation note. Although we derive closed-form expressions for the whitening operator W
in all three cases (diagonal, low-rank, and convolutional noise), we do not instantiate W as an explicit
matrix. Instead, we implement the action of W and its transpose through matrix-free routines, which
apply v 7→Wv and v 7→W⊤v directly using efficient operations. For instance, in the convolutional
case, W is implemented via FFTs; in the low-rank case, via structured low-rank multiplications
using the Woodbury identity; and in the diagonal case, via elementwise scaling. This matrix-free
formulation is sufficient because our conjugate gradient solver requires only matrix-vector products
with the precision matrix Λt =

1−βt

βt
I+A⊤W⊤WA. By avoiding explicit construction of W and

leveraging fast vectorized operations, we ensure that each CG solve has negligible memory overhead
and runtime comparable to a single evaluation of the score network, even in high-dimensional settings.

F Additional PSNR Results on Pixel-Domain Tasks

F.1 Runtime Comparison on FFHQ 256×256

We report wall-clock runtimes on a single NVIDIA P100 (12 GB GPU), batch size = 1, and 1,000
reverse-diffusion steps in the pixel domain. All methods use the same pretrained score network for a
fair comparison. Times are averaged over 50 images.

C–DPS runs within approximately 15% of DPS, and it is significantly faster than recent methods
such as DMPlug. It is slightly slower than DPS due to the added posterior conditioning, however
the overall runtime remains comparable given the improved accuracy and the principled posterior
formulation.

3These cases are representative of real-world applications such as compressed sensing, deblurring, and MRI
reconstruction.

21

Table 3: PSNR (dB) on FFHQ 256× 256. Bold is best, underline is second-best for each column.

Method Inpaint (Rand) Inpaint (Box) Deblur (Gauss) Deblur (Motion) SR (4×)
DPS 25.23 22.51 24.25 24.92 25.86
DDRM 9.19 22.26 24.93 − 26.58
MCG 21.57 19.97 6.72 − 18.20
ReSample 25.90 23.81 26.33 26.00 25.22
PnP-ADMM 8.41 11.65 24.93 − 26.55
Score-SDE 13.52 18.51 7.12 − 17.62
ADMM-TV 22.03 17.81 22.37 − 23.86
PnP-DM 26.20 22.41 25.71 25.80 27.90
DAPS 28.33 24.07 29.19 29.66 29.07
DMPlug 28.71 28.92 30.02 29.91 30.25
C-DPS (ours) 28.95 28.69 30.13 29.85 30.12

Table 4: Time per image on FFHQ 256× 256 (seconds, lower is better).

Method Time [s] ↓
DPS 130
MCG 142
DAPS 113
PnP-DM 181
DMPlug 550
C–DPS (ours) 152

G Toy dataset

Table 5: Sliced Wasserstein for VE-DDPM.
σ = 0.01 σ = 0.1 σ = 1.0

d m C-DPS ReSample DPS C-DPS ReSample DPS C-DPS ReSample DPS
8 1 1.9 ± 0.5 2.6 ± 0.9 4.7 ± 1.5 1.4 ± 0.6 2.2 ± 0.9 4.7 ± 1.6 1.2 ± 0.6 1.5 ± 0.4 5.2 ± 1.3

8 2 0.8 ± 0.4 2.1 ± 1.0 1.8 ± 1.5 1.0 ± 0.4 1.6 ± 0.6 1.5 ± 0.9 1.0 ± 0.3 2.3 ± 0.4 3.5 ± 1.2

8 4 0.4 ± 0.2 3.8 ± 2.3 0.7 ± 0.6 0.2 ± 0.2 3.8 ± 2.2 0.8 ± 0.6 0.7 ± 0.3 1.8 ± 0.3 2.5 ± 0.9

80 1 2.7 ± 0.7 3.2 ± 1.0 5.6 ± 1.8 2.4 ± 0.8 2.9 ± 0.8 5.1 ± 1.8 1.5 ± 0.7 1.6 ± 0.5 6.9 ± 1.8

80 2 1.1 ± 0.6 2.8 ± 1.3 3.2 ± 1.9 1.3 ± 0.4 2.7 ± 1.2 3.1 ± 1.9 1.0 ± 0.3 1.4 ± 0.2 3.9 ± 1.2

80 4 0.4 ± 0.2 0.6 ± 0.4 1.2 ± 1.1 0.5 ± 0.3 0.6 ± 0.4 1.0 ± 1.1 0.9 ± 0.3 0.9 ± 0.2 1.7 ± 0.6

800 1 3.1 ± 0.7 3.5 ± 1.1 5.8 ± 1.6 3.0 ± 0.5 3.3 ± 0.9 5.7 ± 1.6 1.4 ± 0.5 2.0 ± 0.4 6.8 ± 1.0

800 2 1.5 ± 0.5 3.1 ± 1.1 3.5 ± 1.7 1.2 ± 0.4 2.7 ± 0.9 3.1 ± 1.4 1.3 ± 0.4 2.0 ± 0.5 4.7 ± 1.3

800 4 0.5 ± 0.3 0.4 ± 0.2 1.4 ± 1.0 0.3 ± 0.2 0.4 ± 0.2 1.3 ± 0.9 0.9 ± 0.2 0.7 ± 0.3 0.9 ± 0.4

Table 6: Sliced Wasserstein for the GMM case for the reverse VE SDEs discretized with Euler-
Maruyama.

σ = 0.01 σ = 0.1 σ = 1.0
d m C-DPS ReSample DPS C-DPS ReSample DPS C-DPS ReSample DPS
8 1 1.6 ± 0.4 1.5 ± 0.4 5.7 ± 2.2 1.3 ± 0.4 1.2 ± 0.4 5.6 ± 2.1 0.8 ± 0.3 0.9 ± 0.3 0.9 ± 0.3

8 2 0.6 ± 0.3 0.4 ± 0.3 6.2 ± 0.8 1.0 ± 0.4 0.5 ± 0.3 6.2 ± 2.4 0.8 ± 0.2 1.0 ± 0.3 1.2 ± 0.4

8 4 0.4 ± 0.2 0.1 ± 0.1 - 0.4 ± 0.2 0.1 ± 0.0 8.4 ± 3.1 0.7 ± 0.2 0.2 ± 0.1 0.3 ± 0.2

80 1 2.5 ± 0.7 2.9 ± 1.4 9.1 ± 1.3 2.1 ± 0.8 2.1 ± 1.1 4.7 ± 1.8 1.4 ± 0.7 1.8 ± 0.8 1.9 ± 0.9

80 2 1.2 ± 0.4 0.8 ± 0.7 2.2 ± 0.9 1.1 ± 0.5 0.8 ± 0.7 6.0 ± 2.1 1.3 ± 0.3 1.3 ± 0.5 1.5 ± 0.5

80 4 0.4 ± 0.1 0.1 ± 0.0 - 0.3 ± 0.2 0.1 ± 0.1 4.4 ± 1.6 0.8 ± 0.3 0.4 ± 0.2 0.5 ± 0.3

800 1 3.2 ± 0.6 3.2 ± 1.0 6.8 ± 1.2 2.8 ± 0.5 2.8 ± 0.7 6.4 ± 1.5 1.4 ± 0.4 1.3 ± 0.3 1.3 ± 0.3

800 2 1.4 ± 0.3 0.8 ± 0.5 7.4 ± 0.9 1.2 ± 0.3 0.8 ± 0.4 6.4 ± 1.9 1.3 ± 0.4 1.1 ± 0.3 1.1 ± 0.3

800 4 0.4 ± 0.2 0.6 ± 0.5 - 0.3 ± 0.2 0.1 ± 0.0 5.8 ± 1.4 0.8 ± 0.3 0.4 ± 0.2 0.4 ± 0.2

The generation of this dataset is inspired from [16].

As explained earlier in the paper, we model p0(x0) as a mixture of 25 Gaussian distributions. Each
of these Gaussian components has a mean vector Ui,j in Rd, defined as Ui,j = (8i, 8j, . . . , 8i, 8j)

22

for each pair (i, j) where i and j take values from the set {−2,−1, 0, 1, 2}. All components have
the same variance of 1. The unnormalized weight associated with each component is ωi,j = 1.0.
Additionally, we have set the variance of the noise, σ2

δ , to 10−4.

Recall that the distribution pt(xt) can be expressed as an integral: pt(xt) =
∫
pt|0(xt|x0)p0(x0)dx0.

Since p0(x0) is a mixture of Gaussian distributions, pt(xt) is also a mixture of Gaussians. The means
of these Gaussians are given by

√
αtUi,j , and each Gaussian has unit variance. By using automatic

differentiation libraries, we can efficiently compute the gradient∇xt
log pt(xt).

We have set the parameters βmax = 500.0 and βmin = 0.1, and we use 1000 timesteps to discretize
the time domain. For a given pair of dimensions and a chosen observation noise standard deviation
(d,m, σ), the measurement model (y,A) is generated as follows:

• Matrix A: First, we sample a random matrix Ã from a Gaussian distribution N (0m×d, Im×d).
We then compute its singular value decomposition (SVD), Ã = USV⊤. For each pair (i, j) in
{−2,−1, 0, 1, 2}2, we draw a singular value si,j from a uniform distribution on the interval [0, 1].
Finally, we construct the matrix A = Udiag({si,j}(i,j)∈{−2,−1,0,1,2}2)V⊤.

• Observation vector y: Next, we sample a vector x∗ from the distribution p0. The observation vector
y is then obtained by applying the matrix A to x∗ and adding Gaussian noise z, where z is sampled
from N (0, σ2Im).

Once we have drawn both x∗ ∼ p0 and (y,A, σ), the posterior can be exactly calculated using Bayes
formula and gives a mixture of Gaussians with mixture components ci,j and associated weights ω̃i,j ,

ci,j := N (Σ(A⊤y/σ2 +Ui,j),Σ), (29)

ω̃i := ωiN (y;AUi,j , σ
2
δId +AA⊤), (30)

where Σ = (Id +
1
σ2
δ
A⊤A)−1.

• SW Distance Calculation. To compare the posterior distribution estimated by each algorithm with
the target posterior distribution, we use 104 slices for the SW distance and compare 1000 samples of
the true posterior distribution.

Table 5 and Table 6 indicate the 95% confidence intervals obtained by considering 20 randomly
selected measurement models (A) for each setting (d,m, σ).

H More Experiments

H.1 Additional Quantitative Results for Other Noise Levels

Tables 7 and 8 report the same set of metrics as Table 1 in the main paper, but for Gaussian
measurement noise levels σ = 0.07 and σ = 0.03, respectively. Both tables include pixel-domain
methods in the upper block and latent-domain methods in the lower block, covering the same five
inverse problems: random inpainting, box inpainting, Gaussian deblurring, motion deblurring, and
4× super-resolution.

σ = 0.07. When the noise standard deviation is increased from 0.05 to 0.07 (Table 7), all methods
experience moderate degradation: FID and LPIPS rise while SSIM falls. Nevertheless, C-DPS
remains the top performer in every task on both datasets. The performance gap between C-DPS
and the best baseline widens in most cases, indicating that our closed-form posterior update is more
robust to heavier measurement noise than the projection- or likelihood-based alternatives.

σ = 0.03. With milder noise (σ = 0.03, Table 8), absolute scores improve across the board, but
C-DPS still delivers the best or second-best results in all settings. The advantage is most pronounced
for inpainting and Gaussian deblurring, where C-DPS attains the lowest FID and LPIPS and the
highest SSIM. These trends confirm that the coupled posterior formulation benefits both high- and
low-noise regimes.

Overall observation. Across σ ∈ {0.03, 0.05, 0.07}, C-DPS consistently outperforms state-of-the-
art baselines, showing graceful performance degradation as noise increases and the largest gains under

23

Table 7: Quantitative results for Gaussian noise level σ = 0.07 on the 1k validation sets of FFHQ
256× 256 and ImageNet 256× 256. Bold and underline indicate the best and second-best results,
respectively.

Pixel-Domain Methods

Dataset Method Inpaint (Random) Inpaint (Box) Deblur (Gaussian) Deblur (Motion) SR (4×)
FID↓ LPIPS↓ SSIM↑ FID↓ LPIPS↓ SSIM↑ FID↓ LPIPS↓ SSIM↑ FID↓ LPIPS↓ SSIM↑ FID↓ LPIPS↓ SSIM↑

FF
H

Q

DPS 23.1 0.228 0.833 36.9 0.183 0.858 48.4 0.277 0.792 44.3 0.262 0.842 42.8 0.232 0.836
ΠGDM 23.3 0.238 0.820 38.9 0.194 0.845 44.4 0.264 0.807 36.3 0.243 0.872 38.3 0.218 0.836
DDRM 76.2 0.619 0.294 46.3 0.227 0.843 80.6 0.352 0.748 – – – 66.8 0.318 0.814
MCG 32.4 0.308 0.727 44.0 0.330 0.677 110.3 0.360 0.048 – – – 93.7 0.544 0.535
ILVR 28.5 0.251 0.648 40.3 0.190 0.835 58.2 0.318 0.764 – – – 52.3 0.273 0.827

ReSample 23.2 0.217 0.827 36.9 0.173 0.845 40.8 0.271 0.806 34.3 0.238 0.874 33.4 0.224 0.835
PnP-ADMM 135.9 0.723 0.306 168.3 0.430 0.621 99.8 0.470 0.791 – – – 72.8 0.379 0.848
Score-SDE 84.9 0.639 0.418 66.4 0.355 0.659 121.4 0.431 0.105 – – – 103.2 0.593 0.596
ADMM-TV 196.8 0.486 0.760 74.9 0.346 0.793 202.1 0.532 0.780 – – – 121.8 0.455 0.781

C-DPS 22.1 0.209 0.862 28.9 0.150 0.859 35.4 0.259 0.814 30.3 0.236 0.904 31.0 0.214 0.841
C-DPS vs. Best -1.1 -0.008 0.035 -8.0 -0.023 -0.014 -5.4 -0.012 0.008 -4.0 -0.002 0.030 -2.4 -0.010 -0.006

Im
ag

eN
et

DPS 39.8 0.327 0.713 42.9 0.280 0.768 67.6 0.472 0.683 60.8 0.414 0.614 55.4 0.361 0.756
ΠGDM 46.4 0.382 0.678 46.7 0.307 0.729 65.2 0.450 0.695 59.3 0.398 0.655 59.3 0.374 0.741
DDRM 124.0 0.704 0.384 50.2 0.267 0.787 68.9 0.455 0.684 – – – 65.7 0.367 0.768
MCG 42.9 0.441 0.525 44.4 0.344 0.608 101.6 0.579 0.421 – – – 155.6 0.669 0.219
ILVR 42.0 0.398 0.635 41.5 0.298 0.708 77.6 0.451 0.639 – – – 103.1 0.567 0.472

ReSample 37.2 0.311 0.708 42.3 0.278 0.771 66.1 0.468 0.687 60.1 0.399 0.618 52.7 0.359 0.751
PnP-ADMM 124.9 0.713 0.285 85.3 0.388 0.636 109.3 0.548 0.641 – – – 104.1 0.459 0.736
Score-SDE 138.4 0.695 0.494 59.4 0.374 0.591 131.8 0.706 0.419 – – – 186.4 0.741 0.231
ADMM-TV 205.1 0.540 0.654 95.1 0.343 0.760 170.3 0.618 0.611 – – – 143.1 0.554 0.654

C-DPS 35.4 0.236 0.729 36.4 0.254 0.781 60.2 0.417 0.691 55.1 0.372 0.630 50.1 0.331 0.772
C-DPS vs. Best -1.8 -0.075 0.016 -5.1 -0.013 -0.006 -5.0 -0.033 -0.004 -4.2 -0.027 -0.025 -2.6 -0.028 0.004

Latent-Domain Methods

Dataset Method Inpaint (Random) Inpaint (Box) Deblur (Gaussian) Deblur (Motion) SR (4×)
FID↓ LPIPS↓ SSIM↑ FID↓ LPIPS↓ SSIM↑ FID↓ LPIPS↓ SSIM↑ FID↓ LPIPS↓ SSIM↑ FID↓ LPIPS↓ SSIM↑

FF
H

Q

PSLD 52.6 0.242 0.786 47.9 0.177 0.791 97.3 0.338 0.600 104.9 0.360 0.648 81.4 0.308 0.618
ReSample 44.3 0.157 0.718 59.2 0.201 0.722 79.6 0.276 0.686 49.6 0.214 0.800 102.2 0.423 0.562
LC-DPS 40.7 0.153 0.780 46.2 0.158 0.799 72.8 0.256 0.730 51.8 0.294 0.793 64.5 0.220 0.764

LC-DPS vs. Best -3.6 -0.004 0.006 -1.7 -0.019 0.008 -6.8 -0.020 0.044 2.2 0.080 -0.007 -16.9 -0.088 0.146

Im
ag

eN
et PSLD 91.5 0.362 0.764 160.1 0.489 0.660 100.8 0.414 0.663 137.5 0.549 0.568 106.2 0.384 0.671

ReSample 64.2 0.158 0.732 139.9 0.285 0.608 71.4 0.276 0.684 73.0 0.246 0.714 123.8 0.390 0.558
LC-DPS 64.7 0.154 0.764 125.8 0.274 0.690 73.8 0.265 0.700 69.3 0.233 0.728 96.7 0.312 0.653

LC-DPS vs. Best 0.5 -0.004 0.032 -14.1 -0.011 0.030 2.4 -0.011 0.016 -3.7 -0.013 0.014 -9.5 -0.072 -0.018

challenging noise conditions. The latent variant LC-DPS exhibits the same behaviour, confirming
that the proposed framework is effective in both pixel and latent domains.

H.2 More Qualitative Results

In this section, we present additional qualitative results on the FFHQ dataset across various inverse
problem settings. These results serve to further demonstrate the flexibility and effectiveness of C-DPS
in handling diverse measurement operators beyond those shown in the main text.

Figure 6 shows reconstructions for the Gaussian deblurring task, where C-DPS successfully restores
high-frequency details that are often lost in baseline methods. Figure 7 presents results for motion
deblurring, highlighting C-DPS’s ability to recover sharp facial features under structured blur.

In Figure 8, we evaluate C-DPS on an 8× super-resolution task. Despite the aggressive downsampling,
our method reconstructs globally consistent and perceptually plausible images. Figures 9 and 10
display results on random inpainting and box inpainting, respectively. In both cases, C-DPS generates
semantically coherent completions even under extreme occlusions.

These qualitative results further support the claims made in the main paper, showing that C-DPS
generalizes well across a wide range of inverse problems with minimal task-specific tuning.

I Limitations and Failure Cases

While C-DPS demonstrates strong performance across a variety of inverse problems, we observe
that it can struggle in certain edge cases. For example, when the measurement matrix A is nearly
rank-deficient or the noise level is extremely high, the propagated measurement information {yt}

24

Table 8: Quantitative results for Gaussian noise level σ = 0.03 on the 1k validation sets of FFHQ
256× 256 and ImageNet 256× 256. Bold and underline indicate the best and second-best results,
respectively.

Pixel-Domain Methods

Dataset Method Inpaint (Random) Inpaint (Box) Deblur (Gaussian) Deblur (Motion) SR (4×)
FID↓ LPIPS↓ SSIM↑ FID↓ LPIPS↓ SSIM↑ FID↓ LPIPS↓ SSIM↑ FID↓ LPIPS↓ SSIM↑ FID↓ LPIPS↓ SSIM↑

FF
H

Q

DPS 19.4 0.196 0.872 29.8 0.151 0.891 36.2 0.230 0.842 32.9 0.216 0.882 32.6 0.192 0.873
ΠGDM 19.6 0.204 0.861 31.1 0.160 0.878 33.5 0.218 0.857 27.6 0.198 0.904 29.1 0.181 0.875
DDRM 61.3 0.516 0.363 36.7 0.175 0.895 63.2 0.291 0.807 – – – 52.3 0.268 0.861
MCG 24.9 0.249 0.792 32.4 0.266 0.745 86.9 0.301 0.069 – – – 74.2 0.466 0.604
ILVR 22.3 0.208 0.709 31.9 0.157 0.874 44.6 0.257 0.816 – – – 39.8 0.217 0.865

ReSample 19.2 0.181 0.868 29.7 0.145 0.886 30.9 0.225 0.836 26.1 0.203 0.906 27.2 0.186 0.872
PnP-ADMM 110.7 0.622 0.345 136.2 0.363 0.694 82.1 0.392 0.845 – – – 59.4 0.315 0.889
Score-SDE 61.3 0.498 0.530 49.2 0.286 0.746 101.1 0.347 0.141 – – – 85.7 0.471 0.658
ADMM-TV 155.7 0.406 0.807 59.6 0.283 0.840 160.5 0.454 0.832 – – – 95.4 0.385 0.835

C-DPS 18.3 0.174 0.898 23.7 0.118 0.894 27.6 0.209 0.856 23.5 0.189 0.933 24.9 0.171 0.880
C-DPS vs. Best -0.9 -0.007 0.030 -6.0 -0.027 0.008 -3.3 -0.016 0.020 -2.6 -0.014 0.027 -2.3 -0.015 0.008

Im
ag

eN
et

DPS 31.4 0.257 0.767 33.9 0.223 0.821 54.9 0.385 0.726 49.0 0.336 0.676 44.8 0.289 0.807
ΠGDM 37.0 0.303 0.736 36.5 0.247 0.785 52.3 0.367 0.736 47.3 0.322 0.709 48.1 0.299 0.790
DDRM 94.6 0.548 0.438 40.1 0.208 0.842 56.8 0.373 0.729 – – – 51.6 0.305 0.817
MCG 33.6 0.361 0.565 34.1 0.290 0.649 82.2 0.486 0.466 – – – 124.0 0.550 0.271
ILVR 32.9 0.324 0.684 33.1 0.239 0.753 61.4 0.376 0.690 – – – 82.7 0.454 0.533

ReSample 29.8 0.245 0.758 34.2 0.220 0.828 54.6 0.389 0.731 48.5 0.318 0.680 43.5 0.290 0.803
PnP-ADMM 94.4 0.556 0.346 71.2 0.335 0.700 87.6 0.461 0.699 – – – 84.7 0.373 0.787
Score-SDE 104.2 0.573 0.543 48.1 0.304 0.649 105.7 0.596 0.451 – – – 149.8 0.625 0.294
ADMM-TV 151.3 0.458 0.692 72.3 0.287 0.812 133.2 0.502 0.671 – – – 118.6 0.492 0.704

C-DPS 28.6 0.178 0.779 29.9 0.205 0.835 50.1 0.345 0.735 45.6 0.300 0.688 41.2 0.263 0.823
C-DPS vs. Best -1.2 -0.067 0.012 -4.0 -0.015 0.007 -2.2 -0.022 -0.001 -1.7 -0.018 -0.021 -2.3 -0.027 0.006

Latent-Domain Methods

Dataset Method Inpaint (Random) Inpaint (Box) Deblur (Gaussian) Deblur (Motion) SR (4×)
FID↓ LPIPS↓ SSIM↑ FID↓ LPIPS↓ SSIM↑ FID↓ LPIPS↓ SSIM↑ FID↓ LPIPS↓ SSIM↑ FID↓ LPIPS↓ SSIM↑

FF
H

Q

PSLD 43.5 0.203 0.830 39.1 0.142 0.833 78.3 0.291 0.652 85.5 0.310 0.702 66.8 0.262 0.669
ReSample 36.9 0.126 0.776 49.1 0.166 0.779 59.4 0.234 0.736 41.1 0.189 0.845 83.6 0.344 0.619
LC-DPS 34.3 0.123 0.843 37.6 0.130 0.841 54.2 0.215 0.777 42.9 0.258 0.837 58.7 0.176 0.812

LC-DPS vs. Best -2.6 -0.003 0.013 -1.5 -0.012 0.008 -5.2 -0.019 0.041 1.8 0.069 -0.008 -8.1 -0.086 0.143

Im
ag

eN
et PSLD 70.8 0.284 0.813 124.4 0.415 0.720 86.1 0.352 0.702 112.9 0.446 0.612 92.2 0.326 0.714

ReSample 49.1 0.118 0.782 111.9 0.223 0.659 57.3 0.225 0.724 61.5 0.200 0.745 107.2 0.332 0.609
LC-DPS 49.5 0.115 0.815 101.4 0.215 0.740 59.1 0.216 0.740 58.4 0.188 0.755 82.9 0.252 0.701

LC-DPS vs. Best 0.4 -0.003 0.033 -10.5 -0.008 0.020 1.8 -0.009 0.016 -3.1 -0.012 0.010 -9.3 -0.074 -0.013

may not sufficiently constrain the posterior, resulting in oversmoothing or loss of fine details in the
reconstruction.

This behavior is not unique to C-DPS. Prior methods such as DPS and ReSample also degrade
under similar conditions, as they rely on learned priors and approximate measurement integration
that become less reliable when the inverse problem is highly ill-posed. In our case, the Gaussian
approximation to the posterior—while principled and efficient—can be limiting when the true
posterior is strongly multi-modal or non-Gaussian.

These limitations arise from current design choices that favor tractability and generality. Future
extensions could incorporate adaptive diffusion schedules, refined measurement dynamics, or non-
Gaussian approximations to further improve performance in these extreme regimes.

25

Measurement Ground truth C-DPS (ours) DPS Re-Sample

Figure 6: Qualitative results on FFHQ dataset, Gaussian deblurring.

26

Measurement Ground truth C-DPS (ours) DPS Re-Sample

Figure 7: Qualitative results on FFHQ dataset, motion deblurring.

27

Measurement Ground truth C-DPS (Ours) DPS Re-Sample

Figure 8: Qualitative results on FFHQ dataset, super-resolution task (× 8).

28

Measurement Ground truth C-DPS (ours) DPS Re-Sample

Figure 9: Qualitative results on FFHQ dataset, inpaiting task (random).

29

Measurement Ground truth C-DPS (ours) DPS Re-Sample

Figure 10: Qualitative results on FFHQ dataset, inpaiting task (box).

30

Supplementary Materials (Evaluation on Medical Imaging Inverse Problems)

In this section, we extend our study by applying the proposed diffusion-based approach to inverse
problems in the medical imaging domain. Medical images often contain complex structures and
are typically acquired under constraints that make problems such as reconstruction, denoising, or
inpainting particularly challenging. By evaluating our method on representative medical imaging
tasks, we aim to demonstrate its effectiveness and generalization ability in real-world scenarios where
accurate recovery of fine details is critical.

Datasets and Preprocessing.

We evaluate our proposed method, C-DPS, on three representative medical imaging tasks using
public datasets: undersampled MRI, sparse-view CT, and super-resolution. For MRI reconstruction,
we use the fastMRI knee dataset [51]. Following standard preprocessing [26], we crop the raw
k-space data to 320× 320 resolution and reconstruct single-coil images using a minimum variance
unbiased estimator. Undersampling is simulated using 1D Gaussian and Uniform sampling masks
with acceleration rates (ACR) of 4 and 8.

For sparse-view CT, we utilize the LIDC dataset [52]. Two-dimensional CT slices of size 320× 320
are extracted from volumetric scans. Sinograms are generated using a parallel-beam geometry with
either 23 or 10 projections evenly spaced over 180 degrees to simulate sparse-view acquisition.

The super-resolution task is evaluated on the fastMRI brain dataset [51]. We downsample 2D
full-resolution images to generate low-resolution inputs for 2 × 2 and 4 × 4 upscaling. We select
approximately 63% of the slices labeled as reconstruction_rss, yielding a total of 34,698 training
samples.

Baselines and Evaluation Metrics

We compare our method, C-DPS, with strong training-free diffusion-based baselines including
DPS [7], Score-MRI [2], DDS [46], and ScoreMed [26], depending on the task. All methods
are implemented with their publicly available code and evaluated under consistent experimental
conditions.

We report results using standard image quality metrics: Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity Index (SSIM). Each task is evaluated on a test set of 1,000 images. For CT
experiments, we follow prior work and set the likelihood step size ζ = 0 where applicable. In all
experiments, our method outperforms the baselines across all configurations in terms of both PSNR
and SSIM, as shown in Tables 9, 11, and 10.

Architecture and Sampling Settings

All models are based on the ADM architecture [28], without classifier-free guidance or dropout.
Separate diffusion priors are trained for each task. For sampling, we use 100 timesteps for MRI and
super-resolution, and 350 timesteps for sparse-view CT.

Our method introduces a measurement-consistent update through a bi-level guidance scheme. We
tune the likelihood step size ζ and refinement weight γ within a restricted search space, ζ ∈ [0, 2],
γ ∈ [0, 4.5], and fix λ = 10−3 for the outer optimization. No extensive hyperparameter tuning is
required to achieve strong performance.

All experiments are conducted on a NVIDIA P100 GPU with 12 GB of memory.

Results

We assess the effectiveness of our method, C-DPS, across three key inverse problems: MRI recon-
struction, CT reconstruction, and super-resolution. In all cases, C-DPS consistently outperforms prior
training-free diffusion-based baselines, demonstrating both robustness and accuracy across varying
acquisition settings.

31

MRI Reconstruction. Table 9 reports results on the fastMRI knee dataset under Uniform1D and
Gaussian1D masks at acceleration rates of 4× and 8×. Our method achieves the highest PSNR
and SSIM across all configurations. Notably, under more aggressive undersampling (8×), C-DPS
shows significant improvements over both DPS and DDS, highlighting its resilience in challenging
reconstruction scenarios. The gains in SSIM, particularly under the Gaussian1D mask, indicate
improved structural fidelity and reduced aliasing artifacts.

Sparse-View CT Reconstruction. As shown in Table 11, C-DPS achieves state-of-the-art results
on the LIDC dataset with both 23 and 10 projections. It outperforms ScoreMed and BGDM by a
notable margin in PSNR and SSIM, despite using the same number of diffusion steps (350). The
improvement is especially pronounced under the extremely sparse 10-view setting, suggesting that
C-DPS maintains strong data consistency even under severe measurement limitations.

Super-Resolution. On the fastMRI brain dataset, Table 10 demonstrates that C-DPS achieves the
highest reconstruction quality for both 2×2 and 4×4 super-resolution tasks. Compared to DPS and
DDS, our method produces sharper images with higher structural similarity, particularly in the more
difficult 4×4 setting. These results affirm the generalization capability of C-DPS across different
types of inverse problems.

Overall Observations. Across all tasks, C-DPS improves upon existing baselines without requiring
task-specific training or extensive parameter tuning. The results highlight the advantage of incorpo-
rating measurement-aware updates through our bi-level guidance framework, which enhances both
reconstruction accuracy and robustness under limited data.

Table 9: Quantitative results for the fastMRI knee dataset across different sampling masks and
acceleration rates.

Method Uniform1D 4× ACR Uniform1D 8× ACR Gaussian1D 4× ACR Gaussian1D 8× ACR

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
DPS [7] 32.40±2.19 0.843±0.063 31.07±2.32 0.804±0.073 34.93±1.90 0.882±0.063 33.72±1.97 0.853±0.071
Score-MRI [2] 31.95±1.45 0.812±0.036 27.97±2.03 0.738±0.053 33.96±1.27 0.858±0.028 30.82±1.37 0.762±0.034
DDS [46] 33.83±2.54 0.859±0.045 32.09±2.84 0.822±0.060 37.61±2.29 0.900±0.045 35.82±2.42 0.874±0.052
C-DPS (ours) 35.63±2.47 0.877±0.057 33.33±2.66 0.842±0.077 38.05±2.43 0.918±0.0428 36.52±1.88 0.892±0.051

Table 10: Super-resolution results on the fastMRI brain dataset.

Method 2×2 SR 4×4 SR

PSNR↑ SSIM↑ PSNR↑ SSIM↑
DPS [7] 35.44±3.71 0.931±0.027 30.29±2.84 0.854±0.034
DDS [46] 36.15±3.75 0.943±0.023 32.04±2.92 0.869±0.031
C-DPS (ours) 36.42±3.02 0.951±0.044 32.48±2.32 0.889±0.051

Table 11: Quantitative results of sparse-view CT reconstruction on the LIDC dataset using 350 NFEs.

Method 23 Projections 10 Projections

PSNR↑ SSIM↑ PSNR↑ SSIM↑
ScoreMed [26] 35.24±2.71 0.905±0.046 29.52±2.63 0.823±0.061
C-DPS (ours) 35.92±2.33 0.925±0.046 30.59±2.21 0.842±0.058

32

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We provide a clear summary of our results in the abstract and introduction,
stating all conditions needed for the results to hold. We summarize the experiments presented
in the paper, with details in the main section and the Appendix.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses all the necessary conditions for the results to hold. In the
last section of the paper, we discuss multiple limitations of the proposed approach.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

33

Answer: [Yes]
Justification: The justification/proof for the theoretical parts are provided in the main body
and appendix of the paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe details of the model, including hyperparameters and system
prompts, in the paper and in the appendix. Moreover, we provide the link to the anonymous
repository that contains all of the codes needed to run the experiments demonstrated in the
paper and it contains the link to the dataset proposed in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

34

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the link to the anonymous repository that contains all of the codes
needed to run the experiments demonstrated in the paper
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes] .
Justification: We provide the experimental setting in the paper and also more details in the
appendix. We present all the necessary to run the experiments together with the code on the
anonymous repository.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: While our main results are based on extensive evaluation across multiple
datasets and inverse problem settings, we do not report error bars or confidence intervals
in the main figures and tables. However, our method consistently outperforms baselines
across all tested configurations, and we have verified the stability of our results over multiple
random seeds.
Guidelines:

• The answer NA means that the paper does not include experiments.

35

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the details of the machine where we performed experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper conforms to the NeurIPS Code of Ethics. In particular, the datasets
used are open widely used in related work; we do not use human participants

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

36

https://neurips.cc/public/EthicsGuidelines

Justification: Our paper focuses on a theoretical and algorithmic advancement in solving
inverse problems using diffusion models. While we do not explicitly discuss societal impacts,
the method has potential positive applications in areas such as medical imaging, where
improved reconstructions can aid diagnosis. At the same time, as with any generative
model, there is a possibility of misuse in domains like surveillance or data manipulation.
We acknowledge the importance of broader impact assessments and encourage responsible
deployment of such methods.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite all the datasets used, noting that they are open for use. We cite any
code used for our implementations.

37

Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We describe all datasets used, with proper documentation of parameters used,
algorithms, and code instructions.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

38

paperswithcode.com/datasets

Answer: [NA]
Justification: Our paper does not involve crowdsourcing or research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs are used only for writing purposes.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

39

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background and Preliminaries
	Diffusion Models
	Diffusion-Based Inverse Problem Solving

	Methodology
	Motivation
	Constructing a Markov Chain in the Measurement Space
	Generating {bold0mu mumu xxsubsectionxxxxt} Consistent with {bold0mu mumu yysubsectionyyyyt}
	Efficient sampling

	Experiments
	Quantitative Results
	Visual Comparison
	Measurement Fidelity
	Why C-DPS Works: Posterior Recovery on a Ground-Truth Benchmark

	Conclusion
	Related Works
	Empirical Justification for the Score Approximation in eq:freezing
	Latent C-DPS
	Extension to Nonlinear Forward Models
	Implementation Details
	Implementation Details of Baseline Methods
	Construction of Whitening Operator W

	Additional PSNR Results on Pixel-Domain Tasks
	Runtime Comparison on FFHQ 256256

	Toy dataset
	More Experiments
	Additional Quantitative Results for Other Noise Levels
	More Qualitative Results

	Limitations and Failure Cases

